Properties

Label 756.3.bk.g.485.7
Level $756$
Weight $3$
Character 756.485
Analytic conductor $20.600$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [756,3,Mod(53,756)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 4])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("756.53"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 756.bk (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,24,0,0,0,0,0,88] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.5995079856\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 46 x^{14} + 1437 x^{12} - 24668 x^{10} + 309582 x^{8} - 2188585 x^{6} + 10478650 x^{4} + \cdots + 194481 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 3^{11} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 485.7
Root \(3.13096 - 1.80766i\) of defining polynomial
Character \(\chi\) \(=\) 756.485
Dual form 756.3.bk.g.53.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(5.22199 + 3.01492i) q^{5} +(2.27239 + 6.62090i) q^{7} +(8.17257 - 4.71844i) q^{11} +13.3012 q^{13} +(-9.36705 + 5.40807i) q^{17} +(2.20352 - 3.81661i) q^{19} +(17.2388 + 9.95281i) q^{23} +(5.67943 + 9.83706i) q^{25} +10.6940i q^{29} +(-17.4966 - 30.3049i) q^{31} +(-8.09507 + 41.4253i) q^{35} +(-0.378236 + 0.655125i) q^{37} +32.4157i q^{41} -44.3106 q^{43} +(70.3329 + 40.6067i) q^{47} +(-38.6725 + 30.0905i) q^{49} +(-17.0955 + 9.87011i) q^{53} +56.9027 q^{55} +(38.9892 - 22.5104i) q^{59} +(-20.5078 + 35.5205i) q^{61} +(69.4586 + 40.1020i) q^{65} +(-45.7845 - 79.3010i) q^{67} +11.2890i q^{71} +(10.2690 + 17.7864i) q^{73} +(49.8115 + 43.3876i) q^{77} +(57.5907 - 99.7501i) q^{79} +35.0385i q^{83} -65.2195 q^{85} +(45.2404 + 26.1196i) q^{89} +(30.2254 + 88.0658i) q^{91} +(23.0135 - 13.2869i) q^{95} +182.132 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 24 q^{7} + 88 q^{13} + 14 q^{19} + 36 q^{25} - 68 q^{31} - 76 q^{37} - 292 q^{43} - 20 q^{49} - 272 q^{55} - 110 q^{61} - 72 q^{67} + 60 q^{73} + 154 q^{79} + 700 q^{85} - 74 q^{91} + 264 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/756\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\) \(379\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 5.22199 + 3.01492i 1.04440 + 0.602983i 0.921076 0.389384i \(-0.127312\pi\)
0.123322 + 0.992367i \(0.460645\pi\)
\(6\) 0 0
\(7\) 2.27239 + 6.62090i 0.324627 + 0.945842i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 8.17257 4.71844i 0.742961 0.428949i −0.0801839 0.996780i \(-0.525551\pi\)
0.823145 + 0.567831i \(0.192217\pi\)
\(12\) 0 0
\(13\) 13.3012 1.02317 0.511584 0.859233i \(-0.329059\pi\)
0.511584 + 0.859233i \(0.329059\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −9.36705 + 5.40807i −0.551003 + 0.318122i −0.749526 0.661975i \(-0.769719\pi\)
0.198524 + 0.980096i \(0.436385\pi\)
\(18\) 0 0
\(19\) 2.20352 3.81661i 0.115975 0.200874i −0.802194 0.597063i \(-0.796334\pi\)
0.918169 + 0.396189i \(0.129667\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 17.2388 + 9.95281i 0.749512 + 0.432731i 0.825518 0.564376i \(-0.190883\pi\)
−0.0760055 + 0.997107i \(0.524217\pi\)
\(24\) 0 0
\(25\) 5.67943 + 9.83706i 0.227177 + 0.393482i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 10.6940i 0.368758i 0.982855 + 0.184379i \(0.0590274\pi\)
−0.982855 + 0.184379i \(0.940973\pi\)
\(30\) 0 0
\(31\) −17.4966 30.3049i −0.564405 0.977578i −0.997105 0.0760402i \(-0.975772\pi\)
0.432700 0.901538i \(-0.357561\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −8.09507 + 41.4253i −0.231288 + 1.18358i
\(36\) 0 0
\(37\) −0.378236 + 0.655125i −0.0102226 + 0.0177061i −0.871091 0.491121i \(-0.836587\pi\)
0.860869 + 0.508827i \(0.169921\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 32.4157i 0.790628i 0.918546 + 0.395314i \(0.129364\pi\)
−0.918546 + 0.395314i \(0.870636\pi\)
\(42\) 0 0
\(43\) −44.3106 −1.03048 −0.515240 0.857046i \(-0.672297\pi\)
−0.515240 + 0.857046i \(0.672297\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 70.3329 + 40.6067i 1.49644 + 0.863972i 0.999992 0.00409145i \(-0.00130235\pi\)
0.496453 + 0.868064i \(0.334636\pi\)
\(48\) 0 0
\(49\) −38.6725 + 30.0905i −0.789235 + 0.614091i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −17.0955 + 9.87011i −0.322557 + 0.186229i −0.652532 0.757761i \(-0.726293\pi\)
0.329975 + 0.943990i \(0.392960\pi\)
\(54\) 0 0
\(55\) 56.9027 1.03460
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 38.9892 22.5104i 0.660834 0.381533i −0.131761 0.991282i \(-0.542063\pi\)
0.792595 + 0.609749i \(0.208730\pi\)
\(60\) 0 0
\(61\) −20.5078 + 35.5205i −0.336193 + 0.582303i −0.983713 0.179745i \(-0.942473\pi\)
0.647520 + 0.762048i \(0.275806\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 69.4586 + 40.1020i 1.06859 + 0.616953i
\(66\) 0 0
\(67\) −45.7845 79.3010i −0.683350 1.18360i −0.973952 0.226753i \(-0.927189\pi\)
0.290602 0.956844i \(-0.406144\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 11.2890i 0.159000i 0.996835 + 0.0794999i \(0.0253323\pi\)
−0.996835 + 0.0794999i \(0.974668\pi\)
\(72\) 0 0
\(73\) 10.2690 + 17.7864i 0.140671 + 0.243649i 0.927749 0.373204i \(-0.121741\pi\)
−0.787079 + 0.616853i \(0.788407\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 49.8115 + 43.3876i 0.646903 + 0.563476i
\(78\) 0 0
\(79\) 57.5907 99.7501i 0.728997 1.26266i −0.228311 0.973588i \(-0.573320\pi\)
0.957308 0.289071i \(-0.0933464\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 35.0385i 0.422151i 0.977470 + 0.211075i \(0.0676966\pi\)
−0.977470 + 0.211075i \(0.932303\pi\)
\(84\) 0 0
\(85\) −65.2195 −0.767288
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 45.2404 + 26.1196i 0.508319 + 0.293478i 0.732143 0.681151i \(-0.238520\pi\)
−0.223823 + 0.974630i \(0.571854\pi\)
\(90\) 0 0
\(91\) 30.2254 + 88.0658i 0.332148 + 0.967756i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 23.0135 13.2869i 0.242247 0.139862i
\(96\) 0 0
\(97\) 182.132 1.87765 0.938827 0.344390i \(-0.111914\pi\)
0.938827 + 0.344390i \(0.111914\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −6.60387 + 3.81275i −0.0653849 + 0.0377500i −0.532336 0.846533i \(-0.678686\pi\)
0.466951 + 0.884283i \(0.345352\pi\)
\(102\) 0 0
\(103\) −33.7607 + 58.4752i −0.327773 + 0.567720i −0.982070 0.188518i \(-0.939632\pi\)
0.654296 + 0.756238i \(0.272965\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 127.399 + 73.5538i 1.19064 + 0.687419i 0.958453 0.285251i \(-0.0920770\pi\)
0.232192 + 0.972670i \(0.425410\pi\)
\(108\) 0 0
\(109\) −9.72448 16.8433i −0.0892154 0.154526i 0.817964 0.575269i \(-0.195103\pi\)
−0.907180 + 0.420743i \(0.861769\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 208.368i 1.84396i 0.387236 + 0.921981i \(0.373430\pi\)
−0.387236 + 0.921981i \(0.626570\pi\)
\(114\) 0 0
\(115\) 60.0138 + 103.947i 0.521859 + 0.903886i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −57.0918 49.7290i −0.479763 0.417891i
\(120\) 0 0
\(121\) −15.9727 + 27.6656i −0.132006 + 0.228641i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 82.2538i 0.658030i
\(126\) 0 0
\(127\) 156.607 1.23312 0.616562 0.787307i \(-0.288525\pi\)
0.616562 + 0.787307i \(0.288525\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −217.234 125.420i −1.65827 0.957404i −0.973512 0.228636i \(-0.926574\pi\)
−0.684760 0.728768i \(-0.740093\pi\)
\(132\) 0 0
\(133\) 30.2766 + 5.91647i 0.227644 + 0.0444847i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −231.846 + 133.857i −1.69231 + 0.977055i −0.739661 + 0.672979i \(0.765014\pi\)
−0.952648 + 0.304076i \(0.901652\pi\)
\(138\) 0 0
\(139\) −204.740 −1.47295 −0.736475 0.676465i \(-0.763511\pi\)
−0.736475 + 0.676465i \(0.763511\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 108.705 62.7608i 0.760174 0.438887i
\(144\) 0 0
\(145\) −32.2414 + 55.8438i −0.222355 + 0.385130i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 93.1095 + 53.7568i 0.624896 + 0.360784i 0.778773 0.627306i \(-0.215843\pi\)
−0.153877 + 0.988090i \(0.549176\pi\)
\(150\) 0 0
\(151\) −63.4771 109.946i −0.420378 0.728116i 0.575598 0.817733i \(-0.304769\pi\)
−0.995976 + 0.0896164i \(0.971436\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 211.003i 1.36131i
\(156\) 0 0
\(157\) −148.868 257.846i −0.948201 1.64233i −0.749211 0.662332i \(-0.769567\pi\)
−0.198991 0.980001i \(-0.563766\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −26.7234 + 136.753i −0.165984 + 0.849396i
\(162\) 0 0
\(163\) 17.4882 30.2905i 0.107290 0.185831i −0.807382 0.590030i \(-0.799116\pi\)
0.914671 + 0.404198i \(0.132449\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 246.347i 1.47513i −0.675276 0.737565i \(-0.735975\pi\)
0.675276 0.737565i \(-0.264025\pi\)
\(168\) 0 0
\(169\) 7.92170 0.0468739
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −10.3331 5.96584i −0.0597291 0.0344846i 0.469838 0.882753i \(-0.344312\pi\)
−0.529567 + 0.848268i \(0.677646\pi\)
\(174\) 0 0
\(175\) −52.2243 + 59.9565i −0.298424 + 0.342609i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 118.482 68.4054i 0.661909 0.382153i −0.131095 0.991370i \(-0.541849\pi\)
0.793004 + 0.609217i \(0.208516\pi\)
\(180\) 0 0
\(181\) 105.971 0.585474 0.292737 0.956193i \(-0.405434\pi\)
0.292737 + 0.956193i \(0.405434\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −3.95029 + 2.28070i −0.0213529 + 0.0123281i
\(186\) 0 0
\(187\) −51.0352 + 88.3956i −0.272916 + 0.472704i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −25.0424 14.4582i −0.131112 0.0756974i 0.433010 0.901389i \(-0.357452\pi\)
−0.564121 + 0.825692i \(0.690785\pi\)
\(192\) 0 0
\(193\) −156.164 270.484i −0.809140 1.40147i −0.913460 0.406928i \(-0.866600\pi\)
0.104320 0.994544i \(-0.466733\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 114.463i 0.581029i −0.956871 0.290514i \(-0.906174\pi\)
0.956871 0.290514i \(-0.0938264\pi\)
\(198\) 0 0
\(199\) 73.5560 + 127.403i 0.369628 + 0.640215i 0.989507 0.144482i \(-0.0461517\pi\)
−0.619879 + 0.784697i \(0.712818\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −70.8037 + 24.3009i −0.348787 + 0.119709i
\(204\) 0 0
\(205\) −97.7307 + 169.275i −0.476735 + 0.825729i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 41.5887i 0.198989i
\(210\) 0 0
\(211\) −252.521 −1.19678 −0.598390 0.801205i \(-0.704193\pi\)
−0.598390 + 0.801205i \(0.704193\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −231.389 133.593i −1.07623 0.621362i
\(216\) 0 0
\(217\) 160.887 184.707i 0.741414 0.851186i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −124.593 + 71.9337i −0.563769 + 0.325492i
\(222\) 0 0
\(223\) 44.0347 0.197465 0.0987326 0.995114i \(-0.468521\pi\)
0.0987326 + 0.995114i \(0.468521\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 307.463 177.514i 1.35446 0.781998i 0.365590 0.930776i \(-0.380867\pi\)
0.988871 + 0.148778i \(0.0475339\pi\)
\(228\) 0 0
\(229\) 27.9688 48.4434i 0.122134 0.211543i −0.798475 0.602028i \(-0.794359\pi\)
0.920609 + 0.390485i \(0.127693\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −87.2545 50.3764i −0.374483 0.216208i 0.300932 0.953645i \(-0.402702\pi\)
−0.675415 + 0.737438i \(0.736035\pi\)
\(234\) 0 0
\(235\) 244.852 + 424.095i 1.04192 + 1.80466i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 254.342i 1.06419i −0.846684 0.532096i \(-0.821404\pi\)
0.846684 0.532096i \(-0.178596\pi\)
\(240\) 0 0
\(241\) 8.91574 + 15.4425i 0.0369948 + 0.0640768i 0.883930 0.467619i \(-0.154888\pi\)
−0.846935 + 0.531696i \(0.821555\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −292.668 + 40.5376i −1.19456 + 0.165460i
\(246\) 0 0
\(247\) 29.3095 50.7655i 0.118662 0.205528i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 444.838i 1.77226i −0.463436 0.886130i \(-0.653384\pi\)
0.463436 0.886130i \(-0.346616\pi\)
\(252\) 0 0
\(253\) 187.847 0.742478
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −204.837 118.263i −0.797030 0.460166i 0.0454014 0.998969i \(-0.485543\pi\)
−0.842432 + 0.538803i \(0.818877\pi\)
\(258\) 0 0
\(259\) −5.19701 1.01557i −0.0200657 0.00392111i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −364.086 + 210.205i −1.38436 + 0.799258i −0.992672 0.120841i \(-0.961441\pi\)
−0.391684 + 0.920100i \(0.628107\pi\)
\(264\) 0 0
\(265\) −119.030 −0.449171
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −371.562 + 214.521i −1.38127 + 0.797477i −0.992310 0.123777i \(-0.960499\pi\)
−0.388961 + 0.921254i \(0.627166\pi\)
\(270\) 0 0
\(271\) 205.651 356.198i 0.758859 1.31438i −0.184574 0.982819i \(-0.559091\pi\)
0.943433 0.331563i \(-0.107576\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 92.8311 + 53.5960i 0.337567 + 0.194895i
\(276\) 0 0
\(277\) 207.078 + 358.669i 0.747574 + 1.29484i 0.948983 + 0.315328i \(0.102115\pi\)
−0.201409 + 0.979507i \(0.564552\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 441.381i 1.57075i −0.619021 0.785375i \(-0.712470\pi\)
0.619021 0.785375i \(-0.287530\pi\)
\(282\) 0 0
\(283\) 70.2240 + 121.632i 0.248141 + 0.429793i 0.963010 0.269465i \(-0.0868469\pi\)
−0.714869 + 0.699259i \(0.753514\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −214.621 + 73.6611i −0.747809 + 0.256659i
\(288\) 0 0
\(289\) −86.0056 + 148.966i −0.297597 + 0.515454i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 469.357i 1.60190i −0.598730 0.800951i \(-0.704328\pi\)
0.598730 0.800951i \(-0.295672\pi\)
\(294\) 0 0
\(295\) 271.468 0.920231
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 229.296 + 132.384i 0.766877 + 0.442757i
\(300\) 0 0
\(301\) −100.691 293.376i −0.334521 0.974671i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −214.183 + 123.658i −0.702238 + 0.405437i
\(306\) 0 0
\(307\) −356.418 −1.16097 −0.580485 0.814271i \(-0.697137\pi\)
−0.580485 + 0.814271i \(0.697137\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −10.8828 + 6.28317i −0.0349928 + 0.0202031i −0.517394 0.855747i \(-0.673098\pi\)
0.482402 + 0.875950i \(0.339765\pi\)
\(312\) 0 0
\(313\) 79.4386 137.592i 0.253797 0.439590i −0.710771 0.703424i \(-0.751654\pi\)
0.964568 + 0.263834i \(0.0849870\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 495.809 + 286.255i 1.56407 + 0.903014i 0.996839 + 0.0794531i \(0.0253174\pi\)
0.567228 + 0.823561i \(0.308016\pi\)
\(318\) 0 0
\(319\) 50.4589 + 87.3973i 0.158178 + 0.273973i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 47.6672i 0.147576i
\(324\) 0 0
\(325\) 75.5432 + 130.845i 0.232440 + 0.402599i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −109.029 + 557.941i −0.331396 + 1.69587i
\(330\) 0 0
\(331\) 177.627 307.658i 0.536636 0.929481i −0.462446 0.886648i \(-0.653028\pi\)
0.999082 0.0428339i \(-0.0136386\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 552.145i 1.64819i
\(336\) 0 0
\(337\) −351.090 −1.04181 −0.520905 0.853615i \(-0.674405\pi\)
−0.520905 + 0.853615i \(0.674405\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −285.984 165.113i −0.838662 0.484202i
\(342\) 0 0
\(343\) −287.105 187.670i −0.837040 0.547142i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 431.379 249.057i 1.24317 0.717743i 0.273430 0.961892i \(-0.411842\pi\)
0.969738 + 0.244149i \(0.0785086\pi\)
\(348\) 0 0
\(349\) −170.749 −0.489252 −0.244626 0.969617i \(-0.578665\pi\)
−0.244626 + 0.969617i \(0.578665\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 245.387 141.674i 0.695148 0.401344i −0.110390 0.993888i \(-0.535210\pi\)
0.805538 + 0.592544i \(0.201877\pi\)
\(354\) 0 0
\(355\) −34.0353 + 58.9509i −0.0958742 + 0.166059i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 127.691 + 73.7227i 0.355686 + 0.205356i 0.667187 0.744890i \(-0.267498\pi\)
−0.311501 + 0.950246i \(0.600832\pi\)
\(360\) 0 0
\(361\) 170.789 + 295.815i 0.473100 + 0.819433i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 123.840i 0.339289i
\(366\) 0 0
\(367\) −142.805 247.345i −0.389113 0.673964i 0.603217 0.797577i \(-0.293885\pi\)
−0.992331 + 0.123613i \(0.960552\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −104.197 90.7590i −0.280853 0.244634i
\(372\) 0 0
\(373\) −124.758 + 216.087i −0.334472 + 0.579322i −0.983383 0.181542i \(-0.941891\pi\)
0.648911 + 0.760864i \(0.275225\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 142.243i 0.377301i
\(378\) 0 0
\(379\) 50.2895 0.132690 0.0663450 0.997797i \(-0.478866\pi\)
0.0663450 + 0.997797i \(0.478866\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −89.3333 51.5766i −0.233246 0.134665i 0.378822 0.925469i \(-0.376329\pi\)
−0.612069 + 0.790805i \(0.709662\pi\)
\(384\) 0 0
\(385\) 129.305 + 376.747i 0.335857 + 0.978564i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −514.322 + 296.944i −1.32217 + 0.763353i −0.984074 0.177761i \(-0.943115\pi\)
−0.338092 + 0.941113i \(0.609781\pi\)
\(390\) 0 0
\(391\) −215.302 −0.550644
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 601.476 347.262i 1.52272 0.879145i
\(396\) 0 0
\(397\) 132.372 229.275i 0.333431 0.577519i −0.649752 0.760147i \(-0.725127\pi\)
0.983182 + 0.182628i \(0.0584604\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 370.025 + 213.634i 0.922755 + 0.532753i 0.884513 0.466516i \(-0.154491\pi\)
0.0382419 + 0.999269i \(0.487824\pi\)
\(402\) 0 0
\(403\) −232.725 403.092i −0.577482 1.00023i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 7.13874i 0.0175399i
\(408\) 0 0
\(409\) −89.8497 155.624i −0.219681 0.380499i 0.735029 0.678035i \(-0.237168\pi\)
−0.954711 + 0.297536i \(0.903835\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 237.638 + 206.991i 0.575394 + 0.501189i
\(414\) 0 0
\(415\) −105.638 + 182.971i −0.254550 + 0.440893i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 171.206i 0.408606i −0.978908 0.204303i \(-0.934507\pi\)
0.978908 0.204303i \(-0.0654928\pi\)
\(420\) 0 0
\(421\) 33.6353 0.0798938 0.0399469 0.999202i \(-0.487281\pi\)
0.0399469 + 0.999202i \(0.487281\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −106.399 61.4295i −0.250350 0.144540i
\(426\) 0 0
\(427\) −281.779 55.0635i −0.659904 0.128954i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −364.783 + 210.607i −0.846363 + 0.488648i −0.859422 0.511267i \(-0.829176\pi\)
0.0130590 + 0.999915i \(0.495843\pi\)
\(432\) 0 0
\(433\) −390.359 −0.901521 −0.450760 0.892645i \(-0.648847\pi\)
−0.450760 + 0.892645i \(0.648847\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 75.9720 43.8625i 0.173849 0.100372i
\(438\) 0 0
\(439\) 196.067 339.599i 0.446623 0.773573i −0.551541 0.834148i \(-0.685960\pi\)
0.998164 + 0.0605748i \(0.0192934\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 505.888 + 292.074i 1.14196 + 0.659310i 0.946915 0.321485i \(-0.104182\pi\)
0.195044 + 0.980795i \(0.437515\pi\)
\(444\) 0 0
\(445\) 157.497 + 272.792i 0.353925 + 0.613016i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 333.245i 0.742193i 0.928594 + 0.371097i \(0.121018\pi\)
−0.928594 + 0.371097i \(0.878982\pi\)
\(450\) 0 0
\(451\) 152.952 + 264.920i 0.339139 + 0.587406i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −107.674 + 551.006i −0.236646 + 1.21100i
\(456\) 0 0
\(457\) −192.583 + 333.564i −0.421407 + 0.729899i −0.996077 0.0884861i \(-0.971797\pi\)
0.574670 + 0.818385i \(0.305130\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 603.468i 1.30904i 0.756044 + 0.654521i \(0.227130\pi\)
−0.756044 + 0.654521i \(0.772870\pi\)
\(462\) 0 0
\(463\) 578.006 1.24839 0.624197 0.781267i \(-0.285426\pi\)
0.624197 + 0.781267i \(0.285426\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −4.88677 2.82138i −0.0104642 0.00604150i 0.494759 0.869030i \(-0.335256\pi\)
−0.505223 + 0.862989i \(0.668590\pi\)
\(468\) 0 0
\(469\) 421.004 483.337i 0.897663 1.03057i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −362.132 + 209.077i −0.765606 + 0.442023i
\(474\) 0 0
\(475\) 50.0589 0.105387
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 3.38949 1.95692i 0.00707618 0.00408544i −0.496458 0.868061i \(-0.665366\pi\)
0.503534 + 0.863975i \(0.332033\pi\)
\(480\) 0 0
\(481\) −5.03099 + 8.71394i −0.0104594 + 0.0181163i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 951.093 + 549.114i 1.96102 + 1.13219i
\(486\) 0 0
\(487\) 48.7855 + 84.4989i 0.100175 + 0.173509i 0.911757 0.410730i \(-0.134726\pi\)
−0.811581 + 0.584239i \(0.801393\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 250.072i 0.509313i 0.967032 + 0.254656i \(0.0819623\pi\)
−0.967032 + 0.254656i \(0.918038\pi\)
\(492\) 0 0
\(493\) −57.8338 100.171i −0.117310 0.203187i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −74.7432 + 25.6529i −0.150389 + 0.0516156i
\(498\) 0 0
\(499\) 210.025 363.774i 0.420891 0.729005i −0.575135 0.818058i \(-0.695051\pi\)
0.996027 + 0.0890528i \(0.0283840\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 490.340i 0.974830i −0.873170 0.487415i \(-0.837940\pi\)
0.873170 0.487415i \(-0.162060\pi\)
\(504\) 0 0
\(505\) −45.9804 −0.0910504
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 12.2098 + 7.04932i 0.0239878 + 0.0138494i 0.511946 0.859018i \(-0.328925\pi\)
−0.487958 + 0.872867i \(0.662258\pi\)
\(510\) 0 0
\(511\) −94.4267 + 108.407i −0.184788 + 0.212147i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −352.595 + 203.571i −0.684651 + 0.395284i
\(516\) 0 0
\(517\) 766.401 1.48240
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 507.374 292.933i 0.973847 0.562251i 0.0734401 0.997300i \(-0.476602\pi\)
0.900407 + 0.435049i \(0.143269\pi\)
\(522\) 0 0
\(523\) −83.6465 + 144.880i −0.159936 + 0.277017i −0.934845 0.355055i \(-0.884462\pi\)
0.774909 + 0.632072i \(0.217795\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 327.782 + 189.245i 0.621978 + 0.359099i
\(528\) 0 0
\(529\) −66.3830 114.979i −0.125488 0.217351i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 431.168i 0.808945i
\(534\) 0 0
\(535\) 443.517 + 768.194i 0.829004 + 1.43588i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −174.074 + 428.390i −0.322957 + 0.794787i
\(540\) 0 0
\(541\) −32.7910 + 56.7957i −0.0606119 + 0.104983i −0.894739 0.446589i \(-0.852639\pi\)
0.834127 + 0.551572i \(0.185972\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 117.274i 0.215182i
\(546\) 0 0
\(547\) 7.07747 0.0129387 0.00646935 0.999979i \(-0.497941\pi\)
0.00646935 + 0.999979i \(0.497941\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 40.8147 + 23.5644i 0.0740739 + 0.0427666i
\(552\) 0 0
\(553\) 791.303 + 154.632i 1.43093 + 0.279623i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 381.297 220.142i 0.684555 0.395228i −0.117014 0.993130i \(-0.537332\pi\)
0.801569 + 0.597902i \(0.203999\pi\)
\(558\) 0 0
\(559\) −589.384 −1.05435
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 291.898 168.528i 0.518469 0.299338i −0.217839 0.975985i \(-0.569901\pi\)
0.736308 + 0.676646i \(0.236567\pi\)
\(564\) 0 0
\(565\) −628.211 + 1088.09i −1.11188 + 1.92583i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 837.837 + 483.726i 1.47247 + 0.850133i 0.999521 0.0309548i \(-0.00985481\pi\)
0.472953 + 0.881088i \(0.343188\pi\)
\(570\) 0 0
\(571\) −84.5926 146.519i −0.148148 0.256600i 0.782395 0.622783i \(-0.213998\pi\)
−0.930543 + 0.366182i \(0.880665\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 226.105i 0.393226i
\(576\) 0 0
\(577\) −296.356 513.303i −0.513615 0.889607i −0.999875 0.0157933i \(-0.994973\pi\)
0.486260 0.873814i \(-0.338361\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −231.986 + 79.6211i −0.399288 + 0.137041i
\(582\) 0 0
\(583\) −93.1430 + 161.328i −0.159765 + 0.276721i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 621.150i 1.05818i −0.848567 0.529088i \(-0.822534\pi\)
0.848567 0.529088i \(-0.177466\pi\)
\(588\) 0 0
\(589\) −154.216 −0.261827
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 102.660 + 59.2709i 0.173120 + 0.0999510i 0.584056 0.811713i \(-0.301465\pi\)
−0.410936 + 0.911664i \(0.634798\pi\)
\(594\) 0 0
\(595\) −148.204 431.811i −0.249082 0.725733i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −510.471 + 294.721i −0.852206 + 0.492021i −0.861395 0.507936i \(-0.830408\pi\)
0.00918855 + 0.999958i \(0.497075\pi\)
\(600\) 0 0
\(601\) 982.153 1.63420 0.817099 0.576497i \(-0.195581\pi\)
0.817099 + 0.576497i \(0.195581\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −166.819 + 96.3128i −0.275733 + 0.159195i
\(606\) 0 0
\(607\) −287.364 + 497.729i −0.473417 + 0.819982i −0.999537 0.0304281i \(-0.990313\pi\)
0.526120 + 0.850410i \(0.323646\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 935.511 + 540.118i 1.53111 + 0.883989i
\(612\) 0 0
\(613\) −182.662 316.380i −0.297981 0.516117i 0.677693 0.735345i \(-0.262980\pi\)
−0.975674 + 0.219227i \(0.929646\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 962.980i 1.56075i −0.625315 0.780373i \(-0.715029\pi\)
0.625315 0.780373i \(-0.284971\pi\)
\(618\) 0 0
\(619\) −157.488 272.778i −0.254424 0.440675i 0.710315 0.703884i \(-0.248553\pi\)
−0.964739 + 0.263209i \(0.915219\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −70.1312 + 358.886i −0.112570 + 0.576061i
\(624\) 0 0
\(625\) 389.974 675.455i 0.623958 1.08073i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 8.18211i 0.0130081i
\(630\) 0 0
\(631\) −451.196 −0.715048 −0.357524 0.933904i \(-0.616379\pi\)
−0.357524 + 0.933904i \(0.616379\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 817.798 + 472.156i 1.28787 + 0.743552i
\(636\) 0 0
\(637\) −514.391 + 400.239i −0.807521 + 0.628319i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 362.856 209.495i 0.566078 0.326825i −0.189503 0.981880i \(-0.560688\pi\)
0.755581 + 0.655055i \(0.227354\pi\)
\(642\) 0 0
\(643\) 1118.12 1.73891 0.869457 0.494008i \(-0.164469\pi\)
0.869457 + 0.494008i \(0.164469\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 38.6214 22.2981i 0.0596931 0.0344638i −0.469856 0.882743i \(-0.655694\pi\)
0.529550 + 0.848279i \(0.322361\pi\)
\(648\) 0 0
\(649\) 212.428 367.936i 0.327316 0.566928i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 207.252 + 119.657i 0.317385 + 0.183242i 0.650226 0.759741i \(-0.274674\pi\)
−0.332841 + 0.942983i \(0.608007\pi\)
\(654\) 0 0
\(655\) −756.261 1309.88i −1.15460 1.99982i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 548.456i 0.832255i 0.909306 + 0.416128i \(0.136613\pi\)
−0.909306 + 0.416128i \(0.863387\pi\)
\(660\) 0 0
\(661\) −336.318 582.519i −0.508801 0.881270i −0.999948 0.0101928i \(-0.996755\pi\)
0.491147 0.871077i \(-0.336578\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 140.266 + 122.177i 0.210927 + 0.183725i
\(666\) 0 0
\(667\) −106.435 + 184.351i −0.159573 + 0.276388i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 387.058i 0.576838i
\(672\) 0 0
\(673\) −1188.64 −1.76618 −0.883088 0.469206i \(-0.844540\pi\)
−0.883088 + 0.469206i \(0.844540\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −531.239 306.711i −0.784696 0.453045i 0.0533958 0.998573i \(-0.482996\pi\)
−0.838092 + 0.545529i \(0.816329\pi\)
\(678\) 0 0
\(679\) 413.875 + 1205.88i 0.609536 + 1.77596i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −713.111 + 411.715i −1.04409 + 0.602803i −0.920988 0.389591i \(-0.872616\pi\)
−0.123098 + 0.992395i \(0.539283\pi\)
\(684\) 0 0
\(685\) −1614.26 −2.35659
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −227.391 + 131.284i −0.330030 + 0.190543i
\(690\) 0 0
\(691\) −125.117 + 216.709i −0.181067 + 0.313617i −0.942244 0.334927i \(-0.891288\pi\)
0.761177 + 0.648544i \(0.224622\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1069.15 617.274i −1.53834 0.888164i
\(696\) 0 0
\(697\) −175.306 303.640i −0.251516 0.435638i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 647.904i 0.924257i −0.886813 0.462129i \(-0.847086\pi\)
0.886813 0.462129i \(-0.152914\pi\)
\(702\) 0 0
\(703\) 1.66690 + 2.88716i 0.00237113 + 0.00410691i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −40.2504 35.0595i −0.0569312 0.0495891i
\(708\) 0 0
\(709\) 470.015 814.090i 0.662927 1.14822i −0.316916 0.948454i \(-0.602647\pi\)
0.979843 0.199770i \(-0.0640194\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 696.560i 0.976942i
\(714\) 0 0
\(715\) 756.874 1.05857
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −444.866 256.843i −0.618729 0.357223i 0.157645 0.987496i \(-0.449610\pi\)
−0.776374 + 0.630273i \(0.782943\pi\)
\(720\) 0 0
\(721\) −463.875 90.6476i −0.643378 0.125725i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −105.197 + 60.7357i −0.145100 + 0.0837734i
\(726\) 0 0
\(727\) 314.268 0.432281 0.216141 0.976362i \(-0.430653\pi\)
0.216141 + 0.976362i \(0.430653\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 415.060 239.635i 0.567797 0.327818i
\(732\) 0 0
\(733\) 85.0062 147.235i 0.115970 0.200866i −0.802197 0.597060i \(-0.796336\pi\)
0.918167 + 0.396193i \(0.129669\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −748.354 432.062i −1.01541 0.586244i
\(738\) 0 0
\(739\) 323.911 + 561.030i 0.438310 + 0.759175i 0.997559 0.0698245i \(-0.0222439\pi\)
−0.559249 + 0.828999i \(0.688911\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 604.982i 0.814243i 0.913374 + 0.407121i \(0.133467\pi\)
−0.913374 + 0.407121i \(0.866533\pi\)
\(744\) 0 0
\(745\) 324.144 + 561.434i 0.435093 + 0.753603i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −197.493 + 1010.64i −0.263675 + 1.34932i
\(750\) 0 0
\(751\) −434.913 + 753.292i −0.579112 + 1.00305i 0.416469 + 0.909150i \(0.363267\pi\)
−0.995581 + 0.0939022i \(0.970066\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 765.512i 1.01392i
\(756\) 0 0
\(757\) 864.656 1.14221 0.571107 0.820876i \(-0.306514\pi\)
0.571107 + 0.820876i \(0.306514\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −366.131 211.386i −0.481119 0.277774i 0.239764 0.970831i \(-0.422930\pi\)
−0.720883 + 0.693057i \(0.756263\pi\)
\(762\) 0 0
\(763\) 89.4199 102.659i 0.117195 0.134547i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 518.603 299.415i 0.676144 0.390372i
\(768\) 0 0
\(769\) 1052.61 1.36881 0.684405 0.729102i \(-0.260062\pi\)
0.684405 + 0.729102i \(0.260062\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −722.654 + 417.225i −0.934869 + 0.539747i −0.888348 0.459170i \(-0.848147\pi\)
−0.0465211 + 0.998917i \(0.514813\pi\)
\(774\) 0 0
\(775\) 198.741 344.229i 0.256440 0.444167i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 123.718 + 71.4288i 0.158817 + 0.0916929i
\(780\) 0 0
\(781\) 53.2664 + 92.2601i 0.0682028 + 0.118131i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1795.29i 2.28700i
\(786\) 0 0
\(787\) 484.207 + 838.672i 0.615257 + 1.06566i 0.990339 + 0.138665i \(0.0442811\pi\)
−0.375082 + 0.926991i \(0.622386\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −1379.58 + 473.492i −1.74410 + 0.598599i
\(792\) 0 0
\(793\) −272.778 + 472.465i −0.343982 + 0.595794i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1445.50i 1.81368i −0.421476 0.906840i \(-0.638488\pi\)
0.421476 0.906840i \(-0.361512\pi\)
\(798\) 0 0
\(799\) −878.415 −1.09939
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 167.848 + 96.9070i 0.209026 + 0.120681i
\(804\) 0 0
\(805\) −551.847 + 633.552i −0.685524 + 0.787022i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −593.386 + 342.591i −0.733480 + 0.423475i −0.819694 0.572802i \(-0.805857\pi\)
0.0862138 + 0.996277i \(0.472523\pi\)
\(810\) 0 0
\(811\) 236.166 0.291204 0.145602 0.989343i \(-0.453488\pi\)
0.145602 + 0.989343i \(0.453488\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 182.647 105.451i 0.224106 0.129388i
\(816\) 0 0
\(817\) −97.6394 + 169.116i −0.119510 + 0.206997i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 344.957 + 199.161i 0.420167 + 0.242583i 0.695149 0.718866i \(-0.255339\pi\)
−0.274982 + 0.961449i \(0.588672\pi\)
\(822\) 0 0
\(823\) 225.410 + 390.422i 0.273888 + 0.474388i 0.969854 0.243687i \(-0.0783568\pi\)
−0.695966 + 0.718075i \(0.745023\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 647.284i 0.782689i −0.920244 0.391344i \(-0.872010\pi\)
0.920244 0.391344i \(-0.127990\pi\)
\(828\) 0 0
\(829\) −339.722 588.415i −0.409797 0.709789i 0.585070 0.810983i \(-0.301067\pi\)
−0.994867 + 0.101194i \(0.967734\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 199.516 491.002i 0.239515 0.589439i
\(834\) 0 0
\(835\) 742.715 1286.42i 0.889479 1.54062i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 488.101i 0.581765i 0.956759 + 0.290882i \(0.0939488\pi\)
−0.956759 + 0.290882i \(0.906051\pi\)
\(840\) 0 0
\(841\) 726.639 0.864018
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 41.3670 + 23.8832i 0.0489550 + 0.0282642i
\(846\) 0 0
\(847\) −219.467 42.8869i −0.259111 0.0506339i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −13.0407 + 7.52903i −0.0153239 + 0.00884727i
\(852\) 0 0
\(853\) 1166.17 1.36714 0.683568 0.729887i \(-0.260427\pi\)
0.683568 + 0.729887i \(0.260427\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 524.207 302.651i 0.611677 0.353152i −0.161945 0.986800i \(-0.551777\pi\)
0.773621 + 0.633648i \(0.218443\pi\)
\(858\) 0 0
\(859\) −130.430 + 225.911i −0.151839 + 0.262993i −0.931904 0.362706i \(-0.881853\pi\)
0.780064 + 0.625699i \(0.215186\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −192.049 110.879i −0.222536 0.128481i 0.384588 0.923088i \(-0.374344\pi\)
−0.607124 + 0.794607i \(0.707677\pi\)
\(864\) 0 0
\(865\) −35.9730 62.3071i −0.0415873 0.0720313i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1086.95i 1.25081i
\(870\) 0 0
\(871\) −608.988 1054.80i −0.699183 1.21102i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 544.594 186.912i 0.622393 0.213614i
\(876\) 0 0
\(877\) 432.414 748.962i 0.493060 0.854005i −0.506908 0.862000i \(-0.669212\pi\)
0.999968 + 0.00799526i \(0.00254500\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 131.618i 0.149396i 0.997206 + 0.0746981i \(0.0237993\pi\)
−0.997206 + 0.0746981i \(0.976201\pi\)
\(882\) 0 0
\(883\) −374.847 −0.424516 −0.212258 0.977214i \(-0.568082\pi\)
−0.212258 + 0.977214i \(0.568082\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −997.904 576.140i −1.12503 0.649538i −0.182352 0.983233i \(-0.558371\pi\)
−0.942681 + 0.333696i \(0.891704\pi\)
\(888\) 0 0
\(889\) 355.871 + 1036.88i 0.400305 + 1.16634i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 309.960 178.955i 0.347100 0.200398i
\(894\) 0 0
\(895\) 824.946 0.921728
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 324.080 187.108i 0.360490 0.208129i
\(900\) 0 0
\(901\) 106.756 184.908i 0.118487 0.205225i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 553.378 + 319.493i 0.611467 + 0.353031i
\(906\) 0 0
\(907\) −375.097 649.686i −0.413557 0.716302i 0.581718 0.813390i \(-0.302381\pi\)
−0.995276 + 0.0970878i \(0.969047\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1726.98i 1.89570i 0.318718 + 0.947849i \(0.396748\pi\)
−0.318718 + 0.947849i \(0.603252\pi\)
\(912\) 0 0
\(913\) 165.327 + 286.355i 0.181081 + 0.313642i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 336.753 1723.28i 0.367234 1.87926i
\(918\) 0 0
\(919\) −394.899 + 683.985i −0.429705 + 0.744271i −0.996847 0.0793489i \(-0.974716\pi\)
0.567142 + 0.823620i \(0.308049\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 150.157i 0.162684i
\(924\) 0 0
\(925\) −8.59266 −0.00928937
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −1135.58 655.625i −1.22236 0.705732i −0.256942 0.966427i \(-0.582715\pi\)
−0.965421 + 0.260695i \(0.916048\pi\)
\(930\) 0 0
\(931\) 29.6279 + 213.903i 0.0318237 + 0.229756i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −533.011 + 307.734i −0.570065 + 0.329127i
\(936\) 0 0
\(937\) −1490.93 −1.59118 −0.795588 0.605838i \(-0.792838\pi\)
−0.795588 + 0.605838i \(0.792838\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 176.666 101.998i 0.187743 0.108394i −0.403182 0.915120i \(-0.632096\pi\)
0.590926 + 0.806726i \(0.298763\pi\)
\(942\) 0 0
\(943\) −322.628 + 558.808i −0.342129 + 0.592585i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −728.251 420.456i −0.769009 0.443987i 0.0635121 0.997981i \(-0.479770\pi\)
−0.832521 + 0.553994i \(0.813103\pi\)
\(948\) 0 0
\(949\) 136.590 + 236.580i 0.143930 + 0.249294i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 676.046i 0.709387i −0.934983 0.354693i \(-0.884585\pi\)
0.934983 0.354693i \(-0.115415\pi\)
\(954\) 0 0
\(955\) −87.1805 151.001i −0.0912885 0.158116i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −1413.09 1230.86i −1.47351 1.28348i
\(960\) 0 0
\(961\) −131.759 + 228.214i −0.137106 + 0.237475i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1883.29i 1.95159i
\(966\) 0 0
\(967\) −513.914 −0.531452 −0.265726 0.964049i \(-0.585612\pi\)
−0.265726 + 0.964049i \(0.585612\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 491.968 + 284.038i 0.506661 + 0.292521i 0.731460 0.681884i \(-0.238839\pi\)
−0.224799 + 0.974405i \(0.572173\pi\)
\(972\) 0 0
\(973\) −465.248 1355.56i −0.478159 1.39318i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −609.956 + 352.158i −0.624315 + 0.360448i −0.778547 0.627586i \(-0.784043\pi\)
0.154232 + 0.988035i \(0.450710\pi\)
\(978\) 0 0
\(979\) 492.974 0.503549
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −1536.87 + 887.310i −1.56344 + 0.902655i −0.566540 + 0.824034i \(0.691718\pi\)
−0.996905 + 0.0786212i \(0.974948\pi\)
\(984\) 0 0
\(985\) 345.095 597.722i 0.350350 0.606825i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −763.861 441.015i −0.772357 0.445920i
\(990\) 0 0
\(991\) 599.026 + 1037.54i 0.604466 + 1.04697i 0.992136 + 0.125167i \(0.0399468\pi\)
−0.387670 + 0.921798i \(0.626720\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 887.061i 0.891519i
\(996\) 0 0
\(997\) 343.411 + 594.805i 0.344444 + 0.596595i 0.985253 0.171106i \(-0.0547340\pi\)
−0.640808 + 0.767701i \(0.721401\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 756.3.bk.g.485.7 yes 16
3.2 odd 2 inner 756.3.bk.g.485.2 yes 16
7.4 even 3 inner 756.3.bk.g.53.2 16
21.11 odd 6 inner 756.3.bk.g.53.7 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
756.3.bk.g.53.2 16 7.4 even 3 inner
756.3.bk.g.53.7 yes 16 21.11 odd 6 inner
756.3.bk.g.485.2 yes 16 3.2 odd 2 inner
756.3.bk.g.485.7 yes 16 1.1 even 1 trivial