Properties

Label 756.2.bi.c.559.32
Level $756$
Weight $2$
Character 756.559
Analytic conductor $6.037$
Analytic rank $0$
Dimension $80$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [756,2,Mod(307,756)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("756.307"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 2, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 756.bi (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [80,6,0,-2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.03669039281\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(40\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 559.32
Character \(\chi\) \(=\) 756.559
Dual form 756.2.bi.c.307.32

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.13617 - 0.842090i) q^{2} +(0.581768 - 1.91352i) q^{4} +(1.43245 - 0.827025i) q^{5} +(-0.0302588 - 2.64558i) q^{7} +(-0.950366 - 2.66398i) q^{8} +(0.931077 - 2.14589i) q^{10} +(-4.24842 - 2.45282i) q^{11} +(0.876334 - 0.505952i) q^{13} +(-2.26220 - 2.98035i) q^{14} +(-3.32309 - 2.22644i) q^{16} +7.66107i q^{17} +2.85119 q^{19} +(-0.749173 - 3.22215i) q^{20} +(-6.89242 + 0.790723i) q^{22} +(-1.98118 + 1.14384i) q^{23} +(-1.13206 + 1.96079i) q^{25} +(0.569608 - 1.31280i) q^{26} +(-5.07996 - 1.48121i) q^{28} +(4.19857 - 7.27213i) q^{29} +(-0.348784 - 0.604112i) q^{31} +(-5.65047 + 0.268722i) q^{32} +(6.45131 + 8.70428i) q^{34} +(-2.23130 - 3.76463i) q^{35} +3.97490 q^{37} +(3.23944 - 2.40096i) q^{38} +(-3.56453 - 3.03004i) q^{40} +(6.69947 - 3.86794i) q^{41} +(6.70811 + 3.87293i) q^{43} +(-7.16511 + 6.70244i) q^{44} +(-1.28775 + 2.96793i) q^{46} +(3.70722 - 6.42109i) q^{47} +(-6.99817 + 0.160104i) q^{49} +(0.364945 + 3.18108i) q^{50} +(-0.458324 - 1.97123i) q^{52} +8.61878 q^{53} -8.11418 q^{55} +(-7.01902 + 2.59488i) q^{56} +(-1.35350 - 11.7980i) q^{58} +(2.54378 + 4.40596i) q^{59} +(-5.12759 - 2.96042i) q^{61} +(-0.904996 - 0.392667i) q^{62} +(-6.19361 + 5.06352i) q^{64} +(0.836869 - 1.44950i) q^{65} +(-2.18590 + 1.26203i) q^{67} +(14.6596 + 4.45696i) q^{68} +(-5.70530 - 2.39830i) q^{70} -1.00362i q^{71} +5.89658i q^{73} +(4.51617 - 3.34723i) q^{74} +(1.65873 - 5.45580i) q^{76} +(-6.36058 + 11.3137i) q^{77} +(-4.90752 - 2.83336i) q^{79} +(-6.60149 - 0.440989i) q^{80} +(4.35458 - 10.0362i) q^{82} +(-1.20736 + 2.09120i) q^{83} +(6.33589 + 10.9741i) q^{85} +(10.8829 - 1.24853i) q^{86} +(-2.49673 + 13.6488i) q^{88} -8.19734i q^{89} +(-1.36505 - 2.30310i) q^{91} +(1.03616 + 4.45647i) q^{92} +(-1.19511 - 10.4173i) q^{94} +(4.08418 - 2.35800i) q^{95} +(8.82136 + 5.09301i) q^{97} +(-7.81629 + 6.07500i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 6 q^{2} - 2 q^{4} + 24 q^{8} - 10 q^{14} - 18 q^{16} - 14 q^{22} + 32 q^{25} + 28 q^{28} - 8 q^{29} + 16 q^{32} - 16 q^{37} + 84 q^{44} + 24 q^{46} - 24 q^{49} + 12 q^{50} + 48 q^{53} - 32 q^{56}+ \cdots - 20 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/756\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\) \(379\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.13617 0.842090i 0.803394 0.595448i
\(3\) 0 0
\(4\) 0.581768 1.91352i 0.290884 0.956758i
\(5\) 1.43245 0.827025i 0.640611 0.369857i −0.144239 0.989543i \(-0.546073\pi\)
0.784850 + 0.619686i \(0.212740\pi\)
\(6\) 0 0
\(7\) −0.0302588 2.64558i −0.0114368 0.999935i
\(8\) −0.950366 2.66398i −0.336005 0.941860i
\(9\) 0 0
\(10\) 0.931077 2.14589i 0.294432 0.678591i
\(11\) −4.24842 2.45282i −1.28095 0.739554i −0.303924 0.952696i \(-0.598297\pi\)
−0.977021 + 0.213142i \(0.931630\pi\)
\(12\) 0 0
\(13\) 0.876334 0.505952i 0.243051 0.140326i −0.373527 0.927619i \(-0.621852\pi\)
0.616578 + 0.787294i \(0.288518\pi\)
\(14\) −2.26220 2.98035i −0.604597 0.796531i
\(15\) 0 0
\(16\) −3.32309 2.22644i −0.830773 0.556611i
\(17\) 7.66107i 1.85808i 0.369976 + 0.929041i \(0.379366\pi\)
−0.369976 + 0.929041i \(0.620634\pi\)
\(18\) 0 0
\(19\) 2.85119 0.654108 0.327054 0.945006i \(-0.393944\pi\)
0.327054 + 0.945006i \(0.393944\pi\)
\(20\) −0.749173 3.22215i −0.167520 0.720495i
\(21\) 0 0
\(22\) −6.89242 + 0.790723i −1.46947 + 0.168583i
\(23\) −1.98118 + 1.14384i −0.413105 + 0.238506i −0.692123 0.721780i \(-0.743324\pi\)
0.279018 + 0.960286i \(0.409991\pi\)
\(24\) 0 0
\(25\) −1.13206 + 1.96079i −0.226412 + 0.392157i
\(26\) 0.569608 1.31280i 0.111709 0.257461i
\(27\) 0 0
\(28\) −5.07996 1.48121i −0.960023 0.279923i
\(29\) 4.19857 7.27213i 0.779654 1.35040i −0.152486 0.988306i \(-0.548728\pi\)
0.932141 0.362096i \(-0.117939\pi\)
\(30\) 0 0
\(31\) −0.348784 0.604112i −0.0626435 0.108502i 0.833003 0.553269i \(-0.186620\pi\)
−0.895646 + 0.444767i \(0.853286\pi\)
\(32\) −5.65047 + 0.268722i −0.998871 + 0.0475038i
\(33\) 0 0
\(34\) 6.45131 + 8.70428i 1.10639 + 1.49277i
\(35\) −2.23130 3.76463i −0.377159 0.636339i
\(36\) 0 0
\(37\) 3.97490 0.653470 0.326735 0.945116i \(-0.394051\pi\)
0.326735 + 0.945116i \(0.394051\pi\)
\(38\) 3.23944 2.40096i 0.525506 0.389487i
\(39\) 0 0
\(40\) −3.56453 3.03004i −0.563602 0.479092i
\(41\) 6.69947 3.86794i 1.04628 0.604071i 0.124675 0.992198i \(-0.460211\pi\)
0.921606 + 0.388127i \(0.126878\pi\)
\(42\) 0 0
\(43\) 6.70811 + 3.87293i 1.02298 + 0.590617i 0.914965 0.403533i \(-0.132218\pi\)
0.108013 + 0.994150i \(0.465551\pi\)
\(44\) −7.16511 + 6.70244i −1.08018 + 1.01043i
\(45\) 0 0
\(46\) −1.28775 + 2.96793i −0.189868 + 0.437597i
\(47\) 3.70722 6.42109i 0.540754 0.936613i −0.458107 0.888897i \(-0.651472\pi\)
0.998861 0.0477158i \(-0.0151942\pi\)
\(48\) 0 0
\(49\) −6.99817 + 0.160104i −0.999738 + 0.0228720i
\(50\) 0.364945 + 3.18108i 0.0516110 + 0.449873i
\(51\) 0 0
\(52\) −0.458324 1.97123i −0.0635581 0.273360i
\(53\) 8.61878 1.18388 0.591940 0.805982i \(-0.298362\pi\)
0.591940 + 0.805982i \(0.298362\pi\)
\(54\) 0 0
\(55\) −8.11418 −1.09412
\(56\) −7.01902 + 2.59488i −0.937956 + 0.346755i
\(57\) 0 0
\(58\) −1.35350 11.7980i −0.177724 1.54915i
\(59\) 2.54378 + 4.40596i 0.331172 + 0.573607i 0.982742 0.184981i \(-0.0592225\pi\)
−0.651570 + 0.758589i \(0.725889\pi\)
\(60\) 0 0
\(61\) −5.12759 2.96042i −0.656521 0.379042i 0.134429 0.990923i \(-0.457080\pi\)
−0.790950 + 0.611881i \(0.790413\pi\)
\(62\) −0.904996 0.392667i −0.114935 0.0498687i
\(63\) 0 0
\(64\) −6.19361 + 5.06352i −0.774201 + 0.632940i
\(65\) 0.836869 1.44950i 0.103801 0.179788i
\(66\) 0 0
\(67\) −2.18590 + 1.26203i −0.267051 + 0.154182i −0.627547 0.778579i \(-0.715941\pi\)
0.360496 + 0.932761i \(0.382607\pi\)
\(68\) 14.6596 + 4.45696i 1.77774 + 0.540486i
\(69\) 0 0
\(70\) −5.70530 2.39830i −0.681914 0.286652i
\(71\) 1.00362i 0.119108i −0.998225 0.0595539i \(-0.981032\pi\)
0.998225 0.0595539i \(-0.0189678\pi\)
\(72\) 0 0
\(73\) 5.89658i 0.690142i 0.938577 + 0.345071i \(0.112145\pi\)
−0.938577 + 0.345071i \(0.887855\pi\)
\(74\) 4.51617 3.34723i 0.524994 0.389107i
\(75\) 0 0
\(76\) 1.65873 5.45580i 0.190269 0.625823i
\(77\) −6.36058 + 11.3137i −0.724856 + 1.28932i
\(78\) 0 0
\(79\) −4.90752 2.83336i −0.552139 0.318778i 0.197845 0.980233i \(-0.436606\pi\)
−0.749984 + 0.661456i \(0.769939\pi\)
\(80\) −6.60149 0.440989i −0.738069 0.0493041i
\(81\) 0 0
\(82\) 4.35458 10.0362i 0.480883 1.10831i
\(83\) −1.20736 + 2.09120i −0.132525 + 0.229539i −0.924649 0.380820i \(-0.875642\pi\)
0.792125 + 0.610359i \(0.208975\pi\)
\(84\) 0 0
\(85\) 6.33589 + 10.9741i 0.687224 + 1.19031i
\(86\) 10.8829 1.24853i 1.17354 0.134632i
\(87\) 0 0
\(88\) −2.49673 + 13.6488i −0.266152 + 1.45497i
\(89\) 8.19734i 0.868916i −0.900692 0.434458i \(-0.856940\pi\)
0.900692 0.434458i \(-0.143060\pi\)
\(90\) 0 0
\(91\) −1.36505 2.30310i −0.143096 0.241431i
\(92\) 1.03616 + 4.45647i 0.108027 + 0.464619i
\(93\) 0 0
\(94\) −1.19511 10.4173i −0.123266 1.07446i
\(95\) 4.08418 2.35800i 0.419028 0.241926i
\(96\) 0 0
\(97\) 8.82136 + 5.09301i 0.895673 + 0.517117i 0.875794 0.482685i \(-0.160338\pi\)
0.0198794 + 0.999802i \(0.493672\pi\)
\(98\) −7.81629 + 6.07500i −0.789565 + 0.613667i
\(99\) 0 0
\(100\) 3.09340 + 3.30694i 0.309340 + 0.330694i
\(101\) 0.846450 + 0.488698i 0.0842249 + 0.0486273i 0.541521 0.840687i \(-0.317849\pi\)
−0.457296 + 0.889315i \(0.651182\pi\)
\(102\) 0 0
\(103\) 6.53514 + 11.3192i 0.643926 + 1.11531i 0.984548 + 0.175113i \(0.0560290\pi\)
−0.340622 + 0.940200i \(0.610638\pi\)
\(104\) −2.18068 1.85370i −0.213834 0.181770i
\(105\) 0 0
\(106\) 9.79241 7.25779i 0.951122 0.704939i
\(107\) 1.03143i 0.0997116i −0.998756 0.0498558i \(-0.984124\pi\)
0.998756 0.0498558i \(-0.0158762\pi\)
\(108\) 0 0
\(109\) −0.842410 −0.0806882 −0.0403441 0.999186i \(-0.512845\pi\)
−0.0403441 + 0.999186i \(0.512845\pi\)
\(110\) −9.21910 + 6.83288i −0.879007 + 0.651489i
\(111\) 0 0
\(112\) −5.78968 + 8.85887i −0.547073 + 0.837085i
\(113\) −3.19162 5.52804i −0.300242 0.520035i 0.675949 0.736949i \(-0.263734\pi\)
−0.976191 + 0.216914i \(0.930401\pi\)
\(114\) 0 0
\(115\) −1.89196 + 3.27697i −0.176426 + 0.305579i
\(116\) −11.4728 12.2647i −1.06522 1.13875i
\(117\) 0 0
\(118\) 6.60039 + 2.86383i 0.607615 + 0.263637i
\(119\) 20.2680 0.231815i 1.85796 0.0212505i
\(120\) 0 0
\(121\) 6.53269 + 11.3149i 0.593881 + 1.02863i
\(122\) −8.31875 + 0.954356i −0.753145 + 0.0864034i
\(123\) 0 0
\(124\) −1.35889 + 0.315952i −0.122032 + 0.0283733i
\(125\) 12.0152i 1.07467i
\(126\) 0 0
\(127\) 17.9070i 1.58899i −0.607272 0.794494i \(-0.707736\pi\)
0.607272 0.794494i \(-0.292264\pi\)
\(128\) −2.77306 + 10.9686i −0.245106 + 0.969496i
\(129\) 0 0
\(130\) −0.269784 2.35160i −0.0236616 0.206249i
\(131\) 5.02346 + 8.70089i 0.438902 + 0.760200i 0.997605 0.0691675i \(-0.0220343\pi\)
−0.558703 + 0.829368i \(0.688701\pi\)
\(132\) 0 0
\(133\) −0.0862737 7.54305i −0.00748088 0.654065i
\(134\) −1.42081 + 3.27461i −0.122740 + 0.282883i
\(135\) 0 0
\(136\) 20.4090 7.28082i 1.75005 0.624325i
\(137\) −1.97707 + 3.42439i −0.168913 + 0.292566i −0.938038 0.346533i \(-0.887359\pi\)
0.769125 + 0.639098i \(0.220692\pi\)
\(138\) 0 0
\(139\) 4.85060 + 8.40148i 0.411422 + 0.712605i 0.995046 0.0994201i \(-0.0316988\pi\)
−0.583623 + 0.812025i \(0.698365\pi\)
\(140\) −8.50178 + 2.07949i −0.718532 + 0.175749i
\(141\) 0 0
\(142\) −0.845139 1.14028i −0.0709225 0.0956905i
\(143\) −4.96404 −0.415114
\(144\) 0 0
\(145\) 13.8893i 1.15344i
\(146\) 4.96545 + 6.69952i 0.410944 + 0.554456i
\(147\) 0 0
\(148\) 2.31247 7.60605i 0.190084 0.625213i
\(149\) 3.46856 + 6.00773i 0.284156 + 0.492172i 0.972404 0.233303i \(-0.0749534\pi\)
−0.688248 + 0.725475i \(0.741620\pi\)
\(150\) 0 0
\(151\) 10.8500 + 6.26427i 0.882964 + 0.509779i 0.871635 0.490156i \(-0.163060\pi\)
0.0113294 + 0.999936i \(0.496394\pi\)
\(152\) −2.70967 7.59552i −0.219784 0.616078i
\(153\) 0 0
\(154\) 2.30048 + 18.2105i 0.185378 + 1.46745i
\(155\) −0.999232 0.576907i −0.0802602 0.0463383i
\(156\) 0 0
\(157\) −1.44619 + 0.834956i −0.115418 + 0.0666367i −0.556598 0.830782i \(-0.687894\pi\)
0.441180 + 0.897419i \(0.354560\pi\)
\(158\) −7.96173 + 0.913397i −0.633401 + 0.0726659i
\(159\) 0 0
\(160\) −7.87177 + 5.05801i −0.622318 + 0.399871i
\(161\) 3.08606 + 5.20676i 0.243215 + 0.410350i
\(162\) 0 0
\(163\) 7.06914i 0.553698i 0.960913 + 0.276849i \(0.0892901\pi\)
−0.960913 + 0.276849i \(0.910710\pi\)
\(164\) −3.50383 15.0698i −0.273603 1.17675i
\(165\) 0 0
\(166\) 0.389218 + 3.39266i 0.0302092 + 0.263322i
\(167\) −0.578614 1.00219i −0.0447745 0.0775518i 0.842770 0.538274i \(-0.180924\pi\)
−0.887544 + 0.460723i \(0.847590\pi\)
\(168\) 0 0
\(169\) −5.98803 + 10.3716i −0.460617 + 0.797813i
\(170\) 16.4398 + 7.13305i 1.26088 + 0.547080i
\(171\) 0 0
\(172\) 11.3135 10.5829i 0.862645 0.806942i
\(173\) −1.30347 0.752561i −0.0991013 0.0572162i 0.449630 0.893215i \(-0.351556\pi\)
−0.548732 + 0.835999i \(0.684889\pi\)
\(174\) 0 0
\(175\) 5.22167 + 2.93562i 0.394721 + 0.221912i
\(176\) 8.65680 + 17.6098i 0.652531 + 1.32739i
\(177\) 0 0
\(178\) −6.90290 9.31357i −0.517394 0.698082i
\(179\) 1.28088i 0.0957374i −0.998854 0.0478687i \(-0.984757\pi\)
0.998854 0.0478687i \(-0.0152429\pi\)
\(180\) 0 0
\(181\) 26.6202i 1.97866i 0.145683 + 0.989331i \(0.453462\pi\)
−0.145683 + 0.989331i \(0.546538\pi\)
\(182\) −3.49035 1.46722i −0.258722 0.108757i
\(183\) 0 0
\(184\) 4.93001 + 4.19077i 0.363445 + 0.308948i
\(185\) 5.69385 3.28734i 0.418620 0.241690i
\(186\) 0 0
\(187\) 18.7913 32.5474i 1.37415 2.38010i
\(188\) −10.1301 10.8294i −0.738815 0.789816i
\(189\) 0 0
\(190\) 2.65468 6.11835i 0.192591 0.443872i
\(191\) −7.44229 4.29681i −0.538506 0.310906i 0.205968 0.978559i \(-0.433966\pi\)
−0.744473 + 0.667653i \(0.767299\pi\)
\(192\) 0 0
\(193\) −3.80654 6.59312i −0.274001 0.474583i 0.695882 0.718156i \(-0.255014\pi\)
−0.969882 + 0.243573i \(0.921680\pi\)
\(194\) 14.3113 1.64185i 1.02749 0.117878i
\(195\) 0 0
\(196\) −3.76495 + 13.4843i −0.268925 + 0.963161i
\(197\) −14.3946 −1.02557 −0.512786 0.858517i \(-0.671386\pi\)
−0.512786 + 0.858517i \(0.671386\pi\)
\(198\) 0 0
\(199\) −21.9194 −1.55382 −0.776911 0.629610i \(-0.783215\pi\)
−0.776911 + 0.629610i \(0.783215\pi\)
\(200\) 6.29937 + 1.15232i 0.445433 + 0.0814816i
\(201\) 0 0
\(202\) 1.37324 0.157543i 0.0966208 0.0110847i
\(203\) −19.3660 10.8876i −1.35923 0.764159i
\(204\) 0 0
\(205\) 6.39776 11.0813i 0.446839 0.773948i
\(206\) 16.9568 + 7.35736i 1.18144 + 0.512611i
\(207\) 0 0
\(208\) −4.03861 0.269785i −0.280027 0.0187062i
\(209\) −12.1130 6.99347i −0.837876 0.483748i
\(210\) 0 0
\(211\) −1.45464 + 0.839838i −0.100142 + 0.0578168i −0.549234 0.835668i \(-0.685081\pi\)
0.449093 + 0.893485i \(0.351747\pi\)
\(212\) 5.01413 16.4922i 0.344372 1.13269i
\(213\) 0 0
\(214\) −0.868553 1.17188i −0.0593731 0.0801077i
\(215\) 12.8120 0.873774
\(216\) 0 0
\(217\) −1.58767 + 0.941016i −0.107778 + 0.0638803i
\(218\) −0.957121 + 0.709385i −0.0648244 + 0.0480456i
\(219\) 0 0
\(220\) −4.72057 + 15.5266i −0.318261 + 1.04680i
\(221\) 3.87613 + 6.71366i 0.260737 + 0.451609i
\(222\) 0 0
\(223\) −4.09002 + 7.08413i −0.273888 + 0.474388i −0.969854 0.243687i \(-0.921643\pi\)
0.695966 + 0.718075i \(0.254977\pi\)
\(224\) 0.881903 + 14.9406i 0.0589246 + 0.998262i
\(225\) 0 0
\(226\) −8.28133 3.59317i −0.550866 0.239014i
\(227\) −13.5064 + 23.3937i −0.896450 + 1.55270i −0.0644498 + 0.997921i \(0.520529\pi\)
−0.832000 + 0.554776i \(0.812804\pi\)
\(228\) 0 0
\(229\) 10.4216 6.01689i 0.688677 0.397608i −0.114439 0.993430i \(-0.536507\pi\)
0.803116 + 0.595823i \(0.203174\pi\)
\(230\) 0.609916 + 5.31640i 0.0402167 + 0.350553i
\(231\) 0 0
\(232\) −23.3630 4.27372i −1.53386 0.280584i
\(233\) −12.9746 −0.849992 −0.424996 0.905195i \(-0.639724\pi\)
−0.424996 + 0.905195i \(0.639724\pi\)
\(234\) 0 0
\(235\) 12.2639i 0.800005i
\(236\) 9.91077 2.30433i 0.645136 0.149999i
\(237\) 0 0
\(238\) 22.8327 17.3308i 1.48002 1.12339i
\(239\) −5.65067 + 3.26242i −0.365512 + 0.211028i −0.671496 0.741008i \(-0.734348\pi\)
0.305984 + 0.952037i \(0.401015\pi\)
\(240\) 0 0
\(241\) −20.0162 11.5564i −1.28936 0.744410i −0.310817 0.950470i \(-0.600603\pi\)
−0.978539 + 0.206059i \(0.933936\pi\)
\(242\) 16.9505 + 7.35460i 1.08962 + 0.472772i
\(243\) 0 0
\(244\) −8.64787 + 8.08945i −0.553623 + 0.517874i
\(245\) −9.89211 + 6.01700i −0.631984 + 0.384412i
\(246\) 0 0
\(247\) 2.49859 1.44256i 0.158982 0.0917881i
\(248\) −1.27787 + 1.50328i −0.0811449 + 0.0954586i
\(249\) 0 0
\(250\) 10.1179 + 13.6513i 0.639912 + 0.863386i
\(251\) −5.55147 −0.350406 −0.175203 0.984532i \(-0.556058\pi\)
−0.175203 + 0.984532i \(0.556058\pi\)
\(252\) 0 0
\(253\) 11.2225 0.705553
\(254\) −15.0793 20.3454i −0.946159 1.27658i
\(255\) 0 0
\(256\) 6.08589 + 14.7974i 0.380368 + 0.924835i
\(257\) 16.9652 9.79486i 1.05826 0.610987i 0.133309 0.991074i \(-0.457440\pi\)
0.924950 + 0.380088i \(0.124106\pi\)
\(258\) 0 0
\(259\) −0.120276 10.5159i −0.00747359 0.653428i
\(260\) −2.28678 2.44464i −0.141820 0.151610i
\(261\) 0 0
\(262\) 13.0344 + 5.65549i 0.805270 + 0.349397i
\(263\) 11.4745 + 6.62480i 0.707548 + 0.408503i 0.810152 0.586219i \(-0.199384\pi\)
−0.102605 + 0.994722i \(0.532718\pi\)
\(264\) 0 0
\(265\) 12.3460 7.12794i 0.758406 0.437866i
\(266\) −6.44995 8.49754i −0.395472 0.521017i
\(267\) 0 0
\(268\) 1.14323 + 4.91697i 0.0698339 + 0.300352i
\(269\) 23.5318i 1.43476i −0.696683 0.717379i \(-0.745342\pi\)
0.696683 0.717379i \(-0.254658\pi\)
\(270\) 0 0
\(271\) 20.2947 1.23281 0.616406 0.787428i \(-0.288588\pi\)
0.616406 + 0.787428i \(0.288588\pi\)
\(272\) 17.0569 25.4584i 1.03423 1.54364i
\(273\) 0 0
\(274\) 0.637354 + 5.55557i 0.0385040 + 0.335624i
\(275\) 9.61892 5.55349i 0.580043 0.334888i
\(276\) 0 0
\(277\) 9.44902 16.3662i 0.567736 0.983348i −0.429053 0.903279i \(-0.641153\pi\)
0.996789 0.0800689i \(-0.0255140\pi\)
\(278\) 12.5859 + 5.46088i 0.754853 + 0.327522i
\(279\) 0 0
\(280\) −7.90836 + 9.52193i −0.472615 + 0.569044i
\(281\) 1.06714 1.84834i 0.0636602 0.110263i −0.832439 0.554117i \(-0.813056\pi\)
0.896099 + 0.443854i \(0.146389\pi\)
\(282\) 0 0
\(283\) 0.122715 + 0.212549i 0.00729468 + 0.0126347i 0.869650 0.493669i \(-0.164345\pi\)
−0.862355 + 0.506304i \(0.831011\pi\)
\(284\) −1.92044 0.583874i −0.113957 0.0346465i
\(285\) 0 0
\(286\) −5.64000 + 4.18017i −0.333500 + 0.247179i
\(287\) −10.4357 17.6069i −0.615997 1.03930i
\(288\) 0 0
\(289\) −41.6920 −2.45247
\(290\) −11.6960 15.7806i −0.686814 0.926668i
\(291\) 0 0
\(292\) 11.2832 + 3.43044i 0.660299 + 0.200751i
\(293\) −9.64296 + 5.56736i −0.563347 + 0.325249i −0.754488 0.656314i \(-0.772115\pi\)
0.191141 + 0.981563i \(0.438781\pi\)
\(294\) 0 0
\(295\) 7.28768 + 4.20754i 0.424305 + 0.244973i
\(296\) −3.77762 10.5891i −0.219569 0.615478i
\(297\) 0 0
\(298\) 8.99993 + 3.90496i 0.521352 + 0.226208i
\(299\) −1.15745 + 2.00476i −0.0669371 + 0.115939i
\(300\) 0 0
\(301\) 10.0432 17.8640i 0.578878 1.02967i
\(302\) 17.6026 2.01943i 1.01291 0.116205i
\(303\) 0 0
\(304\) −9.47477 6.34802i −0.543415 0.364084i
\(305\) −9.79335 −0.560765
\(306\) 0 0
\(307\) −23.3864 −1.33473 −0.667366 0.744730i \(-0.732578\pi\)
−0.667366 + 0.744730i \(0.732578\pi\)
\(308\) 17.9486 + 18.7531i 1.02272 + 1.06855i
\(309\) 0 0
\(310\) −1.62111 + 0.185979i −0.0920726 + 0.0105629i
\(311\) 15.3325 + 26.5567i 0.869428 + 1.50589i 0.862582 + 0.505918i \(0.168846\pi\)
0.00684678 + 0.999977i \(0.497821\pi\)
\(312\) 0 0
\(313\) −13.6566 7.88467i −0.771919 0.445668i 0.0616396 0.998098i \(-0.480367\pi\)
−0.833559 + 0.552431i \(0.813700\pi\)
\(314\) −0.940006 + 2.16647i −0.0530476 + 0.122261i
\(315\) 0 0
\(316\) −8.27672 + 7.74227i −0.465602 + 0.435537i
\(317\) 3.31354 5.73923i 0.186107 0.322347i −0.757842 0.652438i \(-0.773746\pi\)
0.943949 + 0.330091i \(0.107080\pi\)
\(318\) 0 0
\(319\) −35.6745 + 20.5967i −1.99739 + 1.15319i
\(320\) −4.68437 + 12.3755i −0.261864 + 0.691811i
\(321\) 0 0
\(322\) 7.89085 + 3.31703i 0.439740 + 0.184851i
\(323\) 21.8432i 1.21539i
\(324\) 0 0
\(325\) 2.29107i 0.127086i
\(326\) 5.95285 + 8.03175i 0.329698 + 0.444837i
\(327\) 0 0
\(328\) −16.6711 14.1713i −0.920506 0.782479i
\(329\) −17.0997 9.61345i −0.942736 0.530006i
\(330\) 0 0
\(331\) 6.89178 + 3.97897i 0.378807 + 0.218704i 0.677299 0.735708i \(-0.263150\pi\)
−0.298492 + 0.954412i \(0.596484\pi\)
\(332\) 3.29915 + 3.52689i 0.181064 + 0.193563i
\(333\) 0 0
\(334\) −1.50134 0.651413i −0.0821496 0.0356437i
\(335\) −2.08746 + 3.61559i −0.114050 + 0.197541i
\(336\) 0 0
\(337\) −16.0246 27.7555i −0.872918 1.51194i −0.858964 0.512036i \(-0.828891\pi\)
−0.0139542 0.999903i \(-0.504442\pi\)
\(338\) 1.93037 + 16.8263i 0.104999 + 0.915232i
\(339\) 0 0
\(340\) 24.6851 5.73947i 1.33874 0.311266i
\(341\) 3.42203i 0.185313i
\(342\) 0 0
\(343\) 0.635325 + 18.5094i 0.0343043 + 0.999411i
\(344\) 3.94226 21.5510i 0.212552 1.16195i
\(345\) 0 0
\(346\) −2.11469 + 0.242605i −0.113687 + 0.0130425i
\(347\) −2.35072 + 1.35719i −0.126193 + 0.0728576i −0.561768 0.827295i \(-0.689879\pi\)
0.435575 + 0.900153i \(0.356545\pi\)
\(348\) 0 0
\(349\) −0.192902 0.111372i −0.0103258 0.00596160i 0.494828 0.868991i \(-0.335231\pi\)
−0.505154 + 0.863029i \(0.668564\pi\)
\(350\) 8.40476 1.06175i 0.449253 0.0567527i
\(351\) 0 0
\(352\) 24.6647 + 12.7180i 1.31463 + 0.677869i
\(353\) 24.5385 + 14.1673i 1.30605 + 0.754049i 0.981435 0.191796i \(-0.0614312\pi\)
0.324617 + 0.945846i \(0.394765\pi\)
\(354\) 0 0
\(355\) −0.830019 1.43763i −0.0440528 0.0763017i
\(356\) −15.6857 4.76895i −0.831343 0.252754i
\(357\) 0 0
\(358\) −1.07862 1.45530i −0.0570066 0.0769148i
\(359\) 21.8680i 1.15415i 0.816691 + 0.577075i \(0.195806\pi\)
−0.816691 + 0.577075i \(0.804194\pi\)
\(360\) 0 0
\(361\) −10.8707 −0.572143
\(362\) 22.4166 + 30.2451i 1.17819 + 1.58965i
\(363\) 0 0
\(364\) −5.20116 + 1.27218i −0.272615 + 0.0666803i
\(365\) 4.87662 + 8.44655i 0.255254 + 0.442113i
\(366\) 0 0
\(367\) −3.75833 + 6.50962i −0.196183 + 0.339800i −0.947288 0.320384i \(-0.896188\pi\)
0.751104 + 0.660183i \(0.229521\pi\)
\(368\) 9.13034 + 0.609920i 0.475952 + 0.0317943i
\(369\) 0 0
\(370\) 3.70094 8.52972i 0.192403 0.443439i
\(371\) −0.260794 22.8017i −0.0135398 1.18380i
\(372\) 0 0
\(373\) 5.04377 + 8.73606i 0.261156 + 0.452336i 0.966549 0.256480i \(-0.0825629\pi\)
−0.705393 + 0.708816i \(0.749230\pi\)
\(374\) −6.05778 52.8033i −0.313240 2.73040i
\(375\) 0 0
\(376\) −20.6289 3.77358i −1.06385 0.194607i
\(377\) 8.49709i 0.437622i
\(378\) 0 0
\(379\) 20.7129i 1.06395i 0.846761 + 0.531974i \(0.178550\pi\)
−0.846761 + 0.531974i \(0.821450\pi\)
\(380\) −2.13603 9.18696i −0.109576 0.471281i
\(381\) 0 0
\(382\) −12.0740 + 1.38517i −0.617761 + 0.0708716i
\(383\) −12.6923 21.9837i −0.648545 1.12331i −0.983471 0.181068i \(-0.942045\pi\)
0.334926 0.942245i \(-0.391289\pi\)
\(384\) 0 0
\(385\) 0.245526 + 21.4667i 0.0125132 + 1.09404i
\(386\) −9.87688 4.28546i −0.502720 0.218124i
\(387\) 0 0
\(388\) 14.8776 13.9169i 0.755293 0.706522i
\(389\) −15.9336 + 27.5978i −0.807865 + 1.39926i 0.106475 + 0.994315i \(0.466043\pi\)
−0.914340 + 0.404947i \(0.867290\pi\)
\(390\) 0 0
\(391\) −8.76301 15.1780i −0.443164 0.767583i
\(392\) 7.07734 + 18.4908i 0.357460 + 0.933929i
\(393\) 0 0
\(394\) −16.3547 + 12.1215i −0.823938 + 0.610674i
\(395\) −9.37303 −0.471608
\(396\) 0 0
\(397\) 10.3571i 0.519806i −0.965635 0.259903i \(-0.916309\pi\)
0.965635 0.259903i \(-0.0836906\pi\)
\(398\) −24.9041 + 18.4581i −1.24833 + 0.925220i
\(399\) 0 0
\(400\) 8.12752 3.99540i 0.406376 0.199770i
\(401\) −9.69923 16.7996i −0.484356 0.838930i 0.515482 0.856900i \(-0.327613\pi\)
−0.999839 + 0.0179704i \(0.994280\pi\)
\(402\) 0 0
\(403\) −0.611303 0.352936i −0.0304512 0.0175810i
\(404\) 1.42757 1.33539i 0.0710242 0.0664380i
\(405\) 0 0
\(406\) −31.1715 + 3.93779i −1.54701 + 0.195429i
\(407\) −16.8870 9.74974i −0.837060 0.483277i
\(408\) 0 0
\(409\) 14.1825 8.18830i 0.701282 0.404885i −0.106543 0.994308i \(-0.533978\pi\)
0.807825 + 0.589423i \(0.200645\pi\)
\(410\) −2.06246 17.9777i −0.101858 0.887855i
\(411\) 0 0
\(412\) 25.4614 5.91995i 1.25439 0.291655i
\(413\) 11.5793 6.86310i 0.569782 0.337711i
\(414\) 0 0
\(415\) 3.99405i 0.196060i
\(416\) −4.81574 + 3.09435i −0.236111 + 0.151713i
\(417\) 0 0
\(418\) −19.6516 + 2.25450i −0.961192 + 0.110271i
\(419\) −10.4437 18.0890i −0.510209 0.883707i −0.999930 0.0118282i \(-0.996235\pi\)
0.489722 0.871879i \(-0.337098\pi\)
\(420\) 0 0
\(421\) −2.68795 + 4.65567i −0.131003 + 0.226904i −0.924063 0.382239i \(-0.875153\pi\)
0.793061 + 0.609143i \(0.208486\pi\)
\(422\) −0.945502 + 2.17914i −0.0460263 + 0.106079i
\(423\) 0 0
\(424\) −8.19100 22.9603i −0.397790 1.11505i
\(425\) −15.0217 8.67279i −0.728660 0.420692i
\(426\) 0 0
\(427\) −7.67685 + 13.6550i −0.371509 + 0.660813i
\(428\) −1.97365 0.600050i −0.0953999 0.0290045i
\(429\) 0 0
\(430\) 14.5567 10.7889i 0.701985 0.520287i
\(431\) 0.569062i 0.0274108i 0.999906 + 0.0137054i \(0.00436270\pi\)
−0.999906 + 0.0137054i \(0.995637\pi\)
\(432\) 0 0
\(433\) 29.1119i 1.39903i −0.714619 0.699514i \(-0.753400\pi\)
0.714619 0.699514i \(-0.246600\pi\)
\(434\) −1.01145 + 2.40612i −0.0485510 + 0.115497i
\(435\) 0 0
\(436\) −0.490087 + 1.61196i −0.0234709 + 0.0771991i
\(437\) −5.64873 + 3.26129i −0.270215 + 0.156009i
\(438\) 0 0
\(439\) −0.679870 + 1.17757i −0.0324484 + 0.0562023i −0.881794 0.471636i \(-0.843664\pi\)
0.849345 + 0.527838i \(0.176997\pi\)
\(440\) 7.71145 + 21.6160i 0.367629 + 1.03050i
\(441\) 0 0
\(442\) 10.0575 + 4.36381i 0.478384 + 0.207565i
\(443\) −3.04716 1.75928i −0.144775 0.0835858i 0.425863 0.904788i \(-0.359971\pi\)
−0.570638 + 0.821202i \(0.693304\pi\)
\(444\) 0 0
\(445\) −6.77940 11.7423i −0.321374 0.556637i
\(446\) 1.31851 + 11.4929i 0.0624333 + 0.544207i
\(447\) 0 0
\(448\) 13.5833 + 16.2325i 0.641753 + 0.766912i
\(449\) −13.2772 −0.626591 −0.313295 0.949656i \(-0.601433\pi\)
−0.313295 + 0.949656i \(0.601433\pi\)
\(450\) 0 0
\(451\) −37.9495 −1.78697
\(452\) −12.4348 + 2.89118i −0.584883 + 0.135989i
\(453\) 0 0
\(454\) 4.35408 + 37.9529i 0.204347 + 1.78122i
\(455\) −3.86009 2.17014i −0.180964 0.101738i
\(456\) 0 0
\(457\) 11.7494 20.3506i 0.549614 0.951959i −0.448687 0.893689i \(-0.648108\pi\)
0.998301 0.0582701i \(-0.0185584\pi\)
\(458\) 6.77391 15.6121i 0.316524 0.729507i
\(459\) 0 0
\(460\) 5.16986 + 5.52674i 0.241046 + 0.257685i
\(461\) 13.3984 + 7.73555i 0.624024 + 0.360280i 0.778434 0.627726i \(-0.216014\pi\)
−0.154410 + 0.988007i \(0.549348\pi\)
\(462\) 0 0
\(463\) −18.2044 + 10.5103i −0.846031 + 0.488456i −0.859310 0.511456i \(-0.829106\pi\)
0.0132786 + 0.999912i \(0.495773\pi\)
\(464\) −30.1432 + 14.8181i −1.39936 + 0.687913i
\(465\) 0 0
\(466\) −14.7413 + 10.9258i −0.682878 + 0.506126i
\(467\) 29.6578 1.37240 0.686199 0.727414i \(-0.259278\pi\)
0.686199 + 0.727414i \(0.259278\pi\)
\(468\) 0 0
\(469\) 3.40495 + 5.74479i 0.157226 + 0.265270i
\(470\) −10.3273 13.9338i −0.476361 0.642720i
\(471\) 0 0
\(472\) 9.31988 10.9639i 0.428982 0.504653i
\(473\) −18.9992 32.9076i −0.873586 1.51310i
\(474\) 0 0
\(475\) −3.22772 + 5.59057i −0.148098 + 0.256513i
\(476\) 11.3477 38.9179i 0.520119 1.78380i
\(477\) 0 0
\(478\) −3.67288 + 8.46504i −0.167994 + 0.387182i
\(479\) −2.16539 + 3.75057i −0.0989393 + 0.171368i −0.911246 0.411863i \(-0.864878\pi\)
0.812307 + 0.583231i \(0.198212\pi\)
\(480\) 0 0
\(481\) 3.48334 2.01111i 0.158827 0.0916987i
\(482\) −32.4733 + 3.72545i −1.47912 + 0.169690i
\(483\) 0 0
\(484\) 25.4518 5.91773i 1.15690 0.268988i
\(485\) 16.8482 0.765037
\(486\) 0 0
\(487\) 33.3117i 1.50950i −0.656015 0.754748i \(-0.727759\pi\)
0.656015 0.754748i \(-0.272241\pi\)
\(488\) −3.01341 + 16.4733i −0.136411 + 0.745711i
\(489\) 0 0
\(490\) −6.17227 + 15.1664i −0.278835 + 0.685148i
\(491\) 27.8604 16.0852i 1.25732 0.725916i 0.284770 0.958596i \(-0.408083\pi\)
0.972553 + 0.232680i \(0.0747495\pi\)
\(492\) 0 0
\(493\) 55.7123 + 32.1655i 2.50916 + 1.44866i
\(494\) 1.62406 3.74304i 0.0730699 0.168407i
\(495\) 0 0
\(496\) −0.185980 + 2.78407i −0.00835075 + 0.125008i
\(497\) −2.65516 + 0.0303684i −0.119100 + 0.00136221i
\(498\) 0 0
\(499\) 29.5577 17.0652i 1.32319 0.763941i 0.338950 0.940805i \(-0.389928\pi\)
0.984235 + 0.176863i \(0.0565950\pi\)
\(500\) 22.9913 + 6.99007i 1.02820 + 0.312605i
\(501\) 0 0
\(502\) −6.30742 + 4.67484i −0.281514 + 0.208648i
\(503\) −9.76180 −0.435257 −0.217629 0.976032i \(-0.569832\pi\)
−0.217629 + 0.976032i \(0.569832\pi\)
\(504\) 0 0
\(505\) 1.61666 0.0719405
\(506\) 12.7507 9.45037i 0.566837 0.420120i
\(507\) 0 0
\(508\) −34.2653 10.4177i −1.52028 0.462211i
\(509\) −12.0256 + 6.94300i −0.533027 + 0.307743i −0.742248 0.670125i \(-0.766240\pi\)
0.209221 + 0.977868i \(0.432907\pi\)
\(510\) 0 0
\(511\) 15.5999 0.178424i 0.690097 0.00789300i
\(512\) 19.3753 + 11.6875i 0.856276 + 0.516518i
\(513\) 0 0
\(514\) 11.0272 25.4149i 0.486389 1.12100i
\(515\) 18.7225 + 10.8094i 0.825012 + 0.476321i
\(516\) 0 0
\(517\) −31.4996 + 18.1863i −1.38535 + 0.799833i
\(518\) −8.99201 11.8466i −0.395086 0.520510i
\(519\) 0 0
\(520\) −4.65677 0.851849i −0.204213 0.0373561i
\(521\) 15.9160i 0.697291i −0.937255 0.348646i \(-0.886642\pi\)
0.937255 0.348646i \(-0.113358\pi\)
\(522\) 0 0
\(523\) 28.0511 1.22659 0.613294 0.789855i \(-0.289844\pi\)
0.613294 + 0.789855i \(0.289844\pi\)
\(524\) 19.5718 4.55058i 0.854997 0.198793i
\(525\) 0 0
\(526\) 18.6157 2.13565i 0.811682 0.0931189i
\(527\) 4.62815 2.67206i 0.201605 0.116397i
\(528\) 0 0
\(529\) −8.88328 + 15.3863i −0.386229 + 0.668969i
\(530\) 8.02475 18.4950i 0.348573 0.803370i
\(531\) 0 0
\(532\) −14.4839 4.22321i −0.627958 0.183100i
\(533\) 3.91398 6.77921i 0.169533 0.293640i
\(534\) 0 0
\(535\) −0.853014 1.47746i −0.0368790 0.0638763i
\(536\) 5.43944 + 4.62382i 0.234948 + 0.199718i
\(537\) 0 0
\(538\) −19.8159 26.7361i −0.854324 1.15268i
\(539\) 30.1238 + 16.4851i 1.29753 + 0.710063i
\(540\) 0 0
\(541\) 4.98478 0.214313 0.107156 0.994242i \(-0.465825\pi\)
0.107156 + 0.994242i \(0.465825\pi\)
\(542\) 23.0582 17.0899i 0.990434 0.734076i
\(543\) 0 0
\(544\) −2.05870 43.2886i −0.0882661 1.85598i
\(545\) −1.20671 + 0.696694i −0.0516897 + 0.0298431i
\(546\) 0 0
\(547\) −24.9146 14.3844i −1.06527 0.615034i −0.138384 0.990379i \(-0.544191\pi\)
−0.926885 + 0.375345i \(0.877524\pi\)
\(548\) 5.40243 + 5.77536i 0.230780 + 0.246711i
\(549\) 0 0
\(550\) 6.25220 14.4097i 0.266595 0.614432i
\(551\) 11.9709 20.7342i 0.509978 0.883308i
\(552\) 0 0
\(553\) −7.34738 + 13.0690i −0.312442 + 0.555749i
\(554\) −3.04610 26.5517i −0.129417 1.12807i
\(555\) 0 0
\(556\) 18.8983 4.39399i 0.801467 0.186347i
\(557\) 24.8923 1.05472 0.527360 0.849642i \(-0.323182\pi\)
0.527360 + 0.849642i \(0.323182\pi\)
\(558\) 0 0
\(559\) 7.83806 0.331515
\(560\) −0.966917 + 17.4781i −0.0408597 + 0.738584i
\(561\) 0 0
\(562\) −0.344017 2.99866i −0.0145115 0.126491i
\(563\) 5.94575 + 10.2983i 0.250584 + 0.434024i 0.963687 0.267036i \(-0.0860442\pi\)
−0.713103 + 0.701059i \(0.752711\pi\)
\(564\) 0 0
\(565\) −9.14366 5.27909i −0.384677 0.222093i
\(566\) 0.318411 + 0.138155i 0.0133838 + 0.00580708i
\(567\) 0 0
\(568\) −2.67363 + 0.953807i −0.112183 + 0.0400208i
\(569\) −2.96159 + 5.12962i −0.124156 + 0.215045i −0.921403 0.388609i \(-0.872956\pi\)
0.797247 + 0.603654i \(0.206289\pi\)
\(570\) 0 0
\(571\) 28.8922 16.6809i 1.20910 0.698074i 0.246537 0.969133i \(-0.420707\pi\)
0.962563 + 0.271059i \(0.0873739\pi\)
\(572\) −2.88792 + 9.49877i −0.120750 + 0.397164i
\(573\) 0 0
\(574\) −26.6833 11.2167i −1.11374 0.468176i
\(575\) 5.17956i 0.216003i
\(576\) 0 0
\(577\) 29.0803i 1.21063i 0.795987 + 0.605314i \(0.206952\pi\)
−0.795987 + 0.605314i \(0.793048\pi\)
\(578\) −47.3692 + 35.1084i −1.97030 + 1.46032i
\(579\) 0 0
\(580\) −26.5774 8.08034i −1.10357 0.335518i
\(581\) 5.56897 + 3.13088i 0.231040 + 0.129891i
\(582\) 0 0
\(583\) −36.6162 21.1403i −1.51649 0.875544i
\(584\) 15.7084 5.60391i 0.650018 0.231891i
\(585\) 0 0
\(586\) −6.26782 + 14.4457i −0.258921 + 0.596747i
\(587\) −7.47781 + 12.9519i −0.308642 + 0.534584i −0.978066 0.208297i \(-0.933208\pi\)
0.669423 + 0.742881i \(0.266541\pi\)
\(588\) 0 0
\(589\) −0.994450 1.72244i −0.0409756 0.0709718i
\(590\) 11.8232 1.35640i 0.486753 0.0558420i
\(591\) 0 0
\(592\) −13.2090 8.84991i −0.542886 0.363729i
\(593\) 15.6604i 0.643096i −0.946893 0.321548i \(-0.895797\pi\)
0.946893 0.321548i \(-0.104203\pi\)
\(594\) 0 0
\(595\) 28.8411 17.0942i 1.18237 0.700793i
\(596\) 13.5138 3.14205i 0.553546 0.128703i
\(597\) 0 0
\(598\) 0.373130 + 3.25243i 0.0152584 + 0.133002i
\(599\) −33.5225 + 19.3542i −1.36969 + 0.790791i −0.990888 0.134686i \(-0.956997\pi\)
−0.378803 + 0.925477i \(0.623664\pi\)
\(600\) 0 0
\(601\) −22.3109 12.8812i −0.910081 0.525435i −0.0296235 0.999561i \(-0.509431\pi\)
−0.880457 + 0.474126i \(0.842764\pi\)
\(602\) −3.63238 28.7538i −0.148045 1.17192i
\(603\) 0 0
\(604\) 18.2990 17.1174i 0.744576 0.696496i
\(605\) 18.7155 + 10.8054i 0.760893 + 0.439302i
\(606\) 0 0
\(607\) 3.14595 + 5.44895i 0.127690 + 0.221166i 0.922781 0.385324i \(-0.125910\pi\)
−0.795091 + 0.606490i \(0.792577\pi\)
\(608\) −16.1106 + 0.766178i −0.653369 + 0.0310726i
\(609\) 0 0
\(610\) −11.1269 + 8.24688i −0.450516 + 0.333906i
\(611\) 7.50270i 0.303527i
\(612\) 0 0
\(613\) 22.1645 0.895217 0.447608 0.894230i \(-0.352276\pi\)
0.447608 + 0.894230i \(0.352276\pi\)
\(614\) −26.5710 + 19.6935i −1.07232 + 0.794764i
\(615\) 0 0
\(616\) 36.1845 + 6.19230i 1.45791 + 0.249495i
\(617\) 20.1769 + 34.9474i 0.812291 + 1.40693i 0.911257 + 0.411838i \(0.135113\pi\)
−0.0989666 + 0.995091i \(0.531554\pi\)
\(618\) 0 0
\(619\) −19.4800 + 33.7403i −0.782966 + 1.35614i 0.147241 + 0.989101i \(0.452961\pi\)
−0.930207 + 0.367035i \(0.880373\pi\)
\(620\) −1.68524 + 1.57642i −0.0676809 + 0.0633106i
\(621\) 0 0
\(622\) 39.7836 + 17.2616i 1.59518 + 0.692127i
\(623\) −21.6867 + 0.248042i −0.868859 + 0.00993759i
\(624\) 0 0
\(625\) 4.27658 + 7.40725i 0.171063 + 0.296290i
\(626\) −22.1559 + 2.54180i −0.885527 + 0.101591i
\(627\) 0 0
\(628\) 0.756357 + 3.25305i 0.0301819 + 0.129811i
\(629\) 30.4520i 1.21420i
\(630\) 0 0
\(631\) 1.06032i 0.0422108i −0.999777 0.0211054i \(-0.993281\pi\)
0.999777 0.0211054i \(-0.00671856\pi\)
\(632\) −2.88408 + 15.7663i −0.114722 + 0.627149i
\(633\) 0 0
\(634\) −1.06820 9.31104i −0.0424235 0.369789i
\(635\) −14.8095 25.6508i −0.587698 1.01792i
\(636\) 0 0
\(637\) −6.05173 + 3.68104i −0.239778 + 0.145848i
\(638\) −23.1881 + 53.4425i −0.918024 + 2.11581i
\(639\) 0 0
\(640\) 5.09904 + 18.0053i 0.201557 + 0.711724i
\(641\) 13.7294 23.7800i 0.542278 0.939253i −0.456495 0.889726i \(-0.650895\pi\)
0.998773 0.0495272i \(-0.0157714\pi\)
\(642\) 0 0
\(643\) −0.0203966 0.0353280i −0.000804364 0.00139320i 0.865623 0.500696i \(-0.166923\pi\)
−0.866427 + 0.499303i \(0.833589\pi\)
\(644\) 11.7586 2.87609i 0.463353 0.113334i
\(645\) 0 0
\(646\) 18.3939 + 24.8176i 0.723699 + 0.976434i
\(647\) 12.6901 0.498899 0.249449 0.968388i \(-0.419750\pi\)
0.249449 + 0.968388i \(0.419750\pi\)
\(648\) 0 0
\(649\) 24.9578i 0.979680i
\(650\) 1.92929 + 2.60305i 0.0756729 + 0.102100i
\(651\) 0 0
\(652\) 13.5269 + 4.11260i 0.529755 + 0.161062i
\(653\) 3.40787 + 5.90260i 0.133360 + 0.230987i 0.924970 0.380041i \(-0.124090\pi\)
−0.791610 + 0.611027i \(0.790757\pi\)
\(654\) 0 0
\(655\) 14.3917 + 8.30905i 0.562330 + 0.324661i
\(656\) −30.8747 2.06248i −1.20545 0.0805261i
\(657\) 0 0
\(658\) −27.5235 + 3.47696i −1.07298 + 0.135546i
\(659\) −21.9583 12.6776i −0.855375 0.493851i 0.00708581 0.999975i \(-0.497744\pi\)
−0.862461 + 0.506124i \(0.831078\pi\)
\(660\) 0 0
\(661\) −27.4120 + 15.8263i −1.06620 + 0.615572i −0.927141 0.374712i \(-0.877742\pi\)
−0.139061 + 0.990284i \(0.544408\pi\)
\(662\) 11.1809 1.28271i 0.434558 0.0498540i
\(663\) 0 0
\(664\) 6.71835 + 1.22897i 0.260723 + 0.0476932i
\(665\) −6.36187 10.7337i −0.246703 0.416234i
\(666\) 0 0
\(667\) 19.2099i 0.743810i
\(668\) −2.25433 + 0.524147i −0.0872225 + 0.0202798i
\(669\) 0 0
\(670\) 0.672941 + 5.86576i 0.0259980 + 0.226614i
\(671\) 14.5228 + 25.1541i 0.560645 + 0.971065i
\(672\) 0 0
\(673\) −2.22066 + 3.84630i −0.0856002 + 0.148264i −0.905647 0.424033i \(-0.860614\pi\)
0.820047 + 0.572297i \(0.193947\pi\)
\(674\) −41.5794 18.0408i −1.60158 0.694905i
\(675\) 0 0
\(676\) 16.3625 + 17.4920i 0.629328 + 0.672770i
\(677\) −5.61421 3.24137i −0.215772 0.124576i 0.388219 0.921567i \(-0.373090\pi\)
−0.603991 + 0.796991i \(0.706424\pi\)
\(678\) 0 0
\(679\) 13.2070 23.4917i 0.506840 0.901529i
\(680\) 23.2134 27.3081i 0.890192 1.04722i
\(681\) 0 0
\(682\) 2.88165 + 3.88801i 0.110344 + 0.148879i
\(683\) 28.5921i 1.09405i −0.837117 0.547024i \(-0.815761\pi\)
0.837117 0.547024i \(-0.184239\pi\)
\(684\) 0 0
\(685\) 6.54035i 0.249894i
\(686\) 16.3084 + 20.4948i 0.622657 + 0.782495i
\(687\) 0 0
\(688\) −13.6688 27.8054i −0.521119 1.06007i
\(689\) 7.55293 4.36069i 0.287744 0.166129i
\(690\) 0 0
\(691\) −4.98156 + 8.62831i −0.189507 + 0.328236i −0.945086 0.326822i \(-0.894022\pi\)
0.755579 + 0.655058i \(0.227356\pi\)
\(692\) −2.19836 + 2.05640i −0.0835690 + 0.0781728i
\(693\) 0 0
\(694\) −1.52794 + 3.52151i −0.0579999 + 0.133675i
\(695\) 13.8965 + 8.02313i 0.527123 + 0.304335i
\(696\) 0 0
\(697\) 29.6326 + 51.3251i 1.12241 + 1.94408i
\(698\) −0.312954 + 0.0359032i −0.0118455 + 0.00135896i
\(699\) 0 0
\(700\) 8.65516 8.28389i 0.327134 0.313102i
\(701\) 13.0365 0.492382 0.246191 0.969221i \(-0.420821\pi\)
0.246191 + 0.969221i \(0.420821\pi\)
\(702\) 0 0
\(703\) 11.3332 0.427440
\(704\) 38.7329 6.32010i 1.45980 0.238198i
\(705\) 0 0
\(706\) 39.8101 4.56715i 1.49827 0.171887i
\(707\) 1.26728 2.25414i 0.0476608 0.0847755i
\(708\) 0 0
\(709\) −1.46945 + 2.54516i −0.0551862 + 0.0955853i −0.892299 0.451445i \(-0.850909\pi\)
0.837113 + 0.547031i \(0.184242\pi\)
\(710\) −2.15366 0.934447i −0.0808254 0.0350692i
\(711\) 0 0
\(712\) −21.8376 + 7.79047i −0.818397 + 0.291960i
\(713\) 1.38201 + 0.797904i 0.0517567 + 0.0298817i
\(714\) 0 0
\(715\) −7.11073 + 4.10538i −0.265926 + 0.153533i
\(716\) −2.45098 0.745174i −0.0915975 0.0278485i
\(717\) 0 0
\(718\) 18.4148 + 24.8458i 0.687235 + 0.927236i
\(719\) −52.8108 −1.96951 −0.984754 0.173951i \(-0.944347\pi\)
−0.984754 + 0.173951i \(0.944347\pi\)
\(720\) 0 0
\(721\) 29.7481 17.6317i 1.10788 0.656640i
\(722\) −12.3510 + 9.15413i −0.459656 + 0.340681i
\(723\) 0 0
\(724\) 50.9382 + 15.4868i 1.89310 + 0.575561i
\(725\) 9.50606 + 16.4650i 0.353046 + 0.611494i
\(726\) 0 0
\(727\) 13.3309 23.0897i 0.494414 0.856351i −0.505565 0.862789i \(-0.668716\pi\)
0.999979 + 0.00643778i \(0.00204922\pi\)
\(728\) −4.83812 + 5.82526i −0.179313 + 0.215899i
\(729\) 0 0
\(730\) 12.6534 + 5.49017i 0.468324 + 0.203200i
\(731\) −29.6708 + 51.3913i −1.09741 + 1.90078i
\(732\) 0 0
\(733\) −23.6033 + 13.6274i −0.871807 + 0.503338i −0.867948 0.496654i \(-0.834562\pi\)
−0.00385894 + 0.999993i \(0.501228\pi\)
\(734\) 1.21158 + 10.5609i 0.0447203 + 0.389810i
\(735\) 0 0
\(736\) 10.8872 6.99560i 0.401309 0.257861i
\(737\) 12.3822 0.456103
\(738\) 0 0
\(739\) 42.7029i 1.57085i 0.618957 + 0.785425i \(0.287556\pi\)
−0.618957 + 0.785425i \(0.712444\pi\)
\(740\) −2.97789 12.8077i −0.109469 0.470822i
\(741\) 0 0
\(742\) −19.4974 25.6870i −0.715771 0.942998i
\(743\) 31.9011 18.4181i 1.17034 0.675695i 0.216578 0.976265i \(-0.430510\pi\)
0.953760 + 0.300571i \(0.0971772\pi\)
\(744\) 0 0
\(745\) 9.93708 + 5.73718i 0.364067 + 0.210194i
\(746\) 13.0871 + 5.67835i 0.479154 + 0.207899i
\(747\) 0 0
\(748\) −51.3479 54.8924i −1.87746 2.00707i
\(749\) −2.72872 + 0.0312097i −0.0997051 + 0.00114038i
\(750\) 0 0
\(751\) 20.8062 12.0125i 0.759228 0.438341i −0.0697904 0.997562i \(-0.522233\pi\)
0.829019 + 0.559221i \(0.188900\pi\)
\(752\) −26.6156 + 13.0840i −0.970573 + 0.477123i
\(753\) 0 0
\(754\) −7.15532 9.65414i −0.260581 0.351583i
\(755\) 20.7228 0.754181
\(756\) 0 0
\(757\) 45.4741 1.65279 0.826393 0.563094i \(-0.190389\pi\)
0.826393 + 0.563094i \(0.190389\pi\)
\(758\) 17.4421 + 23.5333i 0.633525 + 0.854769i
\(759\) 0 0
\(760\) −10.1632 8.63923i −0.368656 0.313378i
\(761\) −33.8844 + 19.5632i −1.22831 + 0.709164i −0.966676 0.256003i \(-0.917594\pi\)
−0.261633 + 0.965167i \(0.584261\pi\)
\(762\) 0 0
\(763\) 0.0254903 + 2.22866i 0.000922812 + 0.0806829i
\(764\) −12.5517 + 11.7412i −0.454105 + 0.424782i
\(765\) 0 0
\(766\) −32.9328 14.2892i −1.18991 0.516288i
\(767\) 4.45841 + 2.57406i 0.160984 + 0.0929440i
\(768\) 0 0
\(769\) −14.2130 + 8.20587i −0.512534 + 0.295911i −0.733874 0.679285i \(-0.762290\pi\)
0.221341 + 0.975196i \(0.428957\pi\)
\(770\) 18.3559 + 24.1831i 0.661500 + 0.871498i
\(771\) 0 0
\(772\) −14.8306 + 3.44821i −0.533763 + 0.124104i
\(773\) 43.6024i 1.56827i 0.620591 + 0.784134i \(0.286893\pi\)
−0.620591 + 0.784134i \(0.713107\pi\)
\(774\) 0 0
\(775\) 1.57938 0.0567330
\(776\) 5.18418 28.3402i 0.186101 1.01735i
\(777\) 0 0
\(778\) 5.13655 + 44.7733i 0.184154 + 1.60520i
\(779\) 19.1015 11.0282i 0.684380 0.395127i
\(780\) 0 0
\(781\) −2.46170 + 4.26379i −0.0880866 + 0.152571i
\(782\) −22.7375 9.86553i −0.813091 0.352790i
\(783\) 0 0
\(784\) 23.6120 + 15.0490i 0.843287 + 0.537464i
\(785\) −1.38106 + 2.39206i −0.0492921 + 0.0853764i
\(786\) 0 0
\(787\) 2.89125 + 5.00779i 0.103062 + 0.178508i 0.912945 0.408083i \(-0.133803\pi\)
−0.809883 + 0.586592i \(0.800469\pi\)
\(788\) −8.37431 + 27.5443i −0.298322 + 0.981224i
\(789\) 0 0
\(790\) −10.6494 + 7.89294i −0.378887 + 0.280818i
\(791\) −14.5283 + 8.61095i −0.516567 + 0.306170i
\(792\) 0 0
\(793\) −5.99131 −0.212758
\(794\) −8.72159 11.7674i −0.309517 0.417609i
\(795\) 0 0
\(796\) −12.7520 + 41.9431i −0.451982 + 1.48663i
\(797\) −11.1404 + 6.43191i −0.394613 + 0.227830i −0.684157 0.729335i \(-0.739830\pi\)
0.289544 + 0.957165i \(0.406496\pi\)
\(798\) 0 0
\(799\) 49.1924 + 28.4013i 1.74030 + 1.00476i
\(800\) 5.86976 11.3836i 0.207527 0.402470i
\(801\) 0 0
\(802\) −25.1667 10.9195i −0.888668 0.385582i
\(803\) 14.4633 25.0511i 0.510398 0.884035i
\(804\) 0 0
\(805\) 8.72674 + 4.90617i 0.307577 + 0.172920i
\(806\) −0.991749 + 0.113777i −0.0349329 + 0.00400762i
\(807\) 0 0
\(808\) 0.497446 2.71937i 0.0175001 0.0956671i
\(809\) −11.6895 −0.410980 −0.205490 0.978659i \(-0.565879\pi\)
−0.205490 + 0.978659i \(0.565879\pi\)
\(810\) 0 0
\(811\) 23.0355 0.808885 0.404443 0.914563i \(-0.367466\pi\)
0.404443 + 0.914563i \(0.367466\pi\)
\(812\) −32.1001 + 30.7232i −1.12649 + 1.07817i
\(813\) 0 0
\(814\) −27.3967 + 3.14305i −0.960255 + 0.110164i
\(815\) 5.84635 + 10.1262i 0.204789 + 0.354705i
\(816\) 0 0
\(817\) 19.1261 + 11.0425i 0.669138 + 0.386327i
\(818\) 9.21851 21.2463i 0.322318 0.742859i
\(819\) 0 0
\(820\) −17.4821 18.6889i −0.610503 0.652646i
\(821\) −5.85488 + 10.1410i −0.204337 + 0.353922i −0.949921 0.312489i \(-0.898837\pi\)
0.745584 + 0.666411i \(0.232170\pi\)
\(822\) 0 0
\(823\) 30.7319 17.7431i 1.07125 0.618484i 0.142724 0.989763i \(-0.454414\pi\)
0.928521 + 0.371279i \(0.121081\pi\)
\(824\) 23.9434 28.1669i 0.834106 0.981239i
\(825\) 0 0
\(826\) 7.37677 17.5485i 0.256671 0.610591i
\(827\) 28.8739i 1.00405i 0.864854 + 0.502023i \(0.167411\pi\)
−0.864854 + 0.502023i \(0.832589\pi\)
\(828\) 0 0
\(829\) 31.4981i 1.09397i −0.837141 0.546987i \(-0.815775\pi\)
0.837141 0.546987i \(-0.184225\pi\)
\(830\) 3.36335 + 4.53793i 0.116744 + 0.157514i
\(831\) 0 0
\(832\) −2.86577 + 7.57100i −0.0993528 + 0.262477i
\(833\) −1.22657 53.6135i −0.0424981 1.85760i
\(834\) 0 0
\(835\) −1.65767 0.957057i −0.0573661 0.0331203i
\(836\) −20.4291 + 19.1099i −0.706555 + 0.660931i
\(837\) 0 0
\(838\) −27.0984 11.7577i −0.936100 0.406162i
\(839\) −7.70959 + 13.3534i −0.266165 + 0.461011i −0.967868 0.251458i \(-0.919090\pi\)
0.701703 + 0.712469i \(0.252423\pi\)
\(840\) 0 0
\(841\) −20.7559 35.9503i −0.715722 1.23967i
\(842\) 0.866522 + 7.55314i 0.0298623 + 0.260298i
\(843\) 0 0
\(844\) 0.760780 + 3.27207i 0.0261871 + 0.112629i
\(845\) 19.8090i 0.681450i
\(846\) 0 0
\(847\) 29.7369 17.6251i 1.02177 0.605606i
\(848\) −28.6410 19.1892i −0.983536 0.658961i
\(849\) 0 0
\(850\) −24.3705 + 2.79587i −0.835901 + 0.0958975i
\(851\) −7.87501 + 4.54664i −0.269952 + 0.155857i
\(852\) 0 0
\(853\) 9.82218 + 5.67084i 0.336305 + 0.194166i 0.658637 0.752461i \(-0.271133\pi\)
−0.322332 + 0.946627i \(0.604467\pi\)
\(854\) 2.77654 + 21.9790i 0.0950112 + 0.752107i
\(855\) 0 0
\(856\) −2.74770 + 0.980232i −0.0939144 + 0.0335036i
\(857\) 0.268417 + 0.154971i 0.00916895 + 0.00529370i 0.504577 0.863366i \(-0.331648\pi\)
−0.495409 + 0.868660i \(0.664982\pi\)
\(858\) 0 0
\(859\) −9.88124 17.1148i −0.337144 0.583950i 0.646751 0.762702i \(-0.276127\pi\)
−0.983894 + 0.178752i \(0.942794\pi\)
\(860\) 7.45363 24.5161i 0.254167 0.835991i
\(861\) 0 0
\(862\) 0.479202 + 0.646552i 0.0163217 + 0.0220216i
\(863\) 23.9730i 0.816051i −0.912970 0.408026i \(-0.866217\pi\)
0.912970 0.408026i \(-0.133783\pi\)
\(864\) 0 0
\(865\) −2.48955 −0.0846472
\(866\) −24.5148 33.0761i −0.833048 1.12397i
\(867\) 0 0
\(868\) 0.876993 + 3.58549i 0.0297671 + 0.121699i
\(869\) 13.8995 + 24.0746i 0.471507 + 0.816674i
\(870\) 0 0
\(871\) −1.27705 + 2.21192i −0.0432713 + 0.0749481i
\(872\) 0.800598 + 2.24416i 0.0271117 + 0.0759970i
\(873\) 0 0
\(874\) −3.67161 + 8.46212i −0.124194 + 0.286236i
\(875\) 31.7872 0.363567i 1.07460 0.0122908i
\(876\) 0 0
\(877\) 15.6916 + 27.1787i 0.529868 + 0.917759i 0.999393 + 0.0348396i \(0.0110920\pi\)
−0.469524 + 0.882919i \(0.655575\pi\)
\(878\) 0.219171 + 1.91043i 0.00739667 + 0.0644739i
\(879\) 0 0
\(880\) 26.9642 + 18.0658i 0.908962 + 0.608997i
\(881\) 2.85106i 0.0960548i 0.998846 + 0.0480274i \(0.0152935\pi\)
−0.998846 + 0.0480274i \(0.984707\pi\)
\(882\) 0 0
\(883\) 58.5844i 1.97152i −0.168153 0.985761i \(-0.553780\pi\)
0.168153 0.985761i \(-0.446220\pi\)
\(884\) 15.1017 3.51125i 0.507925 0.118096i
\(885\) 0 0
\(886\) −4.94356 + 0.567142i −0.166082 + 0.0190535i
\(887\) 11.7716 + 20.3891i 0.395253 + 0.684598i 0.993133 0.116987i \(-0.0373237\pi\)
−0.597881 + 0.801585i \(0.703990\pi\)
\(888\) 0 0
\(889\) −47.3743 + 0.541845i −1.58888 + 0.0181729i
\(890\) −17.5906 7.63235i −0.589638 0.255837i
\(891\) 0 0
\(892\) 11.1762 + 11.9476i 0.374205 + 0.400037i
\(893\) 10.5700 18.3078i 0.353711 0.612646i
\(894\) 0 0
\(895\) −1.05932 1.83479i −0.0354091 0.0613304i
\(896\) 29.1022 + 7.00444i 0.972236 + 0.234002i
\(897\) 0 0
\(898\) −15.0852 + 11.1806i −0.503399 + 0.373102i
\(899\) −5.85758 −0.195361
\(900\) 0 0
\(901\) 66.0291i 2.19975i
\(902\) −43.1171 + 31.9569i −1.43564 + 1.06405i
\(903\) 0 0
\(904\) −11.6934 + 13.7561i −0.388917 + 0.457520i
\(905\) 22.0156 + 38.1321i 0.731822 + 1.26755i
\(906\) 0 0
\(907\) −16.2312 9.37107i −0.538947 0.311161i 0.205705 0.978614i \(-0.434051\pi\)
−0.744652 + 0.667453i \(0.767385\pi\)
\(908\) 36.9067 + 39.4544i 1.22479 + 1.30934i
\(909\) 0 0
\(910\) −6.21317 + 0.784890i −0.205965 + 0.0260189i
\(911\) 27.7633 + 16.0291i 0.919838 + 0.531069i 0.883583 0.468274i \(-0.155124\pi\)
0.0362544 + 0.999343i \(0.488457\pi\)
\(912\) 0 0
\(913\) 10.2587 5.92286i 0.339513 0.196018i
\(914\) −3.78768 33.0158i −0.125285 1.09206i
\(915\) 0 0
\(916\) −5.45050 23.4423i −0.180089 0.774555i
\(917\) 22.8669 13.5532i 0.755131 0.447567i
\(918\) 0 0
\(919\) 40.9560i 1.35101i 0.737354 + 0.675507i \(0.236075\pi\)
−0.737354 + 0.675507i \(0.763925\pi\)
\(920\) 10.5279 + 1.92583i 0.347093 + 0.0634927i
\(921\) 0 0
\(922\) 21.7369 2.49373i 0.715865 0.0821265i
\(923\) −0.507783 0.879506i −0.0167139 0.0289493i
\(924\) 0 0
\(925\) −4.49983 + 7.79394i −0.147954 + 0.256263i
\(926\) −11.8327 + 27.2713i −0.388846 + 0.896190i
\(927\) 0 0
\(928\) −21.7697 + 42.2192i −0.714625 + 1.38591i
\(929\) 20.6442 + 11.9189i 0.677314 + 0.391047i 0.798842 0.601540i \(-0.205446\pi\)
−0.121528 + 0.992588i \(0.538779\pi\)
\(930\) 0 0
\(931\) −19.9531 + 0.456488i −0.653937 + 0.0149608i
\(932\) −7.54818 + 24.8270i −0.247249 + 0.813237i
\(933\) 0 0
\(934\) 33.6963 24.9745i 1.10258 0.817191i
\(935\) 62.1633i 2.03296i
\(936\) 0 0
\(937\) 28.7675i 0.939794i 0.882721 + 0.469897i \(0.155709\pi\)
−0.882721 + 0.469897i \(0.844291\pi\)
\(938\) 8.70623 + 3.65979i 0.284269 + 0.119496i
\(939\) 0 0
\(940\) −23.4671 7.13471i −0.765412 0.232709i
\(941\) 35.9743 20.7698i 1.17273 0.677075i 0.218407 0.975858i \(-0.429914\pi\)
0.954321 + 0.298783i \(0.0965807\pi\)
\(942\) 0 0
\(943\) −8.84858 + 15.3262i −0.288149 + 0.499089i
\(944\) 1.35640 20.3050i 0.0441472 0.660872i
\(945\) 0 0
\(946\) −49.2976 21.3896i −1.60280 0.695437i
\(947\) −11.5666 6.67800i −0.375865 0.217006i 0.300152 0.953891i \(-0.402962\pi\)
−0.676018 + 0.736885i \(0.736296\pi\)
\(948\) 0 0
\(949\) 2.98338 + 5.16737i 0.0968447 + 0.167740i
\(950\) 1.04053 + 9.06987i 0.0337592 + 0.294266i
\(951\) 0 0
\(952\) −19.8795 53.7732i −0.644299 1.74280i
\(953\) 6.70188 0.217095 0.108548 0.994091i \(-0.465380\pi\)
0.108548 + 0.994091i \(0.465380\pi\)
\(954\) 0 0
\(955\) −14.2143 −0.459963
\(956\) 2.95531 + 12.7106i 0.0955815 + 0.411091i
\(957\) 0 0
\(958\) 0.698063 + 6.08475i 0.0225534 + 0.196589i
\(959\) 9.11932 + 5.12688i 0.294478 + 0.165556i
\(960\) 0 0
\(961\) 15.2567 26.4254i 0.492152 0.852432i
\(962\) 2.26414 5.21825i 0.0729987 0.168243i
\(963\) 0 0
\(964\) −33.7581 + 31.5782i −1.08727 + 1.01707i
\(965\) −10.9053 6.29620i −0.351055 0.202682i
\(966\) 0 0
\(967\) 18.7298 10.8137i 0.602311 0.347744i −0.167639 0.985848i \(-0.553614\pi\)
0.769950 + 0.638104i \(0.220281\pi\)
\(968\) 23.9344 28.1563i 0.769280 0.904978i
\(969\) 0 0
\(970\) 19.1424 14.1877i 0.614626 0.455540i
\(971\) 25.7885 0.827592 0.413796 0.910370i \(-0.364203\pi\)
0.413796 + 0.910370i \(0.364203\pi\)
\(972\) 0 0
\(973\) 22.0800 13.0869i 0.707853 0.419545i
\(974\) −28.0514 37.8478i −0.898826 1.21272i
\(975\) 0 0
\(976\) 10.4483 + 21.2540i 0.334440 + 0.680325i
\(977\) −18.8498 32.6488i −0.603058 1.04453i −0.992355 0.123414i \(-0.960616\pi\)
0.389298 0.921112i \(-0.372718\pi\)
\(978\) 0 0
\(979\) −20.1066 + 34.8257i −0.642610 + 1.11303i
\(980\) 5.75872 + 22.4292i 0.183956 + 0.716475i
\(981\) 0 0
\(982\) 18.1090 41.7365i 0.577881 1.33187i
\(983\) 23.1492 40.0956i 0.738345 1.27885i −0.214895 0.976637i \(-0.568941\pi\)
0.953240 0.302214i \(-0.0977258\pi\)
\(984\) 0 0
\(985\) −20.6195 + 11.9047i −0.656992 + 0.379315i
\(986\) 90.3850 10.3693i 2.87844 0.330225i
\(987\) 0 0
\(988\) −1.30677 5.62034i −0.0415738 0.178807i
\(989\) −17.7200 −0.563463
\(990\) 0 0
\(991\) 12.6519i 0.401900i 0.979602 + 0.200950i \(0.0644028\pi\)
−0.979602 + 0.200950i \(0.935597\pi\)
\(992\) 2.13313 + 3.31979i 0.0677270 + 0.105403i
\(993\) 0 0
\(994\) −2.99114 + 2.27038i −0.0948731 + 0.0720122i
\(995\) −31.3984 + 18.1279i −0.995395 + 0.574692i
\(996\) 0 0
\(997\) −12.9778 7.49276i −0.411012 0.237298i 0.280212 0.959938i \(-0.409595\pi\)
−0.691225 + 0.722640i \(0.742928\pi\)
\(998\) 19.2122 44.2792i 0.608152 1.40163i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 756.2.bi.c.559.32 80
3.2 odd 2 252.2.bi.c.223.10 yes 80
4.3 odd 2 inner 756.2.bi.c.559.22 80
7.6 odd 2 inner 756.2.bi.c.559.31 80
9.4 even 3 inner 756.2.bi.c.307.21 80
9.5 odd 6 252.2.bi.c.139.20 yes 80
12.11 even 2 252.2.bi.c.223.19 yes 80
21.20 even 2 252.2.bi.c.223.9 yes 80
28.27 even 2 inner 756.2.bi.c.559.21 80
36.23 even 6 252.2.bi.c.139.9 80
36.31 odd 6 inner 756.2.bi.c.307.31 80
63.13 odd 6 inner 756.2.bi.c.307.22 80
63.41 even 6 252.2.bi.c.139.19 yes 80
84.83 odd 2 252.2.bi.c.223.20 yes 80
252.139 even 6 inner 756.2.bi.c.307.32 80
252.167 odd 6 252.2.bi.c.139.10 yes 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.bi.c.139.9 80 36.23 even 6
252.2.bi.c.139.10 yes 80 252.167 odd 6
252.2.bi.c.139.19 yes 80 63.41 even 6
252.2.bi.c.139.20 yes 80 9.5 odd 6
252.2.bi.c.223.9 yes 80 21.20 even 2
252.2.bi.c.223.10 yes 80 3.2 odd 2
252.2.bi.c.223.19 yes 80 12.11 even 2
252.2.bi.c.223.20 yes 80 84.83 odd 2
756.2.bi.c.307.21 80 9.4 even 3 inner
756.2.bi.c.307.22 80 63.13 odd 6 inner
756.2.bi.c.307.31 80 36.31 odd 6 inner
756.2.bi.c.307.32 80 252.139 even 6 inner
756.2.bi.c.559.21 80 28.27 even 2 inner
756.2.bi.c.559.22 80 4.3 odd 2 inner
756.2.bi.c.559.31 80 7.6 odd 2 inner
756.2.bi.c.559.32 80 1.1 even 1 trivial