Properties

Label 756.4.t.d.593.7
Level $756$
Weight $4$
Character 756.593
Analytic conductor $44.605$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [756,4,Mod(269,756)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("756.269"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 756.t (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,50] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(44.6054439643\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 214 x^{14} + 30952 x^{12} - 2415192 x^{10} + 136176800 x^{8} - 4497757024 x^{6} + \cdots + 7263930548224 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{16} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 593.7
Root \(6.73954 - 3.89107i\) of defining polynomial
Character \(\chi\) \(=\) 756.593
Dual form 756.4.t.d.269.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(6.73954 - 11.6732i) q^{5} +(9.49487 - 15.9012i) q^{7} +(-3.36020 + 1.94001i) q^{11} +22.9512i q^{13} +(57.1882 + 99.0529i) q^{17} +(112.404 + 64.8964i) q^{19} +(145.313 + 83.8966i) q^{23} +(-28.3427 - 49.0910i) q^{25} -111.992i q^{29} +(13.4452 - 7.76260i) q^{31} +(-121.627 - 218.002i) q^{35} +(166.902 - 289.082i) q^{37} +289.289 q^{41} -38.3502 q^{43} +(-137.463 + 238.094i) q^{47} +(-162.695 - 301.959i) q^{49} +(-542.435 + 313.175i) q^{53} +52.2991i q^{55} +(-232.366 - 402.470i) q^{59} +(142.015 + 81.9922i) q^{61} +(267.915 + 154.681i) q^{65} +(-11.3096 - 19.5888i) q^{67} -740.773i q^{71} +(846.739 - 488.865i) q^{73} +(-1.05618 + 71.8512i) q^{77} +(463.725 - 803.195i) q^{79} -1152.68 q^{83} +1541.69 q^{85} +(-554.282 + 960.045i) q^{89} +(364.951 + 217.919i) q^{91} +(1515.10 - 874.743i) q^{95} -1076.97i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 50 q^{7} - 390 q^{19} - 284 q^{25} + 984 q^{31} - 182 q^{37} + 472 q^{43} + 130 q^{49} - 24 q^{61} - 1522 q^{67} + 4458 q^{73} + 434 q^{79} - 2616 q^{85} - 4560 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/756\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\) \(379\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 6.73954 11.6732i 0.602802 1.04408i −0.389592 0.920987i \(-0.627384\pi\)
0.992395 0.123097i \(-0.0392826\pi\)
\(6\) 0 0
\(7\) 9.49487 15.9012i 0.512675 0.858583i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.36020 + 1.94001i −0.0921034 + 0.0531759i −0.545344 0.838212i \(-0.683601\pi\)
0.453241 + 0.891388i \(0.350268\pi\)
\(12\) 0 0
\(13\) 22.9512i 0.489656i 0.969567 + 0.244828i \(0.0787314\pi\)
−0.969567 + 0.244828i \(0.921269\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 57.1882 + 99.0529i 0.815893 + 1.41317i 0.908685 + 0.417482i \(0.137087\pi\)
−0.0927924 + 0.995685i \(0.529579\pi\)
\(18\) 0 0
\(19\) 112.404 + 64.8964i 1.35722 + 0.783592i 0.989249 0.146244i \(-0.0467184\pi\)
0.367973 + 0.929836i \(0.380052\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 145.313 + 83.8966i 1.31739 + 0.760593i 0.983307 0.181952i \(-0.0582415\pi\)
0.334079 + 0.942545i \(0.391575\pi\)
\(24\) 0 0
\(25\) −28.3427 49.0910i −0.226742 0.392728i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 111.992i 0.717117i −0.933507 0.358558i \(-0.883268\pi\)
0.933507 0.358558i \(-0.116732\pi\)
\(30\) 0 0
\(31\) 13.4452 7.76260i 0.0778979 0.0449743i −0.460545 0.887636i \(-0.652346\pi\)
0.538443 + 0.842662i \(0.319013\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −121.627 218.002i −0.587391 1.05283i
\(36\) 0 0
\(37\) 166.902 289.082i 0.741580 1.28445i −0.210196 0.977659i \(-0.567410\pi\)
0.951776 0.306795i \(-0.0992565\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 289.289 1.10194 0.550969 0.834526i \(-0.314258\pi\)
0.550969 + 0.834526i \(0.314258\pi\)
\(42\) 0 0
\(43\) −38.3502 −0.136008 −0.0680041 0.997685i \(-0.521663\pi\)
−0.0680041 + 0.997685i \(0.521663\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −137.463 + 238.094i −0.426619 + 0.738926i −0.996570 0.0827528i \(-0.973629\pi\)
0.569951 + 0.821679i \(0.306962\pi\)
\(48\) 0 0
\(49\) −162.695 301.959i −0.474329 0.880348i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −542.435 + 313.175i −1.40583 + 0.811659i −0.994983 0.100044i \(-0.968102\pi\)
−0.410851 + 0.911703i \(0.634768\pi\)
\(54\) 0 0
\(55\) 52.2991i 0.128218i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −232.366 402.470i −0.512737 0.888087i −0.999891 0.0147706i \(-0.995298\pi\)
0.487154 0.873316i \(-0.338035\pi\)
\(60\) 0 0
\(61\) 142.015 + 81.9922i 0.298084 + 0.172099i 0.641582 0.767055i \(-0.278279\pi\)
−0.343498 + 0.939153i \(0.611612\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 267.915 + 154.681i 0.511242 + 0.295166i
\(66\) 0 0
\(67\) −11.3096 19.5888i −0.0206222 0.0357186i 0.855530 0.517753i \(-0.173231\pi\)
−0.876152 + 0.482034i \(0.839898\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 740.773i 1.23822i −0.785304 0.619110i \(-0.787493\pi\)
0.785304 0.619110i \(-0.212507\pi\)
\(72\) 0 0
\(73\) 846.739 488.865i 1.35758 0.783799i 0.368282 0.929714i \(-0.379946\pi\)
0.989297 + 0.145916i \(0.0466128\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.05618 + 71.8512i −0.00156316 + 0.106340i
\(78\) 0 0
\(79\) 463.725 803.195i 0.660419 1.14388i −0.320086 0.947388i \(-0.603712\pi\)
0.980506 0.196491i \(-0.0629548\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −1152.68 −1.52438 −0.762188 0.647356i \(-0.775875\pi\)
−0.762188 + 0.647356i \(0.775875\pi\)
\(84\) 0 0
\(85\) 1541.69 1.96729
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −554.282 + 960.045i −0.660155 + 1.14342i 0.320420 + 0.947276i \(0.396176\pi\)
−0.980575 + 0.196146i \(0.937157\pi\)
\(90\) 0 0
\(91\) 364.951 + 217.919i 0.420410 + 0.251034i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1515.10 874.743i 1.63627 0.944703i
\(96\) 0 0
\(97\) 1076.97i 1.12732i −0.826007 0.563659i \(-0.809393\pi\)
0.826007 0.563659i \(-0.190607\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −417.629 723.355i −0.411442 0.712638i 0.583606 0.812037i \(-0.301641\pi\)
−0.995048 + 0.0993989i \(0.968308\pi\)
\(102\) 0 0
\(103\) 488.227 + 281.878i 0.467053 + 0.269653i 0.715005 0.699119i \(-0.246424\pi\)
−0.247952 + 0.968772i \(0.579758\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 112.506 + 64.9552i 0.101648 + 0.0586865i 0.549962 0.835190i \(-0.314642\pi\)
−0.448314 + 0.893876i \(0.647975\pi\)
\(108\) 0 0
\(109\) 39.5821 + 68.5582i 0.0347824 + 0.0602449i 0.882893 0.469575i \(-0.155593\pi\)
−0.848110 + 0.529820i \(0.822260\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1143.03i 0.951571i 0.879561 + 0.475786i \(0.157836\pi\)
−0.879561 + 0.475786i \(0.842164\pi\)
\(114\) 0 0
\(115\) 1958.69 1130.85i 1.58825 0.916975i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2118.05 + 31.1345i 1.63161 + 0.0239840i
\(120\) 0 0
\(121\) −657.973 + 1139.64i −0.494345 + 0.856230i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 920.818 0.658884
\(126\) 0 0
\(127\) −435.975 −0.304618 −0.152309 0.988333i \(-0.548671\pi\)
−0.152309 + 0.988333i \(0.548671\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −505.534 + 875.611i −0.337166 + 0.583989i −0.983898 0.178728i \(-0.942802\pi\)
0.646733 + 0.762717i \(0.276135\pi\)
\(132\) 0 0
\(133\) 2099.19 1171.17i 1.36859 0.763559i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −889.720 + 513.680i −0.554846 + 0.320340i −0.751074 0.660218i \(-0.770464\pi\)
0.196228 + 0.980558i \(0.437131\pi\)
\(138\) 0 0
\(139\) 2093.41i 1.27741i −0.769450 0.638707i \(-0.779470\pi\)
0.769450 0.638707i \(-0.220530\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −44.5256 77.1206i −0.0260379 0.0450989i
\(144\) 0 0
\(145\) −1307.31 754.774i −0.748730 0.432280i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2188.48 + 1263.52i 1.20327 + 0.694709i 0.961281 0.275569i \(-0.0888664\pi\)
0.241991 + 0.970279i \(0.422200\pi\)
\(150\) 0 0
\(151\) −631.489 1093.77i −0.340330 0.589469i 0.644164 0.764887i \(-0.277205\pi\)
−0.984494 + 0.175419i \(0.943872\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 209.265i 0.108443i
\(156\) 0 0
\(157\) 866.760 500.424i 0.440605 0.254384i −0.263249 0.964728i \(-0.584794\pi\)
0.703854 + 0.710344i \(0.251461\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2713.78 1514.06i 1.32842 0.741148i
\(162\) 0 0
\(163\) 699.008 1210.72i 0.335893 0.581784i −0.647763 0.761842i \(-0.724295\pi\)
0.983656 + 0.180058i \(0.0576286\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −4131.29 −1.91430 −0.957152 0.289586i \(-0.906482\pi\)
−0.957152 + 0.289586i \(0.906482\pi\)
\(168\) 0 0
\(169\) 1670.24 0.760237
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 376.529 652.167i 0.165474 0.286609i −0.771350 0.636412i \(-0.780418\pi\)
0.936823 + 0.349803i \(0.113751\pi\)
\(174\) 0 0
\(175\) −1049.71 15.4304i −0.453434 0.00666529i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1468.90 + 848.071i −0.613357 + 0.354122i −0.774278 0.632846i \(-0.781887\pi\)
0.160921 + 0.986967i \(0.448553\pi\)
\(180\) 0 0
\(181\) 2704.01i 1.11043i 0.831708 + 0.555213i \(0.187363\pi\)
−0.831708 + 0.555213i \(0.812637\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −2249.68 3896.56i −0.894052 1.54854i
\(186\) 0 0
\(187\) −384.327 221.891i −0.150293 0.0867717i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 2561.33 + 1478.78i 0.970320 + 0.560215i 0.899334 0.437263i \(-0.144052\pi\)
0.0709865 + 0.997477i \(0.477385\pi\)
\(192\) 0 0
\(193\) 2209.84 + 3827.55i 0.824184 + 1.42753i 0.902541 + 0.430603i \(0.141699\pi\)
−0.0783576 + 0.996925i \(0.524968\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 136.187i 0.0492534i 0.999697 + 0.0246267i \(0.00783971\pi\)
−0.999697 + 0.0246267i \(0.992160\pi\)
\(198\) 0 0
\(199\) −881.994 + 509.219i −0.314185 + 0.181395i −0.648798 0.760961i \(-0.724728\pi\)
0.334612 + 0.942356i \(0.391395\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1780.80 1063.35i −0.615704 0.367648i
\(204\) 0 0
\(205\) 1949.68 3376.94i 0.664250 1.15052i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −503.599 −0.166673
\(210\) 0 0
\(211\) −4421.97 −1.44275 −0.721377 0.692543i \(-0.756490\pi\)
−0.721377 + 0.692543i \(0.756490\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −258.463 + 447.671i −0.0819861 + 0.142004i
\(216\) 0 0
\(217\) 4.22613 287.500i 0.00132207 0.0899390i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −2273.38 + 1312.54i −0.691965 + 0.399506i
\(222\) 0 0
\(223\) 2676.81i 0.803823i −0.915679 0.401911i \(-0.868346\pi\)
0.915679 0.401911i \(-0.131654\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 917.491 + 1589.14i 0.268264 + 0.464648i 0.968414 0.249349i \(-0.0802166\pi\)
−0.700149 + 0.713997i \(0.746883\pi\)
\(228\) 0 0
\(229\) 2248.39 + 1298.11i 0.648813 + 0.374592i 0.788001 0.615674i \(-0.211116\pi\)
−0.139189 + 0.990266i \(0.544449\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −700.293 404.314i −0.196900 0.113680i 0.398309 0.917251i \(-0.369597\pi\)
−0.595209 + 0.803571i \(0.702931\pi\)
\(234\) 0 0
\(235\) 1852.88 + 3209.28i 0.514334 + 0.890853i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1514.16i 0.409803i −0.978783 0.204901i \(-0.934313\pi\)
0.978783 0.204901i \(-0.0656874\pi\)
\(240\) 0 0
\(241\) 2377.48 1372.64i 0.635465 0.366886i −0.147400 0.989077i \(-0.547091\pi\)
0.782866 + 0.622191i \(0.213757\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −4621.32 135.892i −1.20508 0.0354361i
\(246\) 0 0
\(247\) −1489.45 + 2579.81i −0.383690 + 0.664571i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 2572.17 0.646829 0.323415 0.946257i \(-0.395169\pi\)
0.323415 + 0.946257i \(0.395169\pi\)
\(252\) 0 0
\(253\) −651.041 −0.161781
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −2593.23 + 4491.60i −0.629420 + 1.09019i 0.358248 + 0.933626i \(0.383374\pi\)
−0.987668 + 0.156561i \(0.949959\pi\)
\(258\) 0 0
\(259\) −3012.04 5398.73i −0.722621 1.29522i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 2388.44 1378.97i 0.559990 0.323310i −0.193151 0.981169i \(-0.561871\pi\)
0.753142 + 0.657859i \(0.228538\pi\)
\(264\) 0 0
\(265\) 8442.62i 1.95708i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −624.369 1081.44i −0.141518 0.245117i 0.786550 0.617526i \(-0.211865\pi\)
−0.928069 + 0.372409i \(0.878532\pi\)
\(270\) 0 0
\(271\) −304.361 175.723i −0.0682237 0.0393890i 0.465500 0.885048i \(-0.345874\pi\)
−0.533724 + 0.845659i \(0.679208\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 190.474 + 109.970i 0.0417673 + 0.0241144i
\(276\) 0 0
\(277\) −942.774 1632.93i −0.204498 0.354200i 0.745475 0.666534i \(-0.232223\pi\)
−0.949973 + 0.312333i \(0.898889\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 8690.49i 1.84495i −0.386057 0.922475i \(-0.626163\pi\)
0.386057 0.922475i \(-0.373837\pi\)
\(282\) 0 0
\(283\) −7757.78 + 4478.95i −1.62951 + 0.940799i −0.645274 + 0.763951i \(0.723257\pi\)
−0.984238 + 0.176848i \(0.943410\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2746.77 4600.04i 0.564935 0.946104i
\(288\) 0 0
\(289\) −4084.48 + 7074.53i −0.831362 + 1.43996i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 7151.22 1.42587 0.712933 0.701232i \(-0.247366\pi\)
0.712933 + 0.701232i \(0.247366\pi\)
\(294\) 0 0
\(295\) −6264.16 −1.23632
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1925.53 + 3335.11i −0.372429 + 0.645065i
\(300\) 0 0
\(301\) −364.131 + 609.814i −0.0697280 + 0.116774i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1914.22 1105.18i 0.359371 0.207483i
\(306\) 0 0
\(307\) 263.121i 0.0489157i 0.999701 + 0.0244578i \(0.00778595\pi\)
−0.999701 + 0.0244578i \(0.992214\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 3283.90 + 5687.88i 0.598755 + 1.03707i 0.993005 + 0.118071i \(0.0376711\pi\)
−0.394250 + 0.919003i \(0.628996\pi\)
\(312\) 0 0
\(313\) −1003.18 579.188i −0.181161 0.104593i 0.406677 0.913572i \(-0.366687\pi\)
−0.587838 + 0.808979i \(0.700021\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1434.46 + 828.187i 0.254156 + 0.146737i 0.621666 0.783283i \(-0.286456\pi\)
−0.367510 + 0.930020i \(0.619790\pi\)
\(318\) 0 0
\(319\) 217.266 + 376.315i 0.0381333 + 0.0660489i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 14845.2i 2.55731i
\(324\) 0 0
\(325\) 1126.70 650.499i 0.192301 0.111025i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 2480.77 + 4446.50i 0.415712 + 0.745117i
\(330\) 0 0
\(331\) −2701.35 + 4678.87i −0.448578 + 0.776960i −0.998294 0.0583918i \(-0.981403\pi\)
0.549716 + 0.835352i \(0.314736\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −304.885 −0.0497243
\(336\) 0 0
\(337\) −9033.79 −1.46024 −0.730122 0.683317i \(-0.760537\pi\)
−0.730122 + 0.683317i \(0.760537\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −30.1191 + 52.1677i −0.00478310 + 0.00828458i
\(342\) 0 0
\(343\) −6346.27 280.024i −0.999028 0.0440813i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1876.21 1083.23i 0.290260 0.167582i −0.347799 0.937569i \(-0.613071\pi\)
0.638059 + 0.769987i \(0.279737\pi\)
\(348\) 0 0
\(349\) 5910.25i 0.906499i −0.891384 0.453250i \(-0.850265\pi\)
0.891384 0.453250i \(-0.149735\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1201.00 + 2080.20i 0.181085 + 0.313648i 0.942250 0.334910i \(-0.108706\pi\)
−0.761165 + 0.648558i \(0.775373\pi\)
\(354\) 0 0
\(355\) −8647.21 4992.47i −1.29281 0.746402i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −7559.87 4364.69i −1.11141 0.641670i −0.172213 0.985060i \(-0.555092\pi\)
−0.939193 + 0.343390i \(0.888425\pi\)
\(360\) 0 0
\(361\) 4993.59 + 8649.15i 0.728034 + 1.26099i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 13178.9i 1.88990i
\(366\) 0 0
\(367\) 10060.7 5808.55i 1.43096 0.826168i 0.433770 0.901023i \(-0.357183\pi\)
0.997194 + 0.0748556i \(0.0238496\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −170.499 + 11598.9i −0.0238595 + 1.62314i
\(372\) 0 0
\(373\) −4242.65 + 7348.48i −0.588944 + 1.02008i 0.405427 + 0.914127i \(0.367123\pi\)
−0.994371 + 0.105953i \(0.966211\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2570.35 0.351140
\(378\) 0 0
\(379\) −7285.37 −0.987399 −0.493699 0.869633i \(-0.664356\pi\)
−0.493699 + 0.869633i \(0.664356\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 7291.06 12628.5i 0.972731 1.68482i 0.285502 0.958378i \(-0.407840\pi\)
0.687229 0.726441i \(-0.258827\pi\)
\(384\) 0 0
\(385\) 831.617 + 496.573i 0.110086 + 0.0657343i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 1257.64 726.099i 0.163920 0.0946393i −0.415796 0.909458i \(-0.636497\pi\)
0.579716 + 0.814819i \(0.303164\pi\)
\(390\) 0 0
\(391\) 19191.6i 2.48225i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −6250.58 10826.3i −0.796205 1.37907i
\(396\) 0 0
\(397\) −1501.67 866.988i −0.189840 0.109604i 0.402068 0.915610i \(-0.368292\pi\)
−0.591908 + 0.806006i \(0.701625\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −3683.42 2126.62i −0.458706 0.264834i 0.252794 0.967520i \(-0.418650\pi\)
−0.711500 + 0.702686i \(0.751984\pi\)
\(402\) 0 0
\(403\) 178.161 + 308.584i 0.0220219 + 0.0381431i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1295.16i 0.157737i
\(408\) 0 0
\(409\) 7407.36 4276.64i 0.895527 0.517033i 0.0197804 0.999804i \(-0.493703\pi\)
0.875746 + 0.482772i \(0.160370\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −8606.03 126.505i −1.02536 0.0150724i
\(414\) 0 0
\(415\) −7768.53 + 13455.5i −0.918897 + 1.59158i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −11821.3 −1.37830 −0.689151 0.724618i \(-0.742016\pi\)
−0.689151 + 0.724618i \(0.742016\pi\)
\(420\) 0 0
\(421\) 9584.58 1.10956 0.554779 0.831998i \(-0.312803\pi\)
0.554779 + 0.831998i \(0.312803\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 3241.73 5614.85i 0.369993 0.640848i
\(426\) 0 0
\(427\) 2652.18 1479.69i 0.300581 0.167699i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −7118.04 + 4109.60i −0.795508 + 0.459287i −0.841898 0.539637i \(-0.818562\pi\)
0.0463903 + 0.998923i \(0.485228\pi\)
\(432\) 0 0
\(433\) 183.154i 0.0203276i 0.999948 + 0.0101638i \(0.00323529\pi\)
−0.999948 + 0.0101638i \(0.996765\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 10889.2 + 18860.6i 1.19199 + 2.06459i
\(438\) 0 0
\(439\) −11916.7 6880.10i −1.29556 0.747993i −0.315928 0.948783i \(-0.602316\pi\)
−0.979634 + 0.200790i \(0.935649\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −5187.15 2994.80i −0.556318 0.321191i 0.195348 0.980734i \(-0.437416\pi\)
−0.751666 + 0.659543i \(0.770750\pi\)
\(444\) 0 0
\(445\) 7471.21 + 12940.5i 0.795886 + 1.37852i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 16572.5i 1.74188i 0.491385 + 0.870942i \(0.336491\pi\)
−0.491385 + 0.870942i \(0.663509\pi\)
\(450\) 0 0
\(451\) −972.069 + 561.225i −0.101492 + 0.0585965i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 5003.42 2791.49i 0.515525 0.287619i
\(456\) 0 0
\(457\) 5588.89 9680.24i 0.572073 0.990859i −0.424280 0.905531i \(-0.639473\pi\)
0.996353 0.0853283i \(-0.0271939\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −12231.1 −1.23570 −0.617852 0.786295i \(-0.711997\pi\)
−0.617852 + 0.786295i \(0.711997\pi\)
\(462\) 0 0
\(463\) −13290.3 −1.33402 −0.667011 0.745048i \(-0.732427\pi\)
−0.667011 + 0.745048i \(0.732427\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 6213.58 10762.2i 0.615697 1.06642i −0.374565 0.927201i \(-0.622208\pi\)
0.990262 0.139217i \(-0.0444586\pi\)
\(468\) 0 0
\(469\) −418.867 6.15717i −0.0412399 0.000606209i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 128.864 74.3998i 0.0125268 0.00723236i
\(474\) 0 0
\(475\) 7357.35i 0.710692i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −2655.35 4599.21i −0.253291 0.438712i 0.711139 0.703051i \(-0.248180\pi\)
−0.964430 + 0.264339i \(0.914846\pi\)
\(480\) 0 0
\(481\) 6634.78 + 3830.59i 0.628940 + 0.363119i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −12571.7 7258.29i −1.17702 0.679551i
\(486\) 0 0
\(487\) −1409.76 2441.78i −0.131176 0.227203i 0.792954 0.609281i \(-0.208542\pi\)
−0.924130 + 0.382078i \(0.875209\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 11622.3i 1.06824i 0.845407 + 0.534122i \(0.179358\pi\)
−0.845407 + 0.534122i \(0.820642\pi\)
\(492\) 0 0
\(493\) 11093.1 6404.62i 1.01341 0.585090i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −11779.2 7033.55i −1.06311 0.634804i
\(498\) 0 0
\(499\) 1565.67 2711.82i 0.140459 0.243282i −0.787211 0.616684i \(-0.788476\pi\)
0.927670 + 0.373402i \(0.121809\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 18250.0 1.61774 0.808872 0.587984i \(-0.200078\pi\)
0.808872 + 0.587984i \(0.200078\pi\)
\(504\) 0 0
\(505\) −11258.5 −0.992073
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 4710.36 8158.58i 0.410182 0.710457i −0.584727 0.811230i \(-0.698798\pi\)
0.994909 + 0.100773i \(0.0321317\pi\)
\(510\) 0 0
\(511\) 266.148 18105.8i 0.0230405 1.56743i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 6580.85 3799.46i 0.563081 0.325095i
\(516\) 0 0
\(517\) 1066.72i 0.0907434i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 4266.12 + 7389.13i 0.358737 + 0.621351i 0.987750 0.156044i \(-0.0498742\pi\)
−0.629013 + 0.777395i \(0.716541\pi\)
\(522\) 0 0
\(523\) −5291.29 3054.93i −0.442394 0.255416i 0.262219 0.965008i \(-0.415546\pi\)
−0.704613 + 0.709592i \(0.748879\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1537.82 + 887.859i 0.127113 + 0.0733885i
\(528\) 0 0
\(529\) 7993.77 + 13845.6i 0.657004 + 1.13796i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 6639.55i 0.539570i
\(534\) 0 0
\(535\) 1516.47 875.536i 0.122547 0.0707527i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1132.49 + 699.013i 0.0905006 + 0.0558601i
\(540\) 0 0
\(541\) −3917.88 + 6785.97i −0.311355 + 0.539282i −0.978656 0.205506i \(-0.934116\pi\)
0.667301 + 0.744788i \(0.267449\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 1067.06 0.0838676
\(546\) 0 0
\(547\) −16124.4 −1.26039 −0.630193 0.776438i \(-0.717024\pi\)
−0.630193 + 0.776438i \(0.717024\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 7267.88 12588.3i 0.561927 0.973287i
\(552\) 0 0
\(553\) −8368.74 15000.0i −0.643535 1.15346i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 10054.8 5805.12i 0.764872 0.441599i −0.0661703 0.997808i \(-0.521078\pi\)
0.831042 + 0.556209i \(0.187745\pi\)
\(558\) 0 0
\(559\) 880.185i 0.0665972i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −5721.06 9909.16i −0.428266 0.741778i 0.568453 0.822716i \(-0.307542\pi\)
−0.996719 + 0.0809371i \(0.974209\pi\)
\(564\) 0 0
\(565\) 13342.9 + 7703.52i 0.993521 + 0.573609i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 22603.5 + 13050.1i 1.66536 + 0.961495i 0.970091 + 0.242743i \(0.0780473\pi\)
0.695267 + 0.718751i \(0.255286\pi\)
\(570\) 0 0
\(571\) 2595.16 + 4494.95i 0.190200 + 0.329436i 0.945316 0.326155i \(-0.105753\pi\)
−0.755116 + 0.655591i \(0.772420\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 9511.42i 0.689832i
\(576\) 0 0
\(577\) 19142.6 11052.0i 1.38114 0.797399i 0.388842 0.921304i \(-0.372875\pi\)
0.992294 + 0.123905i \(0.0395419\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −10944.6 + 18329.0i −0.781509 + 1.30880i
\(582\) 0 0
\(583\) 1215.13 2104.66i 0.0863214 0.149513i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −4437.47 −0.312017 −0.156009 0.987756i \(-0.549863\pi\)
−0.156009 + 0.987756i \(0.549863\pi\)
\(588\) 0 0
\(589\) 2015.06 0.140966
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −13896.3 + 24069.1i −0.962315 + 1.66678i −0.245654 + 0.969358i \(0.579003\pi\)
−0.716661 + 0.697421i \(0.754331\pi\)
\(594\) 0 0
\(595\) 14638.1 24514.6i 1.00858 1.68908i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −6526.51 + 3768.08i −0.445185 + 0.257028i −0.705795 0.708417i \(-0.749410\pi\)
0.260609 + 0.965444i \(0.416077\pi\)
\(600\) 0 0
\(601\) 348.179i 0.0236315i 0.999930 + 0.0118157i \(0.00376115\pi\)
−0.999930 + 0.0118157i \(0.996239\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 8868.86 + 15361.3i 0.595984 + 1.03228i
\(606\) 0 0
\(607\) 12737.0 + 7353.70i 0.851694 + 0.491726i 0.861222 0.508229i \(-0.169700\pi\)
−0.00952801 + 0.999955i \(0.503033\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −5464.54 3154.95i −0.361819 0.208896i
\(612\) 0 0
\(613\) 8696.67 + 15063.1i 0.573010 + 0.992483i 0.996255 + 0.0864672i \(0.0275578\pi\)
−0.423245 + 0.906015i \(0.639109\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 17411.5i 1.13608i −0.823000 0.568041i \(-0.807702\pi\)
0.823000 0.568041i \(-0.192298\pi\)
\(618\) 0 0
\(619\) 7394.09 4268.98i 0.480119 0.277197i −0.240347 0.970687i \(-0.577261\pi\)
0.720466 + 0.693490i \(0.243928\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 10003.0 + 17929.2i 0.643278 + 1.15300i
\(624\) 0 0
\(625\) 9748.72 16885.3i 0.623918 1.08066i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 38179.2 2.42020
\(630\) 0 0
\(631\) 15670.8 0.988662 0.494331 0.869274i \(-0.335413\pi\)
0.494331 + 0.869274i \(0.335413\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −2938.27 + 5089.23i −0.183625 + 0.318047i
\(636\) 0 0
\(637\) 6930.33 3734.04i 0.431067 0.232258i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 3120.23 1801.46i 0.192265 0.111004i −0.400778 0.916175i \(-0.631260\pi\)
0.593042 + 0.805171i \(0.297927\pi\)
\(642\) 0 0
\(643\) 18859.3i 1.15667i −0.815800 0.578334i \(-0.803703\pi\)
0.815800 0.578334i \(-0.196297\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 8923.20 + 15455.4i 0.542206 + 0.939128i 0.998777 + 0.0494414i \(0.0157441\pi\)
−0.456571 + 0.889687i \(0.650923\pi\)
\(648\) 0 0
\(649\) 1561.59 + 901.585i 0.0944497 + 0.0545305i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −16920.5 9769.08i −1.01401 0.585442i −0.101650 0.994820i \(-0.532412\pi\)
−0.912365 + 0.409378i \(0.865746\pi\)
\(654\) 0 0
\(655\) 6814.13 + 11802.4i 0.406489 + 0.704059i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 17003.2i 1.00509i −0.864552 0.502544i \(-0.832398\pi\)
0.864552 0.502544i \(-0.167602\pi\)
\(660\) 0 0
\(661\) 13929.6 8042.28i 0.819668 0.473235i −0.0306343 0.999531i \(-0.509753\pi\)
0.850302 + 0.526295i \(0.176419\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 476.229 32397.4i 0.0277705 1.88920i
\(666\) 0 0
\(667\) 9395.74 16273.9i 0.545434 0.944720i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −636.262 −0.0366060
\(672\) 0 0
\(673\) 5276.73 0.302233 0.151117 0.988516i \(-0.451713\pi\)
0.151117 + 0.988516i \(0.451713\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −4172.65 + 7227.24i −0.236880 + 0.410288i −0.959817 0.280625i \(-0.909458\pi\)
0.722937 + 0.690914i \(0.242792\pi\)
\(678\) 0 0
\(679\) −17125.1 10225.7i −0.967897 0.577948i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −11941.9 + 6894.65i −0.669024 + 0.386261i −0.795707 0.605682i \(-0.792900\pi\)
0.126682 + 0.991943i \(0.459567\pi\)
\(684\) 0 0
\(685\) 13847.9i 0.772408i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −7187.75 12449.5i −0.397433 0.688374i
\(690\) 0 0
\(691\) −30742.0 17748.9i −1.69244 0.977133i −0.952536 0.304426i \(-0.901535\pi\)
−0.739908 0.672708i \(-0.765131\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −24436.8 14108.6i −1.33373 0.770028i
\(696\) 0 0
\(697\) 16543.9 + 28655.0i 0.899063 + 1.55722i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 13027.5i 0.701912i −0.936392 0.350956i \(-0.885857\pi\)
0.936392 0.350956i \(-0.114143\pi\)
\(702\) 0 0
\(703\) 37520.8 21662.6i 2.01298 1.16219i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −15467.5 227.366i −0.822795 0.0120947i
\(708\) 0 0
\(709\) −2669.66 + 4623.99i −0.141412 + 0.244933i −0.928029 0.372509i \(-0.878498\pi\)
0.786616 + 0.617442i \(0.211831\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 2605.02 0.136829
\(714\) 0 0
\(715\) −1200.33 −0.0627828
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 480.344 831.979i 0.0249149 0.0431538i −0.853299 0.521422i \(-0.825402\pi\)
0.878214 + 0.478268i \(0.158735\pi\)
\(720\) 0 0
\(721\) 9117.85 5086.99i 0.470966 0.262759i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −5497.79 + 3174.15i −0.281632 + 0.162600i
\(726\) 0 0
\(727\) 10608.2i 0.541178i 0.962695 + 0.270589i \(0.0872184\pi\)
−0.962695 + 0.270589i \(0.912782\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −2193.18 3798.70i −0.110968 0.192203i
\(732\) 0 0
\(733\) −4227.26 2440.61i −0.213011 0.122982i 0.389699 0.920942i \(-0.372579\pi\)
−0.602710 + 0.797960i \(0.705912\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 76.0048 + 43.8814i 0.00379874 + 0.00219320i
\(738\) 0 0
\(739\) 726.391 + 1258.15i 0.0361579 + 0.0626274i 0.883538 0.468359i \(-0.155155\pi\)
−0.847380 + 0.530987i \(0.821821\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 21934.1i 1.08302i 0.840695 + 0.541510i \(0.182147\pi\)
−0.840695 + 0.541510i \(0.817853\pi\)
\(744\) 0 0
\(745\) 29498.7 17031.1i 1.45067 0.837545i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 2101.09 1172.23i 0.102500 0.0571862i
\(750\) 0 0
\(751\) −8380.16 + 14514.9i −0.407186 + 0.705266i −0.994573 0.104040i \(-0.966823\pi\)
0.587388 + 0.809306i \(0.300156\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −17023.8 −0.820607
\(756\) 0 0
\(757\) −29239.3 −1.40386 −0.701930 0.712246i \(-0.747678\pi\)
−0.701930 + 0.712246i \(0.747678\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −13062.4 + 22624.7i −0.622222 + 1.07772i 0.366849 + 0.930280i \(0.380437\pi\)
−0.989071 + 0.147440i \(0.952897\pi\)
\(762\) 0 0
\(763\) 1465.98 + 21.5493i 0.0695573 + 0.00102246i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 9237.17 5333.09i 0.434857 0.251065i
\(768\) 0 0
\(769\) 22095.8i 1.03614i −0.855337 0.518072i \(-0.826650\pi\)
0.855337 0.518072i \(-0.173350\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −11406.9 19757.3i −0.530760 0.919303i −0.999356 0.0358904i \(-0.988573\pi\)
0.468596 0.883413i \(-0.344760\pi\)
\(774\) 0 0
\(775\) −762.148 440.026i −0.0353254 0.0203951i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 32517.3 + 18773.8i 1.49557 + 0.863470i
\(780\) 0 0
\(781\) 1437.11 + 2489.14i 0.0658435 + 0.114044i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 13490.5i 0.613372i
\(786\) 0 0
\(787\) 20936.1 12087.5i 0.948276 0.547487i 0.0557309 0.998446i \(-0.482251\pi\)
0.892545 + 0.450959i \(0.148918\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 18175.6 + 10853.0i 0.817003 + 0.487847i
\(792\) 0 0
\(793\) −1881.82 + 3259.41i −0.0842691 + 0.145958i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −16204.7 −0.720201 −0.360101 0.932913i \(-0.617258\pi\)
−0.360101 + 0.932913i \(0.617258\pi\)
\(798\) 0 0
\(799\) −31445.1 −1.39230
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −1896.81 + 3285.36i −0.0833584 + 0.144381i
\(804\) 0 0
\(805\) 615.658 41882.7i 0.0269554 1.83375i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −24980.6 + 14422.5i −1.08562 + 0.626785i −0.932408 0.361408i \(-0.882296\pi\)
−0.153216 + 0.988193i \(0.548963\pi\)
\(810\) 0 0
\(811\) 24978.8i 1.08154i −0.841172 0.540768i \(-0.818134\pi\)
0.841172 0.540768i \(-0.181866\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −9421.98 16319.4i −0.404954 0.701401i
\(816\) 0 0
\(817\) −4310.71 2488.79i −0.184593 0.106575i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 8539.34 + 4930.19i 0.363002 + 0.209579i 0.670397 0.742003i \(-0.266124\pi\)
−0.307395 + 0.951582i \(0.599457\pi\)
\(822\) 0 0
\(823\) −4660.50 8072.22i −0.197393 0.341895i 0.750289 0.661110i \(-0.229914\pi\)
−0.947683 + 0.319214i \(0.896581\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 27727.4i 1.16587i 0.812518 + 0.582936i \(0.198096\pi\)
−0.812518 + 0.582936i \(0.801904\pi\)
\(828\) 0 0
\(829\) 15400.4 8891.42i 0.645208 0.372511i −0.141410 0.989951i \(-0.545164\pi\)
0.786618 + 0.617440i \(0.211830\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 20605.7 33383.9i 0.857077 1.38858i
\(834\) 0 0
\(835\) −27843.0 + 48225.4i −1.15395 + 1.99869i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −37414.7 −1.53957 −0.769786 0.638302i \(-0.779637\pi\)
−0.769786 + 0.638302i \(0.779637\pi\)
\(840\) 0 0
\(841\) 11846.8 0.485744
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 11256.7 19497.1i 0.458273 0.793752i
\(846\) 0 0
\(847\) 11874.3 + 21283.3i 0.481706 + 0.863403i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 48506.0 28004.9i 1.95389 1.12808i
\(852\) 0 0
\(853\) 45000.8i 1.80633i 0.429297 + 0.903163i \(0.358761\pi\)
−0.429297 + 0.903163i \(0.641239\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 3211.66 + 5562.76i 0.128014 + 0.221727i 0.922907 0.385023i \(-0.125806\pi\)
−0.794893 + 0.606750i \(0.792473\pi\)
\(858\) 0 0
\(859\) 9746.17 + 5626.95i 0.387119 + 0.223503i 0.680911 0.732366i \(-0.261584\pi\)
−0.293792 + 0.955869i \(0.594917\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 27330.4 + 15779.2i 1.07803 + 0.622399i 0.930363 0.366639i \(-0.119492\pi\)
0.147663 + 0.989038i \(0.452825\pi\)
\(864\) 0 0
\(865\) −5075.26 8790.61i −0.199496 0.345537i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 3598.52i 0.140474i
\(870\) 0 0
\(871\) 449.586 259.568i 0.0174898 0.0100978i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 8743.05 14642.1i 0.337793 0.565706i
\(876\) 0 0
\(877\) 7959.71 13786.6i 0.306477 0.530834i −0.671112 0.741356i \(-0.734183\pi\)
0.977589 + 0.210522i \(0.0675164\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −23711.9 −0.906783 −0.453392 0.891311i \(-0.649786\pi\)
−0.453392 + 0.891311i \(0.649786\pi\)
\(882\) 0 0
\(883\) −10170.8 −0.387629 −0.193814 0.981038i \(-0.562086\pi\)
−0.193814 + 0.981038i \(0.562086\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −4088.38 + 7081.29i −0.154763 + 0.268057i −0.932973 0.359947i \(-0.882795\pi\)
0.778210 + 0.628004i \(0.216128\pi\)
\(888\) 0 0
\(889\) −4139.52 + 6932.51i −0.156170 + 0.261540i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −30902.8 + 17841.8i −1.15803 + 0.668591i
\(894\) 0 0
\(895\) 22862.4i 0.853861i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −869.349 1505.76i −0.0322519 0.0558619i
\(900\) 0 0
\(901\) −62041.8 35819.8i −2.29402 1.32445i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 31564.5 + 18223.8i 1.15938 + 0.669368i
\(906\) 0 0
\(907\) 21720.2 + 37620.6i 0.795159 + 1.37726i 0.922738 + 0.385427i \(0.125946\pi\)
−0.127580 + 0.991828i \(0.540721\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 6894.34i 0.250735i 0.992110 + 0.125368i \(0.0400110\pi\)
−0.992110 + 0.125368i \(0.959989\pi\)
\(912\) 0 0
\(913\) 3873.23 2236.21i 0.140400 0.0810600i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 9123.26 + 16352.4i 0.328546 + 0.588881i
\(918\) 0 0
\(919\) −22803.2 + 39496.3i −0.818508 + 1.41770i 0.0882738 + 0.996096i \(0.471865\pi\)
−0.906782 + 0.421601i \(0.861468\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 17001.7 0.606301
\(924\) 0 0
\(925\) −18921.8 −0.672588
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 2502.59 4334.61i 0.0883825 0.153083i −0.818445 0.574585i \(-0.805164\pi\)
0.906828 + 0.421502i \(0.138497\pi\)
\(930\) 0 0
\(931\) 1308.54 44499.7i 0.0460640 1.56651i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −5180.37 + 2990.89i −0.181194 + 0.104612i
\(936\) 0 0
\(937\) 1553.37i 0.0541583i −0.999633 0.0270791i \(-0.991379\pi\)
0.999633 0.0270791i \(-0.00862061\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −9229.76 15986.4i −0.319747 0.553817i 0.660688 0.750660i \(-0.270264\pi\)
−0.980435 + 0.196843i \(0.936931\pi\)
\(942\) 0 0
\(943\) 42037.6 + 24270.4i 1.45168 + 0.838126i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 32928.5 + 19011.3i 1.12992 + 0.652359i 0.943915 0.330190i \(-0.107113\pi\)
0.186005 + 0.982549i \(0.440446\pi\)
\(948\) 0 0
\(949\) 11220.0 + 19433.7i 0.383791 + 0.664746i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 7237.56i 0.246010i −0.992406 0.123005i \(-0.960747\pi\)
0.992406 0.123005i \(-0.0392531\pi\)
\(954\) 0 0
\(955\) 34524.3 19932.6i 1.16982 0.675398i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −279.658 + 19024.9i −0.00941672 + 0.640612i
\(960\) 0 0
\(961\) −14775.0 + 25591.0i −0.495955 + 0.859019i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 59573.1 1.98728
\(966\) 0 0
\(967\) −29380.5 −0.977057 −0.488528 0.872548i \(-0.662466\pi\)
−0.488528 + 0.872548i \(0.662466\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 6132.73 10622.2i 0.202686 0.351063i −0.746707 0.665153i \(-0.768366\pi\)
0.949393 + 0.314090i \(0.101699\pi\)
\(972\) 0 0
\(973\) −33287.6 19876.6i −1.09677 0.654898i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 11649.2 6725.69i 0.381466 0.220239i −0.296990 0.954881i \(-0.595983\pi\)
0.678456 + 0.734641i \(0.262649\pi\)
\(978\) 0 0
\(979\) 4301.25i 0.140417i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −7782.25 13479.2i −0.252508 0.437356i 0.711708 0.702476i \(-0.247922\pi\)
−0.964216 + 0.265119i \(0.914589\pi\)
\(984\) 0 0
\(985\) 1589.74 + 917.836i 0.0514247 + 0.0296900i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −5572.79 3217.45i −0.179175 0.103447i
\(990\) 0 0
\(991\) 23244.2 + 40260.1i 0.745081 + 1.29052i 0.950157 + 0.311772i \(0.100923\pi\)
−0.205076 + 0.978746i \(0.565744\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 13727.6i 0.437381i
\(996\) 0 0
\(997\) −7592.45 + 4383.50i −0.241179 + 0.139245i −0.615718 0.787966i \(-0.711134\pi\)
0.374540 + 0.927211i \(0.377801\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 756.4.t.d.593.7 yes 16
3.2 odd 2 inner 756.4.t.d.593.2 yes 16
7.3 odd 6 inner 756.4.t.d.269.2 16
21.17 even 6 inner 756.4.t.d.269.7 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
756.4.t.d.269.2 16 7.3 odd 6 inner
756.4.t.d.269.7 yes 16 21.17 even 6 inner
756.4.t.d.593.2 yes 16 3.2 odd 2 inner
756.4.t.d.593.7 yes 16 1.1 even 1 trivial