Properties

Label 756.3.bk.f.485.2
Level $756$
Weight $3$
Character 756.485
Analytic conductor $20.600$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [756,3,Mod(53,756)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 4])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("756.53"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 756.bk (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,-2,0,0,0,0,0,-32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.5995079856\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 52x^{10} + 846x^{8} + 5348x^{6} + 11241x^{4} + 2656x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{7} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 485.2
Root \(-1.88606i\) of defining polynomial
Character \(\chi\) \(=\) 756.485
Dual form 756.3.bk.f.53.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-5.08547 - 2.93610i) q^{5} +(6.70780 + 2.00135i) q^{7} +(-7.89428 + 4.55776i) q^{11} +8.17424 q^{13} +(-14.0290 + 8.09965i) q^{17} +(2.46644 - 4.27201i) q^{19} +(32.0942 + 18.5296i) q^{23} +(4.74136 + 8.21227i) q^{25} -35.8476i q^{29} +(13.0363 + 22.5795i) q^{31} +(-28.2362 - 29.8726i) q^{35} +(3.60441 - 6.24302i) q^{37} +49.0093i q^{41} +32.3139 q^{43} +(26.4916 + 15.2950i) q^{47} +(40.9892 + 26.8493i) q^{49} +(67.1604 - 38.7751i) q^{53} +53.5282 q^{55} +(61.9118 - 35.7448i) q^{59} +(20.9021 - 36.2034i) q^{61} +(-41.5699 - 24.0004i) q^{65} +(40.1061 + 69.4658i) q^{67} +42.9314i q^{71} +(48.1288 + 83.3616i) q^{73} +(-62.0749 + 14.7733i) q^{77} +(54.1597 - 93.8073i) q^{79} +96.3783i q^{83} +95.1255 q^{85} +(-103.469 - 59.7379i) q^{89} +(54.8312 + 16.3595i) q^{91} +(-25.0861 + 14.4834i) q^{95} -1.06915 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 2 q^{7} - 32 q^{13} - 18 q^{19} + 22 q^{25} - 26 q^{31} + 48 q^{37} - 12 q^{43} + 54 q^{49} - 208 q^{55} - 122 q^{61} + 164 q^{67} - 130 q^{73} + 220 q^{79} - 280 q^{85} + 328 q^{91} - 292 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/756\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\) \(379\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −5.08547 2.93610i −1.01709 0.587220i −0.103834 0.994595i \(-0.533111\pi\)
−0.913261 + 0.407375i \(0.866444\pi\)
\(6\) 0 0
\(7\) 6.70780 + 2.00135i 0.958257 + 0.285907i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −7.89428 + 4.55776i −0.717662 + 0.414342i −0.813891 0.581017i \(-0.802655\pi\)
0.0962298 + 0.995359i \(0.469322\pi\)
\(12\) 0 0
\(13\) 8.17424 0.628788 0.314394 0.949293i \(-0.398199\pi\)
0.314394 + 0.949293i \(0.398199\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −14.0290 + 8.09965i −0.825236 + 0.476450i −0.852219 0.523186i \(-0.824743\pi\)
0.0269829 + 0.999636i \(0.491410\pi\)
\(18\) 0 0
\(19\) 2.46644 4.27201i 0.129813 0.224842i −0.793791 0.608190i \(-0.791896\pi\)
0.923604 + 0.383348i \(0.125229\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 32.0942 + 18.5296i 1.39540 + 0.805635i 0.993907 0.110226i \(-0.0351575\pi\)
0.401495 + 0.915861i \(0.368491\pi\)
\(24\) 0 0
\(25\) 4.74136 + 8.21227i 0.189654 + 0.328491i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 35.8476i 1.23613i −0.786129 0.618063i \(-0.787918\pi\)
0.786129 0.618063i \(-0.212082\pi\)
\(30\) 0 0
\(31\) 13.0363 + 22.5795i 0.420525 + 0.728371i 0.995991 0.0894550i \(-0.0285125\pi\)
−0.575466 + 0.817826i \(0.695179\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −28.2362 29.8726i −0.806748 0.853503i
\(36\) 0 0
\(37\) 3.60441 6.24302i 0.0974165 0.168730i −0.813198 0.581987i \(-0.802275\pi\)
0.910615 + 0.413257i \(0.135609\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 49.0093i 1.19535i 0.801739 + 0.597675i \(0.203909\pi\)
−0.801739 + 0.597675i \(0.796091\pi\)
\(42\) 0 0
\(43\) 32.3139 0.751486 0.375743 0.926724i \(-0.377387\pi\)
0.375743 + 0.926724i \(0.377387\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 26.4916 + 15.2950i 0.563652 + 0.325425i 0.754610 0.656174i \(-0.227826\pi\)
−0.190958 + 0.981598i \(0.561159\pi\)
\(48\) 0 0
\(49\) 40.9892 + 26.8493i 0.836514 + 0.547946i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 67.1604 38.7751i 1.26718 0.731605i 0.292724 0.956197i \(-0.405438\pi\)
0.974453 + 0.224592i \(0.0721048\pi\)
\(54\) 0 0
\(55\) 53.5282 0.973240
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 61.9118 35.7448i 1.04935 0.605844i 0.126884 0.991918i \(-0.459502\pi\)
0.922468 + 0.386074i \(0.126169\pi\)
\(60\) 0 0
\(61\) 20.9021 36.2034i 0.342657 0.593499i −0.642269 0.766480i \(-0.722007\pi\)
0.984925 + 0.172981i \(0.0553399\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −41.5699 24.0004i −0.639537 0.369237i
\(66\) 0 0
\(67\) 40.1061 + 69.4658i 0.598599 + 1.03680i 0.993028 + 0.117877i \(0.0376089\pi\)
−0.394429 + 0.918926i \(0.629058\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 42.9314i 0.604668i 0.953202 + 0.302334i \(0.0977658\pi\)
−0.953202 + 0.302334i \(0.902234\pi\)
\(72\) 0 0
\(73\) 48.1288 + 83.3616i 0.659299 + 1.14194i 0.980797 + 0.195030i \(0.0624803\pi\)
−0.321498 + 0.946910i \(0.604186\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −62.0749 + 14.7733i −0.806168 + 0.191862i
\(78\) 0 0
\(79\) 54.1597 93.8073i 0.685566 1.18743i −0.287693 0.957723i \(-0.592888\pi\)
0.973259 0.229712i \(-0.0737784\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 96.3783i 1.16118i 0.814194 + 0.580592i \(0.197179\pi\)
−0.814194 + 0.580592i \(0.802821\pi\)
\(84\) 0 0
\(85\) 95.1255 1.11912
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −103.469 59.7379i −1.16257 0.671212i −0.210654 0.977561i \(-0.567559\pi\)
−0.951919 + 0.306349i \(0.900893\pi\)
\(90\) 0 0
\(91\) 54.8312 + 16.3595i 0.602541 + 0.179775i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −25.0861 + 14.4834i −0.264064 + 0.152457i
\(96\) 0 0
\(97\) −1.06915 −0.0110221 −0.00551107 0.999985i \(-0.501754\pi\)
−0.00551107 + 0.999985i \(0.501754\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 30.4978 17.6079i 0.301959 0.174336i −0.341364 0.939931i \(-0.610889\pi\)
0.643322 + 0.765595i \(0.277555\pi\)
\(102\) 0 0
\(103\) −22.9854 + 39.8119i −0.223160 + 0.386524i −0.955766 0.294129i \(-0.904970\pi\)
0.732606 + 0.680653i \(0.238304\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 54.3738 + 31.3927i 0.508167 + 0.293390i 0.732080 0.681219i \(-0.238550\pi\)
−0.223913 + 0.974609i \(0.571883\pi\)
\(108\) 0 0
\(109\) 88.3231 + 152.980i 0.810304 + 1.40349i 0.912652 + 0.408739i \(0.134031\pi\)
−0.102348 + 0.994749i \(0.532635\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 69.0317i 0.610900i −0.952208 0.305450i \(-0.901193\pi\)
0.952208 0.305450i \(-0.0988070\pi\)
\(114\) 0 0
\(115\) −108.810 188.464i −0.946170 1.63881i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −110.314 + 26.2539i −0.927009 + 0.220621i
\(120\) 0 0
\(121\) −18.9536 + 32.8286i −0.156641 + 0.271311i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 91.1206i 0.728965i
\(126\) 0 0
\(127\) −18.6244 −0.146649 −0.0733245 0.997308i \(-0.523361\pi\)
−0.0733245 + 0.997308i \(0.523361\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −139.095 80.3065i −1.06179 0.613027i −0.135866 0.990727i \(-0.543382\pi\)
−0.925928 + 0.377700i \(0.876715\pi\)
\(132\) 0 0
\(133\) 25.0942 23.7195i 0.188678 0.178342i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 96.3127 55.6062i 0.703013 0.405885i −0.105456 0.994424i \(-0.533630\pi\)
0.808468 + 0.588539i \(0.200297\pi\)
\(138\) 0 0
\(139\) −93.8528 −0.675200 −0.337600 0.941290i \(-0.609615\pi\)
−0.337600 + 0.941290i \(0.609615\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −64.5298 + 37.2563i −0.451257 + 0.260533i
\(144\) 0 0
\(145\) −105.252 + 182.302i −0.725878 + 1.25726i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 27.5259 + 15.8921i 0.184737 + 0.106658i 0.589517 0.807756i \(-0.299318\pi\)
−0.404779 + 0.914414i \(0.632652\pi\)
\(150\) 0 0
\(151\) −119.642 207.227i −0.792334 1.37236i −0.924518 0.381138i \(-0.875532\pi\)
0.132184 0.991225i \(-0.457801\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 153.103i 0.987763i
\(156\) 0 0
\(157\) 51.0455 + 88.4133i 0.325130 + 0.563142i 0.981539 0.191263i \(-0.0612585\pi\)
−0.656408 + 0.754406i \(0.727925\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 178.197 + 188.525i 1.10682 + 1.17096i
\(162\) 0 0
\(163\) 100.747 174.499i 0.618079 1.07054i −0.371757 0.928330i \(-0.621245\pi\)
0.989836 0.142214i \(-0.0454220\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 93.5784i 0.560350i −0.959949 0.280175i \(-0.909608\pi\)
0.959949 0.280175i \(-0.0903925\pi\)
\(168\) 0 0
\(169\) −102.182 −0.604626
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 124.697 + 71.9939i 0.720792 + 0.416149i 0.815044 0.579399i \(-0.196713\pi\)
−0.0942521 + 0.995548i \(0.530046\pi\)
\(174\) 0 0
\(175\) 15.3684 + 64.5754i 0.0878196 + 0.369002i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 249.025 143.775i 1.39120 0.803210i 0.397753 0.917493i \(-0.369790\pi\)
0.993448 + 0.114282i \(0.0364568\pi\)
\(180\) 0 0
\(181\) −180.940 −0.999667 −0.499833 0.866122i \(-0.666605\pi\)
−0.499833 + 0.866122i \(0.666605\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −36.6602 + 21.1658i −0.198164 + 0.114410i
\(186\) 0 0
\(187\) 73.8326 127.882i 0.394827 0.683860i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 196.587 + 113.499i 1.02925 + 0.594237i 0.916769 0.399417i \(-0.130787\pi\)
0.112480 + 0.993654i \(0.464121\pi\)
\(192\) 0 0
\(193\) 161.945 + 280.497i 0.839092 + 1.45335i 0.890655 + 0.454681i \(0.150247\pi\)
−0.0515623 + 0.998670i \(0.516420\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 193.203i 0.980725i 0.871519 + 0.490362i \(0.163136\pi\)
−0.871519 + 0.490362i \(0.836864\pi\)
\(198\) 0 0
\(199\) −112.833 195.432i −0.567000 0.982072i −0.996861 0.0791770i \(-0.974771\pi\)
0.429861 0.902895i \(-0.358563\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 71.7438 240.459i 0.353418 1.18453i
\(204\) 0 0
\(205\) 143.896 249.236i 0.701933 1.21578i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 44.9659i 0.215148i
\(210\) 0 0
\(211\) −161.585 −0.765804 −0.382902 0.923789i \(-0.625075\pi\)
−0.382902 + 0.923789i \(0.625075\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −164.332 94.8769i −0.764333 0.441288i
\(216\) 0 0
\(217\) 42.2552 + 177.549i 0.194725 + 0.818198i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −114.677 + 66.2085i −0.518898 + 0.299586i
\(222\) 0 0
\(223\) −427.779 −1.91829 −0.959146 0.282911i \(-0.908700\pi\)
−0.959146 + 0.282911i \(0.908700\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −198.700 + 114.720i −0.875331 + 0.505373i −0.869116 0.494608i \(-0.835312\pi\)
−0.00621479 + 0.999981i \(0.501978\pi\)
\(228\) 0 0
\(229\) −120.254 + 208.286i −0.525126 + 0.909546i 0.474445 + 0.880285i \(0.342649\pi\)
−0.999572 + 0.0292607i \(0.990685\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −324.983 187.629i −1.39478 0.805275i −0.400938 0.916105i \(-0.631316\pi\)
−0.993839 + 0.110830i \(0.964649\pi\)
\(234\) 0 0
\(235\) −89.8150 155.564i −0.382192 0.661975i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 260.626i 1.09049i 0.838278 + 0.545243i \(0.183563\pi\)
−0.838278 + 0.545243i \(0.816437\pi\)
\(240\) 0 0
\(241\) −168.240 291.401i −0.698093 1.20913i −0.969127 0.246563i \(-0.920699\pi\)
0.271034 0.962570i \(-0.412634\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −129.617 256.890i −0.529049 1.04853i
\(246\) 0 0
\(247\) 20.1613 34.9204i 0.0816248 0.141378i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 408.816i 1.62875i −0.580339 0.814375i \(-0.697080\pi\)
0.580339 0.814375i \(-0.302920\pi\)
\(252\) 0 0
\(253\) −337.814 −1.33523
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 338.121 + 195.214i 1.31565 + 0.759589i 0.983025 0.183471i \(-0.0587332\pi\)
0.332622 + 0.943060i \(0.392067\pi\)
\(258\) 0 0
\(259\) 36.6721 34.6632i 0.141591 0.133835i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −396.356 + 228.836i −1.50706 + 0.870099i −0.507089 + 0.861894i \(0.669279\pi\)
−0.999966 + 0.00820543i \(0.997388\pi\)
\(264\) 0 0
\(265\) −455.390 −1.71845
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 254.655 147.025i 0.946674 0.546563i 0.0546279 0.998507i \(-0.482603\pi\)
0.892046 + 0.451944i \(0.149269\pi\)
\(270\) 0 0
\(271\) −22.6498 + 39.2306i −0.0835786 + 0.144762i −0.904785 0.425869i \(-0.859968\pi\)
0.821206 + 0.570632i \(0.193302\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −74.8592 43.2200i −0.272215 0.157164i
\(276\) 0 0
\(277\) −48.0872 83.2895i −0.173600 0.300684i 0.766076 0.642750i \(-0.222207\pi\)
−0.939676 + 0.342066i \(0.888873\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 38.6849i 0.137669i −0.997628 0.0688344i \(-0.978072\pi\)
0.997628 0.0688344i \(-0.0219280\pi\)
\(282\) 0 0
\(283\) −102.398 177.359i −0.361831 0.626711i 0.626431 0.779477i \(-0.284515\pi\)
−0.988262 + 0.152766i \(0.951182\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −98.0850 + 328.745i −0.341759 + 1.14545i
\(288\) 0 0
\(289\) −13.2913 + 23.0212i −0.0459907 + 0.0796583i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 208.611i 0.711984i 0.934489 + 0.355992i \(0.115857\pi\)
−0.934489 + 0.355992i \(0.884143\pi\)
\(294\) 0 0
\(295\) −419.801 −1.42305
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 262.346 + 151.466i 0.877412 + 0.506574i
\(300\) 0 0
\(301\) 216.755 + 64.6715i 0.720117 + 0.214856i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −212.594 + 122.741i −0.697028 + 0.402430i
\(306\) 0 0
\(307\) −190.413 −0.620238 −0.310119 0.950698i \(-0.600369\pi\)
−0.310119 + 0.950698i \(0.600369\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −83.0994 + 47.9775i −0.267201 + 0.154268i −0.627615 0.778524i \(-0.715969\pi\)
0.360414 + 0.932792i \(0.382635\pi\)
\(312\) 0 0
\(313\) −34.9383 + 60.5148i −0.111624 + 0.193338i −0.916425 0.400206i \(-0.868939\pi\)
0.804801 + 0.593544i \(0.202272\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −150.094 86.6570i −0.473484 0.273366i 0.244213 0.969722i \(-0.421470\pi\)
−0.717697 + 0.696356i \(0.754804\pi\)
\(318\) 0 0
\(319\) 163.385 + 282.991i 0.512179 + 0.887120i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 79.9093i 0.247397i
\(324\) 0 0
\(325\) 38.7570 + 67.1291i 0.119252 + 0.206551i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 147.090 + 155.615i 0.447082 + 0.472993i
\(330\) 0 0
\(331\) 279.207 483.600i 0.843525 1.46103i −0.0433706 0.999059i \(-0.513810\pi\)
0.886896 0.461970i \(-0.152857\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 471.022i 1.40604i
\(336\) 0 0
\(337\) −30.1017 −0.0893225 −0.0446613 0.999002i \(-0.514221\pi\)
−0.0446613 + 0.999002i \(0.514221\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −205.824 118.833i −0.603590 0.348483i
\(342\) 0 0
\(343\) 221.212 + 262.134i 0.644934 + 0.764239i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −1.06894 + 0.617154i −0.00308053 + 0.00177854i −0.501539 0.865135i \(-0.667233\pi\)
0.498459 + 0.866913i \(0.333899\pi\)
\(348\) 0 0
\(349\) −74.1959 −0.212596 −0.106298 0.994334i \(-0.533900\pi\)
−0.106298 + 0.994334i \(0.533900\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 464.043 267.916i 1.31457 0.758968i 0.331721 0.943377i \(-0.392371\pi\)
0.982849 + 0.184410i \(0.0590373\pi\)
\(354\) 0 0
\(355\) 126.051 218.327i 0.355073 0.615004i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 250.458 + 144.602i 0.697655 + 0.402792i 0.806474 0.591270i \(-0.201373\pi\)
−0.108818 + 0.994062i \(0.534707\pi\)
\(360\) 0 0
\(361\) 168.333 + 291.562i 0.466297 + 0.807651i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 565.244i 1.54861i
\(366\) 0 0
\(367\) −180.020 311.803i −0.490517 0.849600i 0.509424 0.860516i \(-0.329859\pi\)
−0.999940 + 0.0109158i \(0.996525\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 528.101 125.684i 1.42345 0.338770i
\(372\) 0 0
\(373\) 121.777 210.924i 0.326480 0.565480i −0.655331 0.755342i \(-0.727471\pi\)
0.981811 + 0.189862i \(0.0608042\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 293.027i 0.777261i
\(378\) 0 0
\(379\) 487.602 1.28655 0.643275 0.765635i \(-0.277575\pi\)
0.643275 + 0.765635i \(0.277575\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 561.942 + 324.438i 1.46721 + 0.847095i 0.999327 0.0366936i \(-0.0116826\pi\)
0.467886 + 0.883789i \(0.345016\pi\)
\(384\) 0 0
\(385\) 359.056 + 107.129i 0.932614 + 0.278256i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −626.974 + 361.984i −1.61176 + 0.930549i −0.622796 + 0.782384i \(0.714003\pi\)
−0.988963 + 0.148165i \(0.952663\pi\)
\(390\) 0 0
\(391\) −600.334 −1.53538
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −550.855 + 318.036i −1.39457 + 0.805155i
\(396\) 0 0
\(397\) −241.457 + 418.216i −0.608205 + 1.05344i 0.383331 + 0.923611i \(0.374777\pi\)
−0.991536 + 0.129831i \(0.958557\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −98.0122 56.5874i −0.244419 0.141116i 0.372787 0.927917i \(-0.378402\pi\)
−0.617206 + 0.786801i \(0.711736\pi\)
\(402\) 0 0
\(403\) 106.562 + 184.570i 0.264421 + 0.457991i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 65.7122i 0.161455i
\(408\) 0 0
\(409\) 144.356 + 250.032i 0.352949 + 0.611326i 0.986765 0.162158i \(-0.0518454\pi\)
−0.633815 + 0.773484i \(0.718512\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 486.830 115.862i 1.17876 0.280537i
\(414\) 0 0
\(415\) 282.976 490.129i 0.681871 1.18103i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 200.898i 0.479471i 0.970838 + 0.239735i \(0.0770607\pi\)
−0.970838 + 0.239735i \(0.922939\pi\)
\(420\) 0 0
\(421\) 65.5283 0.155649 0.0778246 0.996967i \(-0.475203\pi\)
0.0778246 + 0.996967i \(0.475203\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −133.033 76.8067i −0.313019 0.180722i
\(426\) 0 0
\(427\) 212.663 201.013i 0.498039 0.470756i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 422.697 244.044i 0.980735 0.566228i 0.0782431 0.996934i \(-0.475069\pi\)
0.902492 + 0.430707i \(0.141736\pi\)
\(432\) 0 0
\(433\) 205.749 0.475170 0.237585 0.971367i \(-0.423644\pi\)
0.237585 + 0.971367i \(0.423644\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 158.317 91.4045i 0.362282 0.209164i
\(438\) 0 0
\(439\) −293.613 + 508.553i −0.668822 + 1.15843i 0.309411 + 0.950928i \(0.399868\pi\)
−0.978234 + 0.207506i \(0.933465\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −127.890 73.8372i −0.288690 0.166675i 0.348661 0.937249i \(-0.386637\pi\)
−0.637351 + 0.770574i \(0.719970\pi\)
\(444\) 0 0
\(445\) 350.793 + 607.591i 0.788298 + 1.36537i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 112.984i 0.251634i 0.992053 + 0.125817i \(0.0401552\pi\)
−0.992053 + 0.125817i \(0.959845\pi\)
\(450\) 0 0
\(451\) −223.373 386.893i −0.495284 0.857857i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −230.809 244.186i −0.507273 0.536672i
\(456\) 0 0
\(457\) 358.491 620.925i 0.784445 1.35870i −0.144885 0.989448i \(-0.546281\pi\)
0.929330 0.369250i \(-0.120385\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 522.058i 1.13245i 0.824252 + 0.566223i \(0.191596\pi\)
−0.824252 + 0.566223i \(0.808404\pi\)
\(462\) 0 0
\(463\) 340.342 0.735079 0.367540 0.930008i \(-0.380200\pi\)
0.367540 + 0.930008i \(0.380200\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 134.846 + 77.8533i 0.288749 + 0.166710i 0.637378 0.770552i \(-0.280019\pi\)
−0.348628 + 0.937261i \(0.613352\pi\)
\(468\) 0 0
\(469\) 129.998 + 546.229i 0.277182 + 1.16467i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −255.095 + 147.279i −0.539313 + 0.311372i
\(474\) 0 0
\(475\) 46.7772 0.0984782
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 80.9255 46.7224i 0.168947 0.0975415i −0.413142 0.910666i \(-0.635569\pi\)
0.582089 + 0.813125i \(0.302235\pi\)
\(480\) 0 0
\(481\) 29.4633 51.0320i 0.0612543 0.106096i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 5.43712 + 3.13912i 0.0112106 + 0.00647241i
\(486\) 0 0
\(487\) 12.4895 + 21.6324i 0.0256457 + 0.0444197i 0.878563 0.477626i \(-0.158502\pi\)
−0.852918 + 0.522045i \(0.825169\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 168.856i 0.343903i 0.985105 + 0.171952i \(0.0550073\pi\)
−0.985105 + 0.171952i \(0.944993\pi\)
\(492\) 0 0
\(493\) 290.353 + 502.907i 0.588952 + 1.02010i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −85.9209 + 287.975i −0.172879 + 0.579427i
\(498\) 0 0
\(499\) 206.746 358.094i 0.414320 0.717623i −0.581037 0.813877i \(-0.697353\pi\)
0.995357 + 0.0962542i \(0.0306862\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 8.38205i 0.0166641i 0.999965 + 0.00833206i \(0.00265221\pi\)
−0.999965 + 0.00833206i \(0.997348\pi\)
\(504\) 0 0
\(505\) −206.794 −0.409494
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −838.295 483.990i −1.64695 0.950865i −0.978276 0.207305i \(-0.933531\pi\)
−0.668669 0.743560i \(-0.733136\pi\)
\(510\) 0 0
\(511\) 156.003 + 655.496i 0.305289 + 1.28277i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 233.784 134.975i 0.453949 0.262087i
\(516\) 0 0
\(517\) −278.843 −0.539348
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −653.506 + 377.302i −1.25433 + 0.724188i −0.971967 0.235119i \(-0.924452\pi\)
−0.282364 + 0.959307i \(0.591119\pi\)
\(522\) 0 0
\(523\) 170.253 294.888i 0.325532 0.563839i −0.656088 0.754685i \(-0.727790\pi\)
0.981620 + 0.190846i \(0.0611232\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −365.772 211.179i −0.694065 0.400718i
\(528\) 0 0
\(529\) 422.193 + 731.260i 0.798097 + 1.38234i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 400.614i 0.751622i
\(534\) 0 0
\(535\) −184.344 319.294i −0.344569 0.596811i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −445.953 25.1372i −0.827371 0.0466368i
\(540\) 0 0
\(541\) 297.677 515.592i 0.550235 0.953035i −0.448022 0.894023i \(-0.647871\pi\)
0.998257 0.0590129i \(-0.0187953\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 1037.30i 1.90331i
\(546\) 0 0
\(547\) 636.823 1.16421 0.582105 0.813114i \(-0.302229\pi\)
0.582105 + 0.813114i \(0.302229\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −153.141 88.4162i −0.277934 0.160465i
\(552\) 0 0
\(553\) 551.034 520.848i 0.996445 0.941859i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 667.634 385.458i 1.19862 0.692026i 0.238376 0.971173i \(-0.423385\pi\)
0.960248 + 0.279147i \(0.0900517\pi\)
\(558\) 0 0
\(559\) 264.142 0.472526
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −256.653 + 148.179i −0.455867 + 0.263195i −0.710305 0.703894i \(-0.751443\pi\)
0.254438 + 0.967089i \(0.418110\pi\)
\(564\) 0 0
\(565\) −202.684 + 351.059i −0.358733 + 0.621343i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 208.296 + 120.260i 0.366074 + 0.211353i 0.671742 0.740785i \(-0.265546\pi\)
−0.305668 + 0.952138i \(0.598880\pi\)
\(570\) 0 0
\(571\) 379.395 + 657.132i 0.664440 + 1.15084i 0.979437 + 0.201751i \(0.0646632\pi\)
−0.314997 + 0.949093i \(0.602003\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 351.422i 0.611169i
\(576\) 0 0
\(577\) −257.346 445.736i −0.446006 0.772505i 0.552116 0.833768i \(-0.313821\pi\)
−0.998122 + 0.0612622i \(0.980487\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −192.887 + 646.487i −0.331991 + 1.11271i
\(582\) 0 0
\(583\) −353.455 + 612.202i −0.606270 + 1.05009i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 104.491i 0.178008i 0.996031 + 0.0890040i \(0.0283684\pi\)
−0.996031 + 0.0890040i \(0.971632\pi\)
\(588\) 0 0
\(589\) 128.613 0.218358
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 537.873 + 310.541i 0.907037 + 0.523678i 0.879477 0.475942i \(-0.157893\pi\)
0.0275606 + 0.999620i \(0.491226\pi\)
\(594\) 0 0
\(595\) 638.083 + 190.380i 1.07241 + 0.319966i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 232.385 134.168i 0.387955 0.223986i −0.293319 0.956015i \(-0.594760\pi\)
0.681274 + 0.732029i \(0.261426\pi\)
\(600\) 0 0
\(601\) 950.264 1.58114 0.790569 0.612373i \(-0.209785\pi\)
0.790569 + 0.612373i \(0.209785\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 192.776 111.299i 0.318638 0.183966i
\(606\) 0 0
\(607\) 238.717 413.469i 0.393273 0.681169i −0.599606 0.800295i \(-0.704676\pi\)
0.992879 + 0.119127i \(0.0380094\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 216.549 + 125.025i 0.354418 + 0.204623i
\(612\) 0 0
\(613\) −66.9196 115.908i −0.109167 0.189084i 0.806266 0.591553i \(-0.201485\pi\)
−0.915433 + 0.402470i \(0.868152\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 42.7777i 0.0693318i 0.999399 + 0.0346659i \(0.0110367\pi\)
−0.999399 + 0.0346659i \(0.988963\pi\)
\(618\) 0 0
\(619\) 263.304 + 456.056i 0.425370 + 0.736763i 0.996455 0.0841280i \(-0.0268105\pi\)
−0.571084 + 0.820891i \(0.693477\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −574.493 607.788i −0.922140 0.975582i
\(624\) 0 0
\(625\) 386.073 668.698i 0.617717 1.06992i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 116.778i 0.185656i
\(630\) 0 0
\(631\) −153.010 −0.242488 −0.121244 0.992623i \(-0.538688\pi\)
−0.121244 + 0.992623i \(0.538688\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 94.7140 + 54.6831i 0.149156 + 0.0861152i
\(636\) 0 0
\(637\) 335.056 + 219.473i 0.525990 + 0.344542i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 826.691 477.290i 1.28969 0.744603i 0.311091 0.950380i \(-0.399306\pi\)
0.978599 + 0.205777i \(0.0659723\pi\)
\(642\) 0 0
\(643\) −1183.88 −1.84119 −0.920593 0.390523i \(-0.872294\pi\)
−0.920593 + 0.390523i \(0.872294\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 963.931 556.526i 1.48985 0.860163i 0.489914 0.871771i \(-0.337028\pi\)
0.999933 + 0.0116078i \(0.00369497\pi\)
\(648\) 0 0
\(649\) −325.833 + 564.359i −0.502053 + 0.869582i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 787.576 + 454.707i 1.20609 + 0.696336i 0.961903 0.273393i \(-0.0881458\pi\)
0.244186 + 0.969728i \(0.421479\pi\)
\(654\) 0 0
\(655\) 471.576 + 816.794i 0.719963 + 1.24701i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 236.989i 0.359619i −0.983701 0.179810i \(-0.942452\pi\)
0.983701 0.179810i \(-0.0575482\pi\)
\(660\) 0 0
\(661\) −18.7316 32.4441i −0.0283383 0.0490834i 0.851508 0.524341i \(-0.175688\pi\)
−0.879847 + 0.475257i \(0.842355\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −197.259 + 46.9460i −0.296630 + 0.0705955i
\(666\) 0 0
\(667\) 664.243 1150.50i 0.995867 1.72489i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 381.066i 0.567908i
\(672\) 0 0
\(673\) −487.829 −0.724858 −0.362429 0.932011i \(-0.618052\pi\)
−0.362429 + 0.932011i \(0.618052\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −458.084 264.475i −0.676637 0.390657i 0.121949 0.992536i \(-0.461085\pi\)
−0.798587 + 0.601879i \(0.794419\pi\)
\(678\) 0 0
\(679\) −7.17162 2.13974i −0.0105620 0.00315131i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −674.584 + 389.471i −0.987678 + 0.570236i −0.904579 0.426305i \(-0.859815\pi\)
−0.0830985 + 0.996541i \(0.526482\pi\)
\(684\) 0 0
\(685\) −653.061 −0.953374
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 548.986 316.957i 0.796786 0.460025i
\(690\) 0 0
\(691\) −300.966 + 521.288i −0.435551 + 0.754397i −0.997340 0.0728836i \(-0.976780\pi\)
0.561789 + 0.827280i \(0.310113\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 477.286 + 275.561i 0.686743 + 0.396491i
\(696\) 0 0
\(697\) −396.959 687.552i −0.569524 0.986445i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 356.605i 0.508709i −0.967111 0.254354i \(-0.918137\pi\)
0.967111 0.254354i \(-0.0818630\pi\)
\(702\) 0 0
\(703\) −17.7801 30.7961i −0.0252918 0.0438067i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 239.813 57.0736i 0.339198 0.0807264i
\(708\) 0 0
\(709\) 136.696 236.764i 0.192801 0.333941i −0.753376 0.657590i \(-0.771576\pi\)
0.946177 + 0.323648i \(0.104909\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 966.229i 1.35516i
\(714\) 0 0
\(715\) 437.552 0.611961
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −844.958 487.836i −1.17518 0.678493i −0.220289 0.975435i \(-0.570700\pi\)
−0.954896 + 0.296942i \(0.904033\pi\)
\(720\) 0 0
\(721\) −233.859 + 221.049i −0.324354 + 0.306586i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 294.391 169.966i 0.406056 0.234437i
\(726\) 0 0
\(727\) −1156.41 −1.59065 −0.795327 0.606181i \(-0.792701\pi\)
−0.795327 + 0.606181i \(0.792701\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −453.332 + 261.731i −0.620153 + 0.358046i
\(732\) 0 0
\(733\) 507.481 878.983i 0.692335 1.19916i −0.278736 0.960368i \(-0.589916\pi\)
0.971071 0.238791i \(-0.0767511\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −633.218 365.588i −0.859183 0.496049i
\(738\) 0 0
\(739\) −304.939 528.171i −0.412638 0.714710i 0.582539 0.812802i \(-0.302059\pi\)
−0.995177 + 0.0980926i \(0.968726\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 709.331i 0.954685i −0.878717 0.477343i \(-0.841600\pi\)
0.878717 0.477343i \(-0.158400\pi\)
\(744\) 0 0
\(745\) −93.3214 161.637i −0.125264 0.216963i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 301.901 + 319.397i 0.403072 + 0.426432i
\(750\) 0 0
\(751\) −660.043 + 1143.23i −0.878886 + 1.52227i −0.0263204 + 0.999654i \(0.508379\pi\)
−0.852565 + 0.522621i \(0.824954\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1405.13i 1.86110i
\(756\) 0 0
\(757\) −1462.13 −1.93148 −0.965739 0.259515i \(-0.916437\pi\)
−0.965739 + 0.259515i \(0.916437\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −32.2297 18.6078i −0.0423517 0.0244518i 0.478675 0.877992i \(-0.341117\pi\)
−0.521026 + 0.853541i \(0.674451\pi\)
\(762\) 0 0
\(763\) 286.287 + 1202.93i 0.375212 + 1.57657i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 506.082 292.187i 0.659820 0.380947i
\(768\) 0 0
\(769\) −1292.41 −1.68064 −0.840319 0.542092i \(-0.817633\pi\)
−0.840319 + 0.542092i \(0.817633\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 427.371 246.743i 0.552873 0.319201i −0.197407 0.980322i \(-0.563252\pi\)
0.750280 + 0.661120i \(0.229919\pi\)
\(774\) 0 0
\(775\) −123.619 + 214.115i −0.159509 + 0.276277i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 209.368 + 120.879i 0.268765 + 0.155172i
\(780\) 0 0
\(781\) −195.671 338.913i −0.250539 0.433947i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 599.498i 0.763692i
\(786\) 0 0
\(787\) −533.606 924.233i −0.678025 1.17437i −0.975575 0.219668i \(-0.929503\pi\)
0.297549 0.954706i \(-0.403831\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 138.157 463.051i 0.174661 0.585400i
\(792\) 0 0
\(793\) 170.859 295.936i 0.215458 0.373185i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 915.049i 1.14812i 0.818815 + 0.574058i \(0.194632\pi\)
−0.818815 + 0.574058i \(0.805368\pi\)
\(798\) 0 0
\(799\) −495.535 −0.620194
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −759.885 438.720i −0.946308 0.546351i
\(804\) 0 0
\(805\) −352.691 1481.94i −0.438125 1.84092i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −709.030 + 409.358i −0.876427 + 0.506006i −0.869479 0.493970i \(-0.835545\pi\)
−0.00694855 + 0.999976i \(0.502212\pi\)
\(810\) 0 0
\(811\) 1355.39 1.67126 0.835631 0.549291i \(-0.185102\pi\)
0.835631 + 0.549291i \(0.185102\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −1024.69 + 591.605i −1.25729 + 0.725896i
\(816\) 0 0
\(817\) 79.7005 138.045i 0.0975526 0.168966i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −673.145 388.640i −0.819908 0.473374i 0.0304765 0.999535i \(-0.490298\pi\)
−0.850385 + 0.526161i \(0.823631\pi\)
\(822\) 0 0
\(823\) 483.838 + 838.032i 0.587895 + 1.01826i 0.994508 + 0.104664i \(0.0333766\pi\)
−0.406612 + 0.913601i \(0.633290\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1320.39i 1.59660i −0.602257 0.798302i \(-0.705732\pi\)
0.602257 0.798302i \(-0.294268\pi\)
\(828\) 0 0
\(829\) 41.7309 + 72.2800i 0.0503388 + 0.0871894i 0.890097 0.455771i \(-0.150637\pi\)
−0.839758 + 0.542961i \(0.817303\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −792.508 44.6716i −0.951390 0.0536274i
\(834\) 0 0
\(835\) −274.756 + 475.891i −0.329049 + 0.569929i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 650.213i 0.774986i −0.921873 0.387493i \(-0.873341\pi\)
0.921873 0.387493i \(-0.126659\pi\)
\(840\) 0 0
\(841\) −444.054 −0.528007
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 519.642 + 300.016i 0.614961 + 0.355048i
\(846\) 0 0
\(847\) −192.838 + 182.275i −0.227672 + 0.215200i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 231.361 133.577i 0.271870 0.156964i
\(852\) 0 0
\(853\) −96.7015 −0.113366 −0.0566832 0.998392i \(-0.518052\pi\)
−0.0566832 + 0.998392i \(0.518052\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1153.36 + 665.891i −1.34581 + 0.777002i −0.987653 0.156660i \(-0.949927\pi\)
−0.358154 + 0.933662i \(0.616594\pi\)
\(858\) 0 0
\(859\) 293.029 507.542i 0.341129 0.590852i −0.643514 0.765434i \(-0.722524\pi\)
0.984643 + 0.174582i \(0.0558575\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −492.769 284.500i −0.570995 0.329664i 0.186552 0.982445i \(-0.440269\pi\)
−0.757547 + 0.652781i \(0.773602\pi\)
\(864\) 0 0
\(865\) −422.762 732.246i −0.488742 0.846527i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 987.388i 1.13623i
\(870\) 0 0
\(871\) 327.837 + 567.831i 0.376392 + 0.651930i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −182.364 + 611.219i −0.208416 + 0.698536i
\(876\) 0 0
\(877\) 627.891 1087.54i 0.715953 1.24007i −0.246638 0.969108i \(-0.579326\pi\)
0.962591 0.270959i \(-0.0873409\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 715.846i 0.812538i 0.913754 + 0.406269i \(0.133170\pi\)
−0.913754 + 0.406269i \(0.866830\pi\)
\(882\) 0 0
\(883\) 462.652 0.523955 0.261977 0.965074i \(-0.415625\pi\)
0.261977 + 0.965074i \(0.415625\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 329.401 + 190.180i 0.371365 + 0.214408i 0.674055 0.738681i \(-0.264551\pi\)
−0.302689 + 0.953089i \(0.597884\pi\)
\(888\) 0 0
\(889\) −124.929 37.2740i −0.140527 0.0419280i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 130.680 75.4483i 0.146338 0.0844886i
\(894\) 0 0
\(895\) −1688.55 −1.88664
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 809.422 467.320i 0.900358 0.519822i
\(900\) 0 0
\(901\) −628.129 + 1087.95i −0.697147 + 1.20749i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 920.164 + 531.257i 1.01676 + 0.587024i
\(906\) 0 0
\(907\) −480.774 832.725i −0.530071 0.918109i −0.999385 0.0350779i \(-0.988832\pi\)
0.469314 0.883031i \(-0.344501\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 666.377i 0.731478i 0.930717 + 0.365739i \(0.119184\pi\)
−0.930717 + 0.365739i \(0.880816\pi\)
\(912\) 0 0
\(913\) −439.270 760.837i −0.481128 0.833338i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −772.300 817.058i −0.842203 0.891012i
\(918\) 0 0
\(919\) −272.734 + 472.389i −0.296773 + 0.514025i −0.975396 0.220462i \(-0.929244\pi\)
0.678623 + 0.734487i \(0.262577\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 350.932i 0.380208i
\(924\) 0 0
\(925\) 68.3592 0.0739018
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1086.77 + 627.445i 1.16982 + 0.675399i 0.953639 0.300954i \(-0.0973049\pi\)
0.216186 + 0.976352i \(0.430638\pi\)
\(930\) 0 0
\(931\) 215.798 108.884i 0.231792 0.116953i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −750.947 + 433.560i −0.803152 + 0.463700i
\(936\) 0 0
\(937\) 250.164 0.266984 0.133492 0.991050i \(-0.457381\pi\)
0.133492 + 0.991050i \(0.457381\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1290.84 745.265i 1.37177 0.791992i 0.380620 0.924732i \(-0.375711\pi\)
0.991151 + 0.132739i \(0.0423773\pi\)
\(942\) 0 0
\(943\) −908.124 + 1572.92i −0.963016 + 1.66799i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 285.236 + 164.681i 0.301200 + 0.173898i 0.642982 0.765881i \(-0.277697\pi\)
−0.341782 + 0.939779i \(0.611030\pi\)
\(948\) 0 0
\(949\) 393.417 + 681.418i 0.414560 + 0.718038i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1230.89i 1.29159i −0.763509 0.645797i \(-0.776525\pi\)
0.763509 0.645797i \(-0.223475\pi\)
\(954\) 0 0
\(955\) −666.490 1154.40i −0.697896 1.20879i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 757.334 180.239i 0.789712 0.187945i
\(960\) 0 0
\(961\) 140.611 243.545i 0.146317 0.253429i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1901.94i 1.97093i
\(966\) 0 0
\(967\) −671.972 −0.694904 −0.347452 0.937698i \(-0.612953\pi\)
−0.347452 + 0.937698i \(0.612953\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 476.719 + 275.234i 0.490957 + 0.283454i 0.724971 0.688779i \(-0.241853\pi\)
−0.234014 + 0.972233i \(0.575186\pi\)
\(972\) 0 0
\(973\) −629.546 187.833i −0.647016 0.193045i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −253.982 + 146.637i −0.259961 + 0.150089i −0.624317 0.781171i \(-0.714623\pi\)
0.364356 + 0.931260i \(0.381289\pi\)
\(978\) 0 0
\(979\) 1089.08 1.11245
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1128.68 651.646i 1.14820 0.662916i 0.199755 0.979846i \(-0.435985\pi\)
0.948449 + 0.316930i \(0.102652\pi\)
\(984\) 0 0
\(985\) 567.262 982.527i 0.575901 0.997490i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1037.09 + 598.764i 1.04863 + 0.605424i
\(990\) 0 0
\(991\) −395.105 684.343i −0.398694 0.690558i 0.594871 0.803821i \(-0.297203\pi\)
−0.993565 + 0.113263i \(0.963870\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1325.15i 1.33181i
\(996\) 0 0
\(997\) −762.395 1320.51i −0.764690 1.32448i −0.940411 0.340041i \(-0.889559\pi\)
0.175721 0.984440i \(-0.443774\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 756.3.bk.f.485.2 yes 12
3.2 odd 2 inner 756.3.bk.f.485.5 yes 12
7.4 even 3 inner 756.3.bk.f.53.5 yes 12
21.11 odd 6 inner 756.3.bk.f.53.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
756.3.bk.f.53.2 12 21.11 odd 6 inner
756.3.bk.f.53.5 yes 12 7.4 even 3 inner
756.3.bk.f.485.2 yes 12 1.1 even 1 trivial
756.3.bk.f.485.5 yes 12 3.2 odd 2 inner