Properties

Label 756.2.bi.c.307.14
Level $756$
Weight $2$
Character 756.307
Analytic conductor $6.037$
Analytic rank $0$
Dimension $80$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [756,2,Mod(307,756)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 2, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("756.307"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 756.bi (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [80,6,0,-2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.03669039281\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(40\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 307.14
Character \(\chi\) \(=\) 756.307
Dual form 756.2.bi.c.559.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.648812 + 1.25660i) q^{2} +(-1.15809 - 1.63059i) q^{4} +(2.66647 + 1.53948i) q^{5} +(1.48111 + 2.19233i) q^{7} +(2.80038 - 0.397302i) q^{8} +(-3.66455 + 2.35184i) q^{10} +(-3.64870 + 2.10658i) q^{11} +(-2.97309 - 1.71651i) q^{13} +(-3.71584 + 0.438755i) q^{14} +(-1.31767 + 3.77674i) q^{16} +2.29127i q^{17} +1.70965 q^{19} +(-0.577723 - 6.13078i) q^{20} +(-0.279805 - 5.95173i) q^{22} +(4.68317 + 2.70383i) q^{23} +(2.24003 + 3.87984i) q^{25} +(4.08594 - 2.62229i) q^{26} +(1.85954 - 4.95400i) q^{28} +(4.76517 + 8.25352i) q^{29} +(3.22265 - 5.58179i) q^{31} +(-3.89093 - 4.10618i) q^{32} +(-2.87921 - 1.48660i) q^{34} +(0.574276 + 8.12592i) q^{35} -2.04135 q^{37} +(-1.10924 + 2.14835i) q^{38} +(8.07877 + 3.25176i) q^{40} +(-4.43693 - 2.56166i) q^{41} +(-2.89849 + 1.67344i) q^{43} +(7.66048 + 3.50995i) q^{44} +(-6.43612 + 4.13059i) q^{46} +(-2.20674 - 3.82219i) q^{47} +(-2.61262 + 6.49417i) q^{49} +(-6.32876 + 0.297531i) q^{50} +(0.644156 + 6.83577i) q^{52} -10.5744 q^{53} -12.9722 q^{55} +(5.01870 + 5.55091i) q^{56} +(-13.4631 + 0.632933i) q^{58} +(-4.44595 + 7.70061i) q^{59} +(3.57388 - 2.06338i) q^{61} +(4.92318 + 7.67111i) q^{62} +(7.68430 - 2.22520i) q^{64} +(-5.28509 - 9.15404i) q^{65} +(9.53591 + 5.50556i) q^{67} +(3.73613 - 2.65349i) q^{68} +(-10.5836 - 4.55056i) q^{70} +2.48841i q^{71} +3.46980i q^{73} +(1.32445 - 2.56517i) q^{74} +(-1.97992 - 2.78774i) q^{76} +(-10.0224 - 4.87907i) q^{77} +(8.87914 - 5.12638i) q^{79} +(-9.32776 + 8.04200i) q^{80} +(6.09771 - 3.91340i) q^{82} +(0.0572673 + 0.0991899i) q^{83} +(-3.52738 + 6.10959i) q^{85} +(-0.222275 - 4.72799i) q^{86} +(-9.38081 + 7.34886i) q^{88} +3.61933i q^{89} +(-0.640313 - 9.06033i) q^{91} +(-1.01467 - 10.7676i) q^{92} +(6.23472 - 0.293110i) q^{94} +(4.55872 + 2.63198i) q^{95} +(5.53677 - 3.19666i) q^{97} +(-6.46548 - 7.49651i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 6 q^{2} - 2 q^{4} + 24 q^{8} - 10 q^{14} - 18 q^{16} - 14 q^{22} + 32 q^{25} + 28 q^{28} - 8 q^{29} + 16 q^{32} - 16 q^{37} + 84 q^{44} + 24 q^{46} - 24 q^{49} + 12 q^{50} + 48 q^{53} - 32 q^{56}+ \cdots - 20 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/756\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\) \(379\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.648812 + 1.25660i −0.458779 + 0.888550i
\(3\) 0 0
\(4\) −1.15809 1.63059i −0.579043 0.815297i
\(5\) 2.66647 + 1.53948i 1.19248 + 0.688479i 0.958868 0.283851i \(-0.0916123\pi\)
0.233612 + 0.972330i \(0.424946\pi\)
\(6\) 0 0
\(7\) 1.48111 + 2.19233i 0.559808 + 0.828623i
\(8\) 2.80038 0.397302i 0.990085 0.140468i
\(9\) 0 0
\(10\) −3.66455 + 2.35184i −1.15883 + 0.743719i
\(11\) −3.64870 + 2.10658i −1.10012 + 0.635157i −0.936254 0.351325i \(-0.885731\pi\)
−0.163870 + 0.986482i \(0.552398\pi\)
\(12\) 0 0
\(13\) −2.97309 1.71651i −0.824586 0.476075i 0.0274094 0.999624i \(-0.491274\pi\)
−0.851995 + 0.523549i \(0.824608\pi\)
\(14\) −3.71584 + 0.438755i −0.993101 + 0.117262i
\(15\) 0 0
\(16\) −1.31767 + 3.77674i −0.329418 + 0.944184i
\(17\) 2.29127i 0.555715i 0.960622 + 0.277857i \(0.0896242\pi\)
−0.960622 + 0.277857i \(0.910376\pi\)
\(18\) 0 0
\(19\) 1.70965 0.392221 0.196110 0.980582i \(-0.437169\pi\)
0.196110 + 0.980582i \(0.437169\pi\)
\(20\) −0.577723 6.13078i −0.129183 1.37088i
\(21\) 0 0
\(22\) −0.279805 5.95173i −0.0596547 1.26891i
\(23\) 4.68317 + 2.70383i 0.976507 + 0.563787i 0.901214 0.433375i \(-0.142677\pi\)
0.0752935 + 0.997161i \(0.476011\pi\)
\(24\) 0 0
\(25\) 2.24003 + 3.87984i 0.448005 + 0.775968i
\(26\) 4.08594 2.62229i 0.801319 0.514273i
\(27\) 0 0
\(28\) 1.85954 4.95400i 0.351421 0.936218i
\(29\) 4.76517 + 8.25352i 0.884870 + 1.53264i 0.845862 + 0.533401i \(0.179086\pi\)
0.0390079 + 0.999239i \(0.487580\pi\)
\(30\) 0 0
\(31\) 3.22265 5.58179i 0.578805 1.00252i −0.416812 0.908993i \(-0.636853\pi\)
0.995617 0.0935263i \(-0.0298139\pi\)
\(32\) −3.89093 4.10618i −0.687825 0.725877i
\(33\) 0 0
\(34\) −2.87921 1.48660i −0.493780 0.254950i
\(35\) 0.574276 + 8.12592i 0.0970704 + 1.37353i
\(36\) 0 0
\(37\) −2.04135 −0.335597 −0.167798 0.985821i \(-0.553666\pi\)
−0.167798 + 0.985821i \(0.553666\pi\)
\(38\) −1.10924 + 2.14835i −0.179943 + 0.348508i
\(39\) 0 0
\(40\) 8.07877 + 3.25176i 1.27737 + 0.514148i
\(41\) −4.43693 2.56166i −0.692931 0.400064i 0.111778 0.993733i \(-0.464345\pi\)
−0.804709 + 0.593669i \(0.797679\pi\)
\(42\) 0 0
\(43\) −2.89849 + 1.67344i −0.442015 + 0.255198i −0.704452 0.709752i \(-0.748807\pi\)
0.262437 + 0.964949i \(0.415474\pi\)
\(44\) 7.66048 + 3.50995i 1.15486 + 0.529144i
\(45\) 0 0
\(46\) −6.43612 + 4.13059i −0.948954 + 0.609022i
\(47\) −2.20674 3.82219i −0.321886 0.557524i 0.658991 0.752151i \(-0.270984\pi\)
−0.980877 + 0.194627i \(0.937650\pi\)
\(48\) 0 0
\(49\) −2.61262 + 6.49417i −0.373231 + 0.927738i
\(50\) −6.32876 + 0.297531i −0.895022 + 0.0420772i
\(51\) 0 0
\(52\) 0.644156 + 6.83577i 0.0893284 + 0.947950i
\(53\) −10.5744 −1.45250 −0.726250 0.687431i \(-0.758738\pi\)
−0.726250 + 0.687431i \(0.758738\pi\)
\(54\) 0 0
\(55\) −12.9722 −1.74917
\(56\) 5.01870 + 5.55091i 0.670652 + 0.741772i
\(57\) 0 0
\(58\) −13.4631 + 0.632933i −1.76779 + 0.0831081i
\(59\) −4.44595 + 7.70061i −0.578813 + 1.00253i 0.416802 + 0.908997i \(0.363151\pi\)
−0.995616 + 0.0935372i \(0.970183\pi\)
\(60\) 0 0
\(61\) 3.57388 2.06338i 0.457588 0.264189i −0.253441 0.967351i \(-0.581563\pi\)
0.711030 + 0.703162i \(0.248229\pi\)
\(62\) 4.92318 + 7.67111i 0.625245 + 0.974232i
\(63\) 0 0
\(64\) 7.68430 2.22520i 0.960538 0.278150i
\(65\) −5.28509 9.15404i −0.655535 1.13542i
\(66\) 0 0
\(67\) 9.53591 + 5.50556i 1.16500 + 0.672611i 0.952496 0.304550i \(-0.0985061\pi\)
0.212500 + 0.977161i \(0.431839\pi\)
\(68\) 3.73613 2.65349i 0.453072 0.321783i
\(69\) 0 0
\(70\) −10.5836 4.55056i −1.26499 0.543896i
\(71\) 2.48841i 0.295320i 0.989038 + 0.147660i \(0.0471741\pi\)
−0.989038 + 0.147660i \(0.952826\pi\)
\(72\) 0 0
\(73\) 3.46980i 0.406110i 0.979167 + 0.203055i \(0.0650870\pi\)
−0.979167 + 0.203055i \(0.934913\pi\)
\(74\) 1.32445 2.56517i 0.153965 0.298194i
\(75\) 0 0
\(76\) −1.97992 2.78774i −0.227113 0.319776i
\(77\) −10.0224 4.87907i −1.14216 0.556022i
\(78\) 0 0
\(79\) 8.87914 5.12638i 0.998982 0.576762i 0.0910349 0.995848i \(-0.470983\pi\)
0.907947 + 0.419085i \(0.137649\pi\)
\(80\) −9.32776 + 8.04200i −1.04287 + 0.899123i
\(81\) 0 0
\(82\) 6.09771 3.91340i 0.673380 0.432163i
\(83\) 0.0572673 + 0.0991899i 0.00628591 + 0.0108875i 0.869151 0.494546i \(-0.164666\pi\)
−0.862865 + 0.505434i \(0.831332\pi\)
\(84\) 0 0
\(85\) −3.52738 + 6.10959i −0.382598 + 0.662678i
\(86\) −0.222275 4.72799i −0.0239685 0.509832i
\(87\) 0 0
\(88\) −9.38081 + 7.34886i −0.999997 + 0.783391i
\(89\) 3.61933i 0.383648i 0.981429 + 0.191824i \(0.0614403\pi\)
−0.981429 + 0.191824i \(0.938560\pi\)
\(90\) 0 0
\(91\) −0.640313 9.06033i −0.0671230 0.949781i
\(92\) −1.01467 10.7676i −0.105786 1.12260i
\(93\) 0 0
\(94\) 6.23472 0.293110i 0.643063 0.0302320i
\(95\) 4.55872 + 2.63198i 0.467715 + 0.270035i
\(96\) 0 0
\(97\) 5.53677 3.19666i 0.562174 0.324571i −0.191844 0.981426i \(-0.561447\pi\)
0.754018 + 0.656854i \(0.228113\pi\)
\(98\) −6.46548 7.49651i −0.653112 0.757262i
\(99\) 0 0
\(100\) 3.73230 8.14576i 0.373230 0.814576i
\(101\) 14.8206 8.55666i 1.47470 0.851420i 0.475109 0.879927i \(-0.342409\pi\)
0.999594 + 0.0285076i \(0.00907547\pi\)
\(102\) 0 0
\(103\) −0.807160 + 1.39804i −0.0795318 + 0.137753i −0.903048 0.429540i \(-0.858676\pi\)
0.823516 + 0.567293i \(0.192009\pi\)
\(104\) −9.00776 3.62568i −0.883283 0.355527i
\(105\) 0 0
\(106\) 6.86077 13.2877i 0.666377 1.29062i
\(107\) 1.84363i 0.178231i −0.996021 0.0891153i \(-0.971596\pi\)
0.996021 0.0891153i \(-0.0284040\pi\)
\(108\) 0 0
\(109\) −2.66853 −0.255599 −0.127800 0.991800i \(-0.540791\pi\)
−0.127800 + 0.991800i \(0.540791\pi\)
\(110\) 8.41650 16.3008i 0.802482 1.55422i
\(111\) 0 0
\(112\) −10.2315 + 2.70500i −0.966783 + 0.255598i
\(113\) 0.626681 1.08544i 0.0589532 0.102110i −0.835043 0.550185i \(-0.814557\pi\)
0.893996 + 0.448075i \(0.147890\pi\)
\(114\) 0 0
\(115\) 8.32500 + 14.4193i 0.776310 + 1.34461i
\(116\) 7.93966 17.3283i 0.737179 1.60890i
\(117\) 0 0
\(118\) −6.79200 10.5830i −0.625255 0.974247i
\(119\) −5.02322 + 3.39363i −0.460478 + 0.311093i
\(120\) 0 0
\(121\) 3.37533 5.84625i 0.306848 0.531477i
\(122\) 0.274068 + 5.82968i 0.0248129 + 0.527794i
\(123\) 0 0
\(124\) −12.8337 + 1.20936i −1.15250 + 0.108604i
\(125\) 1.60090i 0.143189i
\(126\) 0 0
\(127\) 10.6611i 0.946022i 0.881056 + 0.473011i \(0.156833\pi\)
−0.881056 + 0.473011i \(0.843167\pi\)
\(128\) −2.18948 + 11.0998i −0.193525 + 0.981095i
\(129\) 0 0
\(130\) 14.9320 0.701990i 1.30962 0.0615686i
\(131\) 4.50282 7.79911i 0.393413 0.681411i −0.599484 0.800387i \(-0.704628\pi\)
0.992897 + 0.118975i \(0.0379609\pi\)
\(132\) 0 0
\(133\) 2.53218 + 3.74812i 0.219568 + 0.325003i
\(134\) −13.1053 + 8.41075i −1.13213 + 0.726578i
\(135\) 0 0
\(136\) 0.910327 + 6.41644i 0.0780599 + 0.550205i
\(137\) −1.11722 1.93509i −0.0954509 0.165326i 0.814346 0.580380i \(-0.197096\pi\)
−0.909797 + 0.415054i \(0.863763\pi\)
\(138\) 0 0
\(139\) 5.09811 8.83019i 0.432416 0.748967i −0.564665 0.825320i \(-0.690994\pi\)
0.997081 + 0.0763537i \(0.0243278\pi\)
\(140\) 12.5850 10.3469i 1.06363 0.874475i
\(141\) 0 0
\(142\) −3.12693 1.61451i −0.262406 0.135487i
\(143\) 14.4639 1.20953
\(144\) 0 0
\(145\) 29.3436i 2.43686i
\(146\) −4.36016 2.25125i −0.360849 0.186315i
\(147\) 0 0
\(148\) 2.36406 + 3.32862i 0.194325 + 0.273611i
\(149\) −6.16913 + 10.6853i −0.505395 + 0.875370i 0.494585 + 0.869129i \(0.335320\pi\)
−0.999981 + 0.00624098i \(0.998013\pi\)
\(150\) 0 0
\(151\) 9.36053 5.40430i 0.761749 0.439796i −0.0681743 0.997673i \(-0.521717\pi\)
0.829923 + 0.557877i \(0.188384\pi\)
\(152\) 4.78768 0.679248i 0.388332 0.0550943i
\(153\) 0 0
\(154\) 12.6337 9.42860i 1.01805 0.759778i
\(155\) 17.1862 9.92243i 1.38043 0.796989i
\(156\) 0 0
\(157\) −21.4858 12.4049i −1.71476 0.990015i −0.927860 0.372930i \(-0.878353\pi\)
−0.786896 0.617085i \(-0.788313\pi\)
\(158\) 0.680909 + 14.4836i 0.0541702 + 1.15225i
\(159\) 0 0
\(160\) −4.05362 16.9390i −0.320467 1.33915i
\(161\) 1.00861 + 14.2717i 0.0794898 + 1.12477i
\(162\) 0 0
\(163\) 10.9277i 0.855920i 0.903798 + 0.427960i \(0.140768\pi\)
−0.903798 + 0.427960i \(0.859232\pi\)
\(164\) 0.961316 + 10.2014i 0.0750661 + 0.796599i
\(165\) 0 0
\(166\) −0.161798 + 0.00760652i −0.0125579 + 0.000590380i
\(167\) 8.50615 14.7331i 0.658226 1.14008i −0.322849 0.946451i \(-0.604641\pi\)
0.981075 0.193630i \(-0.0620261\pi\)
\(168\) 0 0
\(169\) −0.607170 1.05165i −0.0467054 0.0808961i
\(170\) −5.38871 8.39648i −0.413295 0.643980i
\(171\) 0 0
\(172\) 6.08540 + 2.78827i 0.464008 + 0.212603i
\(173\) 4.06899 2.34923i 0.309360 0.178609i −0.337280 0.941404i \(-0.609507\pi\)
0.646640 + 0.762795i \(0.276174\pi\)
\(174\) 0 0
\(175\) −5.18816 + 10.6574i −0.392188 + 0.805620i
\(176\) −3.14820 16.5559i −0.237304 1.24795i
\(177\) 0 0
\(178\) −4.54805 2.34826i −0.340891 0.176010i
\(179\) 8.32224i 0.622034i −0.950404 0.311017i \(-0.899330\pi\)
0.950404 0.311017i \(-0.100670\pi\)
\(180\) 0 0
\(181\) 9.07327i 0.674411i −0.941431 0.337205i \(-0.890518\pi\)
0.941431 0.337205i \(-0.109482\pi\)
\(182\) 11.8007 + 5.07383i 0.874723 + 0.376098i
\(183\) 0 0
\(184\) 14.1889 + 5.71112i 1.04602 + 0.421029i
\(185\) −5.44320 3.14263i −0.400192 0.231051i
\(186\) 0 0
\(187\) −4.82674 8.36015i −0.352966 0.611355i
\(188\) −3.67684 + 8.02473i −0.268161 + 0.585263i
\(189\) 0 0
\(190\) −6.26510 + 4.02083i −0.454518 + 0.291702i
\(191\) 10.1929 5.88490i 0.737535 0.425816i −0.0836373 0.996496i \(-0.526654\pi\)
0.821172 + 0.570680i \(0.193320\pi\)
\(192\) 0 0
\(193\) 10.6936 18.5218i 0.769742 1.33323i −0.167961 0.985794i \(-0.553718\pi\)
0.937703 0.347438i \(-0.112948\pi\)
\(194\) 0.424595 + 9.03154i 0.0304841 + 0.648426i
\(195\) 0 0
\(196\) 13.6150 3.26069i 0.972499 0.232907i
\(197\) 10.7855 0.768436 0.384218 0.923242i \(-0.374471\pi\)
0.384218 + 0.923242i \(0.374471\pi\)
\(198\) 0 0
\(199\) 4.64957 0.329599 0.164800 0.986327i \(-0.447302\pi\)
0.164800 + 0.986327i \(0.447302\pi\)
\(200\) 7.81441 + 9.97507i 0.552562 + 0.705344i
\(201\) 0 0
\(202\) 1.13654 + 24.1752i 0.0799664 + 1.70096i
\(203\) −11.0367 + 22.6712i −0.774623 + 1.59121i
\(204\) 0 0
\(205\) −7.88727 13.6612i −0.550871 0.954137i
\(206\) −1.23308 1.92134i −0.0859130 0.133866i
\(207\) 0 0
\(208\) 10.4004 8.96676i 0.721136 0.621733i
\(209\) −6.23800 + 3.60151i −0.431491 + 0.249122i
\(210\) 0 0
\(211\) 2.23918 + 1.29279i 0.154151 + 0.0889993i 0.575092 0.818089i \(-0.304966\pi\)
−0.420940 + 0.907088i \(0.638300\pi\)
\(212\) 12.2460 + 17.2425i 0.841060 + 1.18422i
\(213\) 0 0
\(214\) 2.31671 + 1.19617i 0.158367 + 0.0817685i
\(215\) −10.3050 −0.702792
\(216\) 0 0
\(217\) 17.0102 1.20215i 1.15473 0.0816072i
\(218\) 1.73138 3.35328i 0.117264 0.227113i
\(219\) 0 0
\(220\) 15.0229 + 21.1523i 1.01284 + 1.42609i
\(221\) 3.93299 6.81214i 0.264562 0.458234i
\(222\) 0 0
\(223\) 0.326746 + 0.565940i 0.0218805 + 0.0378981i 0.876758 0.480931i \(-0.159701\pi\)
−0.854878 + 0.518829i \(0.826368\pi\)
\(224\) 3.23920 14.6119i 0.216428 0.976299i
\(225\) 0 0
\(226\) 0.957371 + 1.49174i 0.0636833 + 0.0992289i
\(227\) 2.88313 + 4.99372i 0.191360 + 0.331445i 0.945701 0.325037i \(-0.105377\pi\)
−0.754341 + 0.656483i \(0.772044\pi\)
\(228\) 0 0
\(229\) 24.2527 + 14.0023i 1.60267 + 0.925299i 0.990951 + 0.134220i \(0.0428530\pi\)
0.611714 + 0.791079i \(0.290480\pi\)
\(230\) −23.5207 + 1.10577i −1.55091 + 0.0729120i
\(231\) 0 0
\(232\) 16.6235 + 21.2198i 1.09138 + 1.39315i
\(233\) 8.45031 0.553598 0.276799 0.960928i \(-0.410726\pi\)
0.276799 + 0.960928i \(0.410726\pi\)
\(234\) 0 0
\(235\) 13.5890i 0.886448i
\(236\) 17.7054 1.66843i 1.15252 0.108606i
\(237\) 0 0
\(238\) −1.00531 8.51400i −0.0651644 0.551881i
\(239\) −18.5973 10.7371i −1.20296 0.694528i −0.241746 0.970339i \(-0.577720\pi\)
−0.961212 + 0.275811i \(0.911054\pi\)
\(240\) 0 0
\(241\) 22.3544 12.9063i 1.43998 0.831371i 0.442129 0.896951i \(-0.354223\pi\)
0.997847 + 0.0655806i \(0.0208899\pi\)
\(242\) 5.15644 + 8.03455i 0.331468 + 0.516481i
\(243\) 0 0
\(244\) −7.50339 3.43797i −0.480355 0.220094i
\(245\) −16.9641 + 13.2944i −1.08380 + 0.849348i
\(246\) 0 0
\(247\) −5.08294 2.93464i −0.323420 0.186726i
\(248\) 6.80699 16.9115i 0.432244 1.07388i
\(249\) 0 0
\(250\) 2.01169 + 1.03868i 0.127230 + 0.0656920i
\(251\) −14.3699 −0.907018 −0.453509 0.891252i \(-0.649828\pi\)
−0.453509 + 0.891252i \(0.649828\pi\)
\(252\) 0 0
\(253\) −22.7833 −1.43237
\(254\) −13.3968 6.91707i −0.840588 0.434015i
\(255\) 0 0
\(256\) −12.5275 9.95300i −0.782967 0.622063i
\(257\) 14.8202 + 8.55644i 0.924458 + 0.533736i 0.885055 0.465487i \(-0.154121\pi\)
0.0394034 + 0.999223i \(0.487454\pi\)
\(258\) 0 0
\(259\) −3.02347 4.47532i −0.187870 0.278083i
\(260\) −8.80594 + 19.2190i −0.546121 + 1.19191i
\(261\) 0 0
\(262\) 6.87888 + 10.7184i 0.424979 + 0.662185i
\(263\) −14.9410 + 8.62620i −0.921302 + 0.531914i −0.884050 0.467392i \(-0.845194\pi\)
−0.0372520 + 0.999306i \(0.511860\pi\)
\(264\) 0 0
\(265\) −28.1962 16.2791i −1.73208 1.00001i
\(266\) −6.35279 + 0.750118i −0.389515 + 0.0459927i
\(267\) 0 0
\(268\) −2.06607 21.9251i −0.126206 1.33929i
\(269\) 21.5478i 1.31379i −0.753982 0.656895i \(-0.771869\pi\)
0.753982 0.656895i \(-0.228131\pi\)
\(270\) 0 0
\(271\) −0.857294 −0.0520769 −0.0260384 0.999661i \(-0.508289\pi\)
−0.0260384 + 0.999661i \(0.508289\pi\)
\(272\) −8.65352 3.01914i −0.524697 0.183062i
\(273\) 0 0
\(274\) 3.15650 0.148395i 0.190691 0.00896487i
\(275\) −16.3464 9.43758i −0.985723 0.569107i
\(276\) 0 0
\(277\) 8.94703 + 15.4967i 0.537575 + 0.931107i 0.999034 + 0.0439457i \(0.0139928\pi\)
−0.461459 + 0.887162i \(0.652674\pi\)
\(278\) 7.78830 + 12.1354i 0.467111 + 0.727834i
\(279\) 0 0
\(280\) 4.83664 + 22.5275i 0.289045 + 1.34628i
\(281\) −10.8543 18.8002i −0.647513 1.12153i −0.983715 0.179735i \(-0.942476\pi\)
0.336202 0.941790i \(-0.390857\pi\)
\(282\) 0 0
\(283\) 11.7141 20.2894i 0.696331 1.20608i −0.273399 0.961901i \(-0.588148\pi\)
0.969730 0.244180i \(-0.0785186\pi\)
\(284\) 4.05758 2.88179i 0.240773 0.171003i
\(285\) 0 0
\(286\) −9.38432 + 18.1753i −0.554907 + 1.07473i
\(287\) −0.955580 13.5213i −0.0564061 0.798138i
\(288\) 0 0
\(289\) 11.7501 0.691181
\(290\) −36.8732 19.0385i −2.16527 1.11798i
\(291\) 0 0
\(292\) 5.65784 4.01833i 0.331100 0.235155i
\(293\) 9.69068 + 5.59492i 0.566136 + 0.326859i 0.755605 0.655028i \(-0.227343\pi\)
−0.189469 + 0.981887i \(0.560677\pi\)
\(294\) 0 0
\(295\) −23.7100 + 13.6889i −1.38045 + 0.797001i
\(296\) −5.71658 + 0.811035i −0.332269 + 0.0471405i
\(297\) 0 0
\(298\) −9.42448 14.6849i −0.545945 0.850671i
\(299\) −9.28230 16.0774i −0.536809 0.929781i
\(300\) 0 0
\(301\) −7.96172 3.87588i −0.458906 0.223402i
\(302\) 0.717825 + 15.2688i 0.0413062 + 0.878622i
\(303\) 0 0
\(304\) −2.25276 + 6.45690i −0.129205 + 0.370329i
\(305\) 12.7062 0.727553
\(306\) 0 0
\(307\) 9.18388 0.524152 0.262076 0.965047i \(-0.415593\pi\)
0.262076 + 0.965047i \(0.415593\pi\)
\(308\) 3.65106 + 21.9929i 0.208039 + 1.25316i
\(309\) 0 0
\(310\) 1.31794 + 28.0339i 0.0748542 + 1.59222i
\(311\) −3.81067 + 6.60027i −0.216083 + 0.374267i −0.953607 0.301054i \(-0.902662\pi\)
0.737524 + 0.675321i \(0.235995\pi\)
\(312\) 0 0
\(313\) −5.36993 + 3.10033i −0.303526 + 0.175241i −0.644026 0.765004i \(-0.722737\pi\)
0.340500 + 0.940245i \(0.389404\pi\)
\(314\) 29.5282 18.9507i 1.66637 1.06945i
\(315\) 0 0
\(316\) −18.6419 8.54149i −1.04869 0.480496i
\(317\) 4.84502 + 8.39183i 0.272124 + 0.471332i 0.969405 0.245465i \(-0.0789407\pi\)
−0.697282 + 0.716797i \(0.745607\pi\)
\(318\) 0 0
\(319\) −34.7733 20.0764i −1.94693 1.12406i
\(320\) 23.9156 + 5.89645i 1.33692 + 0.329622i
\(321\) 0 0
\(322\) −18.5882 7.99223i −1.03588 0.445390i
\(323\) 3.91727i 0.217963i
\(324\) 0 0
\(325\) 15.3801i 0.853136i
\(326\) −13.7317 7.08999i −0.760528 0.392678i
\(327\) 0 0
\(328\) −13.4429 5.41083i −0.742257 0.298763i
\(329\) 5.11107 10.4990i 0.281782 0.578828i
\(330\) 0 0
\(331\) −17.9174 + 10.3446i −0.984827 + 0.568590i −0.903724 0.428116i \(-0.859178\pi\)
−0.0811031 + 0.996706i \(0.525844\pi\)
\(332\) 0.0954180 0.208250i 0.00523674 0.0114292i
\(333\) 0 0
\(334\) 12.9947 + 20.2478i 0.711038 + 1.10791i
\(335\) 16.9514 + 29.3608i 0.926157 + 1.60415i
\(336\) 0 0
\(337\) 8.28764 14.3546i 0.451457 0.781946i −0.547020 0.837119i \(-0.684238\pi\)
0.998477 + 0.0551737i \(0.0175713\pi\)
\(338\) 1.71544 0.0806472i 0.0933078 0.00438663i
\(339\) 0 0
\(340\) 14.0473 1.32372i 0.761820 0.0717888i
\(341\) 27.1550i 1.47053i
\(342\) 0 0
\(343\) −18.1069 + 3.89087i −0.977683 + 0.210087i
\(344\) −7.45202 + 5.83786i −0.401786 + 0.314756i
\(345\) 0 0
\(346\) 0.312036 + 6.63731i 0.0167752 + 0.356824i
\(347\) 8.93889 + 5.16087i 0.479865 + 0.277050i 0.720360 0.693600i \(-0.243977\pi\)
−0.240495 + 0.970650i \(0.577310\pi\)
\(348\) 0 0
\(349\) 8.33414 4.81172i 0.446116 0.257565i −0.260072 0.965589i \(-0.583746\pi\)
0.706189 + 0.708024i \(0.250413\pi\)
\(350\) −10.0259 13.4341i −0.535906 0.718081i
\(351\) 0 0
\(352\) 22.8468 + 6.78567i 1.21774 + 0.361678i
\(353\) 20.3278 11.7363i 1.08194 0.624658i 0.150520 0.988607i \(-0.451905\pi\)
0.931419 + 0.363949i \(0.118572\pi\)
\(354\) 0 0
\(355\) −3.83087 + 6.63526i −0.203321 + 0.352163i
\(356\) 5.90165 4.19149i 0.312787 0.222149i
\(357\) 0 0
\(358\) 10.4577 + 5.39957i 0.552708 + 0.285376i
\(359\) 7.49888i 0.395776i −0.980225 0.197888i \(-0.936592\pi\)
0.980225 0.197888i \(-0.0634082\pi\)
\(360\) 0 0
\(361\) −16.0771 −0.846163
\(362\) 11.4015 + 5.88685i 0.599248 + 0.309406i
\(363\) 0 0
\(364\) −14.0322 + 11.5367i −0.735486 + 0.604689i
\(365\) −5.34171 + 9.25211i −0.279598 + 0.484278i
\(366\) 0 0
\(367\) −2.39341 4.14551i −0.124935 0.216394i 0.796772 0.604279i \(-0.206539\pi\)
−0.921708 + 0.387885i \(0.873206\pi\)
\(368\) −16.3825 + 14.1243i −0.853998 + 0.736281i
\(369\) 0 0
\(370\) 7.48065 4.80095i 0.388900 0.249589i
\(371\) −15.6618 23.1825i −0.813120 1.20357i
\(372\) 0 0
\(373\) −13.8959 + 24.0683i −0.719500 + 1.24621i 0.241698 + 0.970352i \(0.422296\pi\)
−0.961198 + 0.275859i \(0.911038\pi\)
\(374\) 13.6370 0.641110i 0.705153 0.0331510i
\(375\) 0 0
\(376\) −7.69829 9.82685i −0.397009 0.506781i
\(377\) 32.7179i 1.68506i
\(378\) 0 0
\(379\) 27.3958i 1.40723i −0.710583 0.703613i \(-0.751569\pi\)
0.710583 0.703613i \(-0.248431\pi\)
\(380\) −0.987705 10.4815i −0.0506682 0.537689i
\(381\) 0 0
\(382\) 0.781659 + 16.6266i 0.0399932 + 0.850693i
\(383\) 7.36210 12.7515i 0.376185 0.651572i −0.614318 0.789058i \(-0.710569\pi\)
0.990504 + 0.137486i \(0.0439022\pi\)
\(384\) 0 0
\(385\) −19.2132 28.4393i −0.979197 1.44940i
\(386\) 16.3364 + 25.4548i 0.831502 + 1.29561i
\(387\) 0 0
\(388\) −11.6245 5.32622i −0.590145 0.270398i
\(389\) 10.9505 + 18.9668i 0.555211 + 0.961653i 0.997887 + 0.0649717i \(0.0206957\pi\)
−0.442676 + 0.896681i \(0.645971\pi\)
\(390\) 0 0
\(391\) −6.19520 + 10.7304i −0.313305 + 0.542659i
\(392\) −4.73618 + 19.2242i −0.239213 + 0.970967i
\(393\) 0 0
\(394\) −6.99777 + 13.5531i −0.352542 + 0.682794i
\(395\) 31.5679 1.58835
\(396\) 0 0
\(397\) 34.9584i 1.75451i 0.480025 + 0.877255i \(0.340628\pi\)
−0.480025 + 0.877255i \(0.659372\pi\)
\(398\) −3.01670 + 5.84265i −0.151213 + 0.292865i
\(399\) 0 0
\(400\) −17.6048 + 3.34763i −0.880238 + 0.167382i
\(401\) 9.78297 16.9446i 0.488538 0.846173i −0.511375 0.859358i \(-0.670864\pi\)
0.999913 + 0.0131845i \(0.00419689\pi\)
\(402\) 0 0
\(403\) −19.1624 + 11.0634i −0.954548 + 0.551109i
\(404\) −31.1159 14.2570i −1.54808 0.709311i
\(405\) 0 0
\(406\) −21.3279 28.5780i −1.05849 1.41830i
\(407\) 7.44829 4.30027i 0.369198 0.213156i
\(408\) 0 0
\(409\) −2.97407 1.71708i −0.147058 0.0849042i 0.424665 0.905350i \(-0.360392\pi\)
−0.571724 + 0.820446i \(0.693725\pi\)
\(410\) 22.2840 1.04762i 1.10053 0.0517385i
\(411\) 0 0
\(412\) 3.21440 0.302903i 0.158362 0.0149230i
\(413\) −23.4672 + 1.65848i −1.15475 + 0.0816084i
\(414\) 0 0
\(415\) 0.352649i 0.0173108i
\(416\) 4.51975 + 18.8868i 0.221599 + 0.926004i
\(417\) 0 0
\(418\) −0.478369 10.1754i −0.0233978 0.497694i
\(419\) −5.82364 + 10.0868i −0.284503 + 0.492774i −0.972489 0.232950i \(-0.925162\pi\)
0.687985 + 0.725725i \(0.258495\pi\)
\(420\) 0 0
\(421\) −9.64312 16.7024i −0.469977 0.814024i 0.529434 0.848351i \(-0.322404\pi\)
−0.999411 + 0.0343274i \(0.989071\pi\)
\(422\) −3.07732 + 1.97497i −0.149802 + 0.0961402i
\(423\) 0 0
\(424\) −29.6123 + 4.20122i −1.43810 + 0.204029i
\(425\) −8.88976 + 5.13251i −0.431217 + 0.248963i
\(426\) 0 0
\(427\) 9.81692 + 4.77902i 0.475074 + 0.231273i
\(428\) −3.00621 + 2.13508i −0.145311 + 0.103203i
\(429\) 0 0
\(430\) 6.68598 12.9492i 0.322427 0.624466i
\(431\) 1.73760i 0.0836971i 0.999124 + 0.0418485i \(0.0133247\pi\)
−0.999124 + 0.0418485i \(0.986675\pi\)
\(432\) 0 0
\(433\) 5.95764i 0.286306i −0.989701 0.143153i \(-0.954276\pi\)
0.989701 0.143153i \(-0.0457241\pi\)
\(434\) −9.52581 + 22.1550i −0.457254 + 1.06347i
\(435\) 0 0
\(436\) 3.09039 + 4.35130i 0.148003 + 0.208389i
\(437\) 8.00657 + 4.62260i 0.383006 + 0.221129i
\(438\) 0 0
\(439\) 10.6377 + 18.4250i 0.507708 + 0.879377i 0.999960 + 0.00892391i \(0.00284061\pi\)
−0.492252 + 0.870453i \(0.663826\pi\)
\(440\) −36.3271 + 5.15388i −1.73182 + 0.245701i
\(441\) 0 0
\(442\) 6.00837 + 9.36200i 0.285789 + 0.445305i
\(443\) −30.1387 + 17.4006i −1.43193 + 0.826726i −0.997268 0.0738675i \(-0.976466\pi\)
−0.434663 + 0.900593i \(0.643132\pi\)
\(444\) 0 0
\(445\) −5.57190 + 9.65081i −0.264133 + 0.457492i
\(446\) −0.923156 + 0.0433999i −0.0437127 + 0.00205504i
\(447\) 0 0
\(448\) 16.2597 + 13.5508i 0.768198 + 0.640213i
\(449\) −0.109498 −0.00516755 −0.00258377 0.999997i \(-0.500822\pi\)
−0.00258377 + 0.999997i \(0.500822\pi\)
\(450\) 0 0
\(451\) 21.5853 1.01641
\(452\) −2.49567 + 0.235175i −0.117386 + 0.0110617i
\(453\) 0 0
\(454\) −8.14572 + 0.382951i −0.382298 + 0.0179728i
\(455\) 12.2409 25.1448i 0.573861 1.17881i
\(456\) 0 0
\(457\) 14.6591 + 25.3902i 0.685722 + 1.18770i 0.973209 + 0.229920i \(0.0738466\pi\)
−0.287488 + 0.957784i \(0.592820\pi\)
\(458\) −33.3308 + 21.3911i −1.55744 + 0.999541i
\(459\) 0 0
\(460\) 13.8710 30.2735i 0.646738 1.41151i
\(461\) −28.8999 + 16.6853i −1.34600 + 0.777114i −0.987680 0.156485i \(-0.949984\pi\)
−0.358320 + 0.933599i \(0.616650\pi\)
\(462\) 0 0
\(463\) 8.98085 + 5.18510i 0.417376 + 0.240972i 0.693954 0.720019i \(-0.255867\pi\)
−0.276578 + 0.960991i \(0.589200\pi\)
\(464\) −37.4503 + 7.12137i −1.73859 + 0.330601i
\(465\) 0 0
\(466\) −5.48266 + 10.6187i −0.253979 + 0.491900i
\(467\) −7.81904 −0.361822 −0.180911 0.983499i \(-0.557905\pi\)
−0.180911 + 0.983499i \(0.557905\pi\)
\(468\) 0 0
\(469\) 2.05375 + 29.0602i 0.0948332 + 1.34188i
\(470\) 17.0759 + 8.81669i 0.787653 + 0.406684i
\(471\) 0 0
\(472\) −9.39090 + 23.3311i −0.432251 + 1.07390i
\(473\) 7.05047 12.2118i 0.324181 0.561498i
\(474\) 0 0
\(475\) 3.82966 + 6.63317i 0.175717 + 0.304351i
\(476\) 11.3509 + 4.26072i 0.520270 + 0.195290i
\(477\) 0 0
\(478\) 25.5584 16.4030i 1.16902 0.750254i
\(479\) 2.78654 + 4.82643i 0.127320 + 0.220525i 0.922638 0.385668i \(-0.126029\pi\)
−0.795317 + 0.606193i \(0.792696\pi\)
\(480\) 0 0
\(481\) 6.06912 + 3.50401i 0.276728 + 0.159769i
\(482\) 1.71428 + 36.4644i 0.0780834 + 1.66091i
\(483\) 0 0
\(484\) −13.4418 + 1.26666i −0.610990 + 0.0575756i
\(485\) 19.6848 0.893842
\(486\) 0 0
\(487\) 22.6868i 1.02804i 0.857780 + 0.514018i \(0.171843\pi\)
−0.857780 + 0.514018i \(0.828157\pi\)
\(488\) 9.18844 7.19816i 0.415941 0.325846i
\(489\) 0 0
\(490\) −5.69921 29.9427i −0.257464 1.35267i
\(491\) −5.38821 3.11089i −0.243167 0.140392i 0.373465 0.927644i \(-0.378170\pi\)
−0.616631 + 0.787252i \(0.711503\pi\)
\(492\) 0 0
\(493\) −18.9110 + 10.9183i −0.851711 + 0.491735i
\(494\) 6.98553 4.48319i 0.314294 0.201708i
\(495\) 0 0
\(496\) 16.8346 + 19.5261i 0.755894 + 0.876746i
\(497\) −5.45541 + 3.68561i −0.244709 + 0.165322i
\(498\) 0 0
\(499\) −35.4214 20.4505i −1.58568 0.915491i −0.994008 0.109311i \(-0.965135\pi\)
−0.591670 0.806180i \(-0.701531\pi\)
\(500\) −2.61042 + 1.85398i −0.116741 + 0.0829125i
\(501\) 0 0
\(502\) 9.32334 18.0572i 0.416121 0.805931i
\(503\) −8.58006 −0.382566 −0.191283 0.981535i \(-0.561265\pi\)
−0.191283 + 0.981535i \(0.561265\pi\)
\(504\) 0 0
\(505\) 52.6914 2.34474
\(506\) 14.7821 28.6295i 0.657143 1.27273i
\(507\) 0 0
\(508\) 17.3840 12.3465i 0.771289 0.547788i
\(509\) −5.48332 3.16579i −0.243044 0.140321i 0.373531 0.927618i \(-0.378147\pi\)
−0.616575 + 0.787296i \(0.711480\pi\)
\(510\) 0 0
\(511\) −7.60695 + 5.13917i −0.336512 + 0.227343i
\(512\) 20.6349 9.28440i 0.911943 0.410317i
\(513\) 0 0
\(514\) −20.3675 + 13.0715i −0.898373 + 0.576560i
\(515\) −4.30453 + 2.48522i −0.189680 + 0.109512i
\(516\) 0 0
\(517\) 16.1035 + 9.29734i 0.708230 + 0.408897i
\(518\) 7.58535 0.895655i 0.333281 0.0393528i
\(519\) 0 0
\(520\) −18.4372 23.5351i −0.808525 1.03208i
\(521\) 19.8412i 0.869261i −0.900609 0.434630i \(-0.856879\pi\)
0.900609 0.434630i \(-0.143121\pi\)
\(522\) 0 0
\(523\) −39.5715 −1.73034 −0.865171 0.501476i \(-0.832790\pi\)
−0.865171 + 0.501476i \(0.832790\pi\)
\(524\) −17.9318 + 1.68977i −0.783356 + 0.0738182i
\(525\) 0 0
\(526\) −1.14577 24.3717i −0.0499580 1.06265i
\(527\) 12.7894 + 7.38396i 0.557114 + 0.321650i
\(528\) 0 0
\(529\) 3.12136 + 5.40635i 0.135711 + 0.235059i
\(530\) 38.7503 24.8692i 1.68320 1.08025i
\(531\) 0 0
\(532\) 3.17917 8.46960i 0.137834 0.367204i
\(533\) 8.79424 + 15.2321i 0.380921 + 0.659774i
\(534\) 0 0
\(535\) 2.83824 4.91598i 0.122708 0.212536i
\(536\) 28.8916 + 11.6290i 1.24793 + 0.502298i
\(537\) 0 0
\(538\) 27.0769 + 13.9805i 1.16737 + 0.602740i
\(539\) −4.14782 29.1989i −0.178659 1.25769i
\(540\) 0 0
\(541\) −14.8643 −0.639068 −0.319534 0.947575i \(-0.603526\pi\)
−0.319534 + 0.947575i \(0.603526\pi\)
\(542\) 0.556222 1.07727i 0.0238918 0.0462729i
\(543\) 0 0
\(544\) 9.40836 8.91516i 0.403380 0.382234i
\(545\) −7.11556 4.10817i −0.304797 0.175975i
\(546\) 0 0
\(547\) 17.5001 10.1037i 0.748252 0.432003i −0.0768102 0.997046i \(-0.524474\pi\)
0.825062 + 0.565042i \(0.191140\pi\)
\(548\) −1.86150 + 4.06274i −0.0795194 + 0.173552i
\(549\) 0 0
\(550\) 22.4650 14.4176i 0.957910 0.614770i
\(551\) 8.14678 + 14.1106i 0.347064 + 0.601133i
\(552\) 0 0
\(553\) 24.3897 + 11.8733i 1.03716 + 0.504903i
\(554\) −25.2781 + 1.18839i −1.07396 + 0.0504897i
\(555\) 0 0
\(556\) −20.3025 + 1.91317i −0.861018 + 0.0811365i
\(557\) −12.0437 −0.510308 −0.255154 0.966900i \(-0.582126\pi\)
−0.255154 + 0.966900i \(0.582126\pi\)
\(558\) 0 0
\(559\) 11.4899 0.485973
\(560\) −31.4462 8.53841i −1.32884 0.360814i
\(561\) 0 0
\(562\) 30.6667 1.44172i 1.29360 0.0608152i
\(563\) 19.3253 33.4724i 0.814463 1.41069i −0.0952496 0.995453i \(-0.530365\pi\)
0.909713 0.415238i \(-0.136302\pi\)
\(564\) 0 0
\(565\) 3.34205 1.92953i 0.140601 0.0811761i
\(566\) 17.8954 + 27.8839i 0.752201 + 1.17205i
\(567\) 0 0
\(568\) 0.988651 + 6.96850i 0.0414829 + 0.292392i
\(569\) 6.96304 + 12.0603i 0.291906 + 0.505596i 0.974260 0.225426i \(-0.0723773\pi\)
−0.682355 + 0.731021i \(0.739044\pi\)
\(570\) 0 0
\(571\) 21.6359 + 12.4915i 0.905436 + 0.522754i 0.878960 0.476896i \(-0.158238\pi\)
0.0264762 + 0.999649i \(0.491571\pi\)
\(572\) −16.7504 23.5847i −0.700369 0.986125i
\(573\) 0 0
\(574\) 17.6109 + 7.57200i 0.735063 + 0.316049i
\(575\) 24.2266i 1.01032i
\(576\) 0 0
\(577\) 41.9153i 1.74495i −0.488654 0.872477i \(-0.662512\pi\)
0.488654 0.872477i \(-0.337488\pi\)
\(578\) −7.62359 + 14.7652i −0.317100 + 0.614149i
\(579\) 0 0
\(580\) 47.8476 33.9825i 1.98676 1.41105i
\(581\) −0.132638 + 0.272460i −0.00550274 + 0.0113036i
\(582\) 0 0
\(583\) 38.5826 22.2757i 1.59793 0.922565i
\(584\) 1.37856 + 9.71678i 0.0570453 + 0.402083i
\(585\) 0 0
\(586\) −13.3180 + 8.54726i −0.550162 + 0.353084i
\(587\) 13.1495 + 22.7757i 0.542740 + 0.940053i 0.998745 + 0.0500760i \(0.0159464\pi\)
−0.456006 + 0.889977i \(0.650720\pi\)
\(588\) 0 0
\(589\) 5.50960 9.54291i 0.227019 0.393209i
\(590\) −1.81823 38.6755i −0.0748554 1.59224i
\(591\) 0 0
\(592\) 2.68984 7.70966i 0.110552 0.316865i
\(593\) 14.9954i 0.615786i −0.951421 0.307893i \(-0.900376\pi\)
0.951421 0.307893i \(-0.0996239\pi\)
\(594\) 0 0
\(595\) −18.6187 + 1.31582i −0.763291 + 0.0539434i
\(596\) 24.5677 2.31509i 1.00633 0.0948299i
\(597\) 0 0
\(598\) 26.2254 1.23292i 1.07243 0.0504178i
\(599\) 11.6301 + 6.71463i 0.475192 + 0.274352i 0.718411 0.695619i \(-0.244870\pi\)
−0.243219 + 0.969972i \(0.578203\pi\)
\(600\) 0 0
\(601\) −11.6714 + 6.73847i −0.476086 + 0.274868i −0.718784 0.695234i \(-0.755301\pi\)
0.242698 + 0.970102i \(0.421968\pi\)
\(602\) 10.0361 7.48998i 0.409041 0.305269i
\(603\) 0 0
\(604\) −19.6525 9.00457i −0.799650 0.366391i
\(605\) 18.0004 10.3925i 0.731821 0.422517i
\(606\) 0 0
\(607\) 17.3550 30.0598i 0.704419 1.22009i −0.262482 0.964937i \(-0.584541\pi\)
0.966901 0.255153i \(-0.0821257\pi\)
\(608\) −6.65212 7.02013i −0.269779 0.284704i
\(609\) 0 0
\(610\) −8.24391 + 15.9666i −0.333786 + 0.646467i
\(611\) 15.1516i 0.612968i
\(612\) 0 0
\(613\) −27.2426 −1.10032 −0.550159 0.835060i \(-0.685433\pi\)
−0.550159 + 0.835060i \(0.685433\pi\)
\(614\) −5.95861 + 11.5405i −0.240470 + 0.465735i
\(615\) 0 0
\(616\) −30.0051 9.68134i −1.20894 0.390072i
\(617\) 3.19357 5.53142i 0.128568 0.222687i −0.794554 0.607194i \(-0.792295\pi\)
0.923122 + 0.384507i \(0.125629\pi\)
\(618\) 0 0
\(619\) −13.4240 23.2510i −0.539554 0.934536i −0.998928 0.0462924i \(-0.985259\pi\)
0.459374 0.888243i \(-0.348074\pi\)
\(620\) −36.0825 16.5326i −1.44911 0.663966i
\(621\) 0 0
\(622\) −5.82149 9.07082i −0.233421 0.363707i
\(623\) −7.93476 + 5.36063i −0.317899 + 0.214769i
\(624\) 0 0
\(625\) 13.6647 23.6679i 0.546588 0.946718i
\(626\) −0.411800 8.75938i −0.0164588 0.350095i
\(627\) 0 0
\(628\) 4.65517 + 49.4005i 0.185762 + 1.97130i
\(629\) 4.67729i 0.186496i
\(630\) 0 0
\(631\) 24.9328i 0.992557i −0.868163 0.496279i \(-0.834699\pi\)
0.868163 0.496279i \(-0.165301\pi\)
\(632\) 22.8283 17.8835i 0.908061 0.711369i
\(633\) 0 0
\(634\) −13.6887 + 0.643539i −0.543647 + 0.0255582i
\(635\) −16.4126 + 28.4275i −0.651316 + 1.12811i
\(636\) 0 0
\(637\) 18.9149 14.8231i 0.749434 0.587314i
\(638\) 47.7894 30.6704i 1.89200 1.21425i
\(639\) 0 0
\(640\) −22.9262 + 26.2266i −0.906237 + 1.03670i
\(641\) −12.1458 21.0372i −0.479732 0.830920i 0.519998 0.854168i \(-0.325933\pi\)
−0.999730 + 0.0232475i \(0.992599\pi\)
\(642\) 0 0
\(643\) −5.13144 + 8.88791i −0.202364 + 0.350505i −0.949290 0.314403i \(-0.898196\pi\)
0.746926 + 0.664908i \(0.231529\pi\)
\(644\) 22.1033 18.1725i 0.870992 0.716097i
\(645\) 0 0
\(646\) −4.92244 2.54157i −0.193671 0.0999968i
\(647\) −44.3871 −1.74504 −0.872518 0.488581i \(-0.837515\pi\)
−0.872518 + 0.488581i \(0.837515\pi\)
\(648\) 0 0
\(649\) 37.4629i 1.47055i
\(650\) 19.3267 + 9.97881i 0.758055 + 0.391401i
\(651\) 0 0
\(652\) 17.8186 12.6552i 0.697829 0.495614i
\(653\) −11.3840 + 19.7176i −0.445489 + 0.771610i −0.998086 0.0618385i \(-0.980304\pi\)
0.552597 + 0.833449i \(0.313637\pi\)
\(654\) 0 0
\(655\) 24.0132 13.8640i 0.938274 0.541713i
\(656\) 15.5211 13.3817i 0.605998 0.522466i
\(657\) 0 0
\(658\) 9.87692 + 13.2344i 0.385042 + 0.515932i
\(659\) 20.9713 12.1078i 0.816927 0.471653i −0.0324284 0.999474i \(-0.510324\pi\)
0.849356 + 0.527821i \(0.176991\pi\)
\(660\) 0 0
\(661\) −9.97746 5.76049i −0.388078 0.224057i 0.293249 0.956036i \(-0.405264\pi\)
−0.681327 + 0.731979i \(0.738597\pi\)
\(662\) −1.37402 29.2266i −0.0534027 1.13593i
\(663\) 0 0
\(664\) 0.199779 + 0.255017i 0.00775293 + 0.00989660i
\(665\) 0.981811 + 13.8925i 0.0380730 + 0.538727i
\(666\) 0 0
\(667\) 51.5368i 1.99551i
\(668\) −33.8745 + 3.19211i −1.31065 + 0.123506i
\(669\) 0 0
\(670\) −47.8930 + 2.25157i −1.85027 + 0.0869858i
\(671\) −8.69333 + 15.0573i −0.335602 + 0.581280i
\(672\) 0 0
\(673\) 10.9799 + 19.0178i 0.423245 + 0.733083i 0.996255 0.0864662i \(-0.0275575\pi\)
−0.573009 + 0.819549i \(0.694224\pi\)
\(674\) 12.6609 + 19.7277i 0.487679 + 0.759882i
\(675\) 0 0
\(676\) −1.01166 + 2.20795i −0.0389099 + 0.0849211i
\(677\) −38.3056 + 22.1157i −1.47220 + 0.849977i −0.999512 0.0312511i \(-0.990051\pi\)
−0.472692 + 0.881228i \(0.656718\pi\)
\(678\) 0 0
\(679\) 15.2087 + 7.40382i 0.583656 + 0.284133i
\(680\) −7.45065 + 18.5106i −0.285719 + 0.709851i
\(681\) 0 0
\(682\) −34.1230 17.6185i −1.30664 0.674647i
\(683\) 15.0761i 0.576872i −0.957499 0.288436i \(-0.906865\pi\)
0.957499 0.288436i \(-0.0931352\pi\)
\(684\) 0 0
\(685\) 6.87980i 0.262864i
\(686\) 6.85872 25.2776i 0.261867 0.965104i
\(687\) 0 0
\(688\) −2.50090 13.1519i −0.0953458 0.501411i
\(689\) 31.4385 + 18.1510i 1.19771 + 0.691499i
\(690\) 0 0
\(691\) 11.3171 + 19.6017i 0.430522 + 0.745686i 0.996918 0.0784473i \(-0.0249962\pi\)
−0.566396 + 0.824133i \(0.691663\pi\)
\(692\) −8.54289 3.91426i −0.324752 0.148798i
\(693\) 0 0
\(694\) −12.2848 + 7.88418i −0.466325 + 0.299279i
\(695\) 27.1879 15.6969i 1.03130 0.595418i
\(696\) 0 0
\(697\) 5.86946 10.1662i 0.222321 0.385072i
\(698\) 0.639115 + 13.5946i 0.0241909 + 0.514563i
\(699\) 0 0
\(700\) 23.3861 3.88236i 0.883913 0.146739i
\(701\) −8.62984 −0.325945 −0.162972 0.986631i \(-0.552108\pi\)
−0.162972 + 0.986631i \(0.552108\pi\)
\(702\) 0 0
\(703\) −3.49000 −0.131628
\(704\) −23.3501 + 24.3066i −0.880042 + 0.916091i
\(705\) 0 0
\(706\) 1.55886 + 33.1585i 0.0586686 + 1.24794i
\(707\) 40.7099 + 19.8182i 1.53106 + 0.745340i
\(708\) 0 0
\(709\) 11.8717 + 20.5624i 0.445851 + 0.772237i 0.998111 0.0614349i \(-0.0195677\pi\)
−0.552260 + 0.833672i \(0.686234\pi\)
\(710\) −5.85235 9.11890i −0.219635 0.342226i
\(711\) 0 0
\(712\) 1.43797 + 10.1355i 0.0538901 + 0.379844i
\(713\) 30.1844 17.4270i 1.13041 0.652645i
\(714\) 0 0
\(715\) 38.5674 + 22.2669i 1.44234 + 0.832735i
\(716\) −13.5702 + 9.63788i −0.507142 + 0.360184i
\(717\) 0 0
\(718\) 9.42309 + 4.86536i 0.351667 + 0.181574i
\(719\) −25.3519 −0.945467 −0.472734 0.881205i \(-0.656733\pi\)
−0.472734 + 0.881205i \(0.656733\pi\)
\(720\) 0 0
\(721\) −4.26046 + 0.301096i −0.158668 + 0.0112134i
\(722\) 10.4310 20.2025i 0.388202 0.751858i
\(723\) 0 0
\(724\) −14.7948 + 10.5076i −0.549845 + 0.390513i
\(725\) −21.3482 + 36.9762i −0.792853 + 1.37326i
\(726\) 0 0
\(727\) 5.16319 + 8.94291i 0.191492 + 0.331674i 0.945745 0.324910i \(-0.105334\pi\)
−0.754253 + 0.656584i \(0.772001\pi\)
\(728\) −5.39281 25.1180i −0.199871 0.930935i
\(729\) 0 0
\(730\) −8.16044 12.7153i −0.302031 0.470613i
\(731\) −3.83431 6.64122i −0.141817 0.245634i
\(732\) 0 0
\(733\) −10.1555 5.86329i −0.375102 0.216565i 0.300583 0.953756i \(-0.402819\pi\)
−0.675685 + 0.737190i \(0.736152\pi\)
\(734\) 6.76212 0.317904i 0.249595 0.0117341i
\(735\) 0 0
\(736\) −7.11945 29.7503i −0.262426 1.09661i
\(737\) −46.3915 −1.70885
\(738\) 0 0
\(739\) 0.463561i 0.0170524i −0.999964 0.00852618i \(-0.997286\pi\)
0.999964 0.00852618i \(-0.00271400\pi\)
\(740\) 1.17934 + 12.5151i 0.0433533 + 0.460064i
\(741\) 0 0
\(742\) 39.2927 4.63956i 1.44248 0.170323i
\(743\) −11.4461 6.60840i −0.419916 0.242439i 0.275125 0.961408i \(-0.411281\pi\)
−0.695041 + 0.718970i \(0.744614\pi\)
\(744\) 0 0
\(745\) −32.8996 + 18.9946i −1.20535 + 0.695907i
\(746\) −21.2285 33.0773i −0.777229 1.21105i
\(747\) 0 0
\(748\) −8.04224 + 17.5522i −0.294053 + 0.641773i
\(749\) 4.04185 2.73062i 0.147686 0.0997748i
\(750\) 0 0
\(751\) 9.82352 + 5.67161i 0.358465 + 0.206960i 0.668407 0.743795i \(-0.266976\pi\)
−0.309942 + 0.950755i \(0.600310\pi\)
\(752\) 17.3432 3.29789i 0.632440 0.120262i
\(753\) 0 0
\(754\) 41.1133 + 21.2278i 1.49726 + 0.773070i
\(755\) 33.2794 1.21116
\(756\) 0 0
\(757\) −21.1566 −0.768950 −0.384475 0.923135i \(-0.625618\pi\)
−0.384475 + 0.923135i \(0.625618\pi\)
\(758\) 34.4255 + 17.7747i 1.25039 + 0.645606i
\(759\) 0 0
\(760\) 13.8119 + 5.55936i 0.501009 + 0.201659i
\(761\) 7.75469 + 4.47717i 0.281107 + 0.162297i 0.633925 0.773395i \(-0.281443\pi\)
−0.352817 + 0.935692i \(0.614776\pi\)
\(762\) 0 0
\(763\) −3.95240 5.85031i −0.143086 0.211795i
\(764\) −21.4002 9.80532i −0.774231 0.354744i
\(765\) 0 0
\(766\) 11.2469 + 17.5245i 0.406369 + 0.633188i
\(767\) 26.4364 15.2631i 0.954563 0.551117i
\(768\) 0 0
\(769\) 7.27639 + 4.20103i 0.262393 + 0.151493i 0.625426 0.780284i \(-0.284925\pi\)
−0.363033 + 0.931776i \(0.618259\pi\)
\(770\) 48.2026 5.69161i 1.73710 0.205111i
\(771\) 0 0
\(772\) −42.5857 + 4.01299i −1.53269 + 0.144431i
\(773\) 5.75834i 0.207113i 0.994624 + 0.103556i \(0.0330223\pi\)
−0.994624 + 0.103556i \(0.966978\pi\)
\(774\) 0 0
\(775\) 28.8753 1.03723
\(776\) 14.2350 11.1516i 0.511008 0.400321i
\(777\) 0 0
\(778\) −30.9384 + 1.45449i −1.10920 + 0.0521461i
\(779\) −7.58559 4.37954i −0.271782 0.156913i
\(780\) 0 0
\(781\) −5.24202 9.07945i −0.187574 0.324888i
\(782\) −9.46430 14.7469i −0.338443 0.527348i
\(783\) 0 0
\(784\) −21.0842 18.4244i −0.753007 0.658013i
\(785\) −38.1942 66.1542i −1.36321 2.36115i
\(786\) 0 0
\(787\) −18.4924 + 32.0297i −0.659181 + 1.14174i 0.321647 + 0.946860i \(0.395764\pi\)
−0.980828 + 0.194876i \(0.937570\pi\)
\(788\) −12.4906 17.5868i −0.444957 0.626503i
\(789\) 0 0
\(790\) −20.4816 + 39.6682i −0.728704 + 1.41133i
\(791\) 3.30784 0.233772i 0.117613 0.00831197i
\(792\) 0 0
\(793\) −14.1673 −0.503094
\(794\) −43.9287 22.6814i −1.55897 0.804933i
\(795\) 0 0
\(796\) −5.38460 7.58156i −0.190852 0.268721i
\(797\) 20.0024 + 11.5484i 0.708522 + 0.409065i 0.810513 0.585720i \(-0.199188\pi\)
−0.101992 + 0.994785i \(0.532522\pi\)
\(798\) 0 0
\(799\) 8.75767 5.05624i 0.309824 0.178877i
\(800\) 7.21554 24.2941i 0.255108 0.858927i
\(801\) 0 0
\(802\) 14.9453 + 23.2871i 0.527736 + 0.822298i
\(803\) −7.30941 12.6603i −0.257943 0.446771i
\(804\) 0 0
\(805\) −19.2817 + 39.6078i −0.679589 + 1.39599i
\(806\) −1.46950 31.2576i −0.0517608 1.10100i
\(807\) 0 0
\(808\) 38.1037 29.8502i 1.34048 1.05013i
\(809\) 22.9976 0.808553 0.404277 0.914637i \(-0.367523\pi\)
0.404277 + 0.914637i \(0.367523\pi\)
\(810\) 0 0
\(811\) 27.1173 0.952216 0.476108 0.879387i \(-0.342047\pi\)
0.476108 + 0.879387i \(0.342047\pi\)
\(812\) 49.7490 8.25887i 1.74585 0.289830i
\(813\) 0 0
\(814\) 0.571182 + 12.1496i 0.0200199 + 0.425843i
\(815\) −16.8230 + 29.1382i −0.589282 + 1.02067i
\(816\) 0 0
\(817\) −4.95540 + 2.86100i −0.173368 + 0.100094i
\(818\) 4.08730 2.62315i 0.142909 0.0917165i
\(819\) 0 0
\(820\) −13.1417 + 28.6817i −0.458927 + 1.00161i
\(821\) 2.27415 + 3.93894i 0.0793682 + 0.137470i 0.902978 0.429688i \(-0.141376\pi\)
−0.823609 + 0.567158i \(0.808043\pi\)
\(822\) 0 0
\(823\) 20.0197 + 11.5584i 0.697844 + 0.402900i 0.806544 0.591174i \(-0.201335\pi\)
−0.108700 + 0.994075i \(0.534669\pi\)
\(824\) −1.70491 + 4.23574i −0.0593934 + 0.147559i
\(825\) 0 0
\(826\) 13.1418 30.5650i 0.457261 1.06349i
\(827\) 51.8058i 1.80146i 0.434376 + 0.900732i \(0.356969\pi\)
−0.434376 + 0.900732i \(0.643031\pi\)
\(828\) 0 0
\(829\) 13.9412i 0.484197i −0.970252 0.242098i \(-0.922164\pi\)
0.970252 0.242098i \(-0.0778357\pi\)
\(830\) −0.443138 0.228803i −0.0153816 0.00794186i
\(831\) 0 0
\(832\) −26.6657 6.57449i −0.924466 0.227929i
\(833\) −14.8799 5.98621i −0.515558 0.207410i
\(834\) 0 0
\(835\) 45.3627 26.1902i 1.56984 0.906349i
\(836\) 13.0967 + 6.00078i 0.452960 + 0.207541i
\(837\) 0 0
\(838\) −8.89667 13.8624i −0.307330 0.478870i
\(839\) −24.6769 42.7416i −0.851941 1.47561i −0.879454 0.475984i \(-0.842092\pi\)
0.0275127 0.999621i \(-0.491241\pi\)
\(840\) 0 0
\(841\) −30.9137 + 53.5441i −1.06599 + 1.84635i
\(842\) 27.2448 1.28084i 0.938917 0.0441408i
\(843\) 0 0
\(844\) −0.485146 5.14835i −0.0166994 0.177214i
\(845\) 3.73892i 0.128623i
\(846\) 0 0
\(847\) 17.8161 1.25910i 0.612170 0.0432633i
\(848\) 13.9335 39.9366i 0.478480 1.37143i
\(849\) 0 0
\(850\) −0.681724 14.5009i −0.0233829 0.497377i
\(851\) −9.56000 5.51947i −0.327713 0.189205i
\(852\) 0 0
\(853\) −24.2685 + 14.0114i −0.830939 + 0.479743i −0.854174 0.519987i \(-0.825937\pi\)
0.0232350 + 0.999730i \(0.492603\pi\)
\(854\) −12.3746 + 9.23525i −0.423452 + 0.316024i
\(855\) 0 0
\(856\) −0.732479 5.16288i −0.0250356 0.176463i
\(857\) −9.87736 + 5.70269i −0.337404 + 0.194800i −0.659123 0.752035i \(-0.729073\pi\)
0.321719 + 0.946835i \(0.395739\pi\)
\(858\) 0 0
\(859\) −20.0438 + 34.7168i −0.683884 + 1.18452i 0.289902 + 0.957056i \(0.406377\pi\)
−0.973786 + 0.227466i \(0.926956\pi\)
\(860\) 11.9340 + 16.8032i 0.406947 + 0.572984i
\(861\) 0 0
\(862\) −2.18346 1.12737i −0.0743691 0.0383985i
\(863\) 45.2430i 1.54009i 0.637989 + 0.770045i \(0.279766\pi\)
−0.637989 + 0.770045i \(0.720234\pi\)
\(864\) 0 0
\(865\) 14.4664 0.491874
\(866\) 7.48638 + 3.86539i 0.254397 + 0.131351i
\(867\) 0 0
\(868\) −21.6595 26.3446i −0.735172 0.894193i
\(869\) −21.5982 + 37.4092i −0.732669 + 1.26902i
\(870\) 0 0
\(871\) −18.9007 32.7370i −0.640426 1.10925i
\(872\) −7.47292 + 1.06022i −0.253065 + 0.0359034i
\(873\) 0 0
\(874\) −11.0035 + 7.06186i −0.372199 + 0.238871i
\(875\) 3.50970 2.37111i 0.118649 0.0801581i
\(876\) 0 0
\(877\) 6.89651 11.9451i 0.232878 0.403357i −0.725776 0.687932i \(-0.758519\pi\)
0.958654 + 0.284574i \(0.0918522\pi\)
\(878\) −30.0547 + 1.41295i −1.01430 + 0.0476846i
\(879\) 0 0
\(880\) 17.0931 48.9925i 0.576207 1.65154i
\(881\) 46.4443i 1.56475i 0.622808 + 0.782375i \(0.285992\pi\)
−0.622808 + 0.782375i \(0.714008\pi\)
\(882\) 0 0
\(883\) 22.9737i 0.773127i −0.922263 0.386564i \(-0.873662\pi\)
0.922263 0.386564i \(-0.126338\pi\)
\(884\) −15.6626 + 1.47594i −0.526790 + 0.0496411i
\(885\) 0 0
\(886\) −2.31122 49.1619i −0.0776471 1.65163i
\(887\) 10.6026 18.3642i 0.356000 0.616610i −0.631289 0.775548i \(-0.717474\pi\)
0.987289 + 0.158938i \(0.0508071\pi\)
\(888\) 0 0
\(889\) −23.3727 + 15.7903i −0.783895 + 0.529590i
\(890\) −8.51210 13.2632i −0.285326 0.444584i
\(891\) 0 0
\(892\) 0.544418 1.18820i 0.0182285 0.0397838i
\(893\) −3.77276 6.53461i −0.126251 0.218672i
\(894\) 0 0
\(895\) 12.8120 22.1910i 0.428257 0.741763i
\(896\) −27.5773 + 11.6400i −0.921294 + 0.388866i
\(897\) 0 0
\(898\) 0.0710438 0.137596i 0.00237076 0.00459162i
\(899\) 61.4259 2.04867
\(900\) 0 0
\(901\) 24.2287i 0.807175i
\(902\) −14.0048 + 27.1241i −0.466310 + 0.903135i
\(903\) 0 0
\(904\) 1.32370 3.28864i 0.0440256 0.109379i
\(905\) 13.9682 24.1936i 0.464317 0.804221i
\(906\) 0 0
\(907\) −18.6114 + 10.7453i −0.617981 + 0.356791i −0.776082 0.630632i \(-0.782796\pi\)
0.158102 + 0.987423i \(0.449463\pi\)
\(908\) 4.80383 10.4844i 0.159421 0.347936i
\(909\) 0 0
\(910\) 23.6550 + 31.6961i 0.784154 + 1.05072i
\(911\) −44.5039 + 25.6943i −1.47448 + 0.851291i −0.999587 0.0287535i \(-0.990846\pi\)
−0.474892 + 0.880044i \(0.657513\pi\)
\(912\) 0 0
\(913\) −0.417902 0.241276i −0.0138306 0.00798507i
\(914\) −41.4163 + 1.94708i −1.36993 + 0.0644038i
\(915\) 0 0
\(916\) −5.25466 55.7622i −0.173619 1.84244i
\(917\) 23.7674 1.67969i 0.784869 0.0554683i
\(918\) 0 0
\(919\) 33.2245i 1.09597i −0.836487 0.547987i \(-0.815394\pi\)
0.836487 0.547987i \(-0.184606\pi\)
\(920\) 29.0420 + 37.0721i 0.957487 + 1.22223i
\(921\) 0 0
\(922\) −2.21623 47.1412i −0.0729875 1.55251i
\(923\) 4.27138 7.39825i 0.140594 0.243516i
\(924\) 0 0
\(925\) −4.57269 7.92013i −0.150349 0.260412i
\(926\) −12.3425 + 7.92118i −0.405599 + 0.260306i
\(927\) 0 0
\(928\) 15.3495 51.6805i 0.503872 1.69649i
\(929\) −23.4631 + 13.5464i −0.769800 + 0.444444i −0.832803 0.553569i \(-0.813265\pi\)
0.0630034 + 0.998013i \(0.479932\pi\)
\(930\) 0 0
\(931\) −4.46666 + 11.1028i −0.146389 + 0.363878i
\(932\) −9.78619 13.7790i −0.320557 0.451347i
\(933\) 0 0
\(934\) 5.07309 9.82540i 0.165996 0.321497i
\(935\) 29.7227i 0.972038i
\(936\) 0 0
\(937\) 34.2337i 1.11837i 0.829044 + 0.559183i \(0.188885\pi\)
−0.829044 + 0.559183i \(0.811115\pi\)
\(938\) −37.8495 16.2739i −1.23583 0.531361i
\(939\) 0 0
\(940\) −22.1581 + 15.7372i −0.722718 + 0.513291i
\(941\) −47.7364 27.5606i −1.55616 0.898450i −0.997618 0.0689741i \(-0.978027\pi\)
−0.558543 0.829476i \(-0.688639\pi\)
\(942\) 0 0
\(943\) −13.8526 23.9934i −0.451102 0.781331i
\(944\) −23.2249 26.9381i −0.755905 0.876759i
\(945\) 0 0
\(946\) 10.7709 + 16.7828i 0.350192 + 0.545655i
\(947\) 13.2348 7.64112i 0.430073 0.248303i −0.269305 0.963055i \(-0.586794\pi\)
0.699378 + 0.714752i \(0.253460\pi\)
\(948\) 0 0
\(949\) 5.95596 10.3160i 0.193339 0.334872i
\(950\) −10.8200 + 0.508674i −0.351046 + 0.0165036i
\(951\) 0 0
\(952\) −12.7186 + 11.4992i −0.412214 + 0.372691i
\(953\) −7.58109 −0.245576 −0.122788 0.992433i \(-0.539183\pi\)
−0.122788 + 0.992433i \(0.539183\pi\)
\(954\) 0 0
\(955\) 36.2388 1.17266
\(956\) 4.02933 + 42.7592i 0.130318 + 1.38293i
\(957\) 0 0
\(958\) −7.87283 + 0.370121i −0.254360 + 0.0119581i
\(959\) 2.58762 5.31541i 0.0835586 0.171643i
\(960\) 0 0
\(961\) −5.27092 9.12949i −0.170030 0.294500i
\(962\) −8.34086 + 5.35302i −0.268920 + 0.172588i
\(963\) 0 0
\(964\) −46.9334 21.5044i −1.51162 0.692609i
\(965\) 57.0282 32.9253i 1.83580 1.05990i
\(966\) 0 0
\(967\) 4.06638 + 2.34772i 0.130766 + 0.0754977i 0.563956 0.825805i \(-0.309279\pi\)
−0.433190 + 0.901303i \(0.642612\pi\)
\(968\) 7.12950 17.7128i 0.229151 0.569310i
\(969\) 0 0
\(970\) −12.7717 + 24.7359i −0.410076 + 0.794223i
\(971\) 44.5685 1.43027 0.715135 0.698986i \(-0.246365\pi\)
0.715135 + 0.698986i \(0.246365\pi\)
\(972\) 0 0
\(973\) 26.9096 1.90176i 0.862681 0.0609675i
\(974\) −28.5082 14.7194i −0.913461 0.471641i
\(975\) 0 0
\(976\) 3.08364 + 16.2164i 0.0987049 + 0.519076i
\(977\) 4.78233 8.28324i 0.153000 0.265004i −0.779329 0.626615i \(-0.784440\pi\)
0.932329 + 0.361611i \(0.117773\pi\)
\(978\) 0 0
\(979\) −7.62439 13.2058i −0.243677 0.422060i
\(980\) 41.3237 + 12.2655i 1.32004 + 0.391808i
\(981\) 0 0
\(982\) 7.40507 4.75245i 0.236305 0.151657i
\(983\) 26.0757 + 45.1644i 0.831685 + 1.44052i 0.896701 + 0.442637i \(0.145957\pi\)
−0.0650157 + 0.997884i \(0.520710\pi\)
\(984\) 0 0
\(985\) 28.7592 + 16.6041i 0.916344 + 0.529052i
\(986\) −1.45022 30.8475i −0.0461844 0.982386i
\(987\) 0 0
\(988\) 1.10128 + 11.6868i 0.0350365 + 0.371806i
\(989\) −18.0988 −0.575508
\(990\) 0 0
\(991\) 41.3545i 1.31367i 0.754034 + 0.656835i \(0.228105\pi\)
−0.754034 + 0.656835i \(0.771895\pi\)
\(992\) −35.4589 + 8.48556i −1.12582 + 0.269417i
\(993\) 0 0
\(994\) −1.09180 9.24654i −0.0346299 0.293282i
\(995\) 12.3979 + 7.15794i 0.393040 + 0.226922i
\(996\) 0 0
\(997\) 45.7292 26.4017i 1.44826 0.836152i 0.449879 0.893089i \(-0.351467\pi\)
0.998378 + 0.0569376i \(0.0181336\pi\)
\(998\) 48.6799 31.2419i 1.54094 0.988946i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 756.2.bi.c.307.14 80
3.2 odd 2 252.2.bi.c.139.27 yes 80
4.3 odd 2 inner 756.2.bi.c.307.40 80
7.6 odd 2 inner 756.2.bi.c.307.13 80
9.2 odd 6 252.2.bi.c.223.1 yes 80
9.7 even 3 inner 756.2.bi.c.559.39 80
12.11 even 2 252.2.bi.c.139.2 yes 80
21.20 even 2 252.2.bi.c.139.28 yes 80
28.27 even 2 inner 756.2.bi.c.307.39 80
36.7 odd 6 inner 756.2.bi.c.559.13 80
36.11 even 6 252.2.bi.c.223.28 yes 80
63.20 even 6 252.2.bi.c.223.2 yes 80
63.34 odd 6 inner 756.2.bi.c.559.40 80
84.83 odd 2 252.2.bi.c.139.1 80
252.83 odd 6 252.2.bi.c.223.27 yes 80
252.223 even 6 inner 756.2.bi.c.559.14 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.bi.c.139.1 80 84.83 odd 2
252.2.bi.c.139.2 yes 80 12.11 even 2
252.2.bi.c.139.27 yes 80 3.2 odd 2
252.2.bi.c.139.28 yes 80 21.20 even 2
252.2.bi.c.223.1 yes 80 9.2 odd 6
252.2.bi.c.223.2 yes 80 63.20 even 6
252.2.bi.c.223.27 yes 80 252.83 odd 6
252.2.bi.c.223.28 yes 80 36.11 even 6
756.2.bi.c.307.13 80 7.6 odd 2 inner
756.2.bi.c.307.14 80 1.1 even 1 trivial
756.2.bi.c.307.39 80 28.27 even 2 inner
756.2.bi.c.307.40 80 4.3 odd 2 inner
756.2.bi.c.559.13 80 36.7 odd 6 inner
756.2.bi.c.559.14 80 252.223 even 6 inner
756.2.bi.c.559.39 80 9.7 even 3 inner
756.2.bi.c.559.40 80 63.34 odd 6 inner