Defining parameters
Level: | \( N \) | \(=\) | \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 756.f (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 21 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(576\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(5\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(756, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 450 | 32 | 418 |
Cusp forms | 414 | 32 | 382 |
Eisenstein series | 36 | 0 | 36 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(756, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
756.4.f.a | $2$ | $44.605$ | \(\Q(\sqrt{-3}) \) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(-17\) | \(q+(1-19\zeta_{6})q^{7}+(-17+34\zeta_{6})q^{13}+\cdots\) |
756.4.f.b | $2$ | $44.605$ | \(\Q(\sqrt{-3}) \) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(37\) | \(q+(19-\zeta_{6})q^{7}+(-53+106\zeta_{6})q^{13}+\cdots\) |
756.4.f.c | $4$ | $44.605$ | \(\Q(\sqrt{-3}, \sqrt{35})\) | None | \(0\) | \(0\) | \(0\) | \(56\) | \(q-\beta _{1}q^{5}+(14-7\beta _{2})q^{7}-\beta _{3}q^{11}+\cdots\) |
756.4.f.d | $8$ | $44.605$ | 8.0.\(\cdots\).1 | None | \(0\) | \(0\) | \(0\) | \(-80\) | \(q-\beta _{2}q^{5}+(-10+\beta _{1}+\beta _{4}-2\beta _{5}+\cdots)q^{7}+\cdots\) |
756.4.f.e | $16$ | $44.605$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(14\) | \(q-\beta _{1}q^{5}+(1-\beta _{6})q^{7}-\beta _{2}q^{11}+\beta _{10}q^{13}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(756, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(756, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(189, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(252, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(378, [\chi])\)\(^{\oplus 2}\)