Properties

Label 756.3.p.a.577.1
Level $756$
Weight $3$
Character 756.577
Analytic conductor $20.600$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [756,3,Mod(397,756)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("756.397"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 5])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 756.p (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.5995079856\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 577.1
Character \(\chi\) \(=\) 756.577
Dual form 756.3.p.a.397.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-9.02073i q^{5} +(-4.77619 - 5.11742i) q^{7} +10.4878 q^{11} +(-20.0242 - 11.5610i) q^{13} +(9.26855 + 5.35120i) q^{17} +(18.7068 - 10.8004i) q^{19} +0.0104756 q^{23} -56.3736 q^{25} +(-8.15959 - 14.1328i) q^{29} +(-24.6144 + 14.2111i) q^{31} +(-46.1629 + 43.0847i) q^{35} +(24.8657 + 43.0686i) q^{37} +(12.6050 + 7.27749i) q^{41} +(-6.83701 - 11.8421i) q^{43} +(-11.9829 - 6.91832i) q^{47} +(-3.37600 + 48.8836i) q^{49} +(-39.1008 + 67.7246i) q^{53} -94.6080i q^{55} +(23.8831 - 13.7889i) q^{59} +(-1.94313 - 1.12187i) q^{61} +(-104.288 + 180.633i) q^{65} +(-27.2436 - 47.1873i) q^{67} -103.268 q^{71} +(-35.1133 - 20.2727i) q^{73} +(-50.0919 - 53.6707i) q^{77} +(10.4854 - 18.1613i) q^{79} +(26.5546 - 15.3313i) q^{83} +(48.2717 - 83.6091i) q^{85} +(136.380 - 78.7389i) q^{89} +(36.4770 + 157.690i) q^{91} +(-97.4271 - 168.749i) q^{95} +(-79.7273 + 46.0306i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + q^{7} + 12 q^{11} + 15 q^{13} + 27 q^{17} - 30 q^{23} - 160 q^{25} - 24 q^{29} - 24 q^{31} - 141 q^{35} + 11 q^{37} + 90 q^{41} - 16 q^{43} - 108 q^{47} - 61 q^{49} - 54 q^{53} - 45 q^{59} - 165 q^{61}+ \cdots - 57 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/756\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\) \(379\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 9.02073i 1.80415i −0.431583 0.902073i \(-0.642045\pi\)
0.431583 0.902073i \(-0.357955\pi\)
\(6\) 0 0
\(7\) −4.77619 5.11742i −0.682313 0.731060i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 10.4878 0.953440 0.476720 0.879055i \(-0.341826\pi\)
0.476720 + 0.879055i \(0.341826\pi\)
\(12\) 0 0
\(13\) −20.0242 11.5610i −1.54032 0.889306i −0.998818 0.0486077i \(-0.984522\pi\)
−0.541504 0.840698i \(-0.682145\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 9.26855 + 5.35120i 0.545209 + 0.314776i 0.747187 0.664614i \(-0.231404\pi\)
−0.201979 + 0.979390i \(0.564737\pi\)
\(18\) 0 0
\(19\) 18.7068 10.8004i 0.984566 0.568440i 0.0809206 0.996721i \(-0.474214\pi\)
0.903646 + 0.428281i \(0.140881\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.0104756 0.000455462 0.000227731 1.00000i \(-0.499928\pi\)
0.000227731 1.00000i \(0.499928\pi\)
\(24\) 0 0
\(25\) −56.3736 −2.25494
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −8.15959 14.1328i −0.281365 0.487339i 0.690356 0.723470i \(-0.257454\pi\)
−0.971721 + 0.236131i \(0.924121\pi\)
\(30\) 0 0
\(31\) −24.6144 + 14.2111i −0.794014 + 0.458424i −0.841374 0.540454i \(-0.818253\pi\)
0.0473600 + 0.998878i \(0.484919\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −46.1629 + 43.0847i −1.31894 + 1.23099i
\(36\) 0 0
\(37\) 24.8657 + 43.0686i 0.672046 + 1.16402i 0.977323 + 0.211754i \(0.0679176\pi\)
−0.305277 + 0.952264i \(0.598749\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 12.6050 + 7.27749i 0.307439 + 0.177500i 0.645780 0.763524i \(-0.276532\pi\)
−0.338341 + 0.941024i \(0.609866\pi\)
\(42\) 0 0
\(43\) −6.83701 11.8421i −0.159000 0.275397i 0.775508 0.631338i \(-0.217494\pi\)
−0.934508 + 0.355941i \(0.884160\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −11.9829 6.91832i −0.254955 0.147198i 0.367076 0.930191i \(-0.380359\pi\)
−0.622031 + 0.782993i \(0.713692\pi\)
\(48\) 0 0
\(49\) −3.37600 + 48.8836i −0.0688980 + 0.997624i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −39.1008 + 67.7246i −0.737752 + 1.27782i 0.215754 + 0.976448i \(0.430779\pi\)
−0.953505 + 0.301376i \(0.902554\pi\)
\(54\) 0 0
\(55\) 94.6080i 1.72015i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 23.8831 13.7889i 0.404799 0.233711i −0.283754 0.958897i \(-0.591580\pi\)
0.688553 + 0.725186i \(0.258246\pi\)
\(60\) 0 0
\(61\) −1.94313 1.12187i −0.0318546 0.0183912i 0.483988 0.875075i \(-0.339188\pi\)
−0.515843 + 0.856683i \(0.672521\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −104.288 + 180.633i −1.60444 + 2.77897i
\(66\) 0 0
\(67\) −27.2436 47.1873i −0.406621 0.704288i 0.587888 0.808942i \(-0.299960\pi\)
−0.994509 + 0.104655i \(0.966626\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −103.268 −1.45448 −0.727239 0.686384i \(-0.759197\pi\)
−0.727239 + 0.686384i \(0.759197\pi\)
\(72\) 0 0
\(73\) −35.1133 20.2727i −0.481005 0.277708i 0.239830 0.970815i \(-0.422908\pi\)
−0.720835 + 0.693107i \(0.756241\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −50.0919 53.6707i −0.650545 0.697022i
\(78\) 0 0
\(79\) 10.4854 18.1613i 0.132727 0.229890i −0.792000 0.610521i \(-0.790960\pi\)
0.924727 + 0.380632i \(0.124293\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 26.5546 15.3313i 0.319934 0.184714i −0.331429 0.943480i \(-0.607531\pi\)
0.651363 + 0.758766i \(0.274197\pi\)
\(84\) 0 0
\(85\) 48.2717 83.6091i 0.567903 0.983636i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 136.380 78.7389i 1.53236 0.884707i 0.533105 0.846049i \(-0.321025\pi\)
0.999253 0.0386574i \(-0.0123081\pi\)
\(90\) 0 0
\(91\) 36.4770 + 157.690i 0.400846 + 1.73285i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −97.4271 168.749i −1.02555 1.77630i
\(96\) 0 0
\(97\) −79.7273 + 46.0306i −0.821931 + 0.474542i −0.851082 0.525033i \(-0.824053\pi\)
0.0291510 + 0.999575i \(0.490720\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 140.557i 1.39165i −0.718210 0.695827i \(-0.755038\pi\)
0.718210 0.695827i \(-0.244962\pi\)
\(102\) 0 0
\(103\) 110.411i 1.07195i −0.844234 0.535976i \(-0.819944\pi\)
0.844234 0.535976i \(-0.180056\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 46.7651 + 80.9996i 0.437057 + 0.757006i 0.997461 0.0712141i \(-0.0226873\pi\)
−0.560404 + 0.828220i \(0.689354\pi\)
\(108\) 0 0
\(109\) 64.0675 110.968i 0.587775 1.01806i −0.406748 0.913540i \(-0.633337\pi\)
0.994523 0.104516i \(-0.0333295\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −46.9363 + 81.2961i −0.415366 + 0.719434i −0.995467 0.0951101i \(-0.969680\pi\)
0.580101 + 0.814544i \(0.303013\pi\)
\(114\) 0 0
\(115\) 0.0944978i 0.000821720i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −16.8840 72.9894i −0.141882 0.613356i
\(120\) 0 0
\(121\) −11.0052 −0.0909520
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 283.013i 2.26410i
\(126\) 0 0
\(127\) −181.230 −1.42701 −0.713505 0.700651i \(-0.752893\pi\)
−0.713505 + 0.700651i \(0.752893\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 47.2091i 0.360375i 0.983632 + 0.180188i \(0.0576705\pi\)
−0.983632 + 0.180188i \(0.942330\pi\)
\(132\) 0 0
\(133\) −144.617 44.1458i −1.08735 0.331923i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 50.7664 0.370558 0.185279 0.982686i \(-0.440681\pi\)
0.185279 + 0.982686i \(0.440681\pi\)
\(138\) 0 0
\(139\) −147.147 84.9555i −1.05861 0.611190i −0.133565 0.991040i \(-0.542642\pi\)
−0.925048 + 0.379850i \(0.875976\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −210.011 121.250i −1.46861 0.847900i
\(144\) 0 0
\(145\) −127.488 + 73.6055i −0.879230 + 0.507624i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 105.233 0.706264 0.353132 0.935574i \(-0.385117\pi\)
0.353132 + 0.935574i \(0.385117\pi\)
\(150\) 0 0
\(151\) 213.488 1.41382 0.706912 0.707301i \(-0.250087\pi\)
0.706912 + 0.707301i \(0.250087\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 128.195 + 222.040i 0.827064 + 1.43252i
\(156\) 0 0
\(157\) −9.86022 + 5.69280i −0.0628040 + 0.0362599i −0.531073 0.847326i \(-0.678211\pi\)
0.468269 + 0.883586i \(0.344878\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −0.0500336 0.0536082i −0.000310768 0.000332970i
\(162\) 0 0
\(163\) 47.1307 + 81.6328i 0.289145 + 0.500815i 0.973606 0.228235i \(-0.0732955\pi\)
−0.684461 + 0.729050i \(0.739962\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −82.1245 47.4146i −0.491764 0.283920i 0.233542 0.972347i \(-0.424968\pi\)
−0.725306 + 0.688427i \(0.758302\pi\)
\(168\) 0 0
\(169\) 182.812 + 316.640i 1.08173 + 1.87361i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 261.218 + 150.814i 1.50993 + 0.871758i 0.999933 + 0.0115806i \(0.00368630\pi\)
0.509996 + 0.860177i \(0.329647\pi\)
\(174\) 0 0
\(175\) 269.251 + 288.487i 1.53858 + 1.64850i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 43.7478 75.7733i 0.244401 0.423315i −0.717562 0.696495i \(-0.754742\pi\)
0.961963 + 0.273180i \(0.0880754\pi\)
\(180\) 0 0
\(181\) 162.562i 0.898134i −0.893498 0.449067i \(-0.851756\pi\)
0.893498 0.449067i \(-0.148244\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 388.511 224.307i 2.10006 1.21247i
\(186\) 0 0
\(187\) 97.2070 + 56.1225i 0.519824 + 0.300120i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 161.443 279.628i 0.845252 1.46402i −0.0401499 0.999194i \(-0.512784\pi\)
0.885402 0.464826i \(-0.153883\pi\)
\(192\) 0 0
\(193\) −3.58006 6.20084i −0.0185495 0.0321287i 0.856602 0.515978i \(-0.172572\pi\)
−0.875151 + 0.483850i \(0.839238\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −356.459 −1.80944 −0.904718 0.426010i \(-0.859919\pi\)
−0.904718 + 0.426010i \(0.859919\pi\)
\(198\) 0 0
\(199\) −38.3008 22.1130i −0.192466 0.111120i 0.400670 0.916222i \(-0.368777\pi\)
−0.593137 + 0.805102i \(0.702111\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −33.3519 + 109.257i −0.164295 + 0.538212i
\(204\) 0 0
\(205\) 65.6483 113.706i 0.320236 0.554664i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 196.194 113.272i 0.938725 0.541973i
\(210\) 0 0
\(211\) 92.8506 160.822i 0.440050 0.762189i −0.557643 0.830081i \(-0.688294\pi\)
0.997693 + 0.0678920i \(0.0216273\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −106.824 + 61.6748i −0.496856 + 0.286860i
\(216\) 0 0
\(217\) 190.288 + 58.0872i 0.876901 + 0.267683i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −123.730 214.307i −0.559865 0.969714i
\(222\) 0 0
\(223\) 3.51982 2.03217i 0.0157840 0.00911287i −0.492087 0.870546i \(-0.663766\pi\)
0.507871 + 0.861433i \(0.330433\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 301.496i 1.32818i 0.747654 + 0.664089i \(0.231180\pi\)
−0.747654 + 0.664089i \(0.768820\pi\)
\(228\) 0 0
\(229\) 215.751i 0.942145i 0.882095 + 0.471072i \(0.156133\pi\)
−0.882095 + 0.471072i \(0.843867\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −14.0845 24.3951i −0.0604486 0.104700i 0.834217 0.551436i \(-0.185920\pi\)
−0.894666 + 0.446736i \(0.852586\pi\)
\(234\) 0 0
\(235\) −62.4083 + 108.094i −0.265567 + 0.459976i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 30.4914 52.8126i 0.127579 0.220973i −0.795159 0.606401i \(-0.792613\pi\)
0.922738 + 0.385428i \(0.125946\pi\)
\(240\) 0 0
\(241\) 3.92969i 0.0163058i 0.999967 + 0.00815288i \(0.00259517\pi\)
−0.999967 + 0.00815288i \(0.997405\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 440.965 + 30.4540i 1.79986 + 0.124302i
\(246\) 0 0
\(247\) −499.450 −2.02207
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 370.568i 1.47637i −0.674601 0.738183i \(-0.735684\pi\)
0.674601 0.738183i \(-0.264316\pi\)
\(252\) 0 0
\(253\) 0.109867 0.000434256
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 368.771i 1.43491i −0.696607 0.717453i \(-0.745308\pi\)
0.696607 0.717453i \(-0.254692\pi\)
\(258\) 0 0
\(259\) 101.637 332.952i 0.392421 1.28553i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −39.1616 −0.148903 −0.0744517 0.997225i \(-0.523721\pi\)
−0.0744517 + 0.997225i \(0.523721\pi\)
\(264\) 0 0
\(265\) 610.926 + 352.718i 2.30538 + 1.33101i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 407.431 + 235.230i 1.51461 + 0.874461i 0.999853 + 0.0171262i \(0.00545171\pi\)
0.514758 + 0.857335i \(0.327882\pi\)
\(270\) 0 0
\(271\) −238.810 + 137.877i −0.881218 + 0.508772i −0.871060 0.491177i \(-0.836567\pi\)
−0.0101585 + 0.999948i \(0.503234\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −591.237 −2.14995
\(276\) 0 0
\(277\) −122.059 −0.440646 −0.220323 0.975427i \(-0.570711\pi\)
−0.220323 + 0.975427i \(0.570711\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 121.284 + 210.071i 0.431617 + 0.747583i 0.997013 0.0772371i \(-0.0246099\pi\)
−0.565396 + 0.824820i \(0.691277\pi\)
\(282\) 0 0
\(283\) 423.344 244.418i 1.49591 0.863667i 0.495925 0.868365i \(-0.334829\pi\)
0.999989 + 0.00469851i \(0.00149559\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −22.9618 99.2637i −0.0800063 0.345867i
\(288\) 0 0
\(289\) −87.2294 151.086i −0.301832 0.522788i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 46.1025 + 26.6173i 0.157346 + 0.0908440i 0.576606 0.817023i \(-0.304377\pi\)
−0.419259 + 0.907866i \(0.637710\pi\)
\(294\) 0 0
\(295\) −124.386 215.443i −0.421649 0.730317i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −0.209766 0.121108i −0.000701559 0.000405045i
\(300\) 0 0
\(301\) −27.9459 + 91.5478i −0.0928435 + 0.304145i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −10.1200 + 17.5284i −0.0331805 + 0.0574703i
\(306\) 0 0
\(307\) 514.866i 1.67709i −0.544834 0.838544i \(-0.683407\pi\)
0.544834 0.838544i \(-0.316593\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 198.831 114.795i 0.639329 0.369117i −0.145027 0.989428i \(-0.546327\pi\)
0.784356 + 0.620311i \(0.212993\pi\)
\(312\) 0 0
\(313\) 54.3358 + 31.3708i 0.173597 + 0.100226i 0.584281 0.811552i \(-0.301377\pi\)
−0.410684 + 0.911778i \(0.634710\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 154.536 267.665i 0.487497 0.844369i −0.512400 0.858747i \(-0.671243\pi\)
0.999897 + 0.0143778i \(0.00457675\pi\)
\(318\) 0 0
\(319\) −85.5765 148.223i −0.268265 0.464648i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 231.179 0.715725
\(324\) 0 0
\(325\) 1128.84 + 651.733i 3.47334 + 2.00533i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 21.8286 + 94.3647i 0.0663482 + 0.286823i
\(330\) 0 0
\(331\) 271.081 469.526i 0.818976 1.41851i −0.0874620 0.996168i \(-0.527876\pi\)
0.906438 0.422340i \(-0.138791\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −425.664 + 245.757i −1.27064 + 0.733603i
\(336\) 0 0
\(337\) −214.898 + 372.213i −0.637678 + 1.10449i 0.348263 + 0.937397i \(0.386772\pi\)
−0.985941 + 0.167094i \(0.946562\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −258.152 + 149.044i −0.757044 + 0.437080i
\(342\) 0 0
\(343\) 266.282 216.201i 0.776333 0.630323i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −85.6830 148.407i −0.246925 0.427687i 0.715746 0.698361i \(-0.246087\pi\)
−0.962671 + 0.270674i \(0.912753\pi\)
\(348\) 0 0
\(349\) −69.0793 + 39.8829i −0.197935 + 0.114278i −0.595692 0.803213i \(-0.703122\pi\)
0.397757 + 0.917491i \(0.369789\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 468.865i 1.32823i −0.747631 0.664114i \(-0.768809\pi\)
0.747631 0.664114i \(-0.231191\pi\)
\(354\) 0 0
\(355\) 931.552i 2.62409i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −113.648 196.844i −0.316568 0.548313i 0.663201 0.748441i \(-0.269197\pi\)
−0.979770 + 0.200129i \(0.935864\pi\)
\(360\) 0 0
\(361\) 52.7952 91.4440i 0.146247 0.253308i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −182.875 + 316.748i −0.501026 + 0.867803i
\(366\) 0 0
\(367\) 59.0917i 0.161013i −0.996754 0.0805064i \(-0.974346\pi\)
0.996754 0.0805064i \(-0.0256537\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 533.329 123.370i 1.43754 0.332535i
\(372\) 0 0
\(373\) −258.346 −0.692617 −0.346308 0.938121i \(-0.612565\pi\)
−0.346308 + 0.938121i \(0.612565\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 377.331i 1.00088i
\(378\) 0 0
\(379\) −618.172 −1.63106 −0.815530 0.578715i \(-0.803554\pi\)
−0.815530 + 0.578715i \(0.803554\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 392.164i 1.02393i 0.859007 + 0.511964i \(0.171082\pi\)
−0.859007 + 0.511964i \(0.828918\pi\)
\(384\) 0 0
\(385\) −484.149 + 451.866i −1.25753 + 1.17368i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −569.268 −1.46341 −0.731707 0.681620i \(-0.761276\pi\)
−0.731707 + 0.681620i \(0.761276\pi\)
\(390\) 0 0
\(391\) 0.0970939 + 0.0560572i 0.000248322 + 0.000143369i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −163.828 94.5861i −0.414754 0.239458i
\(396\) 0 0
\(397\) −162.553 + 93.8503i −0.409454 + 0.236399i −0.690555 0.723280i \(-0.742634\pi\)
0.281101 + 0.959678i \(0.409300\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −304.320 −0.758902 −0.379451 0.925212i \(-0.623887\pi\)
−0.379451 + 0.925212i \(0.623887\pi\)
\(402\) 0 0
\(403\) 657.179 1.63072
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 260.787 + 451.697i 0.640755 + 1.10982i
\(408\) 0 0
\(409\) 20.3869 11.7704i 0.0498458 0.0287785i −0.474870 0.880056i \(-0.657505\pi\)
0.524716 + 0.851277i \(0.324172\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −184.634 56.3615i −0.447056 0.136469i
\(414\) 0 0
\(415\) −138.299 239.542i −0.333251 0.577208i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 420.858 + 242.983i 1.00443 + 0.579911i 0.909557 0.415578i \(-0.136421\pi\)
0.0948772 + 0.995489i \(0.469754\pi\)
\(420\) 0 0
\(421\) 185.968 + 322.106i 0.441730 + 0.765099i 0.997818 0.0660248i \(-0.0210316\pi\)
−0.556088 + 0.831123i \(0.687698\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −522.501 301.666i −1.22941 0.709803i
\(426\) 0 0
\(427\) 3.53969 + 15.3021i 0.00828968 + 0.0358362i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −55.5725 + 96.2544i −0.128939 + 0.223328i −0.923266 0.384162i \(-0.874490\pi\)
0.794327 + 0.607490i \(0.207824\pi\)
\(432\) 0 0
\(433\) 307.470i 0.710091i 0.934849 + 0.355046i \(0.115535\pi\)
−0.934849 + 0.355046i \(0.884465\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0.195965 0.113140i 0.000448433 0.000258903i
\(438\) 0 0
\(439\) −533.664 308.111i −1.21564 0.701848i −0.251655 0.967817i \(-0.580975\pi\)
−0.963981 + 0.265969i \(0.914308\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −99.8992 + 173.031i −0.225506 + 0.390588i −0.956471 0.291827i \(-0.905737\pi\)
0.730965 + 0.682415i \(0.239070\pi\)
\(444\) 0 0
\(445\) −710.282 1230.25i −1.59614 2.76460i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 351.847 0.783623 0.391812 0.920045i \(-0.371848\pi\)
0.391812 + 0.920045i \(0.371848\pi\)
\(450\) 0 0
\(451\) 132.199 + 76.3252i 0.293124 + 0.169235i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1422.48 329.049i 3.12632 0.723185i
\(456\) 0 0
\(457\) −85.9428 + 148.857i −0.188059 + 0.325727i −0.944603 0.328215i \(-0.893553\pi\)
0.756544 + 0.653942i \(0.226886\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −352.003 + 203.229i −0.763564 + 0.440844i −0.830574 0.556908i \(-0.811987\pi\)
0.0670098 + 0.997752i \(0.478654\pi\)
\(462\) 0 0
\(463\) 216.398 374.812i 0.467382 0.809529i −0.531924 0.846792i \(-0.678531\pi\)
0.999305 + 0.0372633i \(0.0118640\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −320.910 + 185.277i −0.687173 + 0.396739i −0.802552 0.596582i \(-0.796525\pi\)
0.115379 + 0.993321i \(0.463192\pi\)
\(468\) 0 0
\(469\) −111.357 + 364.792i −0.237434 + 0.777809i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −71.7055 124.198i −0.151597 0.262574i
\(474\) 0 0
\(475\) −1054.57 + 608.855i −2.22014 + 1.28180i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 300.722i 0.627813i −0.949454 0.313906i \(-0.898362\pi\)
0.949454 0.313906i \(-0.101638\pi\)
\(480\) 0 0
\(481\) 1149.89i 2.39062i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 415.229 + 719.198i 0.856143 + 1.48288i
\(486\) 0 0
\(487\) 391.682 678.413i 0.804275 1.39304i −0.112505 0.993651i \(-0.535887\pi\)
0.916780 0.399393i \(-0.130779\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −66.8034 + 115.707i −0.136056 + 0.235656i −0.926000 0.377523i \(-0.876776\pi\)
0.789944 + 0.613178i \(0.210109\pi\)
\(492\) 0 0
\(493\) 174.654i 0.354268i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 493.227 + 528.466i 0.992409 + 1.06331i
\(498\) 0 0
\(499\) −580.230 −1.16279 −0.581393 0.813623i \(-0.697492\pi\)
−0.581393 + 0.813623i \(0.697492\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 849.632i 1.68913i −0.535453 0.844565i \(-0.679859\pi\)
0.535453 0.844565i \(-0.320141\pi\)
\(504\) 0 0
\(505\) −1267.93 −2.51075
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 313.979i 0.616855i 0.951248 + 0.308428i \(0.0998027\pi\)
−0.951248 + 0.308428i \(0.900197\pi\)
\(510\) 0 0
\(511\) 63.9641 + 276.516i 0.125174 + 0.541127i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −995.987 −1.93396
\(516\) 0 0
\(517\) −125.675 72.5582i −0.243084 0.140345i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −40.6375 23.4621i −0.0779991 0.0450328i 0.460493 0.887663i \(-0.347673\pi\)
−0.538492 + 0.842630i \(0.681006\pi\)
\(522\) 0 0
\(523\) 142.311 82.1630i 0.272104 0.157100i −0.357739 0.933822i \(-0.616452\pi\)
0.629844 + 0.776722i \(0.283119\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −304.187 −0.577204
\(528\) 0 0
\(529\) −529.000 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −168.270 291.452i −0.315703 0.546814i
\(534\) 0 0
\(535\) 730.675 421.856i 1.36575 0.788515i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −35.4070 + 512.683i −0.0656901 + 0.951174i
\(540\) 0 0
\(541\) 40.6441 + 70.3977i 0.0751278 + 0.130125i 0.901142 0.433524i \(-0.142730\pi\)
−0.826014 + 0.563650i \(0.809397\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −1001.01 577.936i −1.83672 1.06043i
\(546\) 0 0
\(547\) −132.040 228.700i −0.241390 0.418099i 0.719721 0.694264i \(-0.244270\pi\)
−0.961110 + 0.276164i \(0.910937\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −305.279 176.253i −0.554045 0.319878i
\(552\) 0 0
\(553\) −143.019 + 33.0834i −0.258624 + 0.0598253i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 150.745 261.098i 0.270637 0.468757i −0.698388 0.715719i \(-0.746099\pi\)
0.969025 + 0.246962i \(0.0794323\pi\)
\(558\) 0 0
\(559\) 316.170i 0.565599i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 138.100 79.7321i 0.245293 0.141620i −0.372314 0.928107i \(-0.621436\pi\)
0.617607 + 0.786487i \(0.288102\pi\)
\(564\) 0 0
\(565\) 733.350 + 423.400i 1.29796 + 0.749380i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 198.694 344.149i 0.349199 0.604831i −0.636908 0.770940i \(-0.719787\pi\)
0.986107 + 0.166109i \(0.0531203\pi\)
\(570\) 0 0
\(571\) −74.5288 129.088i −0.130523 0.226073i 0.793355 0.608759i \(-0.208332\pi\)
−0.923878 + 0.382686i \(0.874999\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −0.590549 −0.00102704
\(576\) 0 0
\(577\) −326.436 188.468i −0.565746 0.326634i 0.189702 0.981842i \(-0.439248\pi\)
−0.755449 + 0.655208i \(0.772581\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −205.286 62.6657i −0.353333 0.107858i
\(582\) 0 0
\(583\) −410.083 + 710.285i −0.703402 + 1.21833i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −203.516 + 117.500i −0.346705 + 0.200170i −0.663233 0.748413i \(-0.730816\pi\)
0.316528 + 0.948583i \(0.397483\pi\)
\(588\) 0 0
\(589\) −306.971 + 531.689i −0.521173 + 0.902698i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 521.241 300.939i 0.878990 0.507485i 0.00866477 0.999962i \(-0.497242\pi\)
0.870325 + 0.492477i \(0.163909\pi\)
\(594\) 0 0
\(595\) −658.418 + 152.306i −1.10658 + 0.255977i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −170.436 295.204i −0.284534 0.492828i 0.687962 0.725747i \(-0.258506\pi\)
−0.972496 + 0.232919i \(0.925172\pi\)
\(600\) 0 0
\(601\) 602.938 348.106i 1.00322 0.579212i 0.0940235 0.995570i \(-0.470027\pi\)
0.909201 + 0.416358i \(0.136694\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 99.2749i 0.164091i
\(606\) 0 0
\(607\) 548.762i 0.904057i −0.892004 0.452028i \(-0.850701\pi\)
0.892004 0.452028i \(-0.149299\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 159.965 + 277.068i 0.261809 + 0.453466i
\(612\) 0 0
\(613\) 156.668 271.356i 0.255575 0.442669i −0.709476 0.704729i \(-0.751068\pi\)
0.965052 + 0.262060i \(0.0844018\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −218.859 + 379.075i −0.354715 + 0.614385i −0.987069 0.160295i \(-0.948756\pi\)
0.632354 + 0.774680i \(0.282089\pi\)
\(618\) 0 0
\(619\) 365.173i 0.589941i 0.955506 + 0.294970i \(0.0953098\pi\)
−0.955506 + 0.294970i \(0.904690\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −1054.32 321.841i −1.69232 0.516598i
\(624\) 0 0
\(625\) 1143.64 1.82983
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 532.245i 0.846177i
\(630\) 0 0
\(631\) 776.357 1.23036 0.615180 0.788387i \(-0.289083\pi\)
0.615180 + 0.788387i \(0.289083\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1634.83i 2.57453i
\(636\) 0 0
\(637\) 632.743 939.824i 0.993317 1.47539i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −2.63339 −0.00410825 −0.00205413 0.999998i \(-0.500654\pi\)
−0.00205413 + 0.999998i \(0.500654\pi\)
\(642\) 0 0
\(643\) 165.599 + 95.6084i 0.257541 + 0.148691i 0.623212 0.782053i \(-0.285827\pi\)
−0.365671 + 0.930744i \(0.619161\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −563.620 325.406i −0.871129 0.502946i −0.00340561 0.999994i \(-0.501084\pi\)
−0.867723 + 0.497048i \(0.834417\pi\)
\(648\) 0 0
\(649\) 250.483 144.616i 0.385952 0.222829i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −410.792 −0.629085 −0.314542 0.949243i \(-0.601851\pi\)
−0.314542 + 0.949243i \(0.601851\pi\)
\(654\) 0 0
\(655\) 425.861 0.650169
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −115.724 200.439i −0.175605 0.304157i 0.764765 0.644309i \(-0.222855\pi\)
−0.940371 + 0.340152i \(0.889522\pi\)
\(660\) 0 0
\(661\) −484.932 + 279.975i −0.733633 + 0.423563i −0.819750 0.572722i \(-0.805888\pi\)
0.0861166 + 0.996285i \(0.472554\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −398.228 + 1304.55i −0.598838 + 1.96173i
\(666\) 0 0
\(667\) −0.0854768 0.148050i −0.000128151 0.000221964i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −20.3792 11.7659i −0.0303714 0.0175349i
\(672\) 0 0
\(673\) 144.487 + 250.259i 0.214691 + 0.371856i 0.953177 0.302413i \(-0.0977922\pi\)
−0.738486 + 0.674269i \(0.764459\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 414.313 + 239.204i 0.611983 + 0.353329i 0.773741 0.633502i \(-0.218383\pi\)
−0.161758 + 0.986830i \(0.551716\pi\)
\(678\) 0 0
\(679\) 616.351 + 188.147i 0.907733 + 0.277095i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 110.124 190.741i 0.161236 0.279269i −0.774076 0.633092i \(-0.781785\pi\)
0.935312 + 0.353823i \(0.115119\pi\)
\(684\) 0 0
\(685\) 457.950i 0.668540i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1565.93 904.088i 2.27275 1.31217i
\(690\) 0 0
\(691\) −446.326 257.686i −0.645913 0.372918i 0.140976 0.990013i \(-0.454976\pi\)
−0.786889 + 0.617095i \(0.788309\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −766.360 + 1327.37i −1.10268 + 1.90989i
\(696\) 0 0
\(697\) 77.8866 + 134.904i 0.111745 + 0.193549i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 186.358 0.265846 0.132923 0.991126i \(-0.457564\pi\)
0.132923 + 0.991126i \(0.457564\pi\)
\(702\) 0 0
\(703\) 930.313 + 537.117i 1.32335 + 0.764035i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −719.289 + 671.327i −1.01738 + 0.949543i
\(708\) 0 0
\(709\) 315.605 546.644i 0.445141 0.771007i −0.552921 0.833234i \(-0.686487\pi\)
0.998062 + 0.0622270i \(0.0198203\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −0.257852 + 0.148871i −0.000361643 + 0.000208795i
\(714\) 0 0
\(715\) −1093.76 + 1894.45i −1.52973 + 2.64958i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 972.708 561.593i 1.35286 0.781075i 0.364213 0.931316i \(-0.381338\pi\)
0.988649 + 0.150240i \(0.0480048\pi\)
\(720\) 0 0
\(721\) −565.019 + 527.344i −0.783661 + 0.731406i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 459.985 + 796.718i 0.634462 + 1.09892i
\(726\) 0 0
\(727\) 243.180 140.400i 0.334497 0.193122i −0.323339 0.946283i \(-0.604805\pi\)
0.657836 + 0.753161i \(0.271472\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 146.345i 0.200198i
\(732\) 0 0
\(733\) 180.872i 0.246756i 0.992360 + 0.123378i \(0.0393727\pi\)
−0.992360 + 0.123378i \(0.960627\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −285.726 494.893i −0.387689 0.671496i
\(738\) 0 0
\(739\) −322.671 + 558.883i −0.436633 + 0.756270i −0.997427 0.0716851i \(-0.977162\pi\)
0.560795 + 0.827955i \(0.310496\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 207.964 360.204i 0.279897 0.484797i −0.691462 0.722413i \(-0.743033\pi\)
0.971359 + 0.237617i \(0.0763662\pi\)
\(744\) 0 0
\(745\) 949.281i 1.27420i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 191.150 626.186i 0.255207 0.836030i
\(750\) 0 0
\(751\) 113.313 0.150882 0.0754411 0.997150i \(-0.475964\pi\)
0.0754411 + 0.997150i \(0.475964\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1925.81i 2.55075i
\(756\) 0 0
\(757\) −697.964 −0.922013 −0.461006 0.887397i \(-0.652512\pi\)
−0.461006 + 0.887397i \(0.652512\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1346.02i 1.76875i 0.466781 + 0.884373i \(0.345414\pi\)
−0.466781 + 0.884373i \(0.654586\pi\)
\(762\) 0 0
\(763\) −873.870 + 202.145i −1.14531 + 0.264934i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −637.654 −0.831361
\(768\) 0 0
\(769\) −289.467 167.124i −0.376420 0.217326i 0.299840 0.953990i \(-0.403067\pi\)
−0.676259 + 0.736664i \(0.736400\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −1078.42 622.629i −1.39512 0.805470i −0.401240 0.915973i \(-0.631421\pi\)
−0.993876 + 0.110503i \(0.964754\pi\)
\(774\) 0 0
\(775\) 1387.60 801.133i 1.79046 1.03372i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 314.398 0.403592
\(780\) 0 0
\(781\) −1083.06 −1.38676
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 51.3532 + 88.9464i 0.0654181 + 0.113308i
\(786\) 0 0
\(787\) −279.629 + 161.444i −0.355310 + 0.205139i −0.667022 0.745038i \(-0.732431\pi\)
0.311711 + 0.950177i \(0.399098\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 640.203 148.093i 0.809359 0.187222i
\(792\) 0 0
\(793\) 25.9397 + 44.9289i 0.0327109 + 0.0566569i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 160.864 + 92.8747i 0.201836 + 0.116530i 0.597512 0.801860i \(-0.296156\pi\)
−0.395675 + 0.918390i \(0.629489\pi\)
\(798\) 0 0
\(799\) −74.0426 128.246i −0.0926691 0.160508i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −368.263 212.617i −0.458609 0.264778i
\(804\) 0 0
\(805\) −0.483585 + 0.451340i −0.000600727 + 0.000560670i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 315.257 546.041i 0.389687 0.674958i −0.602720 0.797953i \(-0.705916\pi\)
0.992407 + 0.122994i \(0.0392497\pi\)
\(810\) 0 0
\(811\) 491.571i 0.606129i 0.952970 + 0.303065i \(0.0980098\pi\)
−0.952970 + 0.303065i \(0.901990\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 736.387 425.153i 0.903543 0.521661i
\(816\) 0 0
\(817\) −255.797 147.684i −0.313093 0.180764i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 478.233 828.323i 0.582500 1.00892i −0.412682 0.910875i \(-0.635408\pi\)
0.995182 0.0980445i \(-0.0312588\pi\)
\(822\) 0 0
\(823\) 297.172 + 514.718i 0.361084 + 0.625416i 0.988140 0.153558i \(-0.0490733\pi\)
−0.627055 + 0.778975i \(0.715740\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 599.763 0.725228 0.362614 0.931940i \(-0.381884\pi\)
0.362614 + 0.931940i \(0.381884\pi\)
\(828\) 0 0
\(829\) 411.247 + 237.434i 0.496076 + 0.286410i 0.727092 0.686540i \(-0.240872\pi\)
−0.231016 + 0.972950i \(0.574205\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −292.876 + 435.014i −0.351592 + 0.522226i
\(834\) 0 0
\(835\) −427.715 + 740.823i −0.512233 + 0.887214i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 775.765 447.888i 0.924631 0.533836i 0.0395213 0.999219i \(-0.487417\pi\)
0.885109 + 0.465383i \(0.154083\pi\)
\(840\) 0 0
\(841\) 287.342 497.691i 0.341667 0.591785i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 2856.32 1649.10i 3.38026 1.95160i
\(846\) 0 0
\(847\) 52.5629 + 56.3182i 0.0620578 + 0.0664914i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0.260484 + 0.451171i 0.000306091 + 0.000530166i
\(852\) 0 0
\(853\) 1388.59 801.700i 1.62788 0.939860i 0.643162 0.765730i \(-0.277622\pi\)
0.984723 0.174130i \(-0.0557112\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 535.909i 0.625331i −0.949863 0.312665i \(-0.898778\pi\)
0.949863 0.312665i \(-0.101222\pi\)
\(858\) 0 0
\(859\) 616.375i 0.717550i −0.933424 0.358775i \(-0.883195\pi\)
0.933424 0.358775i \(-0.116805\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 697.416 + 1207.96i 0.808129 + 1.39972i 0.914158 + 0.405358i \(0.132853\pi\)
−0.106029 + 0.994363i \(0.533814\pi\)
\(864\) 0 0
\(865\) 1360.45 2356.37i 1.57278 2.72413i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 109.969 190.473i 0.126547 0.219186i
\(870\) 0 0
\(871\) 1259.85i 1.44644i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1448.29 1351.72i 1.65519 1.54483i
\(876\) 0 0
\(877\) 557.282 0.635441 0.317721 0.948184i \(-0.397083\pi\)
0.317721 + 0.948184i \(0.397083\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 691.635i 0.785057i −0.919740 0.392528i \(-0.871601\pi\)
0.919740 0.392528i \(-0.128399\pi\)
\(882\) 0 0
\(883\) 171.979 0.194766 0.0973831 0.995247i \(-0.468953\pi\)
0.0973831 + 0.995247i \(0.468953\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 361.006i 0.406997i −0.979075 0.203499i \(-0.934769\pi\)
0.979075 0.203499i \(-0.0652312\pi\)
\(888\) 0 0
\(889\) 865.590 + 927.431i 0.973667 + 1.04323i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −298.881 −0.334693
\(894\) 0 0
\(895\) −683.531 394.637i −0.763722 0.440935i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 401.687 + 231.914i 0.446816 + 0.257969i
\(900\) 0 0
\(901\) −724.816 + 418.473i −0.804457 + 0.464454i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −1466.43 −1.62037
\(906\) 0 0
\(907\) 530.828 0.585257 0.292628 0.956226i \(-0.405470\pi\)
0.292628 + 0.956226i \(0.405470\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 432.297 + 748.761i 0.474531 + 0.821911i 0.999575 0.0291639i \(-0.00928448\pi\)
−0.525044 + 0.851075i \(0.675951\pi\)
\(912\) 0 0
\(913\) 278.500 160.792i 0.305038 0.176114i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 241.589 225.480i 0.263456 0.245889i
\(918\) 0 0
\(919\) 489.835 + 848.419i 0.533009 + 0.923198i 0.999257 + 0.0385444i \(0.0122721\pi\)
−0.466248 + 0.884654i \(0.654395\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 2067.86 + 1193.88i 2.24037 + 1.29348i
\(924\) 0 0
\(925\) −1401.77 2427.93i −1.51543 2.62479i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −422.919 244.172i −0.455241 0.262834i 0.254800 0.966994i \(-0.417990\pi\)
−0.710041 + 0.704160i \(0.751324\pi\)
\(930\) 0 0
\(931\) 464.806 + 950.915i 0.499254 + 1.02139i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 506.266 876.879i 0.541461 0.937838i
\(936\) 0 0
\(937\) 173.479i 0.185143i 0.995706 + 0.0925714i \(0.0295086\pi\)
−0.995706 + 0.0925714i \(0.970491\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −1285.82 + 742.370i −1.36644 + 0.788916i −0.990472 0.137715i \(-0.956024\pi\)
−0.375971 + 0.926631i \(0.622691\pi\)
\(942\) 0 0
\(943\) 0.132045 + 0.0762363i 0.000140027 + 8.08444e-5i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 121.700 210.791i 0.128511 0.222588i −0.794589 0.607148i \(-0.792313\pi\)
0.923100 + 0.384560i \(0.125647\pi\)
\(948\) 0 0
\(949\) 468.744 + 811.889i 0.493935 + 0.855520i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −1555.73 −1.63245 −0.816226 0.577733i \(-0.803937\pi\)
−0.816226 + 0.577733i \(0.803937\pi\)
\(954\) 0 0
\(955\) −2522.45 1456.34i −2.64131 1.52496i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −242.470 259.793i −0.252836 0.270900i
\(960\) 0 0
\(961\) −76.5868 + 132.652i −0.0796949 + 0.138036i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −55.9361 + 32.2947i −0.0579649 + 0.0334660i
\(966\) 0 0
\(967\) −183.047 + 317.047i −0.189294 + 0.327867i −0.945015 0.327027i \(-0.893953\pi\)
0.755721 + 0.654894i \(0.227287\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −976.771 + 563.939i −1.00594 + 0.580782i −0.910001 0.414605i \(-0.863920\pi\)
−0.0959419 + 0.995387i \(0.530586\pi\)
\(972\) 0 0
\(973\) 268.050 + 1158.78i 0.275488 + 1.19093i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −282.673 489.604i −0.289327 0.501130i 0.684322 0.729180i \(-0.260098\pi\)
−0.973649 + 0.228050i \(0.926765\pi\)
\(978\) 0 0
\(979\) 1430.33 825.801i 1.46101 0.843515i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 474.866i 0.483079i 0.970391 + 0.241539i \(0.0776523\pi\)
−0.970391 + 0.241539i \(0.922348\pi\)
\(984\) 0 0
\(985\) 3215.52i 3.26449i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −0.0716220 0.124053i −7.24186e−5 0.000125433i
\(990\) 0 0
\(991\) −299.289 + 518.383i −0.302007 + 0.523091i −0.976590 0.215107i \(-0.930990\pi\)
0.674584 + 0.738198i \(0.264323\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −199.475 + 345.501i −0.200477 + 0.347237i
\(996\) 0 0
\(997\) 1347.04i 1.35109i 0.737319 + 0.675545i \(0.236092\pi\)
−0.737319 + 0.675545i \(0.763908\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 756.3.p.a.577.1 32
3.2 odd 2 252.3.p.a.157.9 yes 32
7.5 odd 6 756.3.bd.a.145.16 32
9.2 odd 6 252.3.bd.a.241.4 yes 32
9.7 even 3 756.3.bd.a.73.16 32
21.5 even 6 252.3.bd.a.229.4 yes 32
63.47 even 6 252.3.p.a.61.9 32
63.61 odd 6 inner 756.3.p.a.397.16 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.3.p.a.61.9 32 63.47 even 6
252.3.p.a.157.9 yes 32 3.2 odd 2
252.3.bd.a.229.4 yes 32 21.5 even 6
252.3.bd.a.241.4 yes 32 9.2 odd 6
756.3.p.a.397.16 32 63.61 odd 6 inner
756.3.p.a.577.1 32 1.1 even 1 trivial
756.3.bd.a.73.16 32 9.7 even 3
756.3.bd.a.145.16 32 7.5 odd 6