Properties

Label 756.4.f.e.377.6
Level $756$
Weight $4$
Character 756.377
Analytic conductor $44.605$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [756,4,Mod(377,756)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("756.377"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 756.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(44.6054439643\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} - 36 x^{14} - 780 x^{13} + 17052 x^{12} - 100012 x^{11} + 336938 x^{10} + \cdots + 1976222698452 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{26} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 377.6
Root \(-8.90572 + 7.58540i\) of defining polynomial
Character \(\chi\) \(=\) 756.377
Dual form 756.4.f.e.377.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-6.67001 q^{5} +(-18.2446 + 3.18348i) q^{7} -34.9270i q^{11} +63.3080i q^{13} -32.0860 q^{17} -125.448i q^{19} -63.6979i q^{23} -80.5110 q^{25} +303.036i q^{29} +5.46382i q^{31} +(121.692 - 21.2338i) q^{35} +45.0218 q^{37} +185.881 q^{41} -224.975 q^{43} +534.796 q^{47} +(322.731 - 116.163i) q^{49} -373.269i q^{53} +232.963i q^{55} +701.931 q^{59} -74.5006i q^{61} -422.265i q^{65} +425.353 q^{67} +936.115i q^{71} +957.209i q^{73} +(111.189 + 637.229i) q^{77} -129.399 q^{79} +719.682 q^{83} +214.014 q^{85} +274.227 q^{89} +(-201.540 - 1155.03i) q^{91} +836.739i q^{95} -1350.11i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 14 q^{7} + 388 q^{25} - 344 q^{37} - 404 q^{43} - 14 q^{49} + 1772 q^{67} - 1456 q^{79} - 4704 q^{85} + 2436 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/756\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\) \(379\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −6.67001 −0.596583 −0.298292 0.954475i \(-0.596417\pi\)
−0.298292 + 0.954475i \(0.596417\pi\)
\(6\) 0 0
\(7\) −18.2446 + 3.18348i −0.985116 + 0.171892i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 34.9270i 0.957353i −0.877991 0.478677i \(-0.841117\pi\)
0.877991 0.478677i \(-0.158883\pi\)
\(12\) 0 0
\(13\) 63.3080i 1.35065i 0.737519 + 0.675327i \(0.235997\pi\)
−0.737519 + 0.675327i \(0.764003\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −32.0860 −0.457765 −0.228882 0.973454i \(-0.573507\pi\)
−0.228882 + 0.973454i \(0.573507\pi\)
\(18\) 0 0
\(19\) 125.448i 1.51472i −0.652995 0.757362i \(-0.726488\pi\)
0.652995 0.757362i \(-0.273512\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 63.6979i 0.577475i −0.957408 0.288737i \(-0.906765\pi\)
0.957408 0.288737i \(-0.0932355\pi\)
\(24\) 0 0
\(25\) −80.5110 −0.644088
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 303.036i 1.94043i 0.242252 + 0.970213i \(0.422114\pi\)
−0.242252 + 0.970213i \(0.577886\pi\)
\(30\) 0 0
\(31\) 5.46382i 0.0316559i 0.999875 + 0.0158279i \(0.00503840\pi\)
−0.999875 + 0.0158279i \(0.994962\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 121.692 21.2338i 0.587704 0.102548i
\(36\) 0 0
\(37\) 45.0218 0.200042 0.100021 0.994985i \(-0.468109\pi\)
0.100021 + 0.994985i \(0.468109\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 185.881 0.708043 0.354021 0.935237i \(-0.384814\pi\)
0.354021 + 0.935237i \(0.384814\pi\)
\(42\) 0 0
\(43\) −224.975 −0.797870 −0.398935 0.916979i \(-0.630620\pi\)
−0.398935 + 0.916979i \(0.630620\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 534.796 1.65974 0.829872 0.557954i \(-0.188413\pi\)
0.829872 + 0.557954i \(0.188413\pi\)
\(48\) 0 0
\(49\) 322.731 116.163i 0.940907 0.338666i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 373.269i 0.967405i −0.875232 0.483703i \(-0.839292\pi\)
0.875232 0.483703i \(-0.160708\pi\)
\(54\) 0 0
\(55\) 232.963i 0.571141i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 701.931 1.54887 0.774437 0.632650i \(-0.218033\pi\)
0.774437 + 0.632650i \(0.218033\pi\)
\(60\) 0 0
\(61\) 74.5006i 0.156374i −0.996939 0.0781871i \(-0.975087\pi\)
0.996939 0.0781871i \(-0.0249132\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 422.265i 0.805777i
\(66\) 0 0
\(67\) 425.353 0.775599 0.387799 0.921744i \(-0.373235\pi\)
0.387799 + 0.921744i \(0.373235\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 936.115i 1.56474i 0.622815 + 0.782369i \(0.285989\pi\)
−0.622815 + 0.782369i \(0.714011\pi\)
\(72\) 0 0
\(73\) 957.209i 1.53470i 0.641230 + 0.767349i \(0.278424\pi\)
−0.641230 + 0.767349i \(0.721576\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 111.189 + 637.229i 0.164561 + 0.943104i
\(78\) 0 0
\(79\) −129.399 −0.184285 −0.0921426 0.995746i \(-0.529372\pi\)
−0.0921426 + 0.995746i \(0.529372\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 719.682 0.951752 0.475876 0.879512i \(-0.342131\pi\)
0.475876 + 0.879512i \(0.342131\pi\)
\(84\) 0 0
\(85\) 214.014 0.273095
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 274.227 0.326606 0.163303 0.986576i \(-0.447785\pi\)
0.163303 + 0.986576i \(0.447785\pi\)
\(90\) 0 0
\(91\) −201.540 1155.03i −0.232166 1.33055i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 836.739i 0.903659i
\(96\) 0 0
\(97\) 1350.11i 1.41323i −0.707600 0.706613i \(-0.750222\pi\)
0.707600 0.706613i \(-0.249778\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 851.130 0.838521 0.419261 0.907866i \(-0.362289\pi\)
0.419261 + 0.907866i \(0.362289\pi\)
\(102\) 0 0
\(103\) 403.968i 0.386448i 0.981155 + 0.193224i \(0.0618944\pi\)
−0.981155 + 0.193224i \(0.938106\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 542.506i 0.490149i −0.969504 0.245075i \(-0.921187\pi\)
0.969504 0.245075i \(-0.0788125\pi\)
\(108\) 0 0
\(109\) −5.88298 −0.00516961 −0.00258480 0.999997i \(-0.500823\pi\)
−0.00258480 + 0.999997i \(0.500823\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 2218.62i 1.84700i −0.383603 0.923498i \(-0.625317\pi\)
0.383603 0.923498i \(-0.374683\pi\)
\(114\) 0 0
\(115\) 424.865i 0.344512i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 585.397 102.145i 0.450951 0.0786859i
\(120\) 0 0
\(121\) 111.105 0.0834747
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1370.76 0.980836
\(126\) 0 0
\(127\) −2033.56 −1.42086 −0.710430 0.703767i \(-0.751500\pi\)
−0.710430 + 0.703767i \(0.751500\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 2512.81 1.67592 0.837960 0.545732i \(-0.183748\pi\)
0.837960 + 0.545732i \(0.183748\pi\)
\(132\) 0 0
\(133\) 399.361 + 2288.75i 0.260368 + 1.49218i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1062.51i 0.662599i 0.943526 + 0.331299i \(0.107487\pi\)
−0.943526 + 0.331299i \(0.892513\pi\)
\(138\) 0 0
\(139\) 1688.63i 1.03042i 0.857065 + 0.515208i \(0.172285\pi\)
−0.857065 + 0.515208i \(0.827715\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2211.16 1.29305
\(144\) 0 0
\(145\) 2021.25i 1.15763i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3134.13i 1.72321i 0.507583 + 0.861603i \(0.330539\pi\)
−0.507583 + 0.861603i \(0.669461\pi\)
\(150\) 0 0
\(151\) 1234.07 0.665083 0.332541 0.943089i \(-0.392094\pi\)
0.332541 + 0.943089i \(0.392094\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 36.4437i 0.0188854i
\(156\) 0 0
\(157\) 2453.89i 1.24740i −0.781664 0.623699i \(-0.785629\pi\)
0.781664 0.623699i \(-0.214371\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 202.781 + 1162.14i 0.0992631 + 0.568880i
\(162\) 0 0
\(163\) −1952.40 −0.938183 −0.469091 0.883150i \(-0.655419\pi\)
−0.469091 + 0.883150i \(0.655419\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 548.691 0.254246 0.127123 0.991887i \(-0.459426\pi\)
0.127123 + 0.991887i \(0.459426\pi\)
\(168\) 0 0
\(169\) −1810.91 −0.824264
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2455.13 1.07896 0.539479 0.841999i \(-0.318621\pi\)
0.539479 + 0.841999i \(0.318621\pi\)
\(174\) 0 0
\(175\) 1468.89 256.305i 0.634502 0.110713i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 716.885i 0.299344i 0.988736 + 0.149672i \(0.0478217\pi\)
−0.988736 + 0.149672i \(0.952178\pi\)
\(180\) 0 0
\(181\) 2029.15i 0.833290i 0.909069 + 0.416645i \(0.136794\pi\)
−0.909069 + 0.416645i \(0.863206\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −300.296 −0.119342
\(186\) 0 0
\(187\) 1120.67i 0.438243i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1097.05i 0.415600i 0.978171 + 0.207800i \(0.0666303\pi\)
−0.978171 + 0.207800i \(0.933370\pi\)
\(192\) 0 0
\(193\) 3636.04 1.35610 0.678051 0.735015i \(-0.262825\pi\)
0.678051 + 0.735015i \(0.262825\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1745.96i 0.631444i −0.948852 0.315722i \(-0.897753\pi\)
0.948852 0.315722i \(-0.102247\pi\)
\(198\) 0 0
\(199\) 1614.59i 0.575150i −0.957758 0.287575i \(-0.907151\pi\)
0.957758 0.287575i \(-0.0928491\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −964.708 5528.77i −0.333543 1.91155i
\(204\) 0 0
\(205\) −1239.83 −0.422407
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −4381.52 −1.45013
\(210\) 0 0
\(211\) 3228.35 1.05331 0.526656 0.850079i \(-0.323446\pi\)
0.526656 + 0.850079i \(0.323446\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1500.59 0.475996
\(216\) 0 0
\(217\) −17.3940 99.6853i −0.00544138 0.0311847i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 2031.30i 0.618282i
\(222\) 0 0
\(223\) 5196.27i 1.56039i −0.625534 0.780197i \(-0.715119\pi\)
0.625534 0.780197i \(-0.284881\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2366.27 −0.691873 −0.345937 0.938258i \(-0.612439\pi\)
−0.345937 + 0.938258i \(0.612439\pi\)
\(228\) 0 0
\(229\) 3576.13i 1.03195i 0.856602 + 0.515977i \(0.172571\pi\)
−0.856602 + 0.515977i \(0.827429\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 500.638i 0.140763i −0.997520 0.0703817i \(-0.977578\pi\)
0.997520 0.0703817i \(-0.0224217\pi\)
\(234\) 0 0
\(235\) −3567.09 −0.990176
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 4519.92i 1.22330i 0.791128 + 0.611651i \(0.209494\pi\)
−0.791128 + 0.611651i \(0.790506\pi\)
\(240\) 0 0
\(241\) 284.612i 0.0760726i −0.999276 0.0380363i \(-0.987890\pi\)
0.999276 0.0380363i \(-0.0121102\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −2152.62 + 774.805i −0.561329 + 0.202043i
\(246\) 0 0
\(247\) 7941.87 2.04587
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −1625.38 −0.408739 −0.204369 0.978894i \(-0.565514\pi\)
−0.204369 + 0.978894i \(0.565514\pi\)
\(252\) 0 0
\(253\) −2224.78 −0.552847
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −4911.97 −1.19222 −0.596110 0.802903i \(-0.703288\pi\)
−0.596110 + 0.802903i \(0.703288\pi\)
\(258\) 0 0
\(259\) −821.405 + 143.326i −0.197064 + 0.0343855i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 3816.72i 0.894864i −0.894318 0.447432i \(-0.852339\pi\)
0.894318 0.447432i \(-0.147661\pi\)
\(264\) 0 0
\(265\) 2489.71i 0.577138i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −2705.82 −0.613296 −0.306648 0.951823i \(-0.599208\pi\)
−0.306648 + 0.951823i \(0.599208\pi\)
\(270\) 0 0
\(271\) 6302.28i 1.41268i 0.707872 + 0.706340i \(0.249655\pi\)
−0.707872 + 0.706340i \(0.750345\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2812.01i 0.616620i
\(276\) 0 0
\(277\) −5432.50 −1.17837 −0.589183 0.808000i \(-0.700550\pi\)
−0.589183 + 0.808000i \(0.700550\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 67.3177i 0.0142912i −0.999974 0.00714562i \(-0.997725\pi\)
0.999974 0.00714562i \(-0.00227454\pi\)
\(282\) 0 0
\(283\) 1322.44i 0.277776i 0.990308 + 0.138888i \(0.0443528\pi\)
−0.990308 + 0.138888i \(0.955647\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −3391.33 + 591.748i −0.697504 + 0.121707i
\(288\) 0 0
\(289\) −3883.49 −0.790451
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −6300.41 −1.25623 −0.628113 0.778122i \(-0.716172\pi\)
−0.628113 + 0.778122i \(0.716172\pi\)
\(294\) 0 0
\(295\) −4681.88 −0.924033
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 4032.59 0.779968
\(300\) 0 0
\(301\) 4104.59 716.204i 0.785995 0.137147i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 496.919i 0.0932902i
\(306\) 0 0
\(307\) 6071.64i 1.12875i −0.825518 0.564376i \(-0.809117\pi\)
0.825518 0.564376i \(-0.190883\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 6945.30 1.26634 0.633170 0.774013i \(-0.281753\pi\)
0.633170 + 0.774013i \(0.281753\pi\)
\(312\) 0 0
\(313\) 5951.98i 1.07484i −0.843314 0.537421i \(-0.819399\pi\)
0.843314 0.537421i \(-0.180601\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 7117.54i 1.26108i −0.776159 0.630538i \(-0.782834\pi\)
0.776159 0.630538i \(-0.217166\pi\)
\(318\) 0 0
\(319\) 10584.1 1.85767
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 4025.13i 0.693387i
\(324\) 0 0
\(325\) 5097.00i 0.869940i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −9757.14 + 1702.51i −1.63504 + 0.285296i
\(330\) 0 0
\(331\) −7385.35 −1.22639 −0.613195 0.789931i \(-0.710116\pi\)
−0.613195 + 0.789931i \(0.710116\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −2837.11 −0.462709
\(336\) 0 0
\(337\) 3458.19 0.558991 0.279495 0.960147i \(-0.409833\pi\)
0.279495 + 0.960147i \(0.409833\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 190.835 0.0303058
\(342\) 0 0
\(343\) −5518.30 + 3146.75i −0.868688 + 0.495359i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1344.60i 0.208017i 0.994576 + 0.104008i \(0.0331669\pi\)
−0.994576 + 0.104008i \(0.966833\pi\)
\(348\) 0 0
\(349\) 5462.13i 0.837768i 0.908040 + 0.418884i \(0.137579\pi\)
−0.908040 + 0.418884i \(0.862421\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −12042.9 −1.81580 −0.907902 0.419183i \(-0.862316\pi\)
−0.907902 + 0.419183i \(0.862316\pi\)
\(354\) 0 0
\(355\) 6243.89i 0.933497i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 9506.58i 1.39760i −0.715318 0.698799i \(-0.753718\pi\)
0.715318 0.698799i \(-0.246282\pi\)
\(360\) 0 0
\(361\) −8878.21 −1.29439
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 6384.59i 0.915575i
\(366\) 0 0
\(367\) 9381.08i 1.33430i 0.744923 + 0.667150i \(0.232486\pi\)
−0.744923 + 0.667150i \(0.767514\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1188.29 + 6810.15i 0.166289 + 0.953006i
\(372\) 0 0
\(373\) 8404.46 1.16667 0.583333 0.812233i \(-0.301748\pi\)
0.583333 + 0.812233i \(0.301748\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −19184.6 −2.62084
\(378\) 0 0
\(379\) 3578.24 0.484965 0.242482 0.970156i \(-0.422038\pi\)
0.242482 + 0.970156i \(0.422038\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 5774.08 0.770344 0.385172 0.922845i \(-0.374142\pi\)
0.385172 + 0.922845i \(0.374142\pi\)
\(384\) 0 0
\(385\) −741.633 4250.32i −0.0981744 0.562640i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 2464.93i 0.321277i 0.987013 + 0.160639i \(0.0513554\pi\)
−0.987013 + 0.160639i \(0.948645\pi\)
\(390\) 0 0
\(391\) 2043.81i 0.264348i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 863.092 0.109942
\(396\) 0 0
\(397\) 8175.01i 1.03348i −0.856142 0.516740i \(-0.827145\pi\)
0.856142 0.516740i \(-0.172855\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 9511.16i 1.18445i −0.805772 0.592226i \(-0.798249\pi\)
0.805772 0.592226i \(-0.201751\pi\)
\(402\) 0 0
\(403\) −345.904 −0.0427561
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1572.48i 0.191511i
\(408\) 0 0
\(409\) 11798.2i 1.42636i 0.700981 + 0.713180i \(0.252746\pi\)
−0.700981 + 0.713180i \(0.747254\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −12806.4 + 2234.58i −1.52582 + 0.266239i
\(414\) 0 0
\(415\) −4800.29 −0.567799
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −6473.98 −0.754832 −0.377416 0.926044i \(-0.623187\pi\)
−0.377416 + 0.926044i \(0.623187\pi\)
\(420\) 0 0
\(421\) 6721.14 0.778072 0.389036 0.921222i \(-0.372808\pi\)
0.389036 + 0.921222i \(0.372808\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 2583.28 0.294841
\(426\) 0 0
\(427\) 237.171 + 1359.23i 0.0268794 + 0.154047i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 4295.83i 0.480099i −0.970761 0.240049i \(-0.922836\pi\)
0.970761 0.240049i \(-0.0771637\pi\)
\(432\) 0 0
\(433\) 5369.78i 0.595970i 0.954571 + 0.297985i \(0.0963145\pi\)
−0.954571 + 0.297985i \(0.903685\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −7990.77 −0.874715
\(438\) 0 0
\(439\) 1919.29i 0.208662i −0.994543 0.104331i \(-0.966730\pi\)
0.994543 0.104331i \(-0.0332702\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 9984.13i 1.07079i 0.844602 + 0.535395i \(0.179837\pi\)
−0.844602 + 0.535395i \(0.820163\pi\)
\(444\) 0 0
\(445\) −1829.09 −0.194848
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 2542.74i 0.267259i −0.991031 0.133629i \(-0.957337\pi\)
0.991031 0.133629i \(-0.0426632\pi\)
\(450\) 0 0
\(451\) 6492.27i 0.677847i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1344.27 + 7704.06i 0.138506 + 0.793784i
\(456\) 0 0
\(457\) 10949.3 1.12075 0.560377 0.828238i \(-0.310656\pi\)
0.560377 + 0.828238i \(0.310656\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −8412.41 −0.849902 −0.424951 0.905216i \(-0.639709\pi\)
−0.424951 + 0.905216i \(0.639709\pi\)
\(462\) 0 0
\(463\) 16374.8 1.64363 0.821815 0.569754i \(-0.192961\pi\)
0.821815 + 0.569754i \(0.192961\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 10195.0 1.01021 0.505104 0.863058i \(-0.331454\pi\)
0.505104 + 0.863058i \(0.331454\pi\)
\(468\) 0 0
\(469\) −7760.39 + 1354.10i −0.764055 + 0.133319i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 7857.71i 0.763844i
\(474\) 0 0
\(475\) 10100.0i 0.975616i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 7439.08 0.709604 0.354802 0.934942i \(-0.384548\pi\)
0.354802 + 0.934942i \(0.384548\pi\)
\(480\) 0 0
\(481\) 2850.24i 0.270187i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 9005.25i 0.843108i
\(486\) 0 0
\(487\) −4081.97 −0.379819 −0.189909 0.981802i \(-0.560819\pi\)
−0.189909 + 0.981802i \(0.560819\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 8145.58i 0.748686i −0.927290 0.374343i \(-0.877868\pi\)
0.927290 0.374343i \(-0.122132\pi\)
\(492\) 0 0
\(493\) 9723.22i 0.888259i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −2980.10 17079.0i −0.268965 1.54145i
\(498\) 0 0
\(499\) −4200.98 −0.376878 −0.188439 0.982085i \(-0.560343\pi\)
−0.188439 + 0.982085i \(0.560343\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 6954.26 0.616451 0.308226 0.951313i \(-0.400265\pi\)
0.308226 + 0.951313i \(0.400265\pi\)
\(504\) 0 0
\(505\) −5677.04 −0.500248
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 12719.0 1.10759 0.553793 0.832654i \(-0.313180\pi\)
0.553793 + 0.832654i \(0.313180\pi\)
\(510\) 0 0
\(511\) −3047.25 17463.9i −0.263802 1.51185i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 2694.47i 0.230548i
\(516\) 0 0
\(517\) 18678.8i 1.58896i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 12516.3 1.05249 0.526246 0.850332i \(-0.323599\pi\)
0.526246 + 0.850332i \(0.323599\pi\)
\(522\) 0 0
\(523\) 14004.2i 1.17086i 0.810722 + 0.585431i \(0.199075\pi\)
−0.810722 + 0.585431i \(0.800925\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 175.312i 0.0144909i
\(528\) 0 0
\(529\) 8109.58 0.666523
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 11767.8i 0.956320i
\(534\) 0 0
\(535\) 3618.52i 0.292415i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −4057.21 11272.0i −0.324223 0.900780i
\(540\) 0 0
\(541\) 1507.92 0.119835 0.0599173 0.998203i \(-0.480916\pi\)
0.0599173 + 0.998203i \(0.480916\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 39.2395 0.00308410
\(546\) 0 0
\(547\) −15198.8 −1.18803 −0.594015 0.804454i \(-0.702458\pi\)
−0.594015 + 0.804454i \(0.702458\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 38015.3 2.93921
\(552\) 0 0
\(553\) 2360.83 411.939i 0.181542 0.0316771i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1630.11i 0.124004i −0.998076 0.0620018i \(-0.980252\pi\)
0.998076 0.0620018i \(-0.0197484\pi\)
\(558\) 0 0
\(559\) 14242.7i 1.07765i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 20439.9 1.53009 0.765043 0.643980i \(-0.222718\pi\)
0.765043 + 0.643980i \(0.222718\pi\)
\(564\) 0 0
\(565\) 14798.2i 1.10189i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 3587.85i 0.264342i 0.991227 + 0.132171i \(0.0421948\pi\)
−0.991227 + 0.132171i \(0.957805\pi\)
\(570\) 0 0
\(571\) 2733.33 0.200326 0.100163 0.994971i \(-0.468064\pi\)
0.100163 + 0.994971i \(0.468064\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 5128.38i 0.371945i
\(576\) 0 0
\(577\) 22496.0i 1.62309i 0.584293 + 0.811543i \(0.301372\pi\)
−0.584293 + 0.811543i \(0.698628\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −13130.3 + 2291.09i −0.937586 + 0.163598i
\(582\) 0 0
\(583\) −13037.2 −0.926148
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −15892.0 −1.11743 −0.558716 0.829359i \(-0.688706\pi\)
−0.558716 + 0.829359i \(0.688706\pi\)
\(588\) 0 0
\(589\) 685.426 0.0479499
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 20915.4 1.44839 0.724193 0.689597i \(-0.242212\pi\)
0.724193 + 0.689597i \(0.242212\pi\)
\(594\) 0 0
\(595\) −3904.60 + 681.308i −0.269030 + 0.0469427i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 5303.11i 0.361735i −0.983507 0.180868i \(-0.942109\pi\)
0.983507 0.180868i \(-0.0578905\pi\)
\(600\) 0 0
\(601\) 10622.7i 0.720977i 0.932764 + 0.360488i \(0.117390\pi\)
−0.932764 + 0.360488i \(0.882610\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −741.070 −0.0497996
\(606\) 0 0
\(607\) 4772.74i 0.319142i −0.987186 0.159571i \(-0.948989\pi\)
0.987186 0.159571i \(-0.0510112\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 33856.9i 2.24174i
\(612\) 0 0
\(613\) −17746.6 −1.16929 −0.584647 0.811288i \(-0.698767\pi\)
−0.584647 + 0.811288i \(0.698767\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 17932.4i 1.17007i 0.811009 + 0.585034i \(0.198919\pi\)
−0.811009 + 0.585034i \(0.801081\pi\)
\(618\) 0 0
\(619\) 21183.7i 1.37551i −0.725941 0.687757i \(-0.758595\pi\)
0.725941 0.687757i \(-0.241405\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −5003.16 + 872.994i −0.321745 + 0.0561409i
\(624\) 0 0
\(625\) 920.903 0.0589378
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −1444.57 −0.0915720
\(630\) 0 0
\(631\) 21849.4 1.37846 0.689231 0.724542i \(-0.257949\pi\)
0.689231 + 0.724542i \(0.257949\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 13563.9 0.847662
\(636\) 0 0
\(637\) 7354.02 + 20431.5i 0.457421 + 1.27084i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 1183.05i 0.0728980i 0.999336 + 0.0364490i \(0.0116047\pi\)
−0.999336 + 0.0364490i \(0.988395\pi\)
\(642\) 0 0
\(643\) 11781.0i 0.722545i 0.932460 + 0.361273i \(0.117658\pi\)
−0.932460 + 0.361273i \(0.882342\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 19929.5 1.21099 0.605494 0.795850i \(-0.292976\pi\)
0.605494 + 0.795850i \(0.292976\pi\)
\(648\) 0 0
\(649\) 24516.3i 1.48282i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 3112.47i 0.186524i 0.995642 + 0.0932622i \(0.0297295\pi\)
−0.995642 + 0.0932622i \(0.970271\pi\)
\(654\) 0 0
\(655\) −16760.5 −0.999826
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 26019.6i 1.53806i −0.639213 0.769030i \(-0.720740\pi\)
0.639213 0.769030i \(-0.279260\pi\)
\(660\) 0 0
\(661\) 14030.0i 0.825574i −0.910828 0.412787i \(-0.864555\pi\)
0.910828 0.412787i \(-0.135445\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −2663.74 15266.0i −0.155331 0.890209i
\(666\) 0 0
\(667\) 19302.7 1.12055
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −2602.08 −0.149705
\(672\) 0 0
\(673\) 1528.46 0.0875452 0.0437726 0.999042i \(-0.486062\pi\)
0.0437726 + 0.999042i \(0.486062\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 17195.5 0.976183 0.488092 0.872792i \(-0.337693\pi\)
0.488092 + 0.872792i \(0.337693\pi\)
\(678\) 0 0
\(679\) 4298.05 + 24632.2i 0.242922 + 1.39219i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 7106.05i 0.398105i 0.979989 + 0.199052i \(0.0637864\pi\)
−0.979989 + 0.199052i \(0.936214\pi\)
\(684\) 0 0
\(685\) 7086.92i 0.395296i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 23630.9 1.30663
\(690\) 0 0
\(691\) 6292.69i 0.346433i −0.984884 0.173217i \(-0.944584\pi\)
0.984884 0.173217i \(-0.0554161\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 11263.2i 0.614729i
\(696\) 0 0
\(697\) −5964.19 −0.324117
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 16206.3i 0.873188i −0.899659 0.436594i \(-0.856185\pi\)
0.899659 0.436594i \(-0.143815\pi\)
\(702\) 0 0
\(703\) 5647.90i 0.303008i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −15528.5 + 2709.55i −0.826040 + 0.144135i
\(708\) 0 0
\(709\) 2700.59 0.143050 0.0715251 0.997439i \(-0.477213\pi\)
0.0715251 + 0.997439i \(0.477213\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 348.034 0.0182805
\(714\) 0 0
\(715\) −14748.4 −0.771414
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 37780.1 1.95961 0.979804 0.199960i \(-0.0640811\pi\)
0.979804 + 0.199960i \(0.0640811\pi\)
\(720\) 0 0
\(721\) −1286.02 7370.23i −0.0664272 0.380696i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 24397.7i 1.24981i
\(726\) 0 0
\(727\) 1290.88i 0.0658541i 0.999458 + 0.0329271i \(0.0104829\pi\)
−0.999458 + 0.0329271i \(0.989517\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 7218.56 0.365237
\(732\) 0 0
\(733\) 20976.9i 1.05702i 0.848926 + 0.528512i \(0.177250\pi\)
−0.848926 + 0.528512i \(0.822750\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 14856.3i 0.742522i
\(738\) 0 0
\(739\) 19887.3 0.989939 0.494969 0.868910i \(-0.335179\pi\)
0.494969 + 0.868910i \(0.335179\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 24419.0i 1.20572i 0.797848 + 0.602858i \(0.205971\pi\)
−0.797848 + 0.602858i \(0.794029\pi\)
\(744\) 0 0
\(745\) 20904.6i 1.02804i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1727.05 + 9897.80i 0.0842526 + 0.482854i
\(750\) 0 0
\(751\) −4166.80 −0.202462 −0.101231 0.994863i \(-0.532278\pi\)
−0.101231 + 0.994863i \(0.532278\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −8231.28 −0.396777
\(756\) 0 0
\(757\) 18265.8 0.876993 0.438496 0.898733i \(-0.355511\pi\)
0.438496 + 0.898733i \(0.355511\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 31339.2 1.49283 0.746416 0.665480i \(-0.231773\pi\)
0.746416 + 0.665480i \(0.231773\pi\)
\(762\) 0 0
\(763\) 107.333 18.7283i 0.00509266 0.000888612i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 44437.9i 2.09199i
\(768\) 0 0
\(769\) 19632.9i 0.920653i −0.887750 0.460326i \(-0.847732\pi\)
0.887750 0.460326i \(-0.152268\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −2575.55 −0.119840 −0.0599199 0.998203i \(-0.519085\pi\)
−0.0599199 + 0.998203i \(0.519085\pi\)
\(774\) 0 0
\(775\) 439.898i 0.0203892i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 23318.4i 1.07249i
\(780\) 0 0
\(781\) 32695.7 1.49801
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 16367.4i 0.744177i
\(786\) 0 0
\(787\) 733.646i 0.0332295i −0.999862 0.0166148i \(-0.994711\pi\)
0.999862 0.0166148i \(-0.00528889\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 7062.94 + 40477.9i 0.317483 + 1.81951i
\(792\) 0 0
\(793\) 4716.49 0.211207
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −12408.4 −0.551479 −0.275739 0.961232i \(-0.588923\pi\)
−0.275739 + 0.961232i \(0.588923\pi\)
\(798\) 0 0
\(799\) −17159.5 −0.759773
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 33432.5 1.46925
\(804\) 0 0
\(805\) −1352.55 7751.49i −0.0592187 0.339384i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 23954.1i 1.04101i 0.853858 + 0.520507i \(0.174257\pi\)
−0.853858 + 0.520507i \(0.825743\pi\)
\(810\) 0 0
\(811\) 42759.3i 1.85140i 0.378261 + 0.925699i \(0.376522\pi\)
−0.378261 + 0.925699i \(0.623478\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 13022.5 0.559704
\(816\) 0 0
\(817\) 28222.7i 1.20855i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 22180.7i 0.942887i 0.881896 + 0.471443i \(0.156267\pi\)
−0.881896 + 0.471443i \(0.843733\pi\)
\(822\) 0 0
\(823\) 17415.1 0.737610 0.368805 0.929507i \(-0.379767\pi\)
0.368805 + 0.929507i \(0.379767\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 29147.9i 1.22560i −0.790237 0.612801i \(-0.790043\pi\)
0.790237 0.612801i \(-0.209957\pi\)
\(828\) 0 0
\(829\) 27289.2i 1.14330i 0.820499 + 0.571648i \(0.193696\pi\)
−0.820499 + 0.571648i \(0.806304\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −10355.2 + 3727.19i −0.430714 + 0.155030i
\(834\) 0 0
\(835\) −3659.77 −0.151679
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −9144.35 −0.376279 −0.188139 0.982142i \(-0.560246\pi\)
−0.188139 + 0.982142i \(0.560246\pi\)
\(840\) 0 0
\(841\) −67441.8 −2.76526
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 12078.8 0.491742
\(846\) 0 0
\(847\) −2027.06 + 353.700i −0.0822323 + 0.0143486i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 2867.79i 0.115519i
\(852\) 0 0
\(853\) 31690.4i 1.27205i −0.771668 0.636025i \(-0.780577\pi\)
0.771668 0.636025i \(-0.219423\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −10928.0 −0.435583 −0.217792 0.975995i \(-0.569885\pi\)
−0.217792 + 0.975995i \(0.569885\pi\)
\(858\) 0 0
\(859\) 22475.0i 0.892709i −0.894856 0.446355i \(-0.852722\pi\)
0.894856 0.446355i \(-0.147278\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 38790.6i 1.53006i −0.643992 0.765032i \(-0.722723\pi\)
0.643992 0.765032i \(-0.277277\pi\)
\(864\) 0 0
\(865\) −16375.7 −0.643689
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 4519.52i 0.176426i
\(870\) 0 0
\(871\) 26928.3i 1.04756i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −25009.0 + 4363.78i −0.966237 + 0.168597i
\(876\) 0 0
\(877\) −42382.0 −1.63186 −0.815928 0.578153i \(-0.803774\pi\)
−0.815928 + 0.578153i \(0.803774\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −22017.1 −0.841968 −0.420984 0.907068i \(-0.638315\pi\)
−0.420984 + 0.907068i \(0.638315\pi\)
\(882\) 0 0
\(883\) 32785.0 1.24949 0.624746 0.780828i \(-0.285203\pi\)
0.624746 + 0.780828i \(0.285203\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 27596.5 1.04464 0.522322 0.852748i \(-0.325066\pi\)
0.522322 + 0.852748i \(0.325066\pi\)
\(888\) 0 0
\(889\) 37101.5 6473.79i 1.39971 0.244234i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 67089.1i 2.51405i
\(894\) 0 0
\(895\) 4781.63i 0.178583i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −1655.74 −0.0614259
\(900\) 0 0
\(901\) 11976.7i 0.442844i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 13534.4i 0.497127i
\(906\) 0 0
\(907\) 29047.5 1.06340 0.531701 0.846932i \(-0.321553\pi\)
0.531701 + 0.846932i \(0.321553\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 12198.7i 0.443647i −0.975087 0.221823i \(-0.928799\pi\)
0.975087 0.221823i \(-0.0712008\pi\)
\(912\) 0 0
\(913\) 25136.3i 0.911163i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −45845.3 + 7999.48i −1.65097 + 0.288076i
\(918\) 0 0
\(919\) −4615.21 −0.165660 −0.0828302 0.996564i \(-0.526396\pi\)
−0.0828302 + 0.996564i \(0.526396\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −59263.6 −2.11342
\(924\) 0 0
\(925\) −3624.75 −0.128844
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 19211.9 0.678495 0.339248 0.940697i \(-0.389828\pi\)
0.339248 + 0.940697i \(0.389828\pi\)
\(930\) 0 0
\(931\) −14572.4 40486.0i −0.512986 1.42521i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 7474.86i 0.261448i
\(936\) 0 0
\(937\) 631.925i 0.0220321i 0.999939 + 0.0110161i \(0.00350659\pi\)
−0.999939 + 0.0110161i \(0.996493\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −25685.2 −0.889814 −0.444907 0.895577i \(-0.646763\pi\)
−0.444907 + 0.895577i \(0.646763\pi\)
\(942\) 0 0
\(943\) 11840.2i 0.408877i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 27811.0i 0.954316i −0.878817 0.477158i \(-0.841667\pi\)
0.878817 0.477158i \(-0.158333\pi\)
\(948\) 0 0
\(949\) −60599.1 −2.07284
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 30431.9i 1.03440i 0.855863 + 0.517202i \(0.173026\pi\)
−0.855863 + 0.517202i \(0.826974\pi\)
\(954\) 0 0
\(955\) 7317.32i 0.247940i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −3382.46 19385.0i −0.113895 0.652737i
\(960\) 0 0
\(961\) 29761.1 0.998998
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −24252.4 −0.809028
\(966\) 0 0
\(967\) −23229.3 −0.772495 −0.386247 0.922395i \(-0.626229\pi\)
−0.386247 + 0.922395i \(0.626229\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −44322.5 −1.46486 −0.732428 0.680845i \(-0.761613\pi\)
−0.732428 + 0.680845i \(0.761613\pi\)
\(972\) 0 0
\(973\) −5375.72 30808.4i −0.177120 1.01508i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 39956.4i 1.30841i 0.756317 + 0.654206i \(0.226997\pi\)
−0.756317 + 0.654206i \(0.773003\pi\)
\(978\) 0 0
\(979\) 9577.92i 0.312678i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 27872.5 0.904370 0.452185 0.891924i \(-0.350645\pi\)
0.452185 + 0.891924i \(0.350645\pi\)
\(984\) 0 0
\(985\) 11645.6i 0.376709i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 14330.4i 0.460750i
\(990\) 0 0
\(991\) 8699.00 0.278842 0.139421 0.990233i \(-0.455476\pi\)
0.139421 + 0.990233i \(0.455476\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 10769.3i 0.343125i
\(996\) 0 0
\(997\) 41387.1i 1.31469i 0.753591 + 0.657344i \(0.228320\pi\)
−0.753591 + 0.657344i \(0.771680\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 756.4.f.e.377.6 yes 16
3.2 odd 2 inner 756.4.f.e.377.12 yes 16
7.6 odd 2 inner 756.4.f.e.377.11 yes 16
21.20 even 2 inner 756.4.f.e.377.5 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
756.4.f.e.377.5 16 21.20 even 2 inner
756.4.f.e.377.6 yes 16 1.1 even 1 trivial
756.4.f.e.377.11 yes 16 7.6 odd 2 inner
756.4.f.e.377.12 yes 16 3.2 odd 2 inner