Properties

Label 756.3.bk.g.485.8
Level $756$
Weight $3$
Character 756.485
Analytic conductor $20.600$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [756,3,Mod(53,756)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("756.53"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 4])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 756.bk (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,24,0,0,0,0,0,88] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.5995079856\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 46 x^{14} + 1437 x^{12} - 24668 x^{10} + 309582 x^{8} - 2188585 x^{6} + 10478650 x^{4} + \cdots + 194481 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 3^{11} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 485.8
Root \(-2.92662 + 1.68969i\) of defining polynomial
Character \(\chi\) \(=\) 756.485
Dual form 756.3.bk.g.53.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(7.52876 + 4.34673i) q^{5} +(2.97960 - 6.33419i) q^{7} +(-11.7910 + 6.80755i) q^{11} +11.1789 q^{13} +(21.5048 - 12.4158i) q^{17} +(11.6543 - 20.1858i) q^{19} +(8.87573 + 5.12441i) q^{23} +(25.2882 + 43.8004i) q^{25} +14.5093i q^{29} +(-15.7276 - 27.2410i) q^{31} +(49.9658 - 34.7371i) q^{35} +(-22.1093 + 38.2944i) q^{37} +8.92653i q^{41} -56.8453 q^{43} +(29.8937 + 17.2591i) q^{47} +(-31.2439 - 37.7468i) q^{49} +(79.6796 - 46.0030i) q^{53} -118.362 q^{55} +(-3.07301 + 1.77420i) q^{59} +(31.3445 - 54.2903i) q^{61} +(84.1633 + 48.5917i) q^{65} +(58.9819 + 102.160i) q^{67} +56.6034i q^{71} +(32.7066 + 56.6495i) q^{73} +(7.98772 + 94.9704i) q^{77} +(-4.51904 + 7.82720i) q^{79} +39.9286i q^{83} +215.873 q^{85} +(26.5356 + 15.3203i) q^{89} +(33.3087 - 70.8093i) q^{91} +(175.485 - 101.316i) q^{95} -137.668 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 24 q^{7} + 88 q^{13} + 14 q^{19} + 36 q^{25} - 68 q^{31} - 76 q^{37} - 292 q^{43} - 20 q^{49} - 272 q^{55} - 110 q^{61} - 72 q^{67} + 60 q^{73} + 154 q^{79} + 700 q^{85} - 74 q^{91} + 264 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/756\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\) \(379\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 7.52876 + 4.34673i 1.50575 + 0.869347i 0.999978 + 0.00668085i \(0.00212660\pi\)
0.505775 + 0.862666i \(0.331207\pi\)
\(6\) 0 0
\(7\) 2.97960 6.33419i 0.425658 0.904884i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −11.7910 + 6.80755i −1.07191 + 0.618868i −0.928703 0.370825i \(-0.879075\pi\)
−0.143208 + 0.989693i \(0.545742\pi\)
\(12\) 0 0
\(13\) 11.1789 0.859916 0.429958 0.902849i \(-0.358528\pi\)
0.429958 + 0.902849i \(0.358528\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 21.5048 12.4158i 1.26499 0.730341i 0.290952 0.956738i \(-0.406028\pi\)
0.974035 + 0.226397i \(0.0726946\pi\)
\(18\) 0 0
\(19\) 11.6543 20.1858i 0.613383 1.06241i −0.377283 0.926098i \(-0.623141\pi\)
0.990666 0.136313i \(-0.0435252\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 8.87573 + 5.12441i 0.385901 + 0.222800i 0.680383 0.732857i \(-0.261814\pi\)
−0.294481 + 0.955657i \(0.595147\pi\)
\(24\) 0 0
\(25\) 25.2882 + 43.8004i 1.01153 + 1.75202i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 14.5093i 0.500321i 0.968204 + 0.250160i \(0.0804833\pi\)
−0.968204 + 0.250160i \(0.919517\pi\)
\(30\) 0 0
\(31\) −15.7276 27.2410i −0.507341 0.878741i −0.999964 0.00849763i \(-0.997295\pi\)
0.492623 0.870243i \(-0.336038\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 49.9658 34.7371i 1.42759 0.992487i
\(36\) 0 0
\(37\) −22.1093 + 38.2944i −0.597547 + 1.03498i 0.395634 + 0.918408i \(0.370525\pi\)
−0.993182 + 0.116575i \(0.962809\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 8.92653i 0.217720i 0.994057 + 0.108860i \(0.0347200\pi\)
−0.994057 + 0.108860i \(0.965280\pi\)
\(42\) 0 0
\(43\) −56.8453 −1.32198 −0.660992 0.750393i \(-0.729864\pi\)
−0.660992 + 0.750393i \(0.729864\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 29.8937 + 17.2591i 0.636036 + 0.367216i 0.783086 0.621913i \(-0.213644\pi\)
−0.147050 + 0.989129i \(0.546978\pi\)
\(48\) 0 0
\(49\) −31.2439 37.7468i −0.637631 0.770342i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 79.6796 46.0030i 1.50339 0.867982i 0.503397 0.864055i \(-0.332083\pi\)
0.999992 0.00392664i \(-0.00124989\pi\)
\(54\) 0 0
\(55\) −118.362 −2.15204
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −3.07301 + 1.77420i −0.0520849 + 0.0300713i −0.525816 0.850598i \(-0.676240\pi\)
0.473731 + 0.880669i \(0.342907\pi\)
\(60\) 0 0
\(61\) 31.3445 54.2903i 0.513845 0.890005i −0.486026 0.873944i \(-0.661554\pi\)
0.999871 0.0160609i \(-0.00511258\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 84.1633 + 48.5917i 1.29482 + 0.747565i
\(66\) 0 0
\(67\) 58.9819 + 102.160i 0.880326 + 1.52477i 0.850978 + 0.525201i \(0.176010\pi\)
0.0293482 + 0.999569i \(0.490657\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 56.6034i 0.797231i 0.917118 + 0.398616i \(0.130509\pi\)
−0.917118 + 0.398616i \(0.869491\pi\)
\(72\) 0 0
\(73\) 32.7066 + 56.6495i 0.448035 + 0.776020i 0.998258 0.0589978i \(-0.0187905\pi\)
−0.550223 + 0.835018i \(0.685457\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 7.98772 + 94.9704i 0.103737 + 1.23338i
\(78\) 0 0
\(79\) −4.51904 + 7.82720i −0.0572030 + 0.0990785i −0.893209 0.449642i \(-0.851552\pi\)
0.836006 + 0.548721i \(0.184885\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 39.9286i 0.481067i 0.970641 + 0.240533i \(0.0773224\pi\)
−0.970641 + 0.240533i \(0.922678\pi\)
\(84\) 0 0
\(85\) 215.873 2.53968
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 26.5356 + 15.3203i 0.298153 + 0.172138i 0.641613 0.767029i \(-0.278266\pi\)
−0.343460 + 0.939167i \(0.611599\pi\)
\(90\) 0 0
\(91\) 33.3087 70.8093i 0.366030 0.778125i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 175.485 101.316i 1.84721 1.06649i
\(96\) 0 0
\(97\) −137.668 −1.41926 −0.709630 0.704575i \(-0.751138\pi\)
−0.709630 + 0.704575i \(0.751138\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 109.220 63.0580i 1.08138 0.624336i 0.150113 0.988669i \(-0.452036\pi\)
0.931269 + 0.364332i \(0.118703\pi\)
\(102\) 0 0
\(103\) 93.8955 162.632i 0.911607 1.57895i 0.0998115 0.995006i \(-0.468176\pi\)
0.811795 0.583942i \(-0.198491\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −90.3695 52.1749i −0.844575 0.487615i 0.0142419 0.999899i \(-0.495467\pi\)
−0.858817 + 0.512283i \(0.828800\pi\)
\(108\) 0 0
\(109\) 2.30011 + 3.98391i 0.0211019 + 0.0365496i 0.876384 0.481614i \(-0.159949\pi\)
−0.855282 + 0.518163i \(0.826616\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 41.2575i 0.365110i −0.983196 0.182555i \(-0.941563\pi\)
0.983196 0.182555i \(-0.0584368\pi\)
\(114\) 0 0
\(115\) 44.5488 + 77.1608i 0.387381 + 0.670964i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −14.5682 173.210i −0.122422 1.45554i
\(120\) 0 0
\(121\) 32.1854 55.7468i 0.265995 0.460717i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 222.347i 1.77878i
\(126\) 0 0
\(127\) 5.70178 0.0448959 0.0224480 0.999748i \(-0.492854\pi\)
0.0224480 + 0.999748i \(0.492854\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 111.208 + 64.2061i 0.848917 + 0.490123i 0.860285 0.509813i \(-0.170285\pi\)
−0.0113680 + 0.999935i \(0.503619\pi\)
\(132\) 0 0
\(133\) −93.1356 133.966i −0.700267 1.00726i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −159.139 + 91.8790i −1.16160 + 0.670649i −0.951687 0.307071i \(-0.900651\pi\)
−0.209912 + 0.977720i \(0.567318\pi\)
\(138\) 0 0
\(139\) −43.9291 −0.316037 −0.158018 0.987436i \(-0.550511\pi\)
−0.158018 + 0.987436i \(0.550511\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −131.811 + 76.1010i −0.921753 + 0.532175i
\(144\) 0 0
\(145\) −63.0680 + 109.237i −0.434952 + 0.753359i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −151.850 87.6704i −1.01913 0.588392i −0.105275 0.994443i \(-0.533572\pi\)
−0.913850 + 0.406051i \(0.866906\pi\)
\(150\) 0 0
\(151\) −8.69643 15.0627i −0.0575922 0.0997527i 0.835792 0.549046i \(-0.185009\pi\)
−0.893384 + 0.449294i \(0.851676\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 273.454i 1.76422i
\(156\) 0 0
\(157\) 72.9478 + 126.349i 0.464636 + 0.804773i 0.999185 0.0403645i \(-0.0128519\pi\)
−0.534549 + 0.845137i \(0.679519\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 58.9051 40.9519i 0.365870 0.254359i
\(162\) 0 0
\(163\) −134.374 + 232.743i −0.824383 + 1.42787i 0.0780063 + 0.996953i \(0.475145\pi\)
−0.902390 + 0.430921i \(0.858189\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 181.784i 1.08853i −0.838914 0.544264i \(-0.816809\pi\)
0.838914 0.544264i \(-0.183191\pi\)
\(168\) 0 0
\(169\) −44.0320 −0.260544
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 256.882 + 148.311i 1.48487 + 0.857288i 0.999852 0.0172178i \(-0.00548086\pi\)
0.485015 + 0.874506i \(0.338814\pi\)
\(174\) 0 0
\(175\) 352.789 29.6722i 2.01594 0.169555i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −37.6828 + 21.7562i −0.210519 + 0.121543i −0.601552 0.798833i \(-0.705451\pi\)
0.391034 + 0.920376i \(0.372118\pi\)
\(180\) 0 0
\(181\) −292.976 −1.61865 −0.809327 0.587358i \(-0.800168\pi\)
−0.809327 + 0.587358i \(0.800168\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −332.911 + 192.206i −1.79952 + 1.03895i
\(186\) 0 0
\(187\) −169.042 + 292.790i −0.903969 + 1.56572i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −241.060 139.176i −1.26209 0.728670i −0.288615 0.957445i \(-0.593195\pi\)
−0.973479 + 0.228775i \(0.926528\pi\)
\(192\) 0 0
\(193\) −103.146 178.654i −0.534436 0.925670i −0.999190 0.0402304i \(-0.987191\pi\)
0.464755 0.885439i \(-0.346143\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 346.492i 1.75884i 0.476042 + 0.879422i \(0.342071\pi\)
−0.476042 + 0.879422i \(0.657929\pi\)
\(198\) 0 0
\(199\) −175.902 304.671i −0.883929 1.53101i −0.846936 0.531695i \(-0.821555\pi\)
−0.0369937 0.999315i \(-0.511778\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 91.9047 + 43.2320i 0.452732 + 0.212965i
\(204\) 0 0
\(205\) −38.8012 + 67.2057i −0.189274 + 0.327833i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 317.348i 1.51841i
\(210\) 0 0
\(211\) −18.2223 −0.0863616 −0.0431808 0.999067i \(-0.513749\pi\)
−0.0431808 + 0.999067i \(0.513749\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −427.975 247.091i −1.99058 1.14926i
\(216\) 0 0
\(217\) −219.411 + 18.4541i −1.01111 + 0.0850421i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 240.400 138.795i 1.08778 0.628032i
\(222\) 0 0
\(223\) 298.635 1.33917 0.669586 0.742734i \(-0.266471\pi\)
0.669586 + 0.742734i \(0.266471\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −71.5442 + 41.3061i −0.315173 + 0.181965i −0.649239 0.760585i \(-0.724912\pi\)
0.334066 + 0.942550i \(0.391579\pi\)
\(228\) 0 0
\(229\) 114.635 198.554i 0.500591 0.867049i −0.499409 0.866366i \(-0.666449\pi\)
1.00000 0.000682554i \(-0.000217264\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −186.088 107.438i −0.798661 0.461107i 0.0443419 0.999016i \(-0.485881\pi\)
−0.843003 + 0.537909i \(0.819214\pi\)
\(234\) 0 0
\(235\) 150.042 + 259.880i 0.638475 + 1.10587i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 249.380i 1.04343i 0.853120 + 0.521715i \(0.174707\pi\)
−0.853120 + 0.521715i \(0.825293\pi\)
\(240\) 0 0
\(241\) −32.4265 56.1644i −0.134550 0.233047i 0.790876 0.611977i \(-0.209626\pi\)
−0.925425 + 0.378930i \(0.876292\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −71.1529 419.995i −0.290420 1.71427i
\(246\) 0 0
\(247\) 130.282 225.655i 0.527458 0.913584i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 345.782i 1.37762i −0.724943 0.688809i \(-0.758134\pi\)
0.724943 0.688809i \(-0.241866\pi\)
\(252\) 0 0
\(253\) −139.539 −0.551536
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −394.776 227.924i −1.53609 0.886865i −0.999062 0.0433032i \(-0.986212\pi\)
−0.537033 0.843561i \(-0.680455\pi\)
\(258\) 0 0
\(259\) 176.687 + 254.146i 0.682189 + 0.981260i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −299.848 + 173.117i −1.14011 + 0.658241i −0.946457 0.322830i \(-0.895366\pi\)
−0.193650 + 0.981071i \(0.562033\pi\)
\(264\) 0 0
\(265\) 799.852 3.01831
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −22.2236 + 12.8308i −0.0826155 + 0.0476981i −0.540739 0.841191i \(-0.681855\pi\)
0.458123 + 0.888889i \(0.348522\pi\)
\(270\) 0 0
\(271\) 8.00466 13.8645i 0.0295375 0.0511604i −0.850879 0.525362i \(-0.823930\pi\)
0.880416 + 0.474202i \(0.157263\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −596.347 344.301i −2.16853 1.25200i
\(276\) 0 0
\(277\) −165.286 286.284i −0.596700 1.03352i −0.993305 0.115526i \(-0.963145\pi\)
0.396604 0.917990i \(-0.370189\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 112.448i 0.400171i 0.979778 + 0.200086i \(0.0641220\pi\)
−0.979778 + 0.200086i \(0.935878\pi\)
\(282\) 0 0
\(283\) −96.7479 167.572i −0.341865 0.592128i 0.642914 0.765939i \(-0.277725\pi\)
−0.984779 + 0.173810i \(0.944392\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 56.5423 + 26.5975i 0.197012 + 0.0926743i
\(288\) 0 0
\(289\) 163.804 283.717i 0.566795 0.981718i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 527.275i 1.79957i 0.436332 + 0.899786i \(0.356277\pi\)
−0.436332 + 0.899786i \(0.643723\pi\)
\(294\) 0 0
\(295\) −30.8480 −0.104569
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 99.2210 + 57.2853i 0.331843 + 0.191590i
\(300\) 0 0
\(301\) −169.377 + 360.069i −0.562713 + 1.19624i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 471.971 272.493i 1.54745 0.893418i
\(306\) 0 0
\(307\) 246.199 0.801952 0.400976 0.916089i \(-0.368671\pi\)
0.400976 + 0.916089i \(0.368671\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −166.859 + 96.3362i −0.536525 + 0.309763i −0.743669 0.668548i \(-0.766916\pi\)
0.207145 + 0.978310i \(0.433583\pi\)
\(312\) 0 0
\(313\) −20.4157 + 35.3611i −0.0652259 + 0.112975i −0.896794 0.442448i \(-0.854110\pi\)
0.831568 + 0.555423i \(0.187443\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −424.474 245.070i −1.33903 0.773091i −0.352370 0.935861i \(-0.614624\pi\)
−0.986664 + 0.162769i \(0.947957\pi\)
\(318\) 0 0
\(319\) −98.7728 171.079i −0.309632 0.536299i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 578.789i 1.79191i
\(324\) 0 0
\(325\) 282.694 + 489.641i 0.869828 + 1.50659i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 198.394 137.927i 0.603021 0.419231i
\(330\) 0 0
\(331\) 10.3922 17.9999i 0.0313964 0.0543802i −0.849900 0.526944i \(-0.823338\pi\)
0.881297 + 0.472563i \(0.156671\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 1025.51i 3.06123i
\(336\) 0 0
\(337\) 39.2512 0.116472 0.0582362 0.998303i \(-0.481452\pi\)
0.0582362 + 0.998303i \(0.481452\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 370.888 + 214.132i 1.08765 + 0.627954i
\(342\) 0 0
\(343\) −332.190 + 85.4344i −0.968483 + 0.249080i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 337.526 194.871i 0.972697 0.561587i 0.0726398 0.997358i \(-0.476858\pi\)
0.900057 + 0.435771i \(0.143524\pi\)
\(348\) 0 0
\(349\) −231.687 −0.663859 −0.331930 0.943304i \(-0.607700\pi\)
−0.331930 + 0.943304i \(0.607700\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −209.073 + 120.709i −0.592276 + 0.341950i −0.765997 0.642844i \(-0.777754\pi\)
0.173721 + 0.984795i \(0.444421\pi\)
\(354\) 0 0
\(355\) −246.040 + 426.154i −0.693070 + 1.20043i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 44.6293 + 25.7668i 0.124316 + 0.0717737i 0.560868 0.827905i \(-0.310467\pi\)
−0.436553 + 0.899679i \(0.643801\pi\)
\(360\) 0 0
\(361\) −91.1445 157.867i −0.252478 0.437305i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 568.667i 1.55799i
\(366\) 0 0
\(367\) −298.159 516.426i −0.812421 1.40716i −0.911165 0.412042i \(-0.864816\pi\)
0.0987433 0.995113i \(-0.468518\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −53.9782 641.777i −0.145494 1.72986i
\(372\) 0 0
\(373\) 177.554 307.533i 0.476017 0.824486i −0.523606 0.851961i \(-0.675413\pi\)
0.999622 + 0.0274753i \(0.00874676\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 162.198i 0.430234i
\(378\) 0 0
\(379\) −688.685 −1.81711 −0.908555 0.417765i \(-0.862813\pi\)
−0.908555 + 0.417765i \(0.862813\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −277.588 160.266i −0.724774 0.418449i 0.0917332 0.995784i \(-0.470759\pi\)
−0.816507 + 0.577335i \(0.804093\pi\)
\(384\) 0 0
\(385\) −352.673 + 749.730i −0.916034 + 1.94735i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −358.901 + 207.212i −0.922626 + 0.532678i −0.884472 0.466594i \(-0.845481\pi\)
−0.0381540 + 0.999272i \(0.512148\pi\)
\(390\) 0 0
\(391\) 254.494 0.650880
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −68.0455 + 39.2861i −0.172267 + 0.0994585i
\(396\) 0 0
\(397\) 104.723 181.386i 0.263786 0.456891i −0.703459 0.710736i \(-0.748362\pi\)
0.967245 + 0.253845i \(0.0816953\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 281.142 + 162.317i 0.701101 + 0.404781i 0.807757 0.589515i \(-0.200681\pi\)
−0.106656 + 0.994296i \(0.534014\pi\)
\(402\) 0 0
\(403\) −175.817 304.524i −0.436271 0.755643i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 602.039i 1.47921i
\(408\) 0 0
\(409\) 213.424 + 369.662i 0.521820 + 0.903818i 0.999678 + 0.0253811i \(0.00807994\pi\)
−0.477858 + 0.878437i \(0.658587\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 2.08178 + 24.7515i 0.00504064 + 0.0599309i
\(414\) 0 0
\(415\) −173.559 + 300.613i −0.418214 + 0.724368i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 75.6074i 0.180447i 0.995922 + 0.0902236i \(0.0287582\pi\)
−0.995922 + 0.0902236i \(0.971242\pi\)
\(420\) 0 0
\(421\) −235.309 −0.558928 −0.279464 0.960156i \(-0.590157\pi\)
−0.279464 + 0.960156i \(0.590157\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1087.63 + 627.945i 2.55914 + 1.47752i
\(426\) 0 0
\(427\) −250.491 360.306i −0.586630 0.843808i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 185.155 106.900i 0.429595 0.248027i −0.269579 0.962978i \(-0.586885\pi\)
0.699174 + 0.714951i \(0.253551\pi\)
\(432\) 0 0
\(433\) −194.582 −0.449382 −0.224691 0.974430i \(-0.572137\pi\)
−0.224691 + 0.974430i \(0.572137\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 206.881 119.443i 0.473411 0.273324i
\(438\) 0 0
\(439\) −125.056 + 216.604i −0.284866 + 0.493403i −0.972577 0.232582i \(-0.925283\pi\)
0.687710 + 0.725985i \(0.258616\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −31.1511 17.9851i −0.0703184 0.0405984i 0.464429 0.885611i \(-0.346260\pi\)
−0.534747 + 0.845012i \(0.679593\pi\)
\(444\) 0 0
\(445\) 133.187 + 230.686i 0.299296 + 0.518396i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 488.642i 1.08829i 0.838991 + 0.544145i \(0.183146\pi\)
−0.838991 + 0.544145i \(0.816854\pi\)
\(450\) 0 0
\(451\) −60.7678 105.253i −0.134740 0.233377i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 558.563 388.322i 1.22761 0.853456i
\(456\) 0 0
\(457\) 396.542 686.831i 0.867707 1.50291i 0.00337398 0.999994i \(-0.498926\pi\)
0.864333 0.502919i \(-0.167741\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 562.398i 1.21995i −0.792420 0.609976i \(-0.791179\pi\)
0.792420 0.609976i \(-0.208821\pi\)
\(462\) 0 0
\(463\) 23.3103 0.0503463 0.0251731 0.999683i \(-0.491986\pi\)
0.0251731 + 0.999683i \(0.491986\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 449.648 + 259.604i 0.962844 + 0.555898i 0.897047 0.441935i \(-0.145708\pi\)
0.0657967 + 0.997833i \(0.479041\pi\)
\(468\) 0 0
\(469\) 822.841 69.2071i 1.75446 0.147563i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 670.264 386.977i 1.41705 0.818133i
\(474\) 0 0
\(475\) 1178.86 2.48181
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 60.4640 34.9089i 0.126230 0.0728787i −0.435556 0.900162i \(-0.643448\pi\)
0.561785 + 0.827283i \(0.310115\pi\)
\(480\) 0 0
\(481\) −247.157 + 428.089i −0.513841 + 0.889998i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1036.47 598.407i −2.13705 1.23383i
\(486\) 0 0
\(487\) 51.2075 + 88.6940i 0.105149 + 0.182123i 0.913799 0.406167i \(-0.133135\pi\)
−0.808650 + 0.588290i \(0.799801\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 297.180i 0.605254i 0.953109 + 0.302627i \(0.0978637\pi\)
−0.953109 + 0.302627i \(0.902136\pi\)
\(492\) 0 0
\(493\) 180.144 + 312.019i 0.365405 + 0.632899i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 358.537 + 168.656i 0.721402 + 0.339348i
\(498\) 0 0
\(499\) −39.3143 + 68.0943i −0.0787861 + 0.136461i −0.902726 0.430215i \(-0.858438\pi\)
0.823940 + 0.566677i \(0.191771\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 666.828i 1.32570i 0.748752 + 0.662851i \(0.230654\pi\)
−0.748752 + 0.662851i \(0.769346\pi\)
\(504\) 0 0
\(505\) 1096.38 2.17106
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 335.646 + 193.785i 0.659422 + 0.380717i 0.792057 0.610448i \(-0.209010\pi\)
−0.132635 + 0.991165i \(0.542344\pi\)
\(510\) 0 0
\(511\) 456.281 38.3767i 0.892918 0.0751011i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 1413.83 816.277i 2.74531 1.58500i
\(516\) 0 0
\(517\) −469.970 −0.909032
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −711.180 + 410.600i −1.36503 + 0.788100i −0.990288 0.139029i \(-0.955602\pi\)
−0.374741 + 0.927129i \(0.622268\pi\)
\(522\) 0 0
\(523\) 236.710 409.993i 0.452599 0.783925i −0.545947 0.837820i \(-0.683830\pi\)
0.998547 + 0.0538944i \(0.0171634\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −676.436 390.541i −1.28356 0.741064i
\(528\) 0 0
\(529\) −211.981 367.162i −0.400720 0.694068i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 99.7888i 0.187221i
\(534\) 0 0
\(535\) −453.580 785.624i −0.847814 1.46846i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 625.360 + 232.378i 1.16022 + 0.431129i
\(540\) 0 0
\(541\) −168.645 + 292.102i −0.311729 + 0.539930i −0.978737 0.205121i \(-0.934241\pi\)
0.667008 + 0.745051i \(0.267575\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 39.9919i 0.0733796i
\(546\) 0 0
\(547\) 381.134 0.696772 0.348386 0.937351i \(-0.386730\pi\)
0.348386 + 0.937351i \(0.386730\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 292.882 + 169.095i 0.531546 + 0.306888i
\(552\) 0 0
\(553\) 36.1140 + 51.9464i 0.0653057 + 0.0939356i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 458.708 264.835i 0.823533 0.475467i −0.0281002 0.999605i \(-0.508946\pi\)
0.851633 + 0.524138i \(0.175612\pi\)
\(558\) 0 0
\(559\) −635.468 −1.13679
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 58.7210 33.9026i 0.104300 0.0602177i −0.446943 0.894563i \(-0.647487\pi\)
0.551243 + 0.834345i \(0.314154\pi\)
\(564\) 0 0
\(565\) 179.335 310.618i 0.317407 0.549766i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 235.234 + 135.812i 0.413416 + 0.238686i 0.692256 0.721652i \(-0.256617\pi\)
−0.278841 + 0.960337i \(0.589950\pi\)
\(570\) 0 0
\(571\) −259.979 450.297i −0.455305 0.788611i 0.543401 0.839473i \(-0.317136\pi\)
−0.998706 + 0.0508620i \(0.983803\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 518.347i 0.901473i
\(576\) 0 0
\(577\) −122.138 211.549i −0.211678 0.366637i 0.740562 0.671988i \(-0.234559\pi\)
−0.952240 + 0.305351i \(0.901226\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 252.915 + 118.971i 0.435310 + 0.204770i
\(582\) 0 0
\(583\) −626.336 + 1084.85i −1.07433 + 1.86080i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 444.765i 0.757691i 0.925460 + 0.378845i \(0.123679\pi\)
−0.925460 + 0.378845i \(0.876321\pi\)
\(588\) 0 0
\(589\) −733.174 −1.24478
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 229.701 + 132.618i 0.387354 + 0.223639i 0.681013 0.732271i \(-0.261540\pi\)
−0.293659 + 0.955910i \(0.594873\pi\)
\(594\) 0 0
\(595\) 643.215 1367.38i 1.08103 2.29811i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −279.461 + 161.347i −0.466547 + 0.269361i −0.714793 0.699336i \(-0.753479\pi\)
0.248246 + 0.968697i \(0.420146\pi\)
\(600\) 0 0
\(601\) −269.269 −0.448035 −0.224018 0.974585i \(-0.571917\pi\)
−0.224018 + 0.974585i \(0.571917\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 484.633 279.803i 0.801046 0.462484i
\(606\) 0 0
\(607\) −284.822 + 493.327i −0.469230 + 0.812730i −0.999381 0.0351731i \(-0.988802\pi\)
0.530151 + 0.847903i \(0.322135\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 334.179 + 192.938i 0.546938 + 0.315775i
\(612\) 0 0
\(613\) 263.939 + 457.156i 0.430570 + 0.745769i 0.996922 0.0783940i \(-0.0249792\pi\)
−0.566352 + 0.824163i \(0.691646\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 391.961i 0.635270i −0.948213 0.317635i \(-0.897111\pi\)
0.948213 0.317635i \(-0.102889\pi\)
\(618\) 0 0
\(619\) 329.659 + 570.986i 0.532567 + 0.922432i 0.999277 + 0.0380221i \(0.0121057\pi\)
−0.466710 + 0.884410i \(0.654561\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 176.107 122.433i 0.282676 0.196521i
\(624\) 0 0
\(625\) −334.279 + 578.988i −0.534846 + 0.926380i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1098.02i 1.74565i
\(630\) 0 0
\(631\) 924.173 1.46462 0.732308 0.680973i \(-0.238443\pi\)
0.732308 + 0.680973i \(0.238443\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 42.9273 + 24.7841i 0.0676021 + 0.0390301i
\(636\) 0 0
\(637\) −349.273 421.968i −0.548309 0.662430i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −301.965 + 174.340i −0.471084 + 0.271981i −0.716694 0.697388i \(-0.754345\pi\)
0.245609 + 0.969369i \(0.421012\pi\)
\(642\) 0 0
\(643\) −639.644 −0.994781 −0.497390 0.867527i \(-0.665708\pi\)
−0.497390 + 0.867527i \(0.665708\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −209.912 + 121.193i −0.324439 + 0.187315i −0.653369 0.757039i \(-0.726645\pi\)
0.328931 + 0.944354i \(0.393312\pi\)
\(648\) 0 0
\(649\) 24.1560 41.8394i 0.0372203 0.0644674i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 470.794 + 271.813i 0.720970 + 0.416252i 0.815110 0.579307i \(-0.196677\pi\)
−0.0941394 + 0.995559i \(0.530010\pi\)
\(654\) 0 0
\(655\) 558.173 + 966.784i 0.852173 + 1.47601i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 31.2961i 0.0474902i 0.999718 + 0.0237451i \(0.00755902\pi\)
−0.999718 + 0.0237451i \(0.992441\pi\)
\(660\) 0 0
\(661\) 135.736 + 235.101i 0.205349 + 0.355675i 0.950244 0.311507i \(-0.100834\pi\)
−0.744895 + 0.667182i \(0.767500\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −118.880 1413.43i −0.178768 2.12547i
\(666\) 0 0
\(667\) −74.3515 + 128.781i −0.111472 + 0.193074i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 853.518i 1.27201i
\(672\) 0 0
\(673\) −216.682 −0.321964 −0.160982 0.986957i \(-0.551466\pi\)
−0.160982 + 0.986957i \(0.551466\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −1068.34 616.805i −1.57805 0.911085i −0.995132 0.0985510i \(-0.968579\pi\)
−0.582914 0.812534i \(-0.698087\pi\)
\(678\) 0 0
\(679\) −410.197 + 872.017i −0.604119 + 1.28427i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 401.841 232.003i 0.588347 0.339682i −0.176097 0.984373i \(-0.556347\pi\)
0.764443 + 0.644691i \(0.223014\pi\)
\(684\) 0 0
\(685\) −1597.49 −2.33211
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 890.731 514.264i 1.29279 0.746392i
\(690\) 0 0
\(691\) 229.489 397.487i 0.332112 0.575235i −0.650814 0.759237i \(-0.725572\pi\)
0.982926 + 0.184002i \(0.0589054\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −330.732 190.948i −0.475873 0.274745i
\(696\) 0 0
\(697\) 110.830 + 191.963i 0.159010 + 0.275413i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 530.208i 0.756359i −0.925732 0.378180i \(-0.876550\pi\)
0.925732 0.378180i \(-0.123450\pi\)
\(702\) 0 0
\(703\) 515.335 + 892.586i 0.733051 + 1.26968i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −73.9898 879.706i −0.104653 1.24428i
\(708\) 0 0
\(709\) 492.976 853.860i 0.695312 1.20432i −0.274764 0.961512i \(-0.588600\pi\)
0.970075 0.242804i \(-0.0780671\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 322.378i 0.452143i
\(714\) 0 0
\(715\) −1323.16 −1.85058
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 335.054 + 193.443i 0.466000 + 0.269045i 0.714564 0.699570i \(-0.246625\pi\)
−0.248564 + 0.968615i \(0.579959\pi\)
\(720\) 0 0
\(721\) −750.369 1079.33i −1.04073 1.49699i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −635.513 + 366.914i −0.876570 + 0.506088i
\(726\) 0 0
\(727\) 271.922 0.374033 0.187017 0.982357i \(-0.440118\pi\)
0.187017 + 0.982357i \(0.440118\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −1222.45 + 705.779i −1.67229 + 0.965498i
\(732\) 0 0
\(733\) 376.261 651.703i 0.513317 0.889091i −0.486564 0.873645i \(-0.661750\pi\)
0.999881 0.0154457i \(-0.00491671\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1390.91 803.044i −1.88726 1.08961i
\(738\) 0 0
\(739\) 638.228 + 1105.44i 0.863638 + 1.49586i 0.868394 + 0.495875i \(0.165153\pi\)
−0.00475611 + 0.999989i \(0.501514\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 135.770i 0.182733i 0.995817 + 0.0913664i \(0.0291234\pi\)
−0.995817 + 0.0913664i \(0.970877\pi\)
\(744\) 0 0
\(745\) −762.160 1320.10i −1.02303 1.77195i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −599.751 + 416.957i −0.800735 + 0.556685i
\(750\) 0 0
\(751\) −410.744 + 711.430i −0.546930 + 0.947310i 0.451553 + 0.892244i \(0.350870\pi\)
−0.998483 + 0.0550655i \(0.982463\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 151.204i 0.200270i
\(756\) 0 0
\(757\) 1299.84 1.71710 0.858550 0.512730i \(-0.171366\pi\)
0.858550 + 0.512730i \(0.171366\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 369.670 + 213.429i 0.485769 + 0.280459i 0.722817 0.691039i \(-0.242847\pi\)
−0.237049 + 0.971498i \(0.576180\pi\)
\(762\) 0 0
\(763\) 32.0882 2.69886i 0.0420554 0.00353717i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −34.3529 + 19.8337i −0.0447887 + 0.0258588i
\(768\) 0 0
\(769\) −1130.15 −1.46963 −0.734817 0.678265i \(-0.762732\pi\)
−0.734817 + 0.678265i \(0.762732\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 642.713 371.070i 0.831452 0.480039i −0.0228973 0.999738i \(-0.507289\pi\)
0.854350 + 0.519699i \(0.173956\pi\)
\(774\) 0 0
\(775\) 795.443 1377.75i 1.02638 1.77774i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 180.189 + 104.032i 0.231308 + 0.133546i
\(780\) 0 0
\(781\) −385.330 667.412i −0.493381 0.854561i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1268.34i 1.61572i
\(786\) 0 0
\(787\) 365.724 + 633.453i 0.464707 + 0.804896i 0.999188 0.0402843i \(-0.0128264\pi\)
−0.534481 + 0.845180i \(0.679493\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −261.333 122.931i −0.330383 0.155412i
\(792\) 0 0
\(793\) 350.398 606.906i 0.441863 0.765330i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 337.677i 0.423685i −0.977304 0.211842i \(-0.932054\pi\)
0.977304 0.211842i \(-0.0679464\pi\)
\(798\) 0 0
\(799\) 857.143 1.07277
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −771.288 445.303i −0.960508 0.554550i
\(804\) 0 0
\(805\) 621.489 52.2719i 0.772036 0.0649341i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 419.756 242.346i 0.518858 0.299563i −0.217609 0.976036i \(-0.569826\pi\)
0.736467 + 0.676473i \(0.236493\pi\)
\(810\) 0 0
\(811\) −312.764 −0.385652 −0.192826 0.981233i \(-0.561765\pi\)
−0.192826 + 0.981233i \(0.561765\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −2023.35 + 1168.18i −2.48263 + 1.43335i
\(816\) 0 0
\(817\) −662.491 + 1147.47i −0.810882 + 1.40449i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −1002.76 578.942i −1.22138 0.705167i −0.256171 0.966631i \(-0.582461\pi\)
−0.965213 + 0.261465i \(0.915794\pi\)
\(822\) 0 0
\(823\) −181.483 314.337i −0.220514 0.381941i 0.734450 0.678662i \(-0.237440\pi\)
−0.954964 + 0.296722i \(0.904107\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1185.32i 1.43327i −0.697448 0.716635i \(-0.745681\pi\)
0.697448 0.716635i \(-0.254319\pi\)
\(828\) 0 0
\(829\) 458.115 + 793.478i 0.552611 + 0.957151i 0.998085 + 0.0618557i \(0.0197019\pi\)
−0.445474 + 0.895295i \(0.646965\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −1140.55 423.818i −1.36921 0.508785i
\(834\) 0 0
\(835\) 790.167 1368.61i 0.946308 1.63905i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 854.517i 1.01849i 0.860620 + 0.509247i \(0.170076\pi\)
−0.860620 + 0.509247i \(0.829924\pi\)
\(840\) 0 0
\(841\) 630.480 0.749679
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −331.506 191.395i −0.392315 0.226503i
\(846\) 0 0
\(847\) −257.211 369.972i −0.303673 0.436803i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −392.472 + 226.594i −0.461189 + 0.266267i
\(852\) 0 0
\(853\) 1245.78 1.46047 0.730233 0.683198i \(-0.239411\pi\)
0.730233 + 0.683198i \(0.239411\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 426.637 246.319i 0.497826 0.287420i −0.229989 0.973193i \(-0.573869\pi\)
0.727815 + 0.685773i \(0.240536\pi\)
\(858\) 0 0
\(859\) 617.200 1069.02i 0.718510 1.24450i −0.243081 0.970006i \(-0.578158\pi\)
0.961590 0.274489i \(-0.0885087\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 913.600 + 527.467i 1.05863 + 0.611202i 0.925054 0.379836i \(-0.124020\pi\)
0.133579 + 0.991038i \(0.457353\pi\)
\(864\) 0 0
\(865\) 1289.34 + 2233.19i 1.49056 + 2.58173i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 123.054i 0.141604i
\(870\) 0 0
\(871\) 659.353 + 1142.03i 0.757007 + 1.31117i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1408.39 + 662.506i 1.60959 + 0.757150i
\(876\) 0 0
\(877\) −461.795 + 799.852i −0.526562 + 0.912032i 0.472959 + 0.881084i \(0.343186\pi\)
−0.999521 + 0.0309473i \(0.990148\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 128.732i 0.146121i −0.997328 0.0730603i \(-0.976723\pi\)
0.997328 0.0730603i \(-0.0232766\pi\)
\(882\) 0 0
\(883\) 153.879 0.174268 0.0871340 0.996197i \(-0.472229\pi\)
0.0871340 + 0.996197i \(0.472229\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 345.601 + 199.533i 0.389629 + 0.224953i 0.681999 0.731353i \(-0.261111\pi\)
−0.292370 + 0.956305i \(0.594444\pi\)
\(888\) 0 0
\(889\) 16.9891 36.1162i 0.0191103 0.0406256i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 696.779 402.286i 0.780268 0.450488i
\(894\) 0 0
\(895\) −378.273 −0.422652
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 395.247 228.196i 0.439652 0.253833i
\(900\) 0 0
\(901\) 1142.33 1978.57i 1.26785 2.19597i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −2205.75 1273.49i −2.43729 1.40717i
\(906\) 0 0
\(907\) 20.1149 + 34.8400i 0.0221774 + 0.0384123i 0.876901 0.480671i \(-0.159607\pi\)
−0.854724 + 0.519083i \(0.826273\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1702.97i 1.86934i 0.355511 + 0.934672i \(0.384307\pi\)
−0.355511 + 0.934672i \(0.615693\pi\)
\(912\) 0 0
\(913\) −271.816 470.798i −0.297717 0.515661i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 738.050 513.105i 0.804853 0.559547i
\(918\) 0 0
\(919\) −145.450 + 251.927i −0.158270 + 0.274131i −0.934245 0.356632i \(-0.883925\pi\)
0.775975 + 0.630764i \(0.217258\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 632.764i 0.685552i
\(924\) 0 0
\(925\) −2236.41 −2.41774
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −1490.97 860.811i −1.60492 0.926600i −0.990483 0.137632i \(-0.956051\pi\)
−0.614434 0.788968i \(-0.710616\pi\)
\(930\) 0 0
\(931\) −1126.07 + 190.772i −1.20953 + 0.204911i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −2545.36 + 1469.56i −2.72231 + 1.57172i
\(936\) 0 0
\(937\) 295.592 0.315466 0.157733 0.987482i \(-0.449581\pi\)
0.157733 + 0.987482i \(0.449581\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −637.151 + 367.860i −0.677100 + 0.390924i −0.798762 0.601648i \(-0.794511\pi\)
0.121661 + 0.992572i \(0.461178\pi\)
\(942\) 0 0
\(943\) −45.7431 + 79.2294i −0.0485081 + 0.0840185i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −197.842 114.224i −0.208915 0.120617i 0.391892 0.920011i \(-0.371821\pi\)
−0.600807 + 0.799394i \(0.705154\pi\)
\(948\) 0 0
\(949\) 365.624 + 633.279i 0.385273 + 0.667312i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1260.44i 1.32260i 0.750123 + 0.661299i \(0.229994\pi\)
−0.750123 + 0.661299i \(0.770006\pi\)
\(954\) 0 0
\(955\) −1209.92 2095.65i −1.26693 2.19439i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 107.807 + 1281.78i 0.112416 + 1.33658i
\(960\) 0 0
\(961\) −14.2132 + 24.6180i −0.0147900 + 0.0256170i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1793.39i 1.85844i
\(966\) 0 0
\(967\) −511.535 −0.528992 −0.264496 0.964387i \(-0.585206\pi\)
−0.264496 + 0.964387i \(0.585206\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −938.990 542.126i −0.967034 0.558317i −0.0687030 0.997637i \(-0.521886\pi\)
−0.898331 + 0.439320i \(0.855219\pi\)
\(972\) 0 0
\(973\) −130.891 + 278.255i −0.134524 + 0.285977i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −153.444 + 88.5907i −0.157056 + 0.0906763i −0.576468 0.817120i \(-0.695570\pi\)
0.419412 + 0.907796i \(0.362236\pi\)
\(978\) 0 0
\(979\) −417.175 −0.426124
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −1293.47 + 746.784i −1.31584 + 0.759699i −0.983056 0.183305i \(-0.941320\pi\)
−0.332781 + 0.943004i \(0.607987\pi\)
\(984\) 0 0
\(985\) −1506.11 + 2608.66i −1.52905 + 2.64838i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −504.543 291.298i −0.510155 0.294538i
\(990\) 0 0
\(991\) −182.943 316.866i −0.184604 0.319744i 0.758839 0.651278i \(-0.225767\pi\)
−0.943443 + 0.331535i \(0.892434\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 3058.40i 3.07376i
\(996\) 0 0
\(997\) −271.714 470.622i −0.272531 0.472038i 0.696978 0.717092i \(-0.254527\pi\)
−0.969509 + 0.245054i \(0.921194\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 756.3.bk.g.485.8 yes 16
3.2 odd 2 inner 756.3.bk.g.485.1 yes 16
7.4 even 3 inner 756.3.bk.g.53.1 16
21.11 odd 6 inner 756.3.bk.g.53.8 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
756.3.bk.g.53.1 16 7.4 even 3 inner
756.3.bk.g.53.8 yes 16 21.11 odd 6 inner
756.3.bk.g.485.1 yes 16 3.2 odd 2 inner
756.3.bk.g.485.8 yes 16 1.1 even 1 trivial