Properties

Label 756.2.bi.c.307.16
Level $756$
Weight $2$
Character 756.307
Analytic conductor $6.037$
Analytic rank $0$
Dimension $80$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [756,2,Mod(307,756)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 2, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("756.307"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 756.bi (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [80,6,0,-2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.03669039281\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(40\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 307.16
Character \(\chi\) \(=\) 756.307
Dual form 756.2.bi.c.559.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.325239 - 1.37631i) q^{2} +(-1.78844 + 0.895257i) q^{4} +(3.45303 + 1.99361i) q^{5} +(-0.447766 - 2.60759i) q^{7} +(1.81382 + 2.17027i) q^{8} +(1.62076 - 5.40083i) q^{10} +(-1.72816 + 0.997755i) q^{11} +(2.38515 + 1.37707i) q^{13} +(-3.44321 + 1.46435i) q^{14} +(2.39703 - 3.20222i) q^{16} -2.88632i q^{17} +0.0855521 q^{19} +(-7.96033 - 0.474099i) q^{20} +(1.93528 + 2.05397i) q^{22} +(5.06735 + 2.92564i) q^{23} +(5.44896 + 9.43788i) q^{25} +(1.11952 - 3.73057i) q^{26} +(3.13526 + 4.26264i) q^{28} +(2.39499 + 4.14825i) q^{29} +(0.893108 - 1.54691i) q^{31} +(-5.18685 - 2.25756i) q^{32} +(-3.97246 + 0.938743i) q^{34} +(3.65236 - 9.89675i) q^{35} +6.22828 q^{37} +(-0.0278249 - 0.117746i) q^{38} +(1.93650 + 11.1101i) q^{40} +(-3.94059 - 2.27510i) q^{41} +(9.28817 - 5.36253i) q^{43} +(2.19747 - 3.33157i) q^{44} +(2.37847 - 7.92576i) q^{46} +(2.22398 + 3.85205i) q^{47} +(-6.59901 + 2.33518i) q^{49} +(11.2172 - 10.5690i) q^{50} +(-5.49852 - 0.327479i) q^{52} -2.30892 q^{53} -7.95654 q^{55} +(4.84700 - 5.70146i) q^{56} +(4.93031 - 4.64541i) q^{58} +(-2.41588 + 4.18443i) q^{59} +(7.08218 - 4.08890i) q^{61} +(-2.41949 - 0.726076i) q^{62} +(-1.42013 + 7.87294i) q^{64} +(5.49066 + 9.51011i) q^{65} +(-1.76145 - 1.01697i) q^{67} +(2.58400 + 5.16201i) q^{68} +(-14.8089 - 1.80795i) q^{70} -3.57003i q^{71} -11.4000i q^{73} +(-2.02568 - 8.57202i) q^{74} +(-0.153005 + 0.0765911i) q^{76} +(3.37555 + 4.05957i) q^{77} +(-11.4989 + 6.63892i) q^{79} +(14.6610 - 6.27865i) q^{80} +(-1.84960 + 6.16341i) q^{82} +(-8.56210 - 14.8300i) q^{83} +(5.75420 - 9.96656i) q^{85} +(-10.4014 - 11.0393i) q^{86} +(-5.29997 - 1.94083i) q^{88} -7.76882i q^{89} +(2.52283 - 6.83608i) q^{91} +(-11.6818 - 0.695744i) q^{92} +(4.57827 - 4.31372i) q^{94} +(0.295414 + 0.170557i) q^{95} +(-4.07462 + 2.35248i) q^{97} +(5.36018 + 8.32277i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 6 q^{2} - 2 q^{4} + 24 q^{8} - 10 q^{14} - 18 q^{16} - 14 q^{22} + 32 q^{25} + 28 q^{28} - 8 q^{29} + 16 q^{32} - 16 q^{37} + 84 q^{44} + 24 q^{46} - 24 q^{49} + 12 q^{50} + 48 q^{53} - 32 q^{56}+ \cdots - 20 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/756\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\) \(379\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.325239 1.37631i −0.229979 0.973196i
\(3\) 0 0
\(4\) −1.78844 + 0.895257i −0.894220 + 0.447628i
\(5\) 3.45303 + 1.99361i 1.54424 + 0.891570i 0.998564 + 0.0535758i \(0.0170619\pi\)
0.545680 + 0.837994i \(0.316271\pi\)
\(6\) 0 0
\(7\) −0.447766 2.60759i −0.169240 0.985575i
\(8\) 1.81382 + 2.17027i 0.641281 + 0.767306i
\(9\) 0 0
\(10\) 1.62076 5.40083i 0.512529 1.70789i
\(11\) −1.72816 + 0.997755i −0.521061 + 0.300834i −0.737368 0.675491i \(-0.763932\pi\)
0.216308 + 0.976325i \(0.430598\pi\)
\(12\) 0 0
\(13\) 2.38515 + 1.37707i 0.661521 + 0.381929i 0.792856 0.609409i \(-0.208593\pi\)
−0.131335 + 0.991338i \(0.541926\pi\)
\(14\) −3.44321 + 1.46435i −0.920236 + 0.391365i
\(15\) 0 0
\(16\) 2.39703 3.20222i 0.599258 0.800556i
\(17\) 2.88632i 0.700035i −0.936743 0.350018i \(-0.886176\pi\)
0.936743 0.350018i \(-0.113824\pi\)
\(18\) 0 0
\(19\) 0.0855521 0.0196270 0.00981349 0.999952i \(-0.496876\pi\)
0.00981349 + 0.999952i \(0.496876\pi\)
\(20\) −7.96033 0.474099i −1.77998 0.106012i
\(21\) 0 0
\(22\) 1.93528 + 2.05397i 0.412604 + 0.437908i
\(23\) 5.06735 + 2.92564i 1.05662 + 0.610037i 0.924494 0.381196i \(-0.124488\pi\)
0.132122 + 0.991234i \(0.457821\pi\)
\(24\) 0 0
\(25\) 5.44896 + 9.43788i 1.08979 + 1.88758i
\(26\) 1.11952 3.73057i 0.219556 0.731625i
\(27\) 0 0
\(28\) 3.13526 + 4.26264i 0.592509 + 0.805564i
\(29\) 2.39499 + 4.14825i 0.444739 + 0.770310i 0.998034 0.0626752i \(-0.0199632\pi\)
−0.553295 + 0.832985i \(0.686630\pi\)
\(30\) 0 0
\(31\) 0.893108 1.54691i 0.160407 0.277833i −0.774608 0.632442i \(-0.782053\pi\)
0.935015 + 0.354609i \(0.115386\pi\)
\(32\) −5.18685 2.25756i −0.916914 0.399084i
\(33\) 0 0
\(34\) −3.97246 + 0.938743i −0.681271 + 0.160993i
\(35\) 3.65236 9.89675i 0.617361 1.67286i
\(36\) 0 0
\(37\) 6.22828 1.02392 0.511961 0.859009i \(-0.328919\pi\)
0.511961 + 0.859009i \(0.328919\pi\)
\(38\) −0.0278249 0.117746i −0.00451379 0.0191009i
\(39\) 0 0
\(40\) 1.93650 + 11.1101i 0.306188 + 1.75665i
\(41\) −3.94059 2.27510i −0.615417 0.355311i 0.159666 0.987171i \(-0.448958\pi\)
−0.775083 + 0.631860i \(0.782292\pi\)
\(42\) 0 0
\(43\) 9.28817 5.36253i 1.41643 0.817777i 0.420449 0.907316i \(-0.361873\pi\)
0.995983 + 0.0895388i \(0.0285393\pi\)
\(44\) 2.19747 3.33157i 0.331281 0.502254i
\(45\) 0 0
\(46\) 2.37847 7.92576i 0.350687 1.16859i
\(47\) 2.22398 + 3.85205i 0.324401 + 0.561879i 0.981391 0.192020i \(-0.0615039\pi\)
−0.656990 + 0.753899i \(0.728171\pi\)
\(48\) 0 0
\(49\) −6.59901 + 2.33518i −0.942716 + 0.333597i
\(50\) 11.2172 10.5690i 1.58635 1.49468i
\(51\) 0 0
\(52\) −5.49852 0.327479i −0.762508 0.0454132i
\(53\) −2.30892 −0.317154 −0.158577 0.987347i \(-0.550691\pi\)
−0.158577 + 0.987347i \(0.550691\pi\)
\(54\) 0 0
\(55\) −7.95654 −1.07286
\(56\) 4.84700 5.70146i 0.647707 0.761890i
\(57\) 0 0
\(58\) 4.93031 4.64541i 0.647382 0.609973i
\(59\) −2.41588 + 4.18443i −0.314521 + 0.544767i −0.979336 0.202242i \(-0.935177\pi\)
0.664814 + 0.747009i \(0.268511\pi\)
\(60\) 0 0
\(61\) 7.08218 4.08890i 0.906780 0.523530i 0.0273862 0.999625i \(-0.491282\pi\)
0.879394 + 0.476095i \(0.157948\pi\)
\(62\) −2.41949 0.726076i −0.307276 0.0922117i
\(63\) 0 0
\(64\) −1.42013 + 7.87294i −0.177516 + 0.984118i
\(65\) 5.49066 + 9.51011i 0.681033 + 1.17958i
\(66\) 0 0
\(67\) −1.76145 1.01697i −0.215195 0.124243i 0.388528 0.921437i \(-0.372984\pi\)
−0.603724 + 0.797194i \(0.706317\pi\)
\(68\) 2.58400 + 5.16201i 0.313356 + 0.625985i
\(69\) 0 0
\(70\) −14.8089 1.80795i −1.77000 0.216092i
\(71\) 3.57003i 0.423685i −0.977304 0.211842i \(-0.932054\pi\)
0.977304 0.211842i \(-0.0679464\pi\)
\(72\) 0 0
\(73\) 11.4000i 1.33426i −0.744940 0.667132i \(-0.767522\pi\)
0.744940 0.667132i \(-0.232478\pi\)
\(74\) −2.02568 8.57202i −0.235480 0.996477i
\(75\) 0 0
\(76\) −0.153005 + 0.0765911i −0.0175508 + 0.00878560i
\(77\) 3.37555 + 4.05957i 0.384679 + 0.462631i
\(78\) 0 0
\(79\) −11.4989 + 6.63892i −1.29373 + 0.746936i −0.979314 0.202348i \(-0.935143\pi\)
−0.314418 + 0.949285i \(0.601809\pi\)
\(80\) 14.6610 6.27865i 1.63915 0.701974i
\(81\) 0 0
\(82\) −1.84960 + 6.16341i −0.204255 + 0.680635i
\(83\) −8.56210 14.8300i −0.939812 1.62780i −0.765820 0.643056i \(-0.777666\pi\)
−0.173993 0.984747i \(-0.555667\pi\)
\(84\) 0 0
\(85\) 5.75420 9.96656i 0.624130 1.08103i
\(86\) −10.4014 11.0393i −1.12161 1.19039i
\(87\) 0 0
\(88\) −5.29997 1.94083i −0.564978 0.206893i
\(89\) 7.76882i 0.823493i −0.911298 0.411746i \(-0.864919\pi\)
0.911298 0.411746i \(-0.135081\pi\)
\(90\) 0 0
\(91\) 2.52283 6.83608i 0.264464 0.716616i
\(92\) −11.6818 0.695744i −1.21792 0.0725363i
\(93\) 0 0
\(94\) 4.57827 4.31372i 0.472213 0.444926i
\(95\) 0.295414 + 0.170557i 0.0303089 + 0.0174988i
\(96\) 0 0
\(97\) −4.07462 + 2.35248i −0.413715 + 0.238859i −0.692385 0.721528i \(-0.743440\pi\)
0.278670 + 0.960387i \(0.410107\pi\)
\(98\) 5.36018 + 8.32277i 0.541460 + 0.840727i
\(99\) 0 0
\(100\) −18.1945 12.0009i −1.81945 1.20009i
\(101\) −2.46857 + 1.42523i −0.245631 + 0.141815i −0.617762 0.786365i \(-0.711961\pi\)
0.372131 + 0.928180i \(0.378627\pi\)
\(102\) 0 0
\(103\) −1.02846 + 1.78135i −0.101337 + 0.175521i −0.912236 0.409665i \(-0.865645\pi\)
0.810899 + 0.585187i \(0.198979\pi\)
\(104\) 1.33762 + 7.67416i 0.131164 + 0.752513i
\(105\) 0 0
\(106\) 0.750949 + 3.17778i 0.0729387 + 0.308653i
\(107\) 15.5534i 1.50361i 0.659387 + 0.751803i \(0.270816\pi\)
−0.659387 + 0.751803i \(0.729184\pi\)
\(108\) 0 0
\(109\) 1.28192 0.122786 0.0613930 0.998114i \(-0.480446\pi\)
0.0613930 + 0.998114i \(0.480446\pi\)
\(110\) 2.58778 + 10.9506i 0.246735 + 1.04410i
\(111\) 0 0
\(112\) −9.42339 4.81662i −0.890426 0.455127i
\(113\) −7.39267 + 12.8045i −0.695444 + 1.20454i 0.274586 + 0.961562i \(0.411459\pi\)
−0.970031 + 0.242982i \(0.921874\pi\)
\(114\) 0 0
\(115\) 11.6652 + 20.2046i 1.08778 + 1.88409i
\(116\) −7.99704 5.27475i −0.742507 0.489749i
\(117\) 0 0
\(118\) 6.54480 + 1.96406i 0.602498 + 0.180806i
\(119\) −7.52633 + 1.29240i −0.689937 + 0.118474i
\(120\) 0 0
\(121\) −3.50897 + 6.07771i −0.318997 + 0.552519i
\(122\) −7.93097 8.41738i −0.718037 0.762074i
\(123\) 0 0
\(124\) −0.212389 + 3.56611i −0.0190731 + 0.320246i
\(125\) 23.5163i 2.10336i
\(126\) 0 0
\(127\) 0.327377i 0.0290500i −0.999895 0.0145250i \(-0.995376\pi\)
0.999895 0.0145250i \(-0.00462361\pi\)
\(128\) 11.2975 0.606051i 0.998564 0.0535678i
\(129\) 0 0
\(130\) 11.3030 10.6499i 0.991343 0.934058i
\(131\) 1.15307 1.99717i 0.100744 0.174494i −0.811247 0.584703i \(-0.801211\pi\)
0.911991 + 0.410209i \(0.134544\pi\)
\(132\) 0 0
\(133\) −0.0383073 0.223084i −0.00332167 0.0193439i
\(134\) −0.826776 + 2.75506i −0.0714226 + 0.238001i
\(135\) 0 0
\(136\) 6.26409 5.23526i 0.537141 0.448920i
\(137\) −6.07413 10.5207i −0.518948 0.898844i −0.999758 0.0220190i \(-0.992991\pi\)
0.480810 0.876825i \(-0.340343\pi\)
\(138\) 0 0
\(139\) 4.45697 7.71970i 0.378035 0.654776i −0.612741 0.790284i \(-0.709933\pi\)
0.990776 + 0.135507i \(0.0432665\pi\)
\(140\) 2.32812 + 20.9695i 0.196762 + 1.77225i
\(141\) 0 0
\(142\) −4.91346 + 1.16111i −0.412328 + 0.0974384i
\(143\) −5.49590 −0.459590
\(144\) 0 0
\(145\) 19.0987i 1.58606i
\(146\) −15.6898 + 3.70771i −1.29850 + 0.306852i
\(147\) 0 0
\(148\) −11.1389 + 5.57591i −0.915612 + 0.458337i
\(149\) 1.02048 1.76752i 0.0836008 0.144801i −0.821193 0.570650i \(-0.806691\pi\)
0.904794 + 0.425849i \(0.140025\pi\)
\(150\) 0 0
\(151\) 9.32355 5.38296i 0.758740 0.438059i −0.0701032 0.997540i \(-0.522333\pi\)
0.828843 + 0.559481i \(0.189000\pi\)
\(152\) 0.155176 + 0.185671i 0.0125864 + 0.0150599i
\(153\) 0 0
\(154\) 4.48936 5.96612i 0.361763 0.480763i
\(155\) 6.16786 3.56102i 0.495415 0.286028i
\(156\) 0 0
\(157\) 6.83827 + 3.94808i 0.545753 + 0.315091i 0.747407 0.664366i \(-0.231298\pi\)
−0.201654 + 0.979457i \(0.564632\pi\)
\(158\) 12.8771 + 13.6668i 1.02445 + 1.08727i
\(159\) 0 0
\(160\) −13.4097 18.1360i −1.06013 1.43378i
\(161\) 5.35986 14.5236i 0.422416 1.14462i
\(162\) 0 0
\(163\) 13.3844i 1.04835i 0.851611 + 0.524175i \(0.175626\pi\)
−0.851611 + 0.524175i \(0.824374\pi\)
\(164\) 9.08431 + 0.541040i 0.709365 + 0.0422481i
\(165\) 0 0
\(166\) −17.6259 + 16.6074i −1.36803 + 1.28898i
\(167\) −6.33117 + 10.9659i −0.489921 + 0.848568i −0.999933 0.0115994i \(-0.996308\pi\)
0.510012 + 0.860167i \(0.329641\pi\)
\(168\) 0 0
\(169\) −2.70738 4.68932i −0.208260 0.360717i
\(170\) −15.5885 4.67803i −1.19559 0.358788i
\(171\) 0 0
\(172\) −11.8105 + 17.9058i −0.900541 + 1.36531i
\(173\) 6.59908 3.80998i 0.501719 0.289668i −0.227704 0.973730i \(-0.573122\pi\)
0.729423 + 0.684063i \(0.239789\pi\)
\(174\) 0 0
\(175\) 22.1702 18.4346i 1.67591 1.39353i
\(176\) −0.947423 + 7.92561i −0.0714147 + 0.597416i
\(177\) 0 0
\(178\) −10.6923 + 2.52672i −0.801420 + 0.189386i
\(179\) 8.19202i 0.612300i 0.951983 + 0.306150i \(0.0990410\pi\)
−0.951983 + 0.306150i \(0.900959\pi\)
\(180\) 0 0
\(181\) 3.68997i 0.274274i 0.990552 + 0.137137i \(0.0437900\pi\)
−0.990552 + 0.137137i \(0.956210\pi\)
\(182\) −10.2291 1.24883i −0.758229 0.0925691i
\(183\) 0 0
\(184\) 2.84183 + 16.3041i 0.209503 + 1.20195i
\(185\) 21.5065 + 12.4168i 1.58119 + 0.912898i
\(186\) 0 0
\(187\) 2.87984 + 4.98803i 0.210595 + 0.364761i
\(188\) −7.42603 4.89812i −0.541599 0.357232i
\(189\) 0 0
\(190\) 0.138659 0.462052i 0.0100594 0.0335208i
\(191\) 8.72331 5.03641i 0.631197 0.364422i −0.150019 0.988683i \(-0.547933\pi\)
0.781215 + 0.624262i \(0.214600\pi\)
\(192\) 0 0
\(193\) −5.87003 + 10.1672i −0.422534 + 0.731851i −0.996187 0.0872481i \(-0.972193\pi\)
0.573652 + 0.819099i \(0.305526\pi\)
\(194\) 4.56296 + 4.84281i 0.327602 + 0.347693i
\(195\) 0 0
\(196\) 9.71135 10.0841i 0.693668 0.720295i
\(197\) −20.3333 −1.44869 −0.724343 0.689440i \(-0.757857\pi\)
−0.724343 + 0.689440i \(0.757857\pi\)
\(198\) 0 0
\(199\) −22.7777 −1.61467 −0.807335 0.590093i \(-0.799091\pi\)
−0.807335 + 0.590093i \(0.799091\pi\)
\(200\) −10.5993 + 28.9443i −0.749484 + 2.04667i
\(201\) 0 0
\(202\) 2.76442 + 2.93396i 0.194504 + 0.206433i
\(203\) 9.74451 8.10259i 0.683931 0.568690i
\(204\) 0 0
\(205\) −9.07133 15.7120i −0.633569 1.09737i
\(206\) 2.78618 + 0.836115i 0.194122 + 0.0582549i
\(207\) 0 0
\(208\) 10.1269 4.33691i 0.702177 0.300711i
\(209\) −0.147848 + 0.0853600i −0.0102269 + 0.00590447i
\(210\) 0 0
\(211\) −20.1250 11.6191i −1.38546 0.799895i −0.392659 0.919684i \(-0.628445\pi\)
−0.992799 + 0.119789i \(0.961778\pi\)
\(212\) 4.12936 2.06707i 0.283605 0.141967i
\(213\) 0 0
\(214\) 21.4063 5.05858i 1.46330 0.345797i
\(215\) 42.7631 2.91642
\(216\) 0 0
\(217\) −4.43360 1.63620i −0.300972 0.111073i
\(218\) −0.416932 1.76432i −0.0282382 0.119495i
\(219\) 0 0
\(220\) 14.2298 7.12314i 0.959372 0.480242i
\(221\) 3.97465 6.88430i 0.267364 0.463088i
\(222\) 0 0
\(223\) 4.17435 + 7.23018i 0.279535 + 0.484169i 0.971269 0.237984i \(-0.0764864\pi\)
−0.691734 + 0.722152i \(0.743153\pi\)
\(224\) −3.56429 + 14.5360i −0.238149 + 0.971229i
\(225\) 0 0
\(226\) 20.0273 + 6.01007i 1.33220 + 0.399784i
\(227\) 3.33734 + 5.78045i 0.221507 + 0.383662i 0.955266 0.295748i \(-0.0955690\pi\)
−0.733759 + 0.679410i \(0.762236\pi\)
\(228\) 0 0
\(229\) −8.63009 4.98258i −0.570292 0.329258i 0.186974 0.982365i \(-0.440132\pi\)
−0.757266 + 0.653107i \(0.773465\pi\)
\(230\) 24.0138 22.6262i 1.58342 1.49193i
\(231\) 0 0
\(232\) −4.65873 + 12.7219i −0.305861 + 0.835236i
\(233\) −3.55156 −0.232670 −0.116335 0.993210i \(-0.537115\pi\)
−0.116335 + 0.993210i \(0.537115\pi\)
\(234\) 0 0
\(235\) 17.7350i 1.15690i
\(236\) 0.574520 9.64644i 0.0373981 0.627930i
\(237\) 0 0
\(238\) 4.22659 + 9.93820i 0.273969 + 0.644198i
\(239\) −5.01808 2.89719i −0.324592 0.187403i 0.328845 0.944384i \(-0.393341\pi\)
−0.653438 + 0.756980i \(0.726674\pi\)
\(240\) 0 0
\(241\) 2.63364 1.52053i 0.169648 0.0979461i −0.412772 0.910834i \(-0.635439\pi\)
0.582420 + 0.812888i \(0.302106\pi\)
\(242\) 9.50605 + 2.85271i 0.611072 + 0.183379i
\(243\) 0 0
\(244\) −9.00543 + 13.6531i −0.576514 + 0.874051i
\(245\) −27.4420 5.09240i −1.75321 0.325342i
\(246\) 0 0
\(247\) 0.204054 + 0.117811i 0.0129837 + 0.00749612i
\(248\) 4.97714 0.867525i 0.316049 0.0550879i
\(249\) 0 0
\(250\) 32.3657 7.64842i 2.04698 0.483729i
\(251\) −15.9355 −1.00584 −0.502920 0.864333i \(-0.667741\pi\)
−0.502920 + 0.864333i \(0.667741\pi\)
\(252\) 0 0
\(253\) −11.6763 −0.734081
\(254\) −0.450571 + 0.106476i −0.0282713 + 0.00668087i
\(255\) 0 0
\(256\) −4.50849 15.3517i −0.281780 0.959479i
\(257\) −17.9529 10.3651i −1.11987 0.646559i −0.178505 0.983939i \(-0.557126\pi\)
−0.941369 + 0.337380i \(0.890459\pi\)
\(258\) 0 0
\(259\) −2.78881 16.2408i −0.173288 1.00915i
\(260\) −18.3337 12.0927i −1.13701 0.749957i
\(261\) 0 0
\(262\) −3.12375 0.937417i −0.192986 0.0579138i
\(263\) 1.29122 0.745488i 0.0796202 0.0459687i −0.459661 0.888094i \(-0.652029\pi\)
0.539282 + 0.842126i \(0.318696\pi\)
\(264\) 0 0
\(265\) −7.97277 4.60308i −0.489763 0.282765i
\(266\) −0.294573 + 0.125278i −0.0180615 + 0.00768131i
\(267\) 0 0
\(268\) 4.06070 + 0.241846i 0.248047 + 0.0147731i
\(269\) 18.2450i 1.11242i −0.831043 0.556209i \(-0.812255\pi\)
0.831043 0.556209i \(-0.187745\pi\)
\(270\) 0 0
\(271\) −15.4908 −0.940998 −0.470499 0.882400i \(-0.655926\pi\)
−0.470499 + 0.882400i \(0.655926\pi\)
\(272\) −9.24264 6.91860i −0.560418 0.419502i
\(273\) 0 0
\(274\) −12.5042 + 11.7816i −0.755404 + 0.711753i
\(275\) −18.8334 10.8735i −1.13570 0.655694i
\(276\) 0 0
\(277\) −9.29870 16.1058i −0.558705 0.967705i −0.997605 0.0691691i \(-0.977965\pi\)
0.438900 0.898536i \(-0.355368\pi\)
\(278\) −12.0743 3.62341i −0.724165 0.217318i
\(279\) 0 0
\(280\) 28.1033 10.0243i 1.67949 0.599067i
\(281\) 9.87259 + 17.0998i 0.588950 + 1.02009i 0.994370 + 0.105960i \(0.0337917\pi\)
−0.405421 + 0.914130i \(0.632875\pi\)
\(282\) 0 0
\(283\) −8.53005 + 14.7745i −0.507059 + 0.878252i 0.492908 + 0.870082i \(0.335934\pi\)
−0.999967 + 0.00817031i \(0.997399\pi\)
\(284\) 3.19609 + 6.38479i 0.189653 + 0.378867i
\(285\) 0 0
\(286\) 1.78748 + 7.56404i 0.105696 + 0.447271i
\(287\) −4.16806 + 11.2941i −0.246033 + 0.666672i
\(288\) 0 0
\(289\) 8.66916 0.509950
\(290\) 26.2857 6.21164i 1.54355 0.364760i
\(291\) 0 0
\(292\) 10.2059 + 20.3881i 0.597254 + 1.19312i
\(293\) −22.2955 12.8723i −1.30252 0.752009i −0.321683 0.946847i \(-0.604249\pi\)
−0.980835 + 0.194838i \(0.937582\pi\)
\(294\) 0 0
\(295\) −16.6843 + 9.63266i −0.971395 + 0.560835i
\(296\) 11.2970 + 13.5170i 0.656622 + 0.785662i
\(297\) 0 0
\(298\) −2.76455 0.829624i −0.160146 0.0480588i
\(299\) 8.05759 + 13.9562i 0.465982 + 0.807105i
\(300\) 0 0
\(301\) −18.1422 21.8185i −1.04570 1.25760i
\(302\) −10.4410 11.0813i −0.600811 0.637658i
\(303\) 0 0
\(304\) 0.205071 0.273957i 0.0117616 0.0157125i
\(305\) 32.6067 1.86705
\(306\) 0 0
\(307\) −7.34083 −0.418963 −0.209482 0.977813i \(-0.567178\pi\)
−0.209482 + 0.977813i \(0.567178\pi\)
\(308\) −9.67132 4.23832i −0.551074 0.241501i
\(309\) 0 0
\(310\) −6.90708 7.33069i −0.392296 0.416355i
\(311\) −14.2106 + 24.6135i −0.805809 + 1.39570i 0.109935 + 0.993939i \(0.464936\pi\)
−0.915744 + 0.401763i \(0.868398\pi\)
\(312\) 0 0
\(313\) 12.8704 7.43074i 0.727479 0.420010i −0.0900203 0.995940i \(-0.528693\pi\)
0.817499 + 0.575930i \(0.195360\pi\)
\(314\) 3.20969 10.6956i 0.181133 0.603589i
\(315\) 0 0
\(316\) 14.6216 22.1678i 0.822530 1.24704i
\(317\) −10.7056 18.5426i −0.601284 1.04145i −0.992627 0.121209i \(-0.961323\pi\)
0.391343 0.920245i \(-0.372010\pi\)
\(318\) 0 0
\(319\) −8.27787 4.77923i −0.463472 0.267585i
\(320\) −20.5993 + 24.3543i −1.15154 + 1.36145i
\(321\) 0 0
\(322\) −21.7321 2.65318i −1.21108 0.147856i
\(323\) 0.246931i 0.0137396i
\(324\) 0 0
\(325\) 30.0143i 1.66489i
\(326\) 18.4211 4.35314i 1.02025 0.241098i
\(327\) 0 0
\(328\) −2.20993 12.6788i −0.122023 0.700067i
\(329\) 9.04872 7.52404i 0.498872 0.414814i
\(330\) 0 0
\(331\) 14.7097 8.49262i 0.808515 0.466797i −0.0379246 0.999281i \(-0.512075\pi\)
0.846440 + 0.532484i \(0.178741\pi\)
\(332\) 28.5894 + 18.8573i 1.56905 + 1.03493i
\(333\) 0 0
\(334\) 17.1516 + 5.14710i 0.938494 + 0.281637i
\(335\) −4.05490 7.02329i −0.221543 0.383723i
\(336\) 0 0
\(337\) 4.90546 8.49651i 0.267217 0.462834i −0.700925 0.713235i \(-0.747229\pi\)
0.968142 + 0.250401i \(0.0805625\pi\)
\(338\) −5.57340 + 5.25133i −0.303153 + 0.285635i
\(339\) 0 0
\(340\) −1.36840 + 22.9761i −0.0742120 + 1.24605i
\(341\) 3.56441i 0.193024i
\(342\) 0 0
\(343\) 9.04400 + 16.1619i 0.488330 + 0.872659i
\(344\) 28.4852 + 10.4312i 1.53582 + 0.562411i
\(345\) 0 0
\(346\) −7.38998 7.84321i −0.397288 0.421653i
\(347\) −3.21012 1.85336i −0.172328 0.0994937i 0.411355 0.911475i \(-0.365056\pi\)
−0.583683 + 0.811982i \(0.698389\pi\)
\(348\) 0 0
\(349\) −4.31419 + 2.49080i −0.230933 + 0.133329i −0.611003 0.791629i \(-0.709233\pi\)
0.380069 + 0.924958i \(0.375900\pi\)
\(350\) −32.5823 24.5174i −1.74160 1.31051i
\(351\) 0 0
\(352\) 11.2162 1.27377i 0.597826 0.0678923i
\(353\) −10.4059 + 6.00788i −0.553853 + 0.319767i −0.750674 0.660672i \(-0.770271\pi\)
0.196822 + 0.980439i \(0.436938\pi\)
\(354\) 0 0
\(355\) 7.11725 12.3274i 0.377744 0.654273i
\(356\) 6.95508 + 13.8941i 0.368619 + 0.736384i
\(357\) 0 0
\(358\) 11.2747 2.66436i 0.595888 0.140816i
\(359\) 27.6368i 1.45861i −0.684187 0.729307i \(-0.739843\pi\)
0.684187 0.729307i \(-0.260157\pi\)
\(360\) 0 0
\(361\) −18.9927 −0.999615
\(362\) 5.07853 1.20012i 0.266922 0.0630770i
\(363\) 0 0
\(364\) 1.60812 + 14.4845i 0.0842885 + 0.759194i
\(365\) 22.7271 39.3644i 1.18959 2.06043i
\(366\) 0 0
\(367\) 14.7663 + 25.5760i 0.770796 + 1.33506i 0.937127 + 0.348988i \(0.113475\pi\)
−0.166331 + 0.986070i \(0.553192\pi\)
\(368\) 21.5151 9.21395i 1.12155 0.480311i
\(369\) 0 0
\(370\) 10.0945 33.6379i 0.524790 1.74875i
\(371\) 1.03386 + 6.02070i 0.0536751 + 0.312579i
\(372\) 0 0
\(373\) −6.89959 + 11.9504i −0.357247 + 0.618770i −0.987500 0.157620i \(-0.949618\pi\)
0.630253 + 0.776390i \(0.282951\pi\)
\(374\) 5.92842 5.58584i 0.306551 0.288837i
\(375\) 0 0
\(376\) −4.32608 + 11.8136i −0.223101 + 0.609237i
\(377\) 13.1922i 0.679435i
\(378\) 0 0
\(379\) 16.1019i 0.827099i 0.910482 + 0.413549i \(0.135711\pi\)
−0.910482 + 0.413549i \(0.864289\pi\)
\(380\) −0.681023 0.0405602i −0.0349357 0.00208069i
\(381\) 0 0
\(382\) −9.76880 10.3679i −0.499815 0.530469i
\(383\) 8.61022 14.9133i 0.439962 0.762036i −0.557724 0.830026i \(-0.688325\pi\)
0.997686 + 0.0679904i \(0.0216587\pi\)
\(384\) 0 0
\(385\) 3.56267 + 20.7474i 0.181571 + 1.05738i
\(386\) 15.9023 + 4.77220i 0.809408 + 0.242898i
\(387\) 0 0
\(388\) 5.18114 7.85511i 0.263032 0.398783i
\(389\) −2.16557 3.75088i −0.109799 0.190177i 0.805890 0.592066i \(-0.201687\pi\)
−0.915689 + 0.401888i \(0.868354\pi\)
\(390\) 0 0
\(391\) 8.44432 14.6260i 0.427048 0.739668i
\(392\) −17.0374 10.0860i −0.860517 0.509422i
\(393\) 0 0
\(394\) 6.61317 + 27.9848i 0.333167 + 1.40985i
\(395\) −52.9416 −2.66378
\(396\) 0 0
\(397\) 28.5958i 1.43518i −0.696466 0.717590i \(-0.745245\pi\)
0.696466 0.717590i \(-0.254755\pi\)
\(398\) 7.40820 + 31.3491i 0.371340 + 1.57139i
\(399\) 0 0
\(400\) 43.2835 + 5.17409i 2.16418 + 0.258704i
\(401\) 6.03293 10.4493i 0.301270 0.521815i −0.675154 0.737677i \(-0.735923\pi\)
0.976424 + 0.215862i \(0.0692561\pi\)
\(402\) 0 0
\(403\) 4.26039 2.45974i 0.212225 0.122528i
\(404\) 3.13894 4.75893i 0.156168 0.236766i
\(405\) 0 0
\(406\) −14.3209 10.7762i −0.710736 0.534812i
\(407\) −10.7635 + 6.21430i −0.533526 + 0.308031i
\(408\) 0 0
\(409\) 19.8538 + 11.4626i 0.981705 + 0.566788i 0.902785 0.430093i \(-0.141519\pi\)
0.0789208 + 0.996881i \(0.474853\pi\)
\(410\) −18.6742 + 17.5951i −0.922252 + 0.868959i
\(411\) 0 0
\(412\) 0.244578 4.10657i 0.0120495 0.202316i
\(413\) 11.9930 + 4.42598i 0.590138 + 0.217788i
\(414\) 0 0
\(415\) 68.2779i 3.35163i
\(416\) −9.26259 12.5273i −0.454136 0.614199i
\(417\) 0 0
\(418\) 0.165567 + 0.175722i 0.00809817 + 0.00859482i
\(419\) 5.84657 10.1266i 0.285624 0.494715i −0.687136 0.726528i \(-0.741133\pi\)
0.972760 + 0.231813i \(0.0744659\pi\)
\(420\) 0 0
\(421\) 5.56174 + 9.63321i 0.271063 + 0.469494i 0.969134 0.246534i \(-0.0792916\pi\)
−0.698072 + 0.716028i \(0.745958\pi\)
\(422\) −9.44609 + 31.4771i −0.459828 + 1.53228i
\(423\) 0 0
\(424\) −4.18795 5.01097i −0.203385 0.243354i
\(425\) 27.2407 15.7274i 1.32137 0.762893i
\(426\) 0 0
\(427\) −13.8333 16.6365i −0.669441 0.805097i
\(428\) −13.9243 27.8164i −0.673057 1.34455i
\(429\) 0 0
\(430\) −13.9082 58.8552i −0.670715 2.83825i
\(431\) 33.5046i 1.61386i −0.590647 0.806930i \(-0.701127\pi\)
0.590647 0.806930i \(-0.298873\pi\)
\(432\) 0 0
\(433\) 6.77529i 0.325600i 0.986659 + 0.162800i \(0.0520525\pi\)
−0.986659 + 0.162800i \(0.947948\pi\)
\(434\) −0.809937 + 6.63415i −0.0388782 + 0.318449i
\(435\) 0 0
\(436\) −2.29264 + 1.14765i −0.109798 + 0.0549625i
\(437\) 0.433522 + 0.250294i 0.0207382 + 0.0119732i
\(438\) 0 0
\(439\) −0.0179749 0.0311334i −0.000857895 0.00148592i 0.865596 0.500743i \(-0.166940\pi\)
−0.866454 + 0.499257i \(0.833606\pi\)
\(440\) −14.4317 17.2678i −0.688005 0.823211i
\(441\) 0 0
\(442\) −10.7676 3.23130i −0.512163 0.153697i
\(443\) −13.0209 + 7.51761i −0.618641 + 0.357172i −0.776340 0.630315i \(-0.782926\pi\)
0.157699 + 0.987487i \(0.449592\pi\)
\(444\) 0 0
\(445\) 15.4880 26.8260i 0.734201 1.27167i
\(446\) 8.59328 8.09671i 0.406904 0.383390i
\(447\) 0 0
\(448\) 21.1653 + 0.177875i 0.999965 + 0.00840381i
\(449\) 22.0365 1.03997 0.519983 0.854177i \(-0.325938\pi\)
0.519983 + 0.854177i \(0.325938\pi\)
\(450\) 0 0
\(451\) 9.07998 0.427559
\(452\) 1.75805 29.5184i 0.0826916 1.38843i
\(453\) 0 0
\(454\) 6.87024 6.47323i 0.322436 0.303804i
\(455\) 22.3399 18.5757i 1.04731 0.870842i
\(456\) 0 0
\(457\) −8.88558 15.3903i −0.415650 0.719927i 0.579846 0.814726i \(-0.303113\pi\)
−0.995496 + 0.0947989i \(0.969779\pi\)
\(458\) −4.05072 + 13.4982i −0.189278 + 0.630728i
\(459\) 0 0
\(460\) −38.9508 25.6915i −1.81609 1.19787i
\(461\) 29.7074 17.1515i 1.38361 0.798827i 0.391025 0.920380i \(-0.372121\pi\)
0.992585 + 0.121553i \(0.0387874\pi\)
\(462\) 0 0
\(463\) 30.4583 + 17.5851i 1.41552 + 0.817248i 0.995901 0.0904537i \(-0.0288317\pi\)
0.419615 + 0.907702i \(0.362165\pi\)
\(464\) 19.0245 + 2.27417i 0.883189 + 0.105576i
\(465\) 0 0
\(466\) 1.15510 + 4.88803i 0.0535092 + 0.226434i
\(467\) 2.10775 0.0975348 0.0487674 0.998810i \(-0.484471\pi\)
0.0487674 + 0.998810i \(0.484471\pi\)
\(468\) 0 0
\(469\) −1.86313 + 5.04850i −0.0860313 + 0.233118i
\(470\) 24.4088 5.76811i 1.12589 0.266063i
\(471\) 0 0
\(472\) −13.4633 + 2.34668i −0.619700 + 0.108015i
\(473\) −10.7010 + 18.5346i −0.492031 + 0.852223i
\(474\) 0 0
\(475\) 0.466170 + 0.807430i 0.0213893 + 0.0370474i
\(476\) 12.3034 9.04937i 0.563923 0.414777i
\(477\) 0 0
\(478\) −2.35534 + 7.84869i −0.107731 + 0.358991i
\(479\) 0.601718 + 1.04221i 0.0274932 + 0.0476196i 0.879445 0.476001i \(-0.157914\pi\)
−0.851951 + 0.523621i \(0.824581\pi\)
\(480\) 0 0
\(481\) 14.8554 + 8.57675i 0.677346 + 0.391066i
\(482\) −2.94928 3.13016i −0.134336 0.142575i
\(483\) 0 0
\(484\) 0.834466 14.0111i 0.0379303 0.636866i
\(485\) −18.7597 −0.851836
\(486\) 0 0
\(487\) 4.23920i 0.192097i 0.995377 + 0.0960483i \(0.0306203\pi\)
−0.995377 + 0.0960483i \(0.969380\pi\)
\(488\) 21.7198 + 7.95371i 0.983208 + 0.360048i
\(489\) 0 0
\(490\) 1.91651 + 39.4249i 0.0865793 + 1.78104i
\(491\) 14.4458 + 8.34027i 0.651928 + 0.376391i 0.789195 0.614143i \(-0.210498\pi\)
−0.137266 + 0.990534i \(0.543832\pi\)
\(492\) 0 0
\(493\) 11.9732 6.91271i 0.539244 0.311333i
\(494\) 0.0957774 0.319158i 0.00430923 0.0143596i
\(495\) 0 0
\(496\) −2.81274 6.56792i −0.126296 0.294908i
\(497\) −9.30917 + 1.59854i −0.417573 + 0.0717043i
\(498\) 0 0
\(499\) 26.1648 + 15.1063i 1.17130 + 0.676249i 0.953985 0.299853i \(-0.0969378\pi\)
0.217312 + 0.976102i \(0.430271\pi\)
\(500\) −21.0531 42.0575i −0.941525 1.88087i
\(501\) 0 0
\(502\) 5.18284 + 21.9321i 0.231322 + 0.978879i
\(503\) −9.33949 −0.416427 −0.208214 0.978083i \(-0.566765\pi\)
−0.208214 + 0.978083i \(0.566765\pi\)
\(504\) 0 0
\(505\) −11.3654 −0.505753
\(506\) 3.79758 + 16.0701i 0.168823 + 0.714404i
\(507\) 0 0
\(508\) 0.293086 + 0.585493i 0.0130036 + 0.0259771i
\(509\) −9.96494 5.75326i −0.441688 0.255009i 0.262625 0.964898i \(-0.415412\pi\)
−0.704313 + 0.709889i \(0.748745\pi\)
\(510\) 0 0
\(511\) −29.7264 + 5.10452i −1.31502 + 0.225811i
\(512\) −19.6623 + 11.1980i −0.868957 + 0.494887i
\(513\) 0 0
\(514\) −8.42661 + 28.0799i −0.371682 + 1.23855i
\(515\) −7.10263 + 4.10070i −0.312979 + 0.180699i
\(516\) 0 0
\(517\) −7.68680 4.43798i −0.338065 0.195182i
\(518\) −21.4452 + 9.12039i −0.942250 + 0.400727i
\(519\) 0 0
\(520\) −10.6804 + 29.1658i −0.468368 + 1.27901i
\(521\) 28.7291i 1.25865i 0.777144 + 0.629323i \(0.216668\pi\)
−0.777144 + 0.629323i \(0.783332\pi\)
\(522\) 0 0
\(523\) 20.1932 0.882986 0.441493 0.897265i \(-0.354449\pi\)
0.441493 + 0.897265i \(0.354449\pi\)
\(524\) −0.274210 + 4.60412i −0.0119789 + 0.201132i
\(525\) 0 0
\(526\) −1.44598 1.53466i −0.0630475 0.0669142i
\(527\) −4.46487 2.57779i −0.194493 0.112291i
\(528\) 0 0
\(529\) 5.61870 + 9.73187i 0.244291 + 0.423125i
\(530\) −3.74220 + 12.4701i −0.162551 + 0.541665i
\(531\) 0 0
\(532\) 0.268228 + 0.364678i 0.0116292 + 0.0158108i
\(533\) −6.26593 10.8529i −0.271408 0.470092i
\(534\) 0 0
\(535\) −31.0075 + 53.7065i −1.34057 + 2.32193i
\(536\) −0.987843 5.66743i −0.0426683 0.244796i
\(537\) 0 0
\(538\) −25.1107 + 5.93398i −1.08260 + 0.255832i
\(539\) 9.07422 10.6198i 0.390855 0.457426i
\(540\) 0 0
\(541\) 31.7977 1.36709 0.683545 0.729908i \(-0.260437\pi\)
0.683545 + 0.729908i \(0.260437\pi\)
\(542\) 5.03821 + 21.3201i 0.216409 + 0.915775i
\(543\) 0 0
\(544\) −6.51604 + 14.9709i −0.279373 + 0.641872i
\(545\) 4.42653 + 2.55566i 0.189612 + 0.109472i
\(546\) 0 0
\(547\) 6.72258 3.88128i 0.287437 0.165952i −0.349349 0.936993i \(-0.613597\pi\)
0.636785 + 0.771041i \(0.280264\pi\)
\(548\) 20.2819 + 13.3777i 0.866401 + 0.571468i
\(549\) 0 0
\(550\) −8.83986 + 29.4570i −0.376933 + 1.25605i
\(551\) 0.204896 + 0.354891i 0.00872888 + 0.0151189i
\(552\) 0 0
\(553\) 22.4604 + 27.0118i 0.955113 + 1.14866i
\(554\) −19.1422 + 18.0361i −0.813276 + 0.766280i
\(555\) 0 0
\(556\) −1.05991 + 17.7963i −0.0449501 + 0.754733i
\(557\) −28.2834 −1.19841 −0.599203 0.800597i \(-0.704516\pi\)
−0.599203 + 0.800597i \(0.704516\pi\)
\(558\) 0 0
\(559\) 29.5382 1.24933
\(560\) −22.9368 35.4185i −0.969258 1.49670i
\(561\) 0 0
\(562\) 20.3237 19.1492i 0.857302 0.807762i
\(563\) 12.2242 21.1729i 0.515187 0.892331i −0.484657 0.874704i \(-0.661056\pi\)
0.999845 0.0176266i \(-0.00561102\pi\)
\(564\) 0 0
\(565\) −51.0543 + 29.4762i −2.14787 + 1.24007i
\(566\) 23.1085 + 6.93473i 0.971324 + 0.291488i
\(567\) 0 0
\(568\) 7.74793 6.47539i 0.325096 0.271701i
\(569\) 12.6476 + 21.9063i 0.530215 + 0.918360i 0.999379 + 0.0352483i \(0.0112222\pi\)
−0.469163 + 0.883111i \(0.655444\pi\)
\(570\) 0 0
\(571\) −15.5735 8.99137i −0.651731 0.376277i 0.137388 0.990517i \(-0.456129\pi\)
−0.789119 + 0.614240i \(0.789463\pi\)
\(572\) 9.82908 4.92024i 0.410974 0.205726i
\(573\) 0 0
\(574\) 16.8998 + 2.06323i 0.705385 + 0.0861176i
\(575\) 63.7667i 2.65926i
\(576\) 0 0
\(577\) 13.5843i 0.565523i −0.959190 0.282762i \(-0.908749\pi\)
0.959190 0.282762i \(-0.0912505\pi\)
\(578\) −2.81955 11.9314i −0.117278 0.496282i
\(579\) 0 0
\(580\) −17.0982 34.1569i −0.709966 1.41829i
\(581\) −34.8366 + 28.9668i −1.44527 + 1.20174i
\(582\) 0 0
\(583\) 3.99018 2.30373i 0.165257 0.0954109i
\(584\) 24.7410 20.6774i 1.02379 0.855638i
\(585\) 0 0
\(586\) −10.4649 + 34.8721i −0.432301 + 1.44055i
\(587\) 23.6479 + 40.9593i 0.976052 + 1.69057i 0.676418 + 0.736518i \(0.263531\pi\)
0.299634 + 0.954054i \(0.403135\pi\)
\(588\) 0 0
\(589\) 0.0764072 0.132341i 0.00314830 0.00545302i
\(590\) 18.6839 + 19.8297i 0.769203 + 0.816378i
\(591\) 0 0
\(592\) 14.9294 19.9443i 0.613593 0.819707i
\(593\) 0.875544i 0.0359543i 0.999838 + 0.0179772i \(0.00572261\pi\)
−0.999838 + 0.0179772i \(0.994277\pi\)
\(594\) 0 0
\(595\) −28.5652 10.5419i −1.17106 0.432175i
\(596\) −0.242679 + 4.07469i −0.00994052 + 0.166906i
\(597\) 0 0
\(598\) 16.5873 15.6288i 0.678305 0.639109i
\(599\) 12.3931 + 7.15518i 0.506370 + 0.292353i 0.731340 0.682013i \(-0.238895\pi\)
−0.224970 + 0.974366i \(0.572229\pi\)
\(600\) 0 0
\(601\) 30.3634 17.5303i 1.23855 0.715076i 0.269751 0.962930i \(-0.413059\pi\)
0.968797 + 0.247854i \(0.0797252\pi\)
\(602\) −24.1285 + 32.0654i −0.983402 + 1.30689i
\(603\) 0 0
\(604\) −11.8555 + 17.9741i −0.482393 + 0.731354i
\(605\) −24.2332 + 13.9910i −0.985219 + 0.568816i
\(606\) 0 0
\(607\) 18.7611 32.4951i 0.761489 1.31894i −0.180594 0.983558i \(-0.557802\pi\)
0.942083 0.335380i \(-0.108865\pi\)
\(608\) −0.443746 0.193139i −0.0179963 0.00783282i
\(609\) 0 0
\(610\) −10.6050 44.8768i −0.429382 1.81701i
\(611\) 12.2503i 0.495593i
\(612\) 0 0
\(613\) −0.149504 −0.00603840 −0.00301920 0.999995i \(-0.500961\pi\)
−0.00301920 + 0.999995i \(0.500961\pi\)
\(614\) 2.38752 + 10.1032i 0.0963526 + 0.407733i
\(615\) 0 0
\(616\) −2.68774 + 14.6892i −0.108292 + 0.591843i
\(617\) 3.41249 5.91061i 0.137382 0.237952i −0.789123 0.614235i \(-0.789465\pi\)
0.926505 + 0.376283i \(0.122798\pi\)
\(618\) 0 0
\(619\) −10.1762 17.6257i −0.409016 0.708436i 0.585764 0.810482i \(-0.300795\pi\)
−0.994780 + 0.102045i \(0.967461\pi\)
\(620\) −7.84282 + 11.8905i −0.314975 + 0.477533i
\(621\) 0 0
\(622\) 38.4975 + 11.5529i 1.54361 + 0.463228i
\(623\) −20.2579 + 3.47862i −0.811614 + 0.139368i
\(624\) 0 0
\(625\) −19.6376 + 34.0133i −0.785503 + 1.36053i
\(626\) −14.4129 15.2969i −0.576057 0.611386i
\(627\) 0 0
\(628\) −15.7644 0.938889i −0.629067 0.0374658i
\(629\) 17.9768i 0.716782i
\(630\) 0 0
\(631\) 21.2923i 0.847634i 0.905748 + 0.423817i \(0.139310\pi\)
−0.905748 + 0.423817i \(0.860690\pi\)
\(632\) −35.2652 12.9140i −1.40277 0.513691i
\(633\) 0 0
\(634\) −22.0384 + 20.7649i −0.875256 + 0.824679i
\(635\) 0.652661 1.13044i 0.0259001 0.0448603i
\(636\) 0 0
\(637\) −18.9553 3.51752i −0.751037 0.139369i
\(638\) −3.88540 + 12.9473i −0.153824 + 0.512587i
\(639\) 0 0
\(640\) 40.2188 + 20.4300i 1.58979 + 0.807568i
\(641\) 3.95191 + 6.84490i 0.156091 + 0.270357i 0.933456 0.358693i \(-0.116777\pi\)
−0.777365 + 0.629050i \(0.783444\pi\)
\(642\) 0 0
\(643\) −20.3837 + 35.3055i −0.803853 + 1.39231i 0.113209 + 0.993571i \(0.463887\pi\)
−0.917062 + 0.398744i \(0.869446\pi\)
\(644\) 3.41653 + 30.7729i 0.134630 + 1.21262i
\(645\) 0 0
\(646\) −0.339852 + 0.0803114i −0.0133713 + 0.00315981i
\(647\) −17.8067 −0.700054 −0.350027 0.936740i \(-0.613828\pi\)
−0.350027 + 0.936740i \(0.613828\pi\)
\(648\) 0 0
\(649\) 9.64184i 0.378475i
\(650\) 41.3089 9.76182i 1.62027 0.382890i
\(651\) 0 0
\(652\) −11.9825 23.9372i −0.469271 0.937454i
\(653\) −6.78123 + 11.7454i −0.265370 + 0.459635i −0.967661 0.252256i \(-0.918827\pi\)
0.702290 + 0.711891i \(0.252161\pi\)
\(654\) 0 0
\(655\) 7.96317 4.59754i 0.311147 0.179641i
\(656\) −16.7311 + 7.16517i −0.653240 + 0.279753i
\(657\) 0 0
\(658\) −13.2984 10.0067i −0.518425 0.390102i
\(659\) 37.2494 21.5060i 1.45103 0.837754i 0.452492 0.891768i \(-0.350535\pi\)
0.998540 + 0.0540142i \(0.0172016\pi\)
\(660\) 0 0
\(661\) −37.6797 21.7544i −1.46557 0.846148i −0.466312 0.884620i \(-0.654418\pi\)
−0.999260 + 0.0384716i \(0.987751\pi\)
\(662\) −16.4726 17.4829i −0.640226 0.679491i
\(663\) 0 0
\(664\) 16.6550 45.4809i 0.646338 1.76500i
\(665\) 0.312467 0.846688i 0.0121169 0.0328331i
\(666\) 0 0
\(667\) 28.0275i 1.08523i
\(668\) 1.50561 25.2799i 0.0582539 0.978109i
\(669\) 0 0
\(670\) −8.34739 + 7.86503i −0.322488 + 0.303853i
\(671\) −8.15943 + 14.1326i −0.314991 + 0.545581i
\(672\) 0 0
\(673\) 21.6667 + 37.5278i 0.835189 + 1.44659i 0.893877 + 0.448313i \(0.147975\pi\)
−0.0586878 + 0.998276i \(0.518692\pi\)
\(674\) −13.2892 3.98802i −0.511882 0.153613i
\(675\) 0 0
\(676\) 9.04013 + 5.96276i 0.347697 + 0.229337i
\(677\) −18.0239 + 10.4061i −0.692714 + 0.399939i −0.804628 0.593779i \(-0.797635\pi\)
0.111914 + 0.993718i \(0.464302\pi\)
\(678\) 0 0
\(679\) 7.95878 + 9.57156i 0.305430 + 0.367323i
\(680\) 32.0672 5.58937i 1.22972 0.214343i
\(681\) 0 0
\(682\) 4.90572 1.15929i 0.187850 0.0443913i
\(683\) 10.0088i 0.382976i −0.981495 0.191488i \(-0.938669\pi\)
0.981495 0.191488i \(-0.0613313\pi\)
\(684\) 0 0
\(685\) 48.4378i 1.85071i
\(686\) 19.3022 17.7038i 0.736963 0.675933i
\(687\) 0 0
\(688\) 5.09201 42.5969i 0.194131 1.62399i
\(689\) −5.50711 3.17953i −0.209804 0.121130i
\(690\) 0 0
\(691\) −17.4952 30.3025i −0.665548 1.15276i −0.979136 0.203204i \(-0.934864\pi\)
0.313588 0.949559i \(-0.398469\pi\)
\(692\) −8.39115 + 12.7218i −0.318984 + 0.483610i
\(693\) 0 0
\(694\) −1.50674 + 5.02089i −0.0571950 + 0.190590i
\(695\) 30.7801 17.7709i 1.16756 0.674089i
\(696\) 0 0
\(697\) −6.56667 + 11.3738i −0.248730 + 0.430814i
\(698\) 4.83124 + 5.12754i 0.182865 + 0.194080i
\(699\) 0 0
\(700\) −23.1464 + 52.8172i −0.874851 + 1.99630i
\(701\) −30.2491 −1.14249 −0.571246 0.820779i \(-0.693540\pi\)
−0.571246 + 0.820779i \(0.693540\pi\)
\(702\) 0 0
\(703\) 0.532842 0.0200965
\(704\) −5.40105 15.0227i −0.203560 0.566188i
\(705\) 0 0
\(706\) 11.6531 + 12.3678i 0.438570 + 0.465468i
\(707\) 4.82174 + 5.79883i 0.181340 + 0.218087i
\(708\) 0 0
\(709\) −19.3696 33.5492i −0.727441 1.25997i −0.957961 0.286897i \(-0.907376\pi\)
0.230520 0.973068i \(-0.425957\pi\)
\(710\) −19.2811 5.78616i −0.723608 0.217151i
\(711\) 0 0
\(712\) 16.8604 14.0912i 0.631871 0.528091i
\(713\) 9.05138 5.22582i 0.338977 0.195708i
\(714\) 0 0
\(715\) −18.9775 10.9567i −0.709719 0.409756i
\(716\) −7.33396 14.6509i −0.274083 0.547531i
\(717\) 0 0
\(718\) −38.0367 + 8.98855i −1.41952 + 0.335450i
\(719\) −12.3006 −0.458734 −0.229367 0.973340i \(-0.573666\pi\)
−0.229367 + 0.973340i \(0.573666\pi\)
\(720\) 0 0
\(721\) 5.10553 + 1.88417i 0.190140 + 0.0701703i
\(722\) 6.17716 + 26.1398i 0.229890 + 0.972821i
\(723\) 0 0
\(724\) −3.30347 6.59929i −0.122773 0.245261i
\(725\) −26.1004 + 45.2073i −0.969346 + 1.67896i
\(726\) 0 0
\(727\) −10.0761 17.4523i −0.373701 0.647269i 0.616431 0.787409i \(-0.288578\pi\)
−0.990132 + 0.140140i \(0.955245\pi\)
\(728\) 19.4121 6.92419i 0.719460 0.256628i
\(729\) 0 0
\(730\) −61.5692 18.4766i −2.27878 0.683848i
\(731\) −15.4780 26.8086i −0.572473 0.991553i
\(732\) 0 0
\(733\) 25.3422 + 14.6313i 0.936034 + 0.540419i 0.888715 0.458460i \(-0.151599\pi\)
0.0473190 + 0.998880i \(0.484932\pi\)
\(734\) 30.3979 28.6413i 1.12201 1.05717i
\(735\) 0 0
\(736\) −19.6788 26.6147i −0.725370 0.981031i
\(737\) 4.05876 0.149506
\(738\) 0 0
\(739\) 11.9818i 0.440757i −0.975414 0.220378i \(-0.929271\pi\)
0.975414 0.220378i \(-0.0707292\pi\)
\(740\) −49.5792 2.95282i −1.82257 0.108548i
\(741\) 0 0
\(742\) 7.95008 3.38107i 0.291857 0.124123i
\(743\) −30.9885 17.8912i −1.13686 0.656365i −0.191207 0.981550i \(-0.561240\pi\)
−0.945651 + 0.325184i \(0.894574\pi\)
\(744\) 0 0
\(745\) 7.04749 4.06887i 0.258200 0.149072i
\(746\) 18.6915 + 5.60920i 0.684343 + 0.205367i
\(747\) 0 0
\(748\) −9.61599 6.34259i −0.351595 0.231908i
\(749\) 40.5569 6.96430i 1.48192 0.254470i
\(750\) 0 0
\(751\) 5.11442 + 2.95281i 0.186628 + 0.107750i 0.590403 0.807109i \(-0.298969\pi\)
−0.403775 + 0.914858i \(0.632302\pi\)
\(752\) 17.6661 + 2.11179i 0.644216 + 0.0770091i
\(753\) 0 0
\(754\) 18.1566 4.29063i 0.661223 0.156255i
\(755\) 42.9261 1.56224
\(756\) 0 0
\(757\) −14.4509 −0.525226 −0.262613 0.964901i \(-0.584584\pi\)
−0.262613 + 0.964901i \(0.584584\pi\)
\(758\) 22.1611 5.23696i 0.804929 0.190215i
\(759\) 0 0
\(760\) 0.165672 + 0.950488i 0.00600955 + 0.0344778i
\(761\) 24.8767 + 14.3626i 0.901781 + 0.520643i 0.877777 0.479069i \(-0.159025\pi\)
0.0240032 + 0.999712i \(0.492359\pi\)
\(762\) 0 0
\(763\) −0.574003 3.34273i −0.0207803 0.121015i
\(764\) −11.0922 + 16.8169i −0.401303 + 0.608415i
\(765\) 0 0
\(766\) −23.3257 6.99990i −0.842792 0.252917i
\(767\) −11.5245 + 6.65366i −0.416125 + 0.240250i
\(768\) 0 0
\(769\) −5.21450 3.01059i −0.188040 0.108565i 0.403025 0.915189i \(-0.367959\pi\)
−0.591065 + 0.806624i \(0.701292\pi\)
\(770\) 27.3960 11.6512i 0.987283 0.419879i
\(771\) 0 0
\(772\) 1.39595 23.4386i 0.0502413 0.843574i
\(773\) 32.8018i 1.17980i 0.807476 + 0.589900i \(0.200833\pi\)
−0.807476 + 0.589900i \(0.799167\pi\)
\(774\) 0 0
\(775\) 19.4660 0.699241
\(776\) −12.4961 4.57605i −0.448585 0.164271i
\(777\) 0 0
\(778\) −4.45804 + 4.20043i −0.159828 + 0.150593i
\(779\) −0.337126 0.194640i −0.0120788 0.00697369i
\(780\) 0 0
\(781\) 3.56202 + 6.16959i 0.127459 + 0.220765i
\(782\) −22.8763 6.86503i −0.818054 0.245493i
\(783\) 0 0
\(784\) −8.34026 + 26.7290i −0.297867 + 0.954608i
\(785\) 15.7418 + 27.2657i 0.561851 + 0.973154i
\(786\) 0 0
\(787\) 0.916080 1.58670i 0.0326547 0.0565597i −0.849236 0.528013i \(-0.822937\pi\)
0.881891 + 0.471454i \(0.156270\pi\)
\(788\) 36.3648 18.2035i 1.29544 0.648473i
\(789\) 0 0
\(790\) 17.2187 + 72.8639i 0.612613 + 2.59238i
\(791\) 36.6990 + 13.5436i 1.30487 + 0.481556i
\(792\) 0 0
\(793\) 22.5227 0.799805
\(794\) −39.3565 + 9.30045i −1.39671 + 0.330061i
\(795\) 0 0
\(796\) 40.7366 20.3919i 1.44387 0.722772i
\(797\) 24.2935 + 14.0259i 0.860520 + 0.496822i 0.864186 0.503172i \(-0.167834\pi\)
−0.00366627 + 0.999993i \(0.501167\pi\)
\(798\) 0 0
\(799\) 11.1182 6.41912i 0.393335 0.227092i
\(800\) −6.95636 61.2542i −0.245944 2.16566i
\(801\) 0 0
\(802\) −16.3436 4.90463i −0.577114 0.173188i
\(803\) 11.3744 + 19.7010i 0.401392 + 0.695232i
\(804\) 0 0
\(805\) 47.4621 39.4649i 1.67282 1.39095i
\(806\) −4.77100 5.06360i −0.168051 0.178358i
\(807\) 0 0
\(808\) −7.57065 2.77235i −0.266335 0.0975309i
\(809\) 21.3196 0.749557 0.374779 0.927114i \(-0.377719\pi\)
0.374779 + 0.927114i \(0.377719\pi\)
\(810\) 0 0
\(811\) 7.69767 0.270302 0.135151 0.990825i \(-0.456848\pi\)
0.135151 + 0.990825i \(0.456848\pi\)
\(812\) −10.1736 + 23.2148i −0.357022 + 0.814681i
\(813\) 0 0
\(814\) 12.0535 + 12.7927i 0.422474 + 0.448384i
\(815\) −26.6833 + 46.2169i −0.934676 + 1.61891i
\(816\) 0 0
\(817\) 0.794622 0.458775i 0.0278003 0.0160505i
\(818\) 9.31880 31.0529i 0.325824 1.08574i
\(819\) 0 0
\(820\) 30.2898 + 19.9788i 1.05777 + 0.697690i
\(821\) −9.17336 15.8887i −0.320152 0.554520i 0.660367 0.750943i \(-0.270401\pi\)
−0.980519 + 0.196423i \(0.937067\pi\)
\(822\) 0 0
\(823\) −10.2067 5.89282i −0.355782 0.205411i 0.311447 0.950264i \(-0.399186\pi\)
−0.667229 + 0.744853i \(0.732520\pi\)
\(824\) −5.73144 + 0.999002i −0.199664 + 0.0348019i
\(825\) 0 0
\(826\) 2.19090 17.9456i 0.0762313 0.624407i
\(827\) 6.80800i 0.236737i −0.992970 0.118369i \(-0.962234\pi\)
0.992970 0.118369i \(-0.0377665\pi\)
\(828\) 0 0
\(829\) 6.20652i 0.215561i 0.994175 + 0.107781i \(0.0343744\pi\)
−0.994175 + 0.107781i \(0.965626\pi\)
\(830\) −93.9714 + 22.2066i −3.26179 + 0.770804i
\(831\) 0 0
\(832\) −14.2288 + 16.8225i −0.493294 + 0.583216i
\(833\) 6.74007 + 19.0469i 0.233530 + 0.659934i
\(834\) 0 0
\(835\) −43.7235 + 25.2438i −1.51311 + 0.873597i
\(836\) 0.187998 0.285023i 0.00650204 0.00985773i
\(837\) 0 0
\(838\) −15.8388 4.75313i −0.547142 0.164194i
\(839\) −19.9867 34.6180i −0.690017 1.19514i −0.971832 0.235676i \(-0.924270\pi\)
0.281815 0.959469i \(-0.409064\pi\)
\(840\) 0 0
\(841\) 3.02804 5.24471i 0.104415 0.180852i
\(842\) 11.4494 10.7878i 0.394571 0.371770i
\(843\) 0 0
\(844\) 46.3944 + 2.76314i 1.59696 + 0.0951112i
\(845\) 21.5898i 0.742713i
\(846\) 0 0
\(847\) 17.4194 + 6.42854i 0.598536 + 0.220887i
\(848\) −5.53455 + 7.39367i −0.190057 + 0.253900i
\(849\) 0 0
\(850\) −30.5055 32.3764i −1.04633 1.11050i
\(851\) 31.5609 + 18.2217i 1.08189 + 0.624631i
\(852\) 0 0
\(853\) −25.2532 + 14.5799i −0.864652 + 0.499207i −0.865567 0.500793i \(-0.833042\pi\)
0.000915480 1.00000i \(0.499709\pi\)
\(854\) −18.3978 + 24.4497i −0.629560 + 0.836652i
\(855\) 0 0
\(856\) −33.7551 + 28.2111i −1.15373 + 0.964235i
\(857\) 30.8516 17.8122i 1.05387 0.608452i 0.130139 0.991496i \(-0.458458\pi\)
0.923730 + 0.383044i \(0.125124\pi\)
\(858\) 0 0
\(859\) −0.414494 + 0.717924i −0.0141423 + 0.0244953i −0.873010 0.487702i \(-0.837835\pi\)
0.858868 + 0.512198i \(0.171168\pi\)
\(860\) −76.4793 + 38.2840i −2.60792 + 1.30547i
\(861\) 0 0
\(862\) −46.1126 + 10.8970i −1.57060 + 0.371153i
\(863\) 7.37519i 0.251054i −0.992090 0.125527i \(-0.959938\pi\)
0.992090 0.125527i \(-0.0400622\pi\)
\(864\) 0 0
\(865\) 30.3825 1.03304
\(866\) 9.32488 2.20359i 0.316872 0.0748810i
\(867\) 0 0
\(868\) 9.39405 1.04296i 0.318855 0.0354004i
\(869\) 13.2480 22.9462i 0.449408 0.778398i
\(870\) 0 0
\(871\) −2.80088 4.85127i −0.0949042 0.164379i
\(872\) 2.32518 + 2.78212i 0.0787404 + 0.0942145i
\(873\) 0 0
\(874\) 0.203483 0.678065i 0.00688292 0.0229359i
\(875\) 61.3208 10.5298i 2.07302 0.355973i
\(876\) 0 0
\(877\) −10.0813 + 17.4613i −0.340420 + 0.589625i −0.984511 0.175324i \(-0.943903\pi\)
0.644091 + 0.764949i \(0.277236\pi\)
\(878\) −0.0370030 + 0.0348648i −0.00124879 + 0.00117663i
\(879\) 0 0
\(880\) −19.0721 + 25.4786i −0.642919 + 0.858884i
\(881\) 15.9543i 0.537513i −0.963208 0.268756i \(-0.913387\pi\)
0.963208 0.268756i \(-0.0866126\pi\)
\(882\) 0 0
\(883\) 53.4055i 1.79724i −0.438731 0.898619i \(-0.644572\pi\)
0.438731 0.898619i \(-0.355428\pi\)
\(884\) −0.945209 + 15.8705i −0.0317908 + 0.533782i
\(885\) 0 0
\(886\) 14.5814 + 15.4757i 0.489873 + 0.519917i
\(887\) 18.7836 32.5342i 0.630692 1.09239i −0.356719 0.934212i \(-0.616105\pi\)
0.987411 0.158178i \(-0.0505621\pi\)
\(888\) 0 0
\(889\) −0.853663 + 0.146588i −0.0286309 + 0.00491641i
\(890\) −41.9581 12.5914i −1.40644 0.422064i
\(891\) 0 0
\(892\) −13.9384 9.19362i −0.466693 0.307825i
\(893\) 0.190266 + 0.329551i 0.00636702 + 0.0110280i
\(894\) 0 0
\(895\) −16.3317 + 28.2873i −0.545908 + 0.945541i
\(896\) −6.63895 29.1877i −0.221792 0.975094i
\(897\) 0 0
\(898\) −7.16712 30.3289i −0.239170 1.01209i
\(899\) 8.55594 0.285357
\(900\) 0 0
\(901\) 6.66427i 0.222019i
\(902\) −2.95316 12.4968i −0.0983295 0.416099i
\(903\) 0 0
\(904\) −41.1981 + 7.18092i −1.37023 + 0.238834i
\(905\) −7.35637 + 12.7416i −0.244534 + 0.423545i
\(906\) 0 0
\(907\) −24.9768 + 14.4203i −0.829340 + 0.478819i −0.853627 0.520886i \(-0.825602\pi\)
0.0242869 + 0.999705i \(0.492268\pi\)
\(908\) −11.1436 7.35020i −0.369814 0.243925i
\(909\) 0 0
\(910\) −32.8316 24.7050i −1.08836 0.818963i
\(911\) 3.53596 2.04149i 0.117152 0.0676376i −0.440279 0.897861i \(-0.645121\pi\)
0.557431 + 0.830223i \(0.311787\pi\)
\(912\) 0 0
\(913\) 29.5934 + 17.0857i 0.979398 + 0.565456i
\(914\) −18.2918 + 17.2348i −0.605039 + 0.570077i
\(915\) 0 0
\(916\) 19.8951 + 1.18490i 0.657352 + 0.0391504i
\(917\) −5.72411 2.11246i −0.189027 0.0697595i
\(918\) 0 0
\(919\) 0.244050i 0.00805047i 0.999992 + 0.00402523i \(0.00128128\pi\)
−0.999992 + 0.00402523i \(0.998719\pi\)
\(920\) −22.6910 + 61.9641i −0.748101 + 2.04289i
\(921\) 0 0
\(922\) −33.2678 35.3081i −1.09562 1.16281i
\(923\) 4.91617 8.51505i 0.161818 0.280276i
\(924\) 0 0
\(925\) 33.9376 + 58.7817i 1.11586 + 1.93273i
\(926\) 14.2963 47.6393i 0.469804 1.56552i
\(927\) 0 0
\(928\) −3.05754 26.9232i −0.100369 0.883796i
\(929\) −18.5771 + 10.7255i −0.609496 + 0.351893i −0.772768 0.634688i \(-0.781129\pi\)
0.163272 + 0.986581i \(0.447795\pi\)
\(930\) 0 0
\(931\) −0.564559 + 0.199779i −0.0185027 + 0.00654751i
\(932\) 6.35174 3.17956i 0.208058 0.104150i
\(933\) 0 0
\(934\) −0.685521 2.90090i −0.0224309 0.0949205i
\(935\) 22.9651i 0.751040i
\(936\) 0 0
\(937\) 57.2133i 1.86908i 0.355863 + 0.934538i \(0.384187\pi\)
−0.355863 + 0.934538i \(0.615813\pi\)
\(938\) 7.55425 + 0.922268i 0.246655 + 0.0301131i
\(939\) 0 0
\(940\) −15.8774 31.7180i −0.517863 1.03453i
\(941\) 8.14635 + 4.70330i 0.265564 + 0.153323i 0.626870 0.779124i \(-0.284336\pi\)
−0.361306 + 0.932447i \(0.617669\pi\)
\(942\) 0 0
\(943\) −13.3122 23.0575i −0.433506 0.750855i
\(944\) 7.60855 + 17.7664i 0.247637 + 0.578248i
\(945\) 0 0
\(946\) 28.9897 + 8.69964i 0.942537 + 0.282850i
\(947\) −33.4447 + 19.3093i −1.08681 + 0.627469i −0.932725 0.360589i \(-0.882576\pi\)
−0.154083 + 0.988058i \(0.549242\pi\)
\(948\) 0 0
\(949\) 15.6985 27.1906i 0.509594 0.882643i
\(950\) 0.959655 0.904200i 0.0311353 0.0293361i
\(951\) 0 0
\(952\) −16.4562 13.9900i −0.533350 0.453418i
\(953\) −52.7991 −1.71033 −0.855166 0.518355i \(-0.826545\pi\)
−0.855166 + 0.518355i \(0.826545\pi\)
\(954\) 0 0
\(955\) 40.1625 1.29963
\(956\) 11.5683 + 0.688978i 0.374144 + 0.0222831i
\(957\) 0 0
\(958\) 1.23869 1.16711i 0.0400203 0.0377077i
\(959\) −24.7138 + 20.5496i −0.798051 + 0.663582i
\(960\) 0 0
\(961\) 13.9047 + 24.0837i 0.448539 + 0.776893i
\(962\) 6.97269 23.2350i 0.224809 0.749127i
\(963\) 0 0
\(964\) −3.34884 + 5.07716i −0.107859 + 0.163524i
\(965\) −40.5388 + 23.4051i −1.30499 + 0.753437i
\(966\) 0 0
\(967\) −9.22794 5.32776i −0.296751 0.171329i 0.344232 0.938885i \(-0.388139\pi\)
−0.640982 + 0.767556i \(0.721473\pi\)
\(968\) −19.5549 + 3.40846i −0.628518 + 0.109552i
\(969\) 0 0
\(970\) 6.10140 + 25.8192i 0.195904 + 0.829003i
\(971\) −9.00425 −0.288960 −0.144480 0.989508i \(-0.546151\pi\)
−0.144480 + 0.989508i \(0.546151\pi\)
\(972\) 0 0
\(973\) −22.1255 8.16531i −0.709310 0.261768i
\(974\) 5.83444 1.37875i 0.186948 0.0441781i
\(975\) 0 0
\(976\) 3.88263 32.4799i 0.124280 1.03966i
\(977\) 4.49955 7.79345i 0.143953 0.249334i −0.785029 0.619459i \(-0.787352\pi\)
0.928982 + 0.370125i \(0.120685\pi\)
\(978\) 0 0
\(979\) 7.75137 + 13.4258i 0.247735 + 0.429090i
\(980\) 53.6374 15.4602i 1.71339 0.493859i
\(981\) 0 0
\(982\) 6.78044 22.5944i 0.216373 0.721016i
\(983\) −2.02127 3.50095i −0.0644686 0.111663i 0.831990 0.554791i \(-0.187202\pi\)
−0.896458 + 0.443128i \(0.853869\pi\)
\(984\) 0 0
\(985\) −70.2115 40.5366i −2.23712 1.29160i
\(986\) −13.4081 14.2305i −0.427002 0.453190i
\(987\) 0 0
\(988\) −0.470410 0.0280165i −0.0149657 0.000891324i
\(989\) 62.7552 1.99550
\(990\) 0 0
\(991\) 27.3007i 0.867235i −0.901097 0.433617i \(-0.857237\pi\)
0.901097 0.433617i \(-0.142763\pi\)
\(992\) −8.12466 + 6.00734i −0.257958 + 0.190733i
\(993\) 0 0
\(994\) 5.22778 + 12.2924i 0.165815 + 0.389890i
\(995\) −78.6523 45.4099i −2.49344 1.43959i
\(996\) 0 0
\(997\) 28.4727 16.4387i 0.901740 0.520620i 0.0239754 0.999713i \(-0.492368\pi\)
0.877764 + 0.479093i \(0.159034\pi\)
\(998\) 12.2810 40.9239i 0.388749 1.29542i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 756.2.bi.c.307.16 80
3.2 odd 2 252.2.bi.c.139.26 yes 80
4.3 odd 2 inner 756.2.bi.c.307.10 80
7.6 odd 2 inner 756.2.bi.c.307.15 80
9.2 odd 6 252.2.bi.c.223.32 yes 80
9.7 even 3 inner 756.2.bi.c.559.9 80
12.11 even 2 252.2.bi.c.139.31 yes 80
21.20 even 2 252.2.bi.c.139.25 80
28.27 even 2 inner 756.2.bi.c.307.9 80
36.7 odd 6 inner 756.2.bi.c.559.15 80
36.11 even 6 252.2.bi.c.223.25 yes 80
63.20 even 6 252.2.bi.c.223.31 yes 80
63.34 odd 6 inner 756.2.bi.c.559.10 80
84.83 odd 2 252.2.bi.c.139.32 yes 80
252.83 odd 6 252.2.bi.c.223.26 yes 80
252.223 even 6 inner 756.2.bi.c.559.16 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.bi.c.139.25 80 21.20 even 2
252.2.bi.c.139.26 yes 80 3.2 odd 2
252.2.bi.c.139.31 yes 80 12.11 even 2
252.2.bi.c.139.32 yes 80 84.83 odd 2
252.2.bi.c.223.25 yes 80 36.11 even 6
252.2.bi.c.223.26 yes 80 252.83 odd 6
252.2.bi.c.223.31 yes 80 63.20 even 6
252.2.bi.c.223.32 yes 80 9.2 odd 6
756.2.bi.c.307.9 80 28.27 even 2 inner
756.2.bi.c.307.10 80 4.3 odd 2 inner
756.2.bi.c.307.15 80 7.6 odd 2 inner
756.2.bi.c.307.16 80 1.1 even 1 trivial
756.2.bi.c.559.9 80 9.7 even 3 inner
756.2.bi.c.559.10 80 63.34 odd 6 inner
756.2.bi.c.559.15 80 36.7 odd 6 inner
756.2.bi.c.559.16 80 252.223 even 6 inner