Properties

Label 756.3.p.a.577.4
Level $756$
Weight $3$
Character 756.577
Analytic conductor $20.600$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [756,3,Mod(397,756)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("756.397"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 5])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 756.p (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.5995079856\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 577.4
Character \(\chi\) \(=\) 756.577
Dual form 756.3.p.a.397.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.90249i q^{5} +(-6.05364 - 3.51475i) q^{7} -13.3736 q^{11} +(17.0699 + 9.85532i) q^{13} +(-17.0873 - 9.86533i) q^{17} +(-17.7784 + 10.2644i) q^{19} +6.02775 q^{23} +0.965576 q^{25} +(18.8027 + 32.5672i) q^{29} +(-24.6426 + 14.2274i) q^{31} +(-17.2310 + 29.6779i) q^{35} +(11.3781 + 19.7075i) q^{37} +(27.0533 + 15.6192i) q^{41} +(-9.51702 - 16.4840i) q^{43} +(54.7739 + 31.6237i) q^{47} +(24.2931 + 42.5540i) q^{49} +(-29.9936 + 51.9504i) q^{53} +65.5642i q^{55} +(-48.1779 + 27.8155i) q^{59} +(-75.0566 - 43.3340i) q^{61} +(48.3156 - 83.6851i) q^{65} +(-48.7632 - 84.4603i) q^{67} -3.00845 q^{71} +(39.7410 + 22.9445i) q^{73} +(80.9592 + 47.0050i) q^{77} +(2.66963 - 4.62393i) q^{79} +(-26.4913 + 15.2948i) q^{83} +(-48.3647 + 83.7701i) q^{85} +(-118.327 + 68.3162i) q^{89} +(-68.6961 - 119.657i) q^{91} +(50.3209 + 87.1584i) q^{95} +(-152.175 + 87.8581i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + q^{7} + 12 q^{11} + 15 q^{13} + 27 q^{17} - 30 q^{23} - 160 q^{25} - 24 q^{29} - 24 q^{31} - 141 q^{35} + 11 q^{37} + 90 q^{41} - 16 q^{43} - 108 q^{47} - 61 q^{49} - 54 q^{53} - 45 q^{59} - 165 q^{61}+ \cdots - 57 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/756\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\) \(379\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 4.90249i 0.980498i −0.871582 0.490249i \(-0.836906\pi\)
0.871582 0.490249i \(-0.163094\pi\)
\(6\) 0 0
\(7\) −6.05364 3.51475i −0.864806 0.502107i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −13.3736 −1.21579 −0.607893 0.794019i \(-0.707985\pi\)
−0.607893 + 0.794019i \(0.707985\pi\)
\(12\) 0 0
\(13\) 17.0699 + 9.85532i 1.31307 + 0.758101i 0.982603 0.185717i \(-0.0594606\pi\)
0.330466 + 0.943818i \(0.392794\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −17.0873 9.86533i −1.00513 0.580314i −0.0953697 0.995442i \(-0.530403\pi\)
−0.909763 + 0.415128i \(0.863737\pi\)
\(18\) 0 0
\(19\) −17.7784 + 10.2644i −0.935705 + 0.540230i −0.888611 0.458661i \(-0.848329\pi\)
−0.0470936 + 0.998890i \(0.514996\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 6.02775 0.262076 0.131038 0.991377i \(-0.458169\pi\)
0.131038 + 0.991377i \(0.458169\pi\)
\(24\) 0 0
\(25\) 0.965576 0.0386230
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 18.8027 + 32.5672i 0.648367 + 1.12301i 0.983513 + 0.180839i \(0.0578813\pi\)
−0.335145 + 0.942166i \(0.608785\pi\)
\(30\) 0 0
\(31\) −24.6426 + 14.2274i −0.794922 + 0.458948i −0.841692 0.539957i \(-0.818440\pi\)
0.0467706 + 0.998906i \(0.485107\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −17.2310 + 29.6779i −0.492315 + 0.847940i
\(36\) 0 0
\(37\) 11.3781 + 19.7075i 0.307517 + 0.532636i 0.977819 0.209453i \(-0.0671685\pi\)
−0.670301 + 0.742089i \(0.733835\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 27.0533 + 15.6192i 0.659836 + 0.380957i 0.792215 0.610243i \(-0.208928\pi\)
−0.132378 + 0.991199i \(0.542261\pi\)
\(42\) 0 0
\(43\) −9.51702 16.4840i −0.221326 0.383348i 0.733885 0.679274i \(-0.237705\pi\)
−0.955211 + 0.295926i \(0.904372\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 54.7739 + 31.6237i 1.16540 + 0.672845i 0.952593 0.304249i \(-0.0984053\pi\)
0.212809 + 0.977094i \(0.431739\pi\)
\(48\) 0 0
\(49\) 24.2931 + 42.5540i 0.495777 + 0.868450i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −29.9936 + 51.9504i −0.565916 + 0.980196i 0.431048 + 0.902329i \(0.358144\pi\)
−0.996964 + 0.0778664i \(0.975189\pi\)
\(54\) 0 0
\(55\) 65.5642i 1.19208i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −48.1779 + 27.8155i −0.816574 + 0.471449i −0.849234 0.528017i \(-0.822936\pi\)
0.0326596 + 0.999467i \(0.489602\pi\)
\(60\) 0 0
\(61\) −75.0566 43.3340i −1.23044 0.710393i −0.263315 0.964710i \(-0.584816\pi\)
−0.967121 + 0.254317i \(0.918149\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 48.3156 83.6851i 0.743317 1.28746i
\(66\) 0 0
\(67\) −48.7632 84.4603i −0.727808 1.26060i −0.957808 0.287410i \(-0.907206\pi\)
0.229999 0.973191i \(-0.426128\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −3.00845 −0.0423725 −0.0211862 0.999776i \(-0.506744\pi\)
−0.0211862 + 0.999776i \(0.506744\pi\)
\(72\) 0 0
\(73\) 39.7410 + 22.9445i 0.544397 + 0.314308i 0.746859 0.664982i \(-0.231561\pi\)
−0.202462 + 0.979290i \(0.564894\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 80.9592 + 47.0050i 1.05142 + 0.610455i
\(78\) 0 0
\(79\) 2.66963 4.62393i 0.0337928 0.0585308i −0.848634 0.528980i \(-0.822575\pi\)
0.882427 + 0.470449i \(0.155908\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −26.4913 + 15.2948i −0.319173 + 0.184274i −0.651024 0.759057i \(-0.725660\pi\)
0.331851 + 0.943332i \(0.392327\pi\)
\(84\) 0 0
\(85\) −48.3647 + 83.7701i −0.568996 + 0.985531i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −118.327 + 68.3162i −1.32952 + 0.767598i −0.985225 0.171264i \(-0.945215\pi\)
−0.344293 + 0.938862i \(0.611881\pi\)
\(90\) 0 0
\(91\) −68.6961 119.657i −0.754902 1.31491i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 50.3209 + 87.1584i 0.529694 + 0.917457i
\(96\) 0 0
\(97\) −152.175 + 87.8581i −1.56881 + 0.905753i −0.572502 + 0.819903i \(0.694027\pi\)
−0.996308 + 0.0858502i \(0.972639\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 25.6545i 0.254005i −0.991902 0.127003i \(-0.959464\pi\)
0.991902 0.127003i \(-0.0405357\pi\)
\(102\) 0 0
\(103\) 53.1171i 0.515700i −0.966185 0.257850i \(-0.916986\pi\)
0.966185 0.257850i \(-0.0830141\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 86.8236 + 150.383i 0.811436 + 1.40545i 0.911859 + 0.410503i \(0.134647\pi\)
−0.100424 + 0.994945i \(0.532020\pi\)
\(108\) 0 0
\(109\) −102.950 + 178.315i −0.944500 + 1.63592i −0.187750 + 0.982217i \(0.560119\pi\)
−0.756750 + 0.653705i \(0.773214\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 52.4362 90.8222i 0.464037 0.803736i −0.535120 0.844776i \(-0.679734\pi\)
0.999158 + 0.0410399i \(0.0130671\pi\)
\(114\) 0 0
\(115\) 29.5510i 0.256965i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 68.7659 + 119.779i 0.577865 + 1.00654i
\(120\) 0 0
\(121\) 57.8545 0.478136
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 127.296i 1.01837i
\(126\) 0 0
\(127\) −183.067 −1.44147 −0.720737 0.693209i \(-0.756196\pi\)
−0.720737 + 0.693209i \(0.756196\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 146.682i 1.11971i −0.828591 0.559854i \(-0.810857\pi\)
0.828591 0.559854i \(-0.189143\pi\)
\(132\) 0 0
\(133\) 143.701 + 0.349839i 1.08046 + 0.00263037i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 30.8085 0.224880 0.112440 0.993659i \(-0.464133\pi\)
0.112440 + 0.993659i \(0.464133\pi\)
\(138\) 0 0
\(139\) 83.2406 + 48.0590i 0.598853 + 0.345748i 0.768590 0.639741i \(-0.220959\pi\)
−0.169737 + 0.985489i \(0.554292\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −228.287 131.802i −1.59641 0.921689i
\(144\) 0 0
\(145\) 159.660 92.1799i 1.10110 0.635723i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −50.5757 −0.339434 −0.169717 0.985493i \(-0.554285\pi\)
−0.169717 + 0.985493i \(0.554285\pi\)
\(150\) 0 0
\(151\) 26.6414 0.176433 0.0882166 0.996101i \(-0.471883\pi\)
0.0882166 + 0.996101i \(0.471883\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 69.7497 + 120.810i 0.449998 + 0.779420i
\(156\) 0 0
\(157\) 180.504 104.214i 1.14971 0.663783i 0.200890 0.979614i \(-0.435617\pi\)
0.948816 + 0.315831i \(0.102283\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −36.4898 21.1860i −0.226645 0.131590i
\(162\) 0 0
\(163\) 22.1007 + 38.2796i 0.135587 + 0.234844i 0.925822 0.377961i \(-0.123375\pi\)
−0.790234 + 0.612805i \(0.790041\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −270.401 156.116i −1.61917 0.934827i −0.987136 0.159885i \(-0.948888\pi\)
−0.632032 0.774942i \(-0.717779\pi\)
\(168\) 0 0
\(169\) 109.754 + 190.100i 0.649435 + 1.12485i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −4.74990 2.74236i −0.0274561 0.0158518i 0.486209 0.873842i \(-0.338379\pi\)
−0.513665 + 0.857991i \(0.671713\pi\)
\(174\) 0 0
\(175\) −5.84525 3.39376i −0.0334014 0.0193929i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −77.8089 + 134.769i −0.434687 + 0.752899i −0.997270 0.0738412i \(-0.976474\pi\)
0.562583 + 0.826741i \(0.309808\pi\)
\(180\) 0 0
\(181\) 198.542i 1.09692i −0.836177 0.548459i \(-0.815215\pi\)
0.836177 0.548459i \(-0.184785\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 96.6159 55.7812i 0.522248 0.301520i
\(186\) 0 0
\(187\) 228.519 + 131.935i 1.22203 + 0.705537i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −119.774 + 207.455i −0.627090 + 1.08615i 0.361043 + 0.932549i \(0.382421\pi\)
−0.988133 + 0.153602i \(0.950913\pi\)
\(192\) 0 0
\(193\) −68.5591 118.748i −0.355228 0.615274i 0.631929 0.775027i \(-0.282264\pi\)
−0.987157 + 0.159753i \(0.948930\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 229.951 1.16727 0.583633 0.812018i \(-0.301631\pi\)
0.583633 + 0.812018i \(0.301631\pi\)
\(198\) 0 0
\(199\) 57.1033 + 32.9686i 0.286951 + 0.165671i 0.636566 0.771222i \(-0.280354\pi\)
−0.349615 + 0.936894i \(0.613688\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0.640849 263.236i 0.00315689 1.29673i
\(204\) 0 0
\(205\) 76.5731 132.629i 0.373527 0.646969i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 237.762 137.272i 1.13762 0.656804i
\(210\) 0 0
\(211\) −16.6716 + 28.8760i −0.0790121 + 0.136853i −0.902824 0.430010i \(-0.858510\pi\)
0.823812 + 0.566863i \(0.191843\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −80.8125 + 46.6571i −0.375872 + 0.217010i
\(216\) 0 0
\(217\) 199.183 + 0.484911i 0.917894 + 0.00223461i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −194.452 336.801i −0.879873 1.52398i
\(222\) 0 0
\(223\) −92.4490 + 53.3754i −0.414569 + 0.239352i −0.692751 0.721177i \(-0.743602\pi\)
0.278182 + 0.960528i \(0.410268\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 41.1468i 0.181263i 0.995884 + 0.0906316i \(0.0288886\pi\)
−0.995884 + 0.0906316i \(0.971111\pi\)
\(228\) 0 0
\(229\) 36.5274i 0.159508i 0.996815 + 0.0797542i \(0.0254135\pi\)
−0.996815 + 0.0797542i \(0.974586\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.30917 2.26755i −0.00561876 0.00973198i 0.863202 0.504858i \(-0.168455\pi\)
−0.868821 + 0.495126i \(0.835122\pi\)
\(234\) 0 0
\(235\) 155.035 268.529i 0.659724 1.14267i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 160.707 278.353i 0.672415 1.16466i −0.304802 0.952416i \(-0.598590\pi\)
0.977217 0.212242i \(-0.0680765\pi\)
\(240\) 0 0
\(241\) 426.134i 1.76819i −0.467306 0.884095i \(-0.654775\pi\)
0.467306 0.884095i \(-0.345225\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 208.621 119.097i 0.851513 0.486109i
\(246\) 0 0
\(247\) −404.634 −1.63819
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 80.6265i 0.321221i −0.987018 0.160611i \(-0.948654\pi\)
0.987018 0.160611i \(-0.0513463\pi\)
\(252\) 0 0
\(253\) −80.6130 −0.318628
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 46.0579i 0.179214i −0.995977 0.0896068i \(-0.971439\pi\)
0.995977 0.0896068i \(-0.0285610\pi\)
\(258\) 0 0
\(259\) 0.387800 159.293i 0.00149730 0.615033i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −306.879 −1.16684 −0.583419 0.812171i \(-0.698286\pi\)
−0.583419 + 0.812171i \(0.698286\pi\)
\(264\) 0 0
\(265\) 254.686 + 147.043i 0.961080 + 0.554880i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −360.761 208.286i −1.34112 0.774296i −0.354148 0.935189i \(-0.615229\pi\)
−0.986972 + 0.160894i \(0.948562\pi\)
\(270\) 0 0
\(271\) 164.266 94.8389i 0.606147 0.349959i −0.165309 0.986242i \(-0.552862\pi\)
0.771456 + 0.636283i \(0.219529\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −12.9133 −0.0469574
\(276\) 0 0
\(277\) −230.407 −0.831793 −0.415896 0.909412i \(-0.636532\pi\)
−0.415896 + 0.909412i \(0.636532\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 253.908 + 439.782i 0.903588 + 1.56506i 0.822801 + 0.568329i \(0.192410\pi\)
0.0807870 + 0.996731i \(0.474257\pi\)
\(282\) 0 0
\(283\) −229.432 + 132.463i −0.810713 + 0.468066i −0.847204 0.531268i \(-0.821716\pi\)
0.0364902 + 0.999334i \(0.488382\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −108.873 189.639i −0.379349 0.660762i
\(288\) 0 0
\(289\) 50.1495 + 86.8614i 0.173528 + 0.300559i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 239.069 + 138.026i 0.815934 + 0.471079i 0.849012 0.528373i \(-0.177198\pi\)
−0.0330786 + 0.999453i \(0.510531\pi\)
\(294\) 0 0
\(295\) 136.365 + 236.192i 0.462255 + 0.800649i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 102.893 + 59.4053i 0.344124 + 0.198680i
\(300\) 0 0
\(301\) −0.324368 + 133.238i −0.00107763 + 0.442651i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −212.444 + 367.964i −0.696539 + 1.20644i
\(306\) 0 0
\(307\) 45.6152i 0.148584i 0.997237 + 0.0742919i \(0.0236697\pi\)
−0.997237 + 0.0742919i \(0.976330\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 137.483 79.3759i 0.442068 0.255228i −0.262406 0.964957i \(-0.584516\pi\)
0.704474 + 0.709729i \(0.251183\pi\)
\(312\) 0 0
\(313\) 240.928 + 139.100i 0.769737 + 0.444408i 0.832781 0.553603i \(-0.186747\pi\)
−0.0630435 + 0.998011i \(0.520081\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 100.359 173.827i 0.316589 0.548349i −0.663185 0.748456i \(-0.730796\pi\)
0.979774 + 0.200107i \(0.0641289\pi\)
\(318\) 0 0
\(319\) −251.460 435.542i −0.788276 1.36533i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 405.045 1.25401
\(324\) 0 0
\(325\) 16.4823 + 9.51606i 0.0507148 + 0.0292802i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −220.432 383.955i −0.670006 1.16704i
\(330\) 0 0
\(331\) −204.562 + 354.312i −0.618012 + 1.07043i 0.371836 + 0.928298i \(0.378728\pi\)
−0.989848 + 0.142130i \(0.954605\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −414.066 + 239.061i −1.23602 + 0.713615i
\(336\) 0 0
\(337\) 106.717 184.839i 0.316667 0.548484i −0.663123 0.748510i \(-0.730769\pi\)
0.979790 + 0.200026i \(0.0641028\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 329.561 190.272i 0.966455 0.557983i
\(342\) 0 0
\(343\) 2.50507 342.991i 0.00730342 0.999973i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 160.213 + 277.497i 0.461709 + 0.799704i 0.999046 0.0436638i \(-0.0139030\pi\)
−0.537337 + 0.843368i \(0.680570\pi\)
\(348\) 0 0
\(349\) 79.0543 45.6420i 0.226517 0.130779i −0.382447 0.923977i \(-0.624919\pi\)
0.608964 + 0.793198i \(0.291585\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 249.332i 0.706324i −0.935562 0.353162i \(-0.885106\pi\)
0.935562 0.353162i \(-0.114894\pi\)
\(354\) 0 0
\(355\) 14.7489i 0.0415461i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −224.034 388.038i −0.624049 1.08088i −0.988724 0.149750i \(-0.952153\pi\)
0.364675 0.931135i \(-0.381180\pi\)
\(360\) 0 0
\(361\) 30.2142 52.3325i 0.0836958 0.144965i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 112.485 194.830i 0.308178 0.533780i
\(366\) 0 0
\(367\) 404.798i 1.10299i −0.834178 0.551496i \(-0.814057\pi\)
0.834178 0.551496i \(-0.185943\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 364.163 209.069i 0.981570 0.563528i
\(372\) 0 0
\(373\) −139.949 −0.375198 −0.187599 0.982246i \(-0.560071\pi\)
−0.187599 + 0.982246i \(0.560071\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 741.224i 1.96611i
\(378\) 0 0
\(379\) 293.943 0.775576 0.387788 0.921748i \(-0.373239\pi\)
0.387788 + 0.921748i \(0.373239\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 691.945i 1.80665i 0.428962 + 0.903323i \(0.358880\pi\)
−0.428962 + 0.903323i \(0.641120\pi\)
\(384\) 0 0
\(385\) 230.442 396.902i 0.598550 1.03091i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 35.6572 0.0916636 0.0458318 0.998949i \(-0.485406\pi\)
0.0458318 + 0.998949i \(0.485406\pi\)
\(390\) 0 0
\(391\) −102.998 59.4657i −0.263421 0.152086i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −22.6688 13.0878i −0.0573894 0.0331338i
\(396\) 0 0
\(397\) −334.306 + 193.012i −0.842081 + 0.486176i −0.857971 0.513698i \(-0.828275\pi\)
0.0158903 + 0.999874i \(0.494942\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −328.642 −0.819555 −0.409777 0.912186i \(-0.634394\pi\)
−0.409777 + 0.912186i \(0.634394\pi\)
\(402\) 0 0
\(403\) −560.862 −1.39172
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −152.167 263.561i −0.373875 0.647571i
\(408\) 0 0
\(409\) 681.725 393.594i 1.66681 0.962333i 0.697469 0.716615i \(-0.254310\pi\)
0.969341 0.245718i \(-0.0790237\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 389.416 + 0.948033i 0.942896 + 0.00229548i
\(414\) 0 0
\(415\) 74.9825 + 129.874i 0.180681 + 0.312948i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −154.898 89.4302i −0.369684 0.213437i 0.303636 0.952788i \(-0.401799\pi\)
−0.673320 + 0.739351i \(0.735133\pi\)
\(420\) 0 0
\(421\) 237.634 + 411.595i 0.564452 + 0.977659i 0.997100 + 0.0760966i \(0.0242457\pi\)
−0.432649 + 0.901563i \(0.642421\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −16.4990 9.52573i −0.0388213 0.0224135i
\(426\) 0 0
\(427\) 302.058 + 526.133i 0.707395 + 1.23216i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −102.044 + 176.746i −0.236762 + 0.410084i −0.959783 0.280742i \(-0.909420\pi\)
0.723021 + 0.690826i \(0.242753\pi\)
\(432\) 0 0
\(433\) 20.3694i 0.0470424i 0.999723 + 0.0235212i \(0.00748772\pi\)
−0.999723 + 0.0235212i \(0.992512\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −107.164 + 61.8710i −0.245226 + 0.141581i
\(438\) 0 0
\(439\) 118.916 + 68.6560i 0.270879 + 0.156392i 0.629287 0.777173i \(-0.283347\pi\)
−0.358408 + 0.933565i \(0.616680\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −224.089 + 388.134i −0.505845 + 0.876150i 0.494132 + 0.869387i \(0.335486\pi\)
−0.999977 + 0.00676284i \(0.997847\pi\)
\(444\) 0 0
\(445\) 334.920 + 580.098i 0.752628 + 1.30359i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −688.878 −1.53425 −0.767125 0.641498i \(-0.778313\pi\)
−0.767125 + 0.641498i \(0.778313\pi\)
\(450\) 0 0
\(451\) −361.801 208.886i −0.802220 0.463162i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −586.617 + 336.782i −1.28927 + 0.740180i
\(456\) 0 0
\(457\) −335.231 + 580.638i −0.733548 + 1.27054i 0.221810 + 0.975090i \(0.428804\pi\)
−0.955357 + 0.295452i \(0.904530\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 208.261 120.239i 0.451758 0.260823i −0.256814 0.966461i \(-0.582673\pi\)
0.708573 + 0.705638i \(0.249339\pi\)
\(462\) 0 0
\(463\) −194.444 + 336.788i −0.419966 + 0.727403i −0.995936 0.0900685i \(-0.971291\pi\)
0.575969 + 0.817471i \(0.304625\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 594.959 343.500i 1.27400 0.735546i 0.298264 0.954483i \(-0.403592\pi\)
0.975739 + 0.218937i \(0.0702590\pi\)
\(468\) 0 0
\(469\) −1.66199 + 682.682i −0.00354369 + 1.45561i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 127.277 + 220.451i 0.269085 + 0.466069i
\(474\) 0 0
\(475\) −17.1664 + 9.91102i −0.0361398 + 0.0208653i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 178.852i 0.373386i −0.982418 0.186693i \(-0.940223\pi\)
0.982418 0.186693i \(-0.0597770\pi\)
\(480\) 0 0
\(481\) 448.541i 0.932517i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 430.723 + 746.035i 0.888089 + 1.53822i
\(486\) 0 0
\(487\) −381.643 + 661.025i −0.783661 + 1.35734i 0.146134 + 0.989265i \(0.453317\pi\)
−0.929795 + 0.368077i \(0.880016\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −170.162 + 294.729i −0.346561 + 0.600262i −0.985636 0.168883i \(-0.945984\pi\)
0.639075 + 0.769145i \(0.279317\pi\)
\(492\) 0 0
\(493\) 741.978i 1.50503i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 18.2120 + 10.5739i 0.0366440 + 0.0212755i
\(498\) 0 0
\(499\) −75.2336 −0.150769 −0.0753844 0.997155i \(-0.524018\pi\)
−0.0753844 + 0.997155i \(0.524018\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 13.5435i 0.0269253i −0.999909 0.0134627i \(-0.995715\pi\)
0.999909 0.0134627i \(-0.00428543\pi\)
\(504\) 0 0
\(505\) −125.771 −0.249052
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 90.2076i 0.177225i −0.996066 0.0886126i \(-0.971757\pi\)
0.996066 0.0886126i \(-0.0282433\pi\)
\(510\) 0 0
\(511\) −159.933 278.577i −0.312981 0.545160i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −260.406 −0.505643
\(516\) 0 0
\(517\) −732.527 422.925i −1.41688 0.818036i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −786.918 454.327i −1.51040 0.872029i −0.999926 0.0121356i \(-0.996137\pi\)
−0.510473 0.859894i \(-0.670530\pi\)
\(522\) 0 0
\(523\) −874.531 + 504.911i −1.67214 + 0.965413i −0.705708 + 0.708503i \(0.749371\pi\)
−0.966435 + 0.256910i \(0.917296\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 561.432 1.06534
\(528\) 0 0
\(529\) −492.666 −0.931316
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 307.865 + 533.238i 0.577608 + 1.00045i
\(534\) 0 0
\(535\) 737.251 425.652i 1.37804 0.795611i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −324.887 569.103i −0.602759 1.05585i
\(540\) 0 0
\(541\) 144.207 + 249.775i 0.266557 + 0.461691i 0.967970 0.251064i \(-0.0807805\pi\)
−0.701413 + 0.712755i \(0.747447\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 874.190 + 504.714i 1.60402 + 0.926080i
\(546\) 0 0
\(547\) 219.485 + 380.160i 0.401253 + 0.694991i 0.993877 0.110488i \(-0.0352415\pi\)
−0.592624 + 0.805479i \(0.701908\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −668.562 385.994i −1.21336 0.700534i
\(552\) 0 0
\(553\) −32.4129 + 18.6086i −0.0586129 + 0.0336502i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −527.053 + 912.883i −0.946235 + 1.63893i −0.192976 + 0.981203i \(0.561814\pi\)
−0.753259 + 0.657724i \(0.771519\pi\)
\(558\) 0 0
\(559\) 375.173i 0.671150i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 607.074 350.494i 1.07828 0.622547i 0.147851 0.989010i \(-0.452764\pi\)
0.930433 + 0.366462i \(0.119431\pi\)
\(564\) 0 0
\(565\) −445.255 257.068i −0.788062 0.454988i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 215.419 373.117i 0.378592 0.655741i −0.612265 0.790652i \(-0.709742\pi\)
0.990858 + 0.134911i \(0.0430749\pi\)
\(570\) 0 0
\(571\) −253.326 438.773i −0.443653 0.768429i 0.554305 0.832314i \(-0.312984\pi\)
−0.997957 + 0.0638850i \(0.979651\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 5.82025 0.0101222
\(576\) 0 0
\(577\) −524.574 302.863i −0.909140 0.524892i −0.0289855 0.999580i \(-0.509228\pi\)
−0.880154 + 0.474688i \(0.842561\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 214.126 + 0.521290i 0.368548 + 0.000897229i
\(582\) 0 0
\(583\) 401.123 694.766i 0.688033 1.19171i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −653.922 + 377.542i −1.11401 + 0.643172i −0.939864 0.341549i \(-0.889049\pi\)
−0.174142 + 0.984721i \(0.555715\pi\)
\(588\) 0 0
\(589\) 292.070 505.881i 0.495875 0.858880i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 536.697 309.862i 0.905053 0.522533i 0.0262169 0.999656i \(-0.491654\pi\)
0.878836 + 0.477124i \(0.158321\pi\)
\(594\) 0 0
\(595\) 587.213 337.124i 0.986913 0.566595i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 205.020 + 355.105i 0.342271 + 0.592830i 0.984854 0.173385i \(-0.0554706\pi\)
−0.642583 + 0.766216i \(0.722137\pi\)
\(600\) 0 0
\(601\) −130.531 + 75.3624i −0.217190 + 0.125395i −0.604649 0.796492i \(-0.706686\pi\)
0.387458 + 0.921887i \(0.373353\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 283.631i 0.468812i
\(606\) 0 0
\(607\) 43.2527i 0.0712565i 0.999365 + 0.0356282i \(0.0113432\pi\)
−0.999365 + 0.0356282i \(0.988657\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 623.324 + 1079.63i 1.02017 + 1.76699i
\(612\) 0 0
\(613\) −303.509 + 525.692i −0.495120 + 0.857573i −0.999984 0.00562585i \(-0.998209\pi\)
0.504864 + 0.863199i \(0.331543\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −315.594 + 546.624i −0.511497 + 0.885939i 0.488414 + 0.872612i \(0.337576\pi\)
−0.999911 + 0.0133268i \(0.995758\pi\)
\(618\) 0 0
\(619\) 997.283i 1.61112i 0.592514 + 0.805560i \(0.298135\pi\)
−0.592514 + 0.805560i \(0.701865\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 956.424 + 2.32841i 1.53519 + 0.00373742i
\(624\) 0 0
\(625\) −599.928 −0.959885
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 448.996i 0.713826i
\(630\) 0 0
\(631\) 61.2563 0.0970782 0.0485391 0.998821i \(-0.484543\pi\)
0.0485391 + 0.998821i \(0.484543\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 897.485i 1.41336i
\(636\) 0 0
\(637\) −4.70255 + 965.809i −0.00738234 + 1.51618i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −434.394 −0.677682 −0.338841 0.940844i \(-0.610035\pi\)
−0.338841 + 0.940844i \(0.610035\pi\)
\(642\) 0 0
\(643\) −107.554 62.0966i −0.167270 0.0965733i 0.414028 0.910264i \(-0.364122\pi\)
−0.581298 + 0.813691i \(0.697455\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −219.777 126.888i −0.339686 0.196118i 0.320447 0.947266i \(-0.396167\pi\)
−0.660133 + 0.751149i \(0.729500\pi\)
\(648\) 0 0
\(649\) 644.314 371.995i 0.992780 0.573182i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −582.566 −0.892138 −0.446069 0.894999i \(-0.647176\pi\)
−0.446069 + 0.894999i \(0.647176\pi\)
\(654\) 0 0
\(655\) −719.106 −1.09787
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 95.9048 + 166.112i 0.145531 + 0.252067i 0.929571 0.368643i \(-0.120178\pi\)
−0.784040 + 0.620710i \(0.786844\pi\)
\(660\) 0 0
\(661\) −556.748 + 321.439i −0.842282 + 0.486292i −0.858039 0.513584i \(-0.828317\pi\)
0.0157572 + 0.999876i \(0.494984\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1.71508 704.491i 0.00257907 1.05939i
\(666\) 0 0
\(667\) 113.338 + 196.307i 0.169921 + 0.294313i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1003.78 + 579.533i 1.49595 + 0.863686i
\(672\) 0 0
\(673\) 215.745 + 373.682i 0.320573 + 0.555248i 0.980606 0.195988i \(-0.0627913\pi\)
−0.660034 + 0.751236i \(0.729458\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 40.0771 + 23.1385i 0.0591980 + 0.0341780i 0.529307 0.848430i \(-0.322452\pi\)
−0.470109 + 0.882608i \(0.655785\pi\)
\(678\) 0 0
\(679\) 1230.01 + 2.99446i 1.81150 + 0.00441010i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 370.500 641.724i 0.542459 0.939567i −0.456303 0.889825i \(-0.650827\pi\)
0.998762 0.0497424i \(-0.0158400\pi\)
\(684\) 0 0
\(685\) 151.039i 0.220494i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −1023.97 + 591.192i −1.48617 + 0.858043i
\(690\) 0 0
\(691\) −223.604 129.098i −0.323595 0.186828i 0.329399 0.944191i \(-0.393154\pi\)
−0.652994 + 0.757363i \(0.726487\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 235.609 408.086i 0.339005 0.587174i
\(696\) 0 0
\(697\) −308.178 533.779i −0.442149 0.765824i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 416.749 0.594507 0.297253 0.954799i \(-0.403929\pi\)
0.297253 + 0.954799i \(0.403929\pi\)
\(702\) 0 0
\(703\) −404.570 233.579i −0.575491 0.332260i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −90.1692 + 155.303i −0.127538 + 0.219665i
\(708\) 0 0
\(709\) 539.523 934.481i 0.760963 1.31803i −0.181392 0.983411i \(-0.558060\pi\)
0.942355 0.334616i \(-0.108606\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −148.539 + 85.7591i −0.208330 + 0.120279i
\(714\) 0 0
\(715\) −646.156 + 1119.17i −0.903715 + 1.56528i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 493.175 284.735i 0.685918 0.396015i −0.116163 0.993230i \(-0.537059\pi\)
0.802081 + 0.597215i \(0.203726\pi\)
\(720\) 0 0
\(721\) −186.693 + 321.552i −0.258937 + 0.445981i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 18.1554 + 31.4461i 0.0250419 + 0.0433739i
\(726\) 0 0
\(727\) −190.853 + 110.189i −0.262522 + 0.151567i −0.625484 0.780237i \(-0.715099\pi\)
0.362962 + 0.931804i \(0.381765\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 375.554i 0.513754i
\(732\) 0 0
\(733\) 148.974i 0.203239i −0.994823 0.101619i \(-0.967598\pi\)
0.994823 0.101619i \(-0.0324024\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 652.141 + 1129.54i 0.884859 + 1.53262i
\(738\) 0 0
\(739\) 432.421 748.976i 0.585144 1.01350i −0.409714 0.912214i \(-0.634371\pi\)
0.994857 0.101285i \(-0.0322953\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 5.43335 9.41084i 0.00731272 0.0126660i −0.862346 0.506320i \(-0.831006\pi\)
0.869659 + 0.493654i \(0.164339\pi\)
\(744\) 0 0
\(745\) 247.947i 0.332814i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 2.95920 1215.53i 0.00395087 1.62287i
\(750\) 0 0
\(751\) 1321.13 1.75916 0.879579 0.475754i \(-0.157825\pi\)
0.879579 + 0.475754i \(0.157825\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 130.609i 0.172992i
\(756\) 0 0
\(757\) 1141.12 1.50743 0.753713 0.657203i \(-0.228261\pi\)
0.753713 + 0.657203i \(0.228261\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 654.045i 0.859455i −0.902959 0.429728i \(-0.858610\pi\)
0.902959 0.429728i \(-0.141390\pi\)
\(762\) 0 0
\(763\) 1249.96 717.612i 1.63822 0.940514i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1096.52 −1.42962
\(768\) 0 0
\(769\) −20.1935 11.6587i −0.0262594 0.0151609i 0.486813 0.873506i \(-0.338159\pi\)
−0.513072 + 0.858345i \(0.671493\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 342.130 + 197.529i 0.442600 + 0.255535i 0.704700 0.709506i \(-0.251082\pi\)
−0.262100 + 0.965041i \(0.584415\pi\)
\(774\) 0 0
\(775\) −23.7943 + 13.7376i −0.0307023 + 0.0177260i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −641.286 −0.823216
\(780\) 0 0
\(781\) 40.2339 0.0515159
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −510.908 884.918i −0.650838 1.12728i
\(786\) 0 0
\(787\) −221.886 + 128.106i −0.281939 + 0.162778i −0.634301 0.773086i \(-0.718712\pi\)
0.352362 + 0.935864i \(0.385379\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −636.647 + 365.505i −0.804863 + 0.462079i
\(792\) 0 0
\(793\) −854.140 1479.41i −1.07710 1.86559i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −1249.36 721.316i −1.56757 0.905039i −0.996451 0.0841749i \(-0.973175\pi\)
−0.571123 0.820864i \(-0.693492\pi\)
\(798\) 0 0
\(799\) −623.957 1080.73i −0.780922 1.35260i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −531.482 306.851i −0.661870 0.382131i
\(804\) 0 0
\(805\) −103.864 + 178.891i −0.129024 + 0.222225i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 744.804 1290.04i 0.920648 1.59461i 0.122234 0.992501i \(-0.460994\pi\)
0.798414 0.602108i \(-0.205672\pi\)
\(810\) 0 0
\(811\) 891.748i 1.09957i 0.835308 + 0.549783i \(0.185290\pi\)
−0.835308 + 0.549783i \(0.814710\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 187.665 108.349i 0.230264 0.132943i
\(816\) 0 0
\(817\) 338.395 + 195.372i 0.414192 + 0.239134i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 528.845 915.987i 0.644148 1.11570i −0.340350 0.940299i \(-0.610546\pi\)
0.984498 0.175398i \(-0.0561211\pi\)
\(822\) 0 0
\(823\) −342.747 593.655i −0.416460 0.721330i 0.579120 0.815242i \(-0.303396\pi\)
−0.995581 + 0.0939119i \(0.970063\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1271.30 1.53724 0.768622 0.639703i \(-0.220943\pi\)
0.768622 + 0.639703i \(0.220943\pi\)
\(828\) 0 0
\(829\) 426.025 + 245.966i 0.513902 + 0.296702i 0.734436 0.678678i \(-0.237447\pi\)
−0.220534 + 0.975379i \(0.570780\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 4.70733 966.791i 0.00565106 1.16061i
\(834\) 0 0
\(835\) −765.358 + 1325.64i −0.916596 + 1.58759i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −658.564 + 380.222i −0.784939 + 0.453185i −0.838178 0.545397i \(-0.816379\pi\)
0.0532387 + 0.998582i \(0.483046\pi\)
\(840\) 0 0
\(841\) −286.580 + 496.371i −0.340761 + 0.590215i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 931.965 538.071i 1.10292 0.636770i
\(846\) 0 0
\(847\) −350.230 203.344i −0.413495 0.240076i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 68.5845 + 118.792i 0.0805929 + 0.139591i
\(852\) 0 0
\(853\) 282.187 162.921i 0.330818 0.190998i −0.325386 0.945581i \(-0.605494\pi\)
0.656204 + 0.754583i \(0.272161\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 715.677i 0.835096i 0.908655 + 0.417548i \(0.137110\pi\)
−0.908655 + 0.417548i \(0.862890\pi\)
\(858\) 0 0
\(859\) 562.338i 0.654643i 0.944913 + 0.327322i \(0.106146\pi\)
−0.944913 + 0.327322i \(0.893854\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −296.451 513.468i −0.343512 0.594980i 0.641570 0.767064i \(-0.278283\pi\)
−0.985082 + 0.172084i \(0.944950\pi\)
\(864\) 0 0
\(865\) −13.4444 + 23.2864i −0.0155426 + 0.0269206i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −35.7027 + 61.8389i −0.0410848 + 0.0711610i
\(870\) 0 0
\(871\) 1922.31i 2.20701i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −447.413 + 770.604i −0.511330 + 0.880690i
\(876\) 0 0
\(877\) −962.505 −1.09750 −0.548749 0.835987i \(-0.684896\pi\)
−0.548749 + 0.835987i \(0.684896\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 277.658i 0.315162i −0.987506 0.157581i \(-0.949630\pi\)
0.987506 0.157581i \(-0.0503695\pi\)
\(882\) 0 0
\(883\) 1470.15 1.66495 0.832475 0.554063i \(-0.186923\pi\)
0.832475 + 0.554063i \(0.186923\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 753.784i 0.849813i −0.905237 0.424906i \(-0.860307\pi\)
0.905237 0.424906i \(-0.139693\pi\)
\(888\) 0 0
\(889\) 1108.22 + 643.435i 1.24659 + 0.723774i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −1298.39 −1.45396
\(894\) 0 0
\(895\) 660.704 + 381.458i 0.738217 + 0.426210i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −926.692 535.026i −1.03080 0.595134i
\(900\) 0 0
\(901\) 1025.01 591.793i 1.13764 0.656818i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −973.351 −1.07553
\(906\) 0 0
\(907\) 1317.87 1.45300 0.726500 0.687167i \(-0.241146\pi\)
0.726500 + 0.687167i \(0.241146\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −287.491 497.950i −0.315578 0.546597i 0.663982 0.747748i \(-0.268865\pi\)
−0.979560 + 0.201151i \(0.935532\pi\)
\(912\) 0 0
\(913\) 354.286 204.547i 0.388046 0.224038i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −515.549 + 887.958i −0.562213 + 0.968330i
\(918\) 0 0
\(919\) 393.926 + 682.300i 0.428647 + 0.742438i 0.996753 0.0805171i \(-0.0256572\pi\)
−0.568106 + 0.822955i \(0.692324\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −51.3539 29.6492i −0.0556380 0.0321226i
\(924\) 0 0
\(925\) 10.9865 + 19.0291i 0.0118773 + 0.0205720i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −780.938 450.875i −0.840622 0.485334i 0.0168533 0.999858i \(-0.494635\pi\)
−0.857476 + 0.514524i \(0.827968\pi\)
\(930\) 0 0
\(931\) −868.682 507.189i −0.933064 0.544779i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 646.813 1120.31i 0.691778 1.19819i
\(936\) 0 0
\(937\) 172.726i 0.184340i −0.995743 0.0921699i \(-0.970620\pi\)
0.995743 0.0921699i \(-0.0293803\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −421.021 + 243.077i −0.447419 + 0.258317i −0.706739 0.707474i \(-0.749835\pi\)
0.259321 + 0.965791i \(0.416501\pi\)
\(942\) 0 0
\(943\) 163.070 + 94.1487i 0.172927 + 0.0998396i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 243.598 421.925i 0.257232 0.445538i −0.708268 0.705944i \(-0.750523\pi\)
0.965499 + 0.260406i \(0.0838563\pi\)
\(948\) 0 0
\(949\) 452.250 + 783.320i 0.476554 + 0.825416i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 623.761 0.654524 0.327262 0.944934i \(-0.393874\pi\)
0.327262 + 0.944934i \(0.393874\pi\)
\(954\) 0 0
\(955\) 1017.05 + 587.192i 1.06497 + 0.614861i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −186.504 108.284i −0.194477 0.112914i
\(960\) 0 0
\(961\) −75.6623 + 131.051i −0.0787329 + 0.136369i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −582.160 + 336.110i −0.603275 + 0.348301i
\(966\) 0 0
\(967\) 383.882 664.903i 0.396982 0.687593i −0.596370 0.802710i \(-0.703391\pi\)
0.993352 + 0.115116i \(0.0367241\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 909.315 524.993i 0.936473 0.540673i 0.0476198 0.998866i \(-0.484836\pi\)
0.888853 + 0.458193i \(0.151503\pi\)
\(972\) 0 0
\(973\) −334.993 583.501i −0.344289 0.599693i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 242.755 + 420.463i 0.248469 + 0.430362i 0.963101 0.269139i \(-0.0867391\pi\)
−0.714632 + 0.699501i \(0.753406\pi\)
\(978\) 0 0
\(979\) 1582.47 913.637i 1.61641 0.933235i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1537.64i 1.56423i −0.623131 0.782117i \(-0.714140\pi\)
0.623131 0.782117i \(-0.285860\pi\)
\(984\) 0 0
\(985\) 1127.33i 1.14450i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −57.3662 99.3612i −0.0580042 0.100466i
\(990\) 0 0
\(991\) 179.412 310.750i 0.181041 0.313572i −0.761194 0.648524i \(-0.775387\pi\)
0.942235 + 0.334952i \(0.108720\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 161.628 279.948i 0.162441 0.281355i
\(996\) 0 0
\(997\) 6.81490i 0.00683540i −0.999994 0.00341770i \(-0.998912\pi\)
0.999994 0.00341770i \(-0.00108789\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 756.3.p.a.577.4 32
3.2 odd 2 252.3.p.a.157.15 yes 32
7.5 odd 6 756.3.bd.a.145.13 32
9.2 odd 6 252.3.bd.a.241.10 yes 32
9.7 even 3 756.3.bd.a.73.13 32
21.5 even 6 252.3.bd.a.229.10 yes 32
63.47 even 6 252.3.p.a.61.15 32
63.61 odd 6 inner 756.3.p.a.397.13 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.3.p.a.61.15 32 63.47 even 6
252.3.p.a.157.15 yes 32 3.2 odd 2
252.3.bd.a.229.10 yes 32 21.5 even 6
252.3.bd.a.241.10 yes 32 9.2 odd 6
756.3.p.a.397.13 32 63.61 odd 6 inner
756.3.p.a.577.4 32 1.1 even 1 trivial
756.3.bd.a.73.13 32 9.7 even 3
756.3.bd.a.145.13 32 7.5 odd 6