Properties

Label 756.4.f.e.377.9
Level $756$
Weight $4$
Character 756.377
Analytic conductor $44.605$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [756,4,Mod(377,756)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("756.377"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 756.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(44.6054439643\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} - 36 x^{14} - 780 x^{13} + 17052 x^{12} - 100012 x^{11} + 336938 x^{10} + \cdots + 1976222698452 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{26} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 377.9
Root \(4.61314 + 2.16386i\) of defining polynomial
Character \(\chi\) \(=\) 756.377
Dual form 756.4.f.e.377.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.0103268 q^{5} +(16.5266 - 8.35886i) q^{7} -60.1026i q^{11} -31.7159i q^{13} -91.2417 q^{17} -12.6579i q^{19} +86.0802i q^{23} -125.000 q^{25} -122.068i q^{29} +297.925i q^{31} +(0.170668 - 0.0863205i) q^{35} +159.053 q^{37} -182.152 q^{41} -95.7857 q^{43} -43.8453 q^{47} +(203.259 - 276.288i) q^{49} +17.6574i q^{53} -0.620670i q^{55} -317.260 q^{59} -802.687i q^{61} -0.327524i q^{65} -383.748 q^{67} -230.376i q^{71} +847.573i q^{73} +(-502.390 - 993.294i) q^{77} +411.427 q^{79} -1231.15 q^{83} -0.942237 q^{85} -1545.46 q^{89} +(-265.109 - 524.157i) q^{91} -0.130716i q^{95} +1584.03i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 14 q^{7} + 388 q^{25} - 344 q^{37} - 404 q^{43} - 14 q^{49} + 1772 q^{67} - 1456 q^{79} - 4704 q^{85} + 2436 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/756\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\) \(379\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.0103268 0.000923659 0.000461830 1.00000i \(-0.499853\pi\)
0.000461830 1.00000i \(0.499853\pi\)
\(6\) 0 0
\(7\) 16.5266 8.35886i 0.892354 0.451336i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 60.1026i 1.64742i −0.567011 0.823710i \(-0.691900\pi\)
0.567011 0.823710i \(-0.308100\pi\)
\(12\) 0 0
\(13\) 31.7159i 0.676646i −0.941030 0.338323i \(-0.890140\pi\)
0.941030 0.338323i \(-0.109860\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −91.2417 −1.30173 −0.650864 0.759195i \(-0.725593\pi\)
−0.650864 + 0.759195i \(0.725593\pi\)
\(18\) 0 0
\(19\) 12.6579i 0.152838i −0.997076 0.0764192i \(-0.975651\pi\)
0.997076 0.0764192i \(-0.0243487\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 86.0802i 0.780390i 0.920732 + 0.390195i \(0.127592\pi\)
−0.920732 + 0.390195i \(0.872408\pi\)
\(24\) 0 0
\(25\) −125.000 −0.999999
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 122.068i 0.781636i −0.920468 0.390818i \(-0.872192\pi\)
0.920468 0.390818i \(-0.127808\pi\)
\(30\) 0 0
\(31\) 297.925i 1.72609i 0.505124 + 0.863047i \(0.331447\pi\)
−0.505124 + 0.863047i \(0.668553\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.170668 0.0863205i 0.000824231 0.000416881i
\(36\) 0 0
\(37\) 159.053 0.706707 0.353354 0.935490i \(-0.385041\pi\)
0.353354 + 0.935490i \(0.385041\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −182.152 −0.693840 −0.346920 0.937895i \(-0.612772\pi\)
−0.346920 + 0.937895i \(0.612772\pi\)
\(42\) 0 0
\(43\) −95.7857 −0.339702 −0.169851 0.985470i \(-0.554329\pi\)
−0.169851 + 0.985470i \(0.554329\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −43.8453 −0.136074 −0.0680372 0.997683i \(-0.521674\pi\)
−0.0680372 + 0.997683i \(0.521674\pi\)
\(48\) 0 0
\(49\) 203.259 276.288i 0.592592 0.805503i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 17.6574i 0.0457630i 0.999738 + 0.0228815i \(0.00728404\pi\)
−0.999738 + 0.0228815i \(0.992716\pi\)
\(54\) 0 0
\(55\) 0.620670i 0.00152166i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −317.260 −0.700063 −0.350032 0.936738i \(-0.613829\pi\)
−0.350032 + 0.936738i \(0.613829\pi\)
\(60\) 0 0
\(61\) 802.687i 1.68481i −0.538843 0.842406i \(-0.681138\pi\)
0.538843 0.842406i \(-0.318862\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.327524i 0.000624991i
\(66\) 0 0
\(67\) −383.748 −0.699735 −0.349868 0.936799i \(-0.613773\pi\)
−0.349868 + 0.936799i \(0.613773\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 230.376i 0.385079i −0.981289 0.192540i \(-0.938328\pi\)
0.981289 0.192540i \(-0.0616724\pi\)
\(72\) 0 0
\(73\) 847.573i 1.35892i 0.733714 + 0.679458i \(0.237785\pi\)
−0.733714 + 0.679458i \(0.762215\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −502.390 993.294i −0.743540 1.47008i
\(78\) 0 0
\(79\) 411.427 0.585939 0.292969 0.956122i \(-0.405357\pi\)
0.292969 + 0.956122i \(0.405357\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −1231.15 −1.62815 −0.814073 0.580762i \(-0.802755\pi\)
−0.814073 + 0.580762i \(0.802755\pi\)
\(84\) 0 0
\(85\) −0.942237 −0.00120235
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1545.46 −1.84065 −0.920325 0.391154i \(-0.872076\pi\)
−0.920325 + 0.391154i \(0.872076\pi\)
\(90\) 0 0
\(91\) −265.109 524.157i −0.305395 0.603808i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.130716i 0.000141171i
\(96\) 0 0
\(97\) 1584.03i 1.65808i 0.559192 + 0.829038i \(0.311111\pi\)
−0.559192 + 0.829038i \(0.688889\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −451.800 −0.445106 −0.222553 0.974921i \(-0.571439\pi\)
−0.222553 + 0.974921i \(0.571439\pi\)
\(102\) 0 0
\(103\) 137.356i 0.131399i −0.997839 0.0656996i \(-0.979072\pi\)
0.997839 0.0656996i \(-0.0209279\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1723.43i 1.55711i −0.627578 0.778554i \(-0.715954\pi\)
0.627578 0.778554i \(-0.284046\pi\)
\(108\) 0 0
\(109\) 893.261 0.784944 0.392472 0.919764i \(-0.371620\pi\)
0.392472 + 0.919764i \(0.371620\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1267.25i 1.05498i −0.849561 0.527491i \(-0.823133\pi\)
0.849561 0.527491i \(-0.176867\pi\)
\(114\) 0 0
\(115\) 0.888935i 0.000720814i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1507.92 + 762.677i −1.16160 + 0.587516i
\(120\) 0 0
\(121\) −2281.33 −1.71400
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −2.58171 −0.00184732
\(126\) 0 0
\(127\) 394.727 0.275798 0.137899 0.990446i \(-0.455965\pi\)
0.137899 + 0.990446i \(0.455965\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −256.278 −0.170925 −0.0854623 0.996341i \(-0.527237\pi\)
−0.0854623 + 0.996341i \(0.527237\pi\)
\(132\) 0 0
\(133\) −105.806 209.193i −0.0689815 0.136386i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1830.57i 1.14158i −0.821097 0.570788i \(-0.806638\pi\)
0.821097 0.570788i \(-0.193362\pi\)
\(138\) 0 0
\(139\) 2172.14i 1.32546i −0.748860 0.662728i \(-0.769398\pi\)
0.748860 0.662728i \(-0.230602\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1906.21 −1.11472
\(144\) 0 0
\(145\) 1.26057i 0.000721965i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2394.27i 1.31642i 0.752834 + 0.658210i \(0.228686\pi\)
−0.752834 + 0.658210i \(0.771314\pi\)
\(150\) 0 0
\(151\) 2063.40 1.11203 0.556017 0.831171i \(-0.312329\pi\)
0.556017 + 0.831171i \(0.312329\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 3.07662i 0.00159432i
\(156\) 0 0
\(157\) 1443.14i 0.733598i −0.930300 0.366799i \(-0.880454\pi\)
0.930300 0.366799i \(-0.119546\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 719.533 + 1422.62i 0.352218 + 0.696384i
\(162\) 0 0
\(163\) 1603.09 0.770332 0.385166 0.922847i \(-0.374144\pi\)
0.385166 + 0.922847i \(0.374144\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3251.45 −1.50661 −0.753307 0.657670i \(-0.771542\pi\)
−0.753307 + 0.657670i \(0.771542\pi\)
\(168\) 0 0
\(169\) 1191.10 0.542150
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2305.43 1.01317 0.506585 0.862190i \(-0.330908\pi\)
0.506585 + 0.862190i \(0.330908\pi\)
\(174\) 0 0
\(175\) −2065.83 + 1044.86i −0.892353 + 0.451336i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1566.35i 0.654048i −0.945016 0.327024i \(-0.893954\pi\)
0.945016 0.327024i \(-0.106046\pi\)
\(180\) 0 0
\(181\) 17.5906i 0.00722375i −0.999993 0.00361187i \(-0.998850\pi\)
0.999993 0.00361187i \(-0.00114970\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.64251 0.000652757
\(186\) 0 0
\(187\) 5483.87i 2.14449i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 3605.80i 1.36600i −0.730417 0.683002i \(-0.760674\pi\)
0.730417 0.683002i \(-0.239326\pi\)
\(192\) 0 0
\(193\) −2394.01 −0.892874 −0.446437 0.894815i \(-0.647307\pi\)
−0.446437 + 0.894815i \(0.647307\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4038.24i 1.46047i 0.683196 + 0.730235i \(0.260589\pi\)
−0.683196 + 0.730235i \(0.739411\pi\)
\(198\) 0 0
\(199\) 1374.65i 0.489680i −0.969563 0.244840i \(-0.921265\pi\)
0.969563 0.244840i \(-0.0787355\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1020.35 2017.37i −0.352780 0.697496i
\(204\) 0 0
\(205\) −1.88106 −0.000640871
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −760.775 −0.251789
\(210\) 0 0
\(211\) −4556.21 −1.48655 −0.743276 0.668985i \(-0.766729\pi\)
−0.743276 + 0.668985i \(0.766729\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −0.989162 −0.000313769
\(216\) 0 0
\(217\) 2490.31 + 4923.70i 0.779048 + 1.54029i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 2893.81i 0.880809i
\(222\) 0 0
\(223\) 2086.57i 0.626579i −0.949658 0.313289i \(-0.898569\pi\)
0.949658 0.313289i \(-0.101431\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 289.688 0.0847017 0.0423509 0.999103i \(-0.486515\pi\)
0.0423509 + 0.999103i \(0.486515\pi\)
\(228\) 0 0
\(229\) 4053.61i 1.16974i −0.811128 0.584869i \(-0.801146\pi\)
0.811128 0.584869i \(-0.198854\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 4047.96i 1.13816i −0.822283 0.569078i \(-0.807300\pi\)
0.822283 0.569078i \(-0.192700\pi\)
\(234\) 0 0
\(235\) −0.452783 −0.000125686
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 5589.97i 1.51291i −0.654047 0.756454i \(-0.726930\pi\)
0.654047 0.756454i \(-0.273070\pi\)
\(240\) 0 0
\(241\) 4226.92i 1.12979i −0.825162 0.564896i \(-0.808916\pi\)
0.825162 0.564896i \(-0.191084\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2.09902 2.85317i 0.000547353 0.000744010i
\(246\) 0 0
\(247\) −401.457 −0.103418
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −460.991 −0.115926 −0.0579631 0.998319i \(-0.518461\pi\)
−0.0579631 + 0.998319i \(0.518461\pi\)
\(252\) 0 0
\(253\) 5173.65 1.28563
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 6438.45 1.56272 0.781360 0.624080i \(-0.214526\pi\)
0.781360 + 0.624080i \(0.214526\pi\)
\(258\) 0 0
\(259\) 2628.61 1329.50i 0.630633 0.318963i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 4049.94i 0.949543i 0.880109 + 0.474771i \(0.157469\pi\)
−0.880109 + 0.474771i \(0.842531\pi\)
\(264\) 0 0
\(265\) 0.182345i 4.22694e-5i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 6292.49 1.42625 0.713123 0.701039i \(-0.247280\pi\)
0.713123 + 0.701039i \(0.247280\pi\)
\(270\) 0 0
\(271\) 4321.82i 0.968753i 0.874860 + 0.484376i \(0.160953\pi\)
−0.874860 + 0.484376i \(0.839047\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 7512.82i 1.64742i
\(276\) 0 0
\(277\) −2244.13 −0.486775 −0.243388 0.969929i \(-0.578259\pi\)
−0.243388 + 0.969929i \(0.578259\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 6904.91i 1.46588i 0.680294 + 0.732940i \(0.261852\pi\)
−0.680294 + 0.732940i \(0.738148\pi\)
\(282\) 0 0
\(283\) 3130.27i 0.657510i −0.944415 0.328755i \(-0.893371\pi\)
0.944415 0.328755i \(-0.106629\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −3010.37 + 1522.59i −0.619151 + 0.313155i
\(288\) 0 0
\(289\) 3412.05 0.694494
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 6039.64 1.20423 0.602115 0.798409i \(-0.294325\pi\)
0.602115 + 0.798409i \(0.294325\pi\)
\(294\) 0 0
\(295\) −3.27629 −0.000646620
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 2730.11 0.528048
\(300\) 0 0
\(301\) −1583.01 + 800.659i −0.303134 + 0.153320i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 8.28921i 0.00155619i
\(306\) 0 0
\(307\) 3496.09i 0.649943i 0.945724 + 0.324972i \(0.105355\pi\)
−0.945724 + 0.324972i \(0.894645\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 4823.31 0.879436 0.439718 0.898136i \(-0.355078\pi\)
0.439718 + 0.898136i \(0.355078\pi\)
\(312\) 0 0
\(313\) 2581.16i 0.466120i −0.972462 0.233060i \(-0.925126\pi\)
0.972462 0.233060i \(-0.0748739\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 4035.00i 0.714916i 0.933929 + 0.357458i \(0.116356\pi\)
−0.933929 + 0.357458i \(0.883644\pi\)
\(318\) 0 0
\(319\) −7336.60 −1.28768
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1154.93i 0.198954i
\(324\) 0 0
\(325\) 3964.48i 0.676646i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −724.615 + 366.497i −0.121426 + 0.0614152i
\(330\) 0 0
\(331\) 2937.17 0.487739 0.243870 0.969808i \(-0.421583\pi\)
0.243870 + 0.969808i \(0.421583\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −3.96290 −0.000646317
\(336\) 0 0
\(337\) −10203.9 −1.64938 −0.824688 0.565588i \(-0.808649\pi\)
−0.824688 + 0.565588i \(0.808649\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 17906.1 2.84360
\(342\) 0 0
\(343\) 1049.74 6265.11i 0.165249 0.986252i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2620.73i 0.405441i −0.979237 0.202720i \(-0.935022\pi\)
0.979237 0.202720i \(-0.0649783\pi\)
\(348\) 0 0
\(349\) 5984.10i 0.917826i 0.888481 + 0.458913i \(0.151761\pi\)
−0.888481 + 0.458913i \(0.848239\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 9769.53 1.47303 0.736515 0.676421i \(-0.236470\pi\)
0.736515 + 0.676421i \(0.236470\pi\)
\(354\) 0 0
\(355\) 2.37906i 0.000355682i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 6538.05i 0.961184i 0.876944 + 0.480592i \(0.159578\pi\)
−0.876944 + 0.480592i \(0.840422\pi\)
\(360\) 0 0
\(361\) 6698.78 0.976640
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 8.75274i 0.00125518i
\(366\) 0 0
\(367\) 9794.95i 1.39317i 0.717476 + 0.696583i \(0.245297\pi\)
−0.717476 + 0.696583i \(0.754703\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 147.596 + 291.818i 0.0206545 + 0.0408368i
\(372\) 0 0
\(373\) −6955.96 −0.965592 −0.482796 0.875733i \(-0.660379\pi\)
−0.482796 + 0.875733i \(0.660379\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −3871.49 −0.528891
\(378\) 0 0
\(379\) 9763.91 1.32332 0.661660 0.749804i \(-0.269852\pi\)
0.661660 + 0.749804i \(0.269852\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 2864.19 0.382123 0.191062 0.981578i \(-0.438807\pi\)
0.191062 + 0.981578i \(0.438807\pi\)
\(384\) 0 0
\(385\) −5.18809 10.2576i −0.000686778 0.00135786i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 1215.80i 0.158467i 0.996856 + 0.0792335i \(0.0252473\pi\)
−0.996856 + 0.0792335i \(0.974753\pi\)
\(390\) 0 0
\(391\) 7854.11i 1.01585i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 4.24874 0.000541208
\(396\) 0 0
\(397\) 3466.06i 0.438178i −0.975705 0.219089i \(-0.929691\pi\)
0.975705 0.219089i \(-0.0703085\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 4506.84i 0.561249i 0.959818 + 0.280625i \(0.0905416\pi\)
−0.959818 + 0.280625i \(0.909458\pi\)
\(402\) 0 0
\(403\) 9448.95 1.16796
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 9559.52i 1.16424i
\(408\) 0 0
\(409\) 305.452i 0.0369282i 0.999830 + 0.0184641i \(0.00587764\pi\)
−0.999830 + 0.0184641i \(0.994122\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −5243.24 + 2651.93i −0.624704 + 0.315964i
\(414\) 0 0
\(415\) −12.7139 −0.00150385
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −10429.5 −1.21603 −0.608014 0.793927i \(-0.708033\pi\)
−0.608014 + 0.793927i \(0.708033\pi\)
\(420\) 0 0
\(421\) 2287.85 0.264853 0.132426 0.991193i \(-0.457723\pi\)
0.132426 + 0.991193i \(0.457723\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 11405.2 1.30173
\(426\) 0 0
\(427\) −6709.55 13265.7i −0.760417 1.50345i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 2822.09i 0.315395i 0.987487 + 0.157698i \(0.0504071\pi\)
−0.987487 + 0.157698i \(0.949593\pi\)
\(432\) 0 0
\(433\) 705.523i 0.0783031i 0.999233 + 0.0391516i \(0.0124655\pi\)
−0.999233 + 0.0391516i \(0.987534\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1089.60 0.119274
\(438\) 0 0
\(439\) 9350.90i 1.01661i −0.861176 0.508307i \(-0.830271\pi\)
0.861176 0.508307i \(-0.169729\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 6496.83i 0.696780i −0.937350 0.348390i \(-0.886728\pi\)
0.937350 0.348390i \(-0.113272\pi\)
\(444\) 0 0
\(445\) −15.9596 −0.00170013
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 3587.89i 0.377112i −0.982062 0.188556i \(-0.939619\pi\)
0.982062 0.188556i \(-0.0603807\pi\)
\(450\) 0 0
\(451\) 10947.8i 1.14305i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −2.73773 5.41287i −0.000282081 0.000557713i
\(456\) 0 0
\(457\) 1237.42 0.126661 0.0633307 0.997993i \(-0.479828\pi\)
0.0633307 + 0.997993i \(0.479828\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 947.776 0.0957534 0.0478767 0.998853i \(-0.484755\pi\)
0.0478767 + 0.998853i \(0.484755\pi\)
\(462\) 0 0
\(463\) −2636.57 −0.264648 −0.132324 0.991207i \(-0.542244\pi\)
−0.132324 + 0.991207i \(0.542244\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 14030.8 1.39029 0.695147 0.718868i \(-0.255339\pi\)
0.695147 + 0.718868i \(0.255339\pi\)
\(468\) 0 0
\(469\) −6342.06 + 3207.70i −0.624412 + 0.315816i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 5756.97i 0.559632i
\(474\) 0 0
\(475\) 1582.24i 0.152838i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −9035.22 −0.861858 −0.430929 0.902386i \(-0.641814\pi\)
−0.430929 + 0.902386i \(0.641814\pi\)
\(480\) 0 0
\(481\) 5044.51i 0.478191i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 16.3580i 0.00153150i
\(486\) 0 0
\(487\) 2481.39 0.230888 0.115444 0.993314i \(-0.463171\pi\)
0.115444 + 0.993314i \(0.463171\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 20226.4i 1.85907i 0.368734 + 0.929535i \(0.379791\pi\)
−0.368734 + 0.929535i \(0.620209\pi\)
\(492\) 0 0
\(493\) 11137.7i 1.01748i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1925.68 3807.34i −0.173800 0.343627i
\(498\) 0 0
\(499\) −19290.9 −1.73062 −0.865311 0.501236i \(-0.832879\pi\)
−0.865311 + 0.501236i \(0.832879\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −19768.7 −1.75238 −0.876188 0.481970i \(-0.839921\pi\)
−0.876188 + 0.481970i \(0.839921\pi\)
\(504\) 0 0
\(505\) −4.66566 −0.000411127
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 15648.7 1.36270 0.681352 0.731956i \(-0.261392\pi\)
0.681352 + 0.731956i \(0.261392\pi\)
\(510\) 0 0
\(511\) 7084.74 + 14007.5i 0.613328 + 1.21263i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 1.41846i 0.000121368i
\(516\) 0 0
\(517\) 2635.22i 0.224172i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 10365.3 0.871613 0.435806 0.900040i \(-0.356463\pi\)
0.435806 + 0.900040i \(0.356463\pi\)
\(522\) 0 0
\(523\) 3227.64i 0.269857i 0.990855 + 0.134928i \(0.0430804\pi\)
−0.990855 + 0.134928i \(0.956920\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 27183.2i 2.24690i
\(528\) 0 0
\(529\) 4757.20 0.390992
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 5777.12i 0.469484i
\(534\) 0 0
\(535\) 17.7976i 0.00143824i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −16605.6 12216.4i −1.32700 0.976248i
\(540\) 0 0
\(541\) 13814.7 1.09785 0.548927 0.835870i \(-0.315037\pi\)
0.548927 + 0.835870i \(0.315037\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 9.22455 0.000725021
\(546\) 0 0
\(547\) −951.129 −0.0743461 −0.0371731 0.999309i \(-0.511835\pi\)
−0.0371731 + 0.999309i \(0.511835\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −1545.13 −0.119464
\(552\) 0 0
\(553\) 6799.50 3439.06i 0.522865 0.264455i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 8523.08i 0.648356i 0.945996 + 0.324178i \(0.105088\pi\)
−0.945996 + 0.324178i \(0.894912\pi\)
\(558\) 0 0
\(559\) 3037.93i 0.229858i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −582.531 −0.0436070 −0.0218035 0.999762i \(-0.506941\pi\)
−0.0218035 + 0.999762i \(0.506941\pi\)
\(564\) 0 0
\(565\) 13.0867i 0.000974443i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 18065.8i 1.33103i 0.746384 + 0.665515i \(0.231788\pi\)
−0.746384 + 0.665515i \(0.768212\pi\)
\(570\) 0 0
\(571\) −11363.7 −0.832848 −0.416424 0.909170i \(-0.636717\pi\)
−0.416424 + 0.909170i \(0.636717\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 10760.0i 0.780389i
\(576\) 0 0
\(577\) 19896.3i 1.43552i −0.696292 0.717759i \(-0.745168\pi\)
0.696292 0.717759i \(-0.254832\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −20346.7 + 10291.0i −1.45288 + 0.734841i
\(582\) 0 0
\(583\) 1061.26 0.0753908
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −20560.6 −1.44570 −0.722849 0.691006i \(-0.757168\pi\)
−0.722849 + 0.691006i \(0.757168\pi\)
\(588\) 0 0
\(589\) 3771.11 0.263813
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 5879.34 0.407142 0.203571 0.979060i \(-0.434745\pi\)
0.203571 + 0.979060i \(0.434745\pi\)
\(594\) 0 0
\(595\) −15.5720 + 7.87603i −0.00107292 + 0.000542665i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 24447.6i 1.66761i −0.552057 0.833806i \(-0.686157\pi\)
0.552057 0.833806i \(-0.313843\pi\)
\(600\) 0 0
\(601\) 14478.4i 0.982675i −0.870969 0.491337i \(-0.836508\pi\)
0.870969 0.491337i \(-0.163492\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −23.5589 −0.00158315
\(606\) 0 0
\(607\) 1608.41i 0.107551i −0.998553 0.0537755i \(-0.982874\pi\)
0.998553 0.0537755i \(-0.0171255\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1390.59i 0.0920742i
\(612\) 0 0
\(613\) −16309.3 −1.07459 −0.537297 0.843393i \(-0.680555\pi\)
−0.537297 + 0.843393i \(0.680555\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 3904.69i 0.254776i −0.991853 0.127388i \(-0.959341\pi\)
0.991853 0.127388i \(-0.0406594\pi\)
\(618\) 0 0
\(619\) 21633.3i 1.40471i −0.711828 0.702354i \(-0.752132\pi\)
0.711828 0.702354i \(-0.247868\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −25541.2 + 12918.2i −1.64251 + 0.830752i
\(624\) 0 0
\(625\) 15625.0 0.999997
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −14512.3 −0.919940
\(630\) 0 0
\(631\) 5500.79 0.347041 0.173521 0.984830i \(-0.444486\pi\)
0.173521 + 0.984830i \(0.444486\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 4.07628 0.000254744
\(636\) 0 0
\(637\) −8762.70 6446.54i −0.545041 0.400975i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 18979.9i 1.16952i −0.811207 0.584759i \(-0.801189\pi\)
0.811207 0.584759i \(-0.198811\pi\)
\(642\) 0 0
\(643\) 10414.3i 0.638727i 0.947632 + 0.319364i \(0.103469\pi\)
−0.947632 + 0.319364i \(0.896531\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −10013.5 −0.608457 −0.304228 0.952599i \(-0.598399\pi\)
−0.304228 + 0.952599i \(0.598399\pi\)
\(648\) 0 0
\(649\) 19068.2i 1.15330i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 31055.2i 1.86108i −0.366190 0.930540i \(-0.619338\pi\)
0.366190 0.930540i \(-0.380662\pi\)
\(654\) 0 0
\(655\) −2.64654 −0.000157876
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 17504.5i 1.03472i −0.855768 0.517359i \(-0.826915\pi\)
0.855768 0.517359i \(-0.173085\pi\)
\(660\) 0 0
\(661\) 10617.0i 0.624742i −0.949960 0.312371i \(-0.898877\pi\)
0.949960 0.312371i \(-0.101123\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.09264 2.16030i −6.37154e−5 0.000125974i
\(666\) 0 0
\(667\) 10507.6 0.609981
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −48243.6 −2.77560
\(672\) 0 0
\(673\) −28804.2 −1.64981 −0.824904 0.565273i \(-0.808771\pi\)
−0.824904 + 0.565273i \(0.808771\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 16170.4 0.917991 0.458996 0.888439i \(-0.348209\pi\)
0.458996 + 0.888439i \(0.348209\pi\)
\(678\) 0 0
\(679\) 13240.6 + 26178.6i 0.748349 + 1.47959i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 21560.7i 1.20790i −0.797021 0.603951i \(-0.793592\pi\)
0.797021 0.603951i \(-0.206408\pi\)
\(684\) 0 0
\(685\) 18.9040i 0.00105443i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 560.021 0.0309653
\(690\) 0 0
\(691\) 25964.2i 1.42942i 0.699423 + 0.714708i \(0.253440\pi\)
−0.699423 + 0.714708i \(0.746560\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 22.4313i 0.00122427i
\(696\) 0 0
\(697\) 16619.9 0.903190
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 12967.1i 0.698661i −0.937000 0.349330i \(-0.886409\pi\)
0.937000 0.349330i \(-0.113591\pi\)
\(702\) 0 0
\(703\) 2013.28i 0.108012i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −7466.73 + 3776.53i −0.397193 + 0.200893i
\(708\) 0 0
\(709\) −7541.85 −0.399493 −0.199746 0.979848i \(-0.564012\pi\)
−0.199746 + 0.979848i \(0.564012\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −25645.5 −1.34703
\(714\) 0 0
\(715\) −19.6851 −0.00102962
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −1242.50 −0.0644470 −0.0322235 0.999481i \(-0.510259\pi\)
−0.0322235 + 0.999481i \(0.510259\pi\)
\(720\) 0 0
\(721\) −1148.14 2270.04i −0.0593052 0.117255i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 15258.5i 0.781635i
\(726\) 0 0
\(727\) 14004.0i 0.714414i −0.934025 0.357207i \(-0.883729\pi\)
0.934025 0.357207i \(-0.116271\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 8739.65 0.442199
\(732\) 0 0
\(733\) 31060.7i 1.56515i 0.622558 + 0.782574i \(0.286094\pi\)
−0.622558 + 0.782574i \(0.713906\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 23064.3i 1.15276i
\(738\) 0 0
\(739\) −25552.9 −1.27196 −0.635981 0.771705i \(-0.719404\pi\)
−0.635981 + 0.771705i \(0.719404\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 18684.5i 0.922567i 0.887253 + 0.461283i \(0.152611\pi\)
−0.887253 + 0.461283i \(0.847389\pi\)
\(744\) 0 0
\(745\) 24.7253i 0.00121592i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −14405.9 28482.5i −0.702779 1.38949i
\(750\) 0 0
\(751\) −2508.63 −0.121893 −0.0609463 0.998141i \(-0.519412\pi\)
−0.0609463 + 0.998141i \(0.519412\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 21.3084 0.00102714
\(756\) 0 0
\(757\) 20319.8 0.975606 0.487803 0.872954i \(-0.337798\pi\)
0.487803 + 0.872954i \(0.337798\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 26376.4 1.25643 0.628216 0.778039i \(-0.283785\pi\)
0.628216 + 0.778039i \(0.283785\pi\)
\(762\) 0 0
\(763\) 14762.6 7466.64i 0.700448 0.354274i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 10062.2i 0.473695i
\(768\) 0 0
\(769\) 11786.3i 0.552698i 0.961057 + 0.276349i \(0.0891246\pi\)
−0.961057 + 0.276349i \(0.910875\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −20883.4 −0.971697 −0.485849 0.874043i \(-0.661489\pi\)
−0.485849 + 0.874043i \(0.661489\pi\)
\(774\) 0 0
\(775\) 37240.6i 1.72609i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 2305.67i 0.106045i
\(780\) 0 0
\(781\) −13846.2 −0.634388
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 14.9030i 0.000677595i
\(786\) 0 0
\(787\) 28611.0i 1.29590i −0.761683 0.647950i \(-0.775626\pi\)
0.761683 0.647950i \(-0.224374\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −10592.8 20943.4i −0.476151 0.941417i
\(792\) 0 0
\(793\) −25457.9 −1.14002
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 2768.30 0.123034 0.0615171 0.998106i \(-0.480406\pi\)
0.0615171 + 0.998106i \(0.480406\pi\)
\(798\) 0 0
\(799\) 4000.52 0.177132
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 50941.4 2.23871
\(804\) 0 0
\(805\) 7.43049 + 14.6911i 0.000325329 + 0.000643222i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 23164.2i 1.00669i 0.864087 + 0.503343i \(0.167897\pi\)
−0.864087 + 0.503343i \(0.832103\pi\)
\(810\) 0 0
\(811\) 1221.35i 0.0528823i −0.999650 0.0264411i \(-0.991583\pi\)
0.999650 0.0264411i \(-0.00841746\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 16.5549 0.000711524
\(816\) 0 0
\(817\) 1212.45i 0.0519195i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 13659.0i 0.580635i −0.956930 0.290318i \(-0.906239\pi\)
0.956930 0.290318i \(-0.0937610\pi\)
\(822\) 0 0
\(823\) 34680.4 1.46887 0.734437 0.678677i \(-0.237447\pi\)
0.734437 + 0.678677i \(0.237447\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 12343.1i 0.519000i 0.965743 + 0.259500i \(0.0835578\pi\)
−0.965743 + 0.259500i \(0.916442\pi\)
\(828\) 0 0
\(829\) 4449.70i 0.186423i 0.995646 + 0.0932114i \(0.0297133\pi\)
−0.995646 + 0.0932114i \(0.970287\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −18545.7 + 25208.9i −0.771393 + 1.04855i
\(834\) 0 0
\(835\) −33.5771 −0.00139160
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −35305.1 −1.45276 −0.726382 0.687291i \(-0.758800\pi\)
−0.726382 + 0.687291i \(0.758800\pi\)
\(840\) 0 0
\(841\) 9488.42 0.389045
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 12.3003 0.000500762
\(846\) 0 0
\(847\) −37702.7 + 19069.3i −1.52949 + 0.773588i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 13691.3i 0.551507i
\(852\) 0 0
\(853\) 23176.0i 0.930281i −0.885237 0.465141i \(-0.846004\pi\)
0.885237 0.465141i \(-0.153996\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1735.54 0.0691773 0.0345886 0.999402i \(-0.488988\pi\)
0.0345886 + 0.999402i \(0.488988\pi\)
\(858\) 0 0
\(859\) 25706.3i 1.02106i −0.859861 0.510528i \(-0.829450\pi\)
0.859861 0.510528i \(-0.170550\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1907.12i 0.0752248i 0.999292 + 0.0376124i \(0.0119752\pi\)
−0.999292 + 0.0376124i \(0.988025\pi\)
\(864\) 0 0
\(865\) 23.8077 0.000935824
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 24727.9i 0.965288i
\(870\) 0 0
\(871\) 12170.9i 0.473473i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −42.6669 + 21.5801i −0.00164846 + 0.000833761i
\(876\) 0 0
\(877\) 43537.3 1.67634 0.838170 0.545410i \(-0.183626\pi\)
0.838170 + 0.545410i \(0.183626\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −3570.54 −0.136543 −0.0682715 0.997667i \(-0.521748\pi\)
−0.0682715 + 0.997667i \(0.521748\pi\)
\(882\) 0 0
\(883\) 1843.70 0.0702668 0.0351334 0.999383i \(-0.488814\pi\)
0.0351334 + 0.999383i \(0.488814\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 46507.5 1.76050 0.880252 0.474506i \(-0.157373\pi\)
0.880252 + 0.474506i \(0.157373\pi\)
\(888\) 0 0
\(889\) 6523.51 3299.47i 0.246110 0.124478i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 554.991i 0.0207974i
\(894\) 0 0
\(895\) 16.1754i 0.000604118i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 36367.1 1.34918
\(900\) 0 0
\(901\) 1611.10i 0.0595709i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0.181655i 6.67228e-6i
\(906\) 0 0
\(907\) 37899.9 1.38748 0.693740 0.720225i \(-0.255962\pi\)
0.693740 + 0.720225i \(0.255962\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 13460.6i 0.489538i −0.969581 0.244769i \(-0.921288\pi\)
0.969581 0.244769i \(-0.0787121\pi\)
\(912\) 0 0
\(913\) 73995.3i 2.68224i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −4235.41 + 2142.19i −0.152525 + 0.0771444i
\(918\) 0 0
\(919\) −31176.5 −1.11906 −0.559532 0.828809i \(-0.689019\pi\)
−0.559532 + 0.828809i \(0.689019\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −7306.59 −0.260563
\(924\) 0 0
\(925\) −19881.6 −0.706707
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 31780.1 1.12236 0.561180 0.827694i \(-0.310348\pi\)
0.561180 + 0.827694i \(0.310348\pi\)
\(930\) 0 0
\(931\) −3497.23 2572.84i −0.123112 0.0905707i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 56.6309i 0.00198078i
\(936\) 0 0
\(937\) 8578.03i 0.299074i −0.988756 0.149537i \(-0.952222\pi\)
0.988756 0.149537i \(-0.0477783\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −8658.59 −0.299960 −0.149980 0.988689i \(-0.547921\pi\)
−0.149980 + 0.988689i \(0.547921\pi\)
\(942\) 0 0
\(943\) 15679.7i 0.541465i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 28404.4i 0.974678i 0.873213 + 0.487339i \(0.162032\pi\)
−0.873213 + 0.487339i \(0.837968\pi\)
\(948\) 0 0
\(949\) 26881.5 0.919506
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 13517.5i 0.459470i −0.973253 0.229735i \(-0.926214\pi\)
0.973253 0.229735i \(-0.0737860\pi\)
\(954\) 0 0
\(955\) 37.2365i 0.00126172i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −15301.5 30253.1i −0.515235 1.01869i
\(960\) 0 0
\(961\) −58968.3 −1.97940
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −24.7225 −0.000824711
\(966\) 0 0
\(967\) −22083.5 −0.734392 −0.367196 0.930144i \(-0.619682\pi\)
−0.367196 + 0.930144i \(0.619682\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 32038.4 1.05887 0.529435 0.848351i \(-0.322404\pi\)
0.529435 + 0.848351i \(0.322404\pi\)
\(972\) 0 0
\(973\) −18156.6 35898.1i −0.598226 1.18278i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 34202.0i 1.11998i −0.828500 0.559988i \(-0.810806\pi\)
0.828500 0.559988i \(-0.189194\pi\)
\(978\) 0 0
\(979\) 92885.9i 3.03233i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 29965.2 0.972271 0.486135 0.873883i \(-0.338406\pi\)
0.486135 + 0.873883i \(0.338406\pi\)
\(984\) 0 0
\(985\) 41.7022i 0.00134898i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 8245.25i 0.265100i
\(990\) 0 0
\(991\) −38593.5 −1.23710 −0.618549 0.785747i \(-0.712279\pi\)
−0.618549 + 0.785747i \(0.712279\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 14.1958i 0.000452298i
\(996\) 0 0
\(997\) 7132.00i 0.226552i −0.993564 0.113276i \(-0.963865\pi\)
0.993564 0.113276i \(-0.0361345\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 756.4.f.e.377.9 yes 16
3.2 odd 2 inner 756.4.f.e.377.7 16
7.6 odd 2 inner 756.4.f.e.377.8 yes 16
21.20 even 2 inner 756.4.f.e.377.10 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
756.4.f.e.377.7 16 3.2 odd 2 inner
756.4.f.e.377.8 yes 16 7.6 odd 2 inner
756.4.f.e.377.9 yes 16 1.1 even 1 trivial
756.4.f.e.377.10 yes 16 21.20 even 2 inner