Properties

Label 756.4.f
Level $756$
Weight $4$
Character orbit 756.f
Rep. character $\chi_{756}(377,\cdot)$
Character field $\Q$
Dimension $32$
Newform subspaces $5$
Sturm bound $576$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 756.f (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 21 \)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(576\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(5\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(756, [\chi])\).

Total New Old
Modular forms 450 32 418
Cusp forms 414 32 382
Eisenstein series 36 0 36

Trace form

\( 32 q + 10 q^{7} + 920 q^{25} - 760 q^{37} - 1276 q^{43} + 476 q^{49} + 916 q^{67} + 1120 q^{79} - 2352 q^{85} + 2964 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(756, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
756.4.f.a 756.f 21.c $2$ $44.605$ \(\Q(\sqrt{-3}) \) \(\Q(\sqrt{-3}) \) 756.4.f.a \(0\) \(0\) \(0\) \(-17\) $\mathrm{U}(1)[D_{2}]$ \(q+(1-19\zeta_{6})q^{7}+(-17+34\zeta_{6})q^{13}+\cdots\)
756.4.f.b 756.f 21.c $2$ $44.605$ \(\Q(\sqrt{-3}) \) \(\Q(\sqrt{-3}) \) 756.4.f.b \(0\) \(0\) \(0\) \(37\) $\mathrm{U}(1)[D_{2}]$ \(q+(19-\zeta_{6})q^{7}+(-53+106\zeta_{6})q^{13}+\cdots\)
756.4.f.c 756.f 21.c $4$ $44.605$ \(\Q(\sqrt{-3}, \sqrt{35})\) None 756.4.f.c \(0\) \(0\) \(0\) \(56\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{5}+(14-7\beta _{2})q^{7}-\beta _{3}q^{11}+\cdots\)
756.4.f.d 756.f 21.c $8$ $44.605$ 8.0.\(\cdots\).1 None 756.4.f.d \(0\) \(0\) \(0\) \(-80\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{2}q^{5}+(-10+\beta _{1}+\beta _{4}-2\beta _{5}+\cdots)q^{7}+\cdots\)
756.4.f.e 756.f 21.c $16$ $44.605$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 756.4.f.e \(0\) \(0\) \(0\) \(14\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{5}+(1-\beta _{6})q^{7}-\beta _{2}q^{11}+\beta _{10}q^{13}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(756, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(756, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(189, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(252, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(378, [\chi])\)\(^{\oplus 2}\)