Properties

Label 756.2.be.d.431.6
Level $756$
Weight $2$
Character 756.431
Analytic conductor $6.037$
Analytic rank $0$
Dimension $28$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [756,2,Mod(107,756)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("756.107"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 756.be (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,0,0,-4,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.03669039281\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 431.6
Character \(\chi\) \(=\) 756.431
Dual form 756.2.be.d.107.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.373943 - 1.36388i) q^{2} +(-1.72033 + 1.02003i) q^{4} +(-1.28692 + 0.743002i) q^{5} +(1.36953 + 2.26371i) q^{7} +(2.03450 + 1.96490i) q^{8} +(1.49460 + 1.47736i) q^{10} +(1.37284 - 2.37783i) q^{11} -5.10488 q^{13} +(2.57530 - 2.71437i) q^{14} +(1.91910 - 3.50957i) q^{16} +(-4.52837 - 2.61446i) q^{17} +(-1.30598 + 0.754009i) q^{19} +(1.45605 - 2.59090i) q^{20} +(-3.75644 - 0.983219i) q^{22} +(-4.49024 - 7.77732i) q^{23} +(-1.39590 + 2.41776i) q^{25} +(1.90893 + 6.96244i) q^{26} +(-4.66509 - 2.49738i) q^{28} -2.11100i q^{29} +(-0.202986 - 0.117194i) q^{31} +(-5.50426 - 1.30504i) q^{32} +(-1.87245 + 7.15381i) q^{34} +(-3.44441 - 1.89564i) q^{35} +(-2.50604 - 4.34059i) q^{37} +(1.51674 + 1.49925i) q^{38} +(-4.07815 - 1.01702i) q^{40} +7.96878i q^{41} +6.52611i q^{43} +(0.0637017 + 5.49100i) q^{44} +(-8.92824 + 9.03242i) q^{46} +(-2.12744 - 3.68483i) q^{47} +(-3.24878 + 6.20044i) q^{49} +(3.81952 + 0.999730i) q^{50} +(8.78210 - 5.20710i) q^{52} +(3.44333 + 1.98801i) q^{53} +4.08010i q^{55} +(-1.66165 + 7.29650i) q^{56} +(-2.87915 + 0.789394i) q^{58} +(0.339358 - 0.587784i) q^{59} +(-5.29992 - 9.17972i) q^{61} +(-0.0839334 + 0.320672i) q^{62} +(0.278358 + 7.99516i) q^{64} +(6.56955 - 3.79293i) q^{65} +(-9.34860 - 5.39742i) q^{67} +(10.4571 - 0.121314i) q^{68} +(-1.29742 + 5.40662i) q^{70} +1.32129 q^{71} +(-1.75041 + 3.03179i) q^{73} +(-4.98292 + 5.04106i) q^{74} +(1.47762 - 2.62928i) q^{76} +(7.26288 - 0.148795i) q^{77} +(14.4759 - 8.35768i) q^{79} +(0.137896 + 5.94241i) q^{80} +(10.8685 - 2.97987i) q^{82} -15.2915 q^{83} +7.77018 q^{85} +(8.90083 - 2.44039i) q^{86} +(7.46525 - 2.14020i) q^{88} +(-10.8625 + 6.27147i) q^{89} +(-6.99129 - 11.5560i) q^{91} +(15.6578 + 8.79944i) q^{92} +(-4.23013 + 4.27949i) q^{94} +(1.12046 - 1.94069i) q^{95} +14.2065 q^{97} +(9.67151 + 2.11233i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 4 q^{4} + 2 q^{7} + 4 q^{10} + 8 q^{13} + 12 q^{16} - 42 q^{19} + 4 q^{22} + 6 q^{25} + 24 q^{28} + 30 q^{31} + 24 q^{34} + 12 q^{37} + 24 q^{46} - 14 q^{49} - 24 q^{52} - 44 q^{58} + 6 q^{61} + 8 q^{64}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/756\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\) \(379\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.373943 1.36388i −0.264417 0.964408i
\(3\) 0 0
\(4\) −1.72033 + 1.02003i −0.860167 + 0.510013i
\(5\) −1.28692 + 0.743002i −0.575527 + 0.332280i −0.759354 0.650678i \(-0.774485\pi\)
0.183827 + 0.982959i \(0.441151\pi\)
\(6\) 0 0
\(7\) 1.36953 + 2.26371i 0.517634 + 0.855602i
\(8\) 2.03450 + 1.96490i 0.719303 + 0.694696i
\(9\) 0 0
\(10\) 1.49460 + 1.47736i 0.472633 + 0.467182i
\(11\) 1.37284 2.37783i 0.413928 0.716944i −0.581387 0.813627i \(-0.697490\pi\)
0.995315 + 0.0966827i \(0.0308232\pi\)
\(12\) 0 0
\(13\) −5.10488 −1.41584 −0.707919 0.706293i \(-0.750366\pi\)
−0.707919 + 0.706293i \(0.750366\pi\)
\(14\) 2.57530 2.71437i 0.688279 0.725446i
\(15\) 0 0
\(16\) 1.91910 3.50957i 0.479774 0.877392i
\(17\) −4.52837 2.61446i −1.09829 0.634099i −0.162520 0.986705i \(-0.551962\pi\)
−0.935772 + 0.352606i \(0.885296\pi\)
\(18\) 0 0
\(19\) −1.30598 + 0.754009i −0.299613 + 0.172982i −0.642269 0.766479i \(-0.722007\pi\)
0.342656 + 0.939461i \(0.388673\pi\)
\(20\) 1.45605 2.59090i 0.325582 0.579342i
\(21\) 0 0
\(22\) −3.75644 0.983219i −0.800877 0.209623i
\(23\) −4.49024 7.77732i −0.936280 1.62168i −0.772336 0.635214i \(-0.780912\pi\)
−0.163944 0.986470i \(-0.552422\pi\)
\(24\) 0 0
\(25\) −1.39590 + 2.41776i −0.279179 + 0.483553i
\(26\) 1.90893 + 6.96244i 0.374372 + 1.36545i
\(27\) 0 0
\(28\) −4.66509 2.49738i −0.881619 0.471961i
\(29\) 2.11100i 0.392004i −0.980604 0.196002i \(-0.937204\pi\)
0.980604 0.196002i \(-0.0627958\pi\)
\(30\) 0 0
\(31\) −0.202986 0.117194i −0.0364574 0.0210487i 0.481661 0.876358i \(-0.340034\pi\)
−0.518118 + 0.855309i \(0.673367\pi\)
\(32\) −5.50426 1.30504i −0.973025 0.230701i
\(33\) 0 0
\(34\) −1.87245 + 7.15381i −0.321123 + 1.22687i
\(35\) −3.44441 1.89564i −0.582212 0.320422i
\(36\) 0 0
\(37\) −2.50604 4.34059i −0.411990 0.713588i 0.583117 0.812388i \(-0.301833\pi\)
−0.995107 + 0.0988002i \(0.968500\pi\)
\(38\) 1.51674 + 1.49925i 0.246048 + 0.243210i
\(39\) 0 0
\(40\) −4.07815 1.01702i −0.644812 0.160806i
\(41\) 7.96878i 1.24451i 0.782813 + 0.622257i \(0.213784\pi\)
−0.782813 + 0.622257i \(0.786216\pi\)
\(42\) 0 0
\(43\) 6.52611i 0.995222i 0.867400 + 0.497611i \(0.165789\pi\)
−0.867400 + 0.497611i \(0.834211\pi\)
\(44\) 0.0637017 + 5.49100i 0.00960340 + 0.827800i
\(45\) 0 0
\(46\) −8.92824 + 9.03242i −1.31640 + 1.33176i
\(47\) −2.12744 3.68483i −0.310319 0.537488i 0.668112 0.744060i \(-0.267103\pi\)
−0.978431 + 0.206572i \(0.933769\pi\)
\(48\) 0 0
\(49\) −3.24878 + 6.20044i −0.464111 + 0.885777i
\(50\) 3.81952 + 0.999730i 0.540162 + 0.141383i
\(51\) 0 0
\(52\) 8.78210 5.20710i 1.21786 0.722096i
\(53\) 3.44333 + 1.98801i 0.472978 + 0.273074i 0.717485 0.696573i \(-0.245293\pi\)
−0.244508 + 0.969647i \(0.578626\pi\)
\(54\) 0 0
\(55\) 4.08010i 0.550161i
\(56\) −1.66165 + 7.29650i −0.222048 + 0.975036i
\(57\) 0 0
\(58\) −2.87915 + 0.789394i −0.378052 + 0.103653i
\(59\) 0.339358 0.587784i 0.0441806 0.0765230i −0.843089 0.537773i \(-0.819266\pi\)
0.887270 + 0.461250i \(0.152599\pi\)
\(60\) 0 0
\(61\) −5.29992 9.17972i −0.678585 1.17534i −0.975407 0.220411i \(-0.929260\pi\)
0.296822 0.954933i \(-0.404073\pi\)
\(62\) −0.0839334 + 0.320672i −0.0106596 + 0.0407254i
\(63\) 0 0
\(64\) 0.278358 + 7.99516i 0.0347947 + 0.999394i
\(65\) 6.56955 3.79293i 0.814853 0.470456i
\(66\) 0 0
\(67\) −9.34860 5.39742i −1.14211 0.659399i −0.195160 0.980771i \(-0.562523\pi\)
−0.946953 + 0.321372i \(0.895856\pi\)
\(68\) 10.4571 0.121314i 1.26811 0.0147115i
\(69\) 0 0
\(70\) −1.29742 + 5.40662i −0.155071 + 0.646215i
\(71\) 1.32129 0.156808 0.0784040 0.996922i \(-0.475018\pi\)
0.0784040 + 0.996922i \(0.475018\pi\)
\(72\) 0 0
\(73\) −1.75041 + 3.03179i −0.204870 + 0.354844i −0.950091 0.311972i \(-0.899010\pi\)
0.745222 + 0.666817i \(0.232344\pi\)
\(74\) −4.98292 + 5.04106i −0.579253 + 0.586012i
\(75\) 0 0
\(76\) 1.47762 2.62928i 0.169494 0.301599i
\(77\) 7.26288 0.148795i 0.827682 0.0169567i
\(78\) 0 0
\(79\) 14.4759 8.35768i 1.62867 0.940313i 0.644179 0.764874i \(-0.277199\pi\)
0.984490 0.175438i \(-0.0561343\pi\)
\(80\) 0.137896 + 5.94241i 0.0154172 + 0.664382i
\(81\) 0 0
\(82\) 10.8685 2.97987i 1.20022 0.329071i
\(83\) −15.2915 −1.67846 −0.839232 0.543773i \(-0.816995\pi\)
−0.839232 + 0.543773i \(0.816995\pi\)
\(84\) 0 0
\(85\) 7.77018 0.842795
\(86\) 8.90083 2.44039i 0.959801 0.263154i
\(87\) 0 0
\(88\) 7.46525 2.14020i 0.795798 0.228146i
\(89\) −10.8625 + 6.27147i −1.15142 + 0.664775i −0.949234 0.314572i \(-0.898139\pi\)
−0.202190 + 0.979346i \(0.564806\pi\)
\(90\) 0 0
\(91\) −6.99129 11.5560i −0.732886 1.21140i
\(92\) 15.6578 + 8.79944i 1.63244 + 0.917405i
\(93\) 0 0
\(94\) −4.23013 + 4.27949i −0.436305 + 0.441396i
\(95\) 1.12046 1.94069i 0.114957 0.199111i
\(96\) 0 0
\(97\) 14.2065 1.44245 0.721226 0.692700i \(-0.243579\pi\)
0.721226 + 0.692700i \(0.243579\pi\)
\(98\) 9.67151 + 2.11233i 0.976970 + 0.213378i
\(99\) 0 0
\(100\) −0.0647714 5.58321i −0.00647714 0.558321i
\(101\) −9.74384 5.62561i −0.969549 0.559769i −0.0704500 0.997515i \(-0.522444\pi\)
−0.899099 + 0.437746i \(0.855777\pi\)
\(102\) 0 0
\(103\) −0.396421 + 0.228874i −0.0390605 + 0.0225516i −0.519403 0.854529i \(-0.673846\pi\)
0.480343 + 0.877081i \(0.340512\pi\)
\(104\) −10.3859 10.0306i −1.01842 0.983578i
\(105\) 0 0
\(106\) 1.42380 5.43969i 0.138291 0.528349i
\(107\) −4.44784 7.70389i −0.429989 0.744763i 0.566883 0.823799i \(-0.308149\pi\)
−0.996872 + 0.0790354i \(0.974816\pi\)
\(108\) 0 0
\(109\) −3.34680 + 5.79684i −0.320566 + 0.555236i −0.980605 0.195995i \(-0.937206\pi\)
0.660039 + 0.751231i \(0.270540\pi\)
\(110\) 5.56476 1.52572i 0.530579 0.145472i
\(111\) 0 0
\(112\) 10.5729 0.462175i 0.999046 0.0436714i
\(113\) 15.7093i 1.47781i 0.673811 + 0.738903i \(0.264656\pi\)
−0.673811 + 0.738903i \(0.735344\pi\)
\(114\) 0 0
\(115\) 11.5571 + 6.67251i 1.07771 + 0.622215i
\(116\) 2.15328 + 3.63163i 0.199927 + 0.337189i
\(117\) 0 0
\(118\) −0.928567 0.243045i −0.0854816 0.0223741i
\(119\) −0.283366 13.8315i −0.0259761 1.26793i
\(120\) 0 0
\(121\) 1.73060 + 2.99749i 0.157327 + 0.272499i
\(122\) −10.5382 + 10.6611i −0.954081 + 0.965214i
\(123\) 0 0
\(124\) 0.468745 0.00543796i 0.0420945 0.000488343i
\(125\) 11.5786i 1.03562i
\(126\) 0 0
\(127\) 0.423756i 0.0376022i 0.999823 + 0.0188011i \(0.00598493\pi\)
−0.999823 + 0.0188011i \(0.994015\pi\)
\(128\) 10.8003 3.36938i 0.954624 0.297814i
\(129\) 0 0
\(130\) −7.62974 7.54174i −0.669172 0.661454i
\(131\) 3.93433 + 6.81447i 0.343744 + 0.595383i 0.985125 0.171840i \(-0.0549713\pi\)
−0.641380 + 0.767223i \(0.721638\pi\)
\(132\) 0 0
\(133\) −3.49544 1.92373i −0.303093 0.166808i
\(134\) −3.86559 + 14.7687i −0.333936 + 1.27582i
\(135\) 0 0
\(136\) −4.07582 14.2169i −0.349499 1.21909i
\(137\) 3.91743 + 2.26173i 0.334689 + 0.193233i 0.657921 0.753087i \(-0.271436\pi\)
−0.323232 + 0.946320i \(0.604769\pi\)
\(138\) 0 0
\(139\) 9.12345i 0.773841i 0.922113 + 0.386921i \(0.126461\pi\)
−0.922113 + 0.386921i \(0.873539\pi\)
\(140\) 7.85914 0.252245i 0.664219 0.0213186i
\(141\) 0 0
\(142\) −0.494086 1.80208i −0.0414627 0.151227i
\(143\) −7.00820 + 12.1386i −0.586055 + 1.01508i
\(144\) 0 0
\(145\) 1.56848 + 2.71669i 0.130255 + 0.225608i
\(146\) 4.78955 + 1.25363i 0.396386 + 0.103751i
\(147\) 0 0
\(148\) 8.73873 + 4.91104i 0.718319 + 0.403685i
\(149\) −17.4629 + 10.0822i −1.43062 + 0.825967i −0.997168 0.0752118i \(-0.976037\pi\)
−0.433448 + 0.901178i \(0.642703\pi\)
\(150\) 0 0
\(151\) −6.33048 3.65491i −0.515168 0.297432i 0.219788 0.975548i \(-0.429464\pi\)
−0.734955 + 0.678116i \(0.762797\pi\)
\(152\) −4.13857 1.03209i −0.335682 0.0837136i
\(153\) 0 0
\(154\) −2.91884 9.85005i −0.235207 0.793740i
\(155\) 0.348301 0.0279762
\(156\) 0 0
\(157\) 4.80178 8.31693i 0.383224 0.663763i −0.608297 0.793709i \(-0.708147\pi\)
0.991521 + 0.129946i \(0.0414805\pi\)
\(158\) −16.8120 16.6181i −1.33749 1.32207i
\(159\) 0 0
\(160\) 8.05317 2.41019i 0.636659 0.190543i
\(161\) 11.4561 20.8159i 0.902867 1.64052i
\(162\) 0 0
\(163\) 2.51601 1.45262i 0.197069 0.113778i −0.398219 0.917291i \(-0.630371\pi\)
0.595288 + 0.803513i \(0.297038\pi\)
\(164\) −8.12836 13.7090i −0.634718 1.07049i
\(165\) 0 0
\(166\) 5.71816 + 20.8558i 0.443815 + 1.61873i
\(167\) 11.3739 0.880141 0.440071 0.897963i \(-0.354953\pi\)
0.440071 + 0.897963i \(0.354953\pi\)
\(168\) 0 0
\(169\) 13.0598 1.00460
\(170\) −2.90560 10.5976i −0.222850 0.812798i
\(171\) 0 0
\(172\) −6.65679 11.2271i −0.507576 0.856057i
\(173\) −7.37811 + 4.25976i −0.560948 + 0.323863i −0.753526 0.657418i \(-0.771648\pi\)
0.192578 + 0.981282i \(0.438315\pi\)
\(174\) 0 0
\(175\) −7.38484 + 0.151293i −0.558242 + 0.0114367i
\(176\) −5.71055 9.38138i −0.430449 0.707148i
\(177\) 0 0
\(178\) 12.6155 + 12.4700i 0.945570 + 0.934664i
\(179\) 4.80491 8.32235i 0.359136 0.622042i −0.628681 0.777664i \(-0.716405\pi\)
0.987817 + 0.155622i \(0.0497381\pi\)
\(180\) 0 0
\(181\) 19.0553 1.41637 0.708184 0.706028i \(-0.249515\pi\)
0.708184 + 0.706028i \(0.249515\pi\)
\(182\) −13.1466 + 13.8565i −0.974492 + 1.02712i
\(183\) 0 0
\(184\) 6.14626 24.6458i 0.453108 1.81691i
\(185\) 6.45012 + 3.72398i 0.474223 + 0.273793i
\(186\) 0 0
\(187\) −12.4335 + 7.17848i −0.909227 + 0.524943i
\(188\) 7.41853 + 4.16910i 0.541052 + 0.304063i
\(189\) 0 0
\(190\) −3.06586 0.802464i −0.222421 0.0582169i
\(191\) 8.56327 + 14.8320i 0.619617 + 1.07321i 0.989556 + 0.144152i \(0.0460453\pi\)
−0.369939 + 0.929056i \(0.620621\pi\)
\(192\) 0 0
\(193\) 2.32947 4.03475i 0.167679 0.290428i −0.769925 0.638135i \(-0.779706\pi\)
0.937603 + 0.347707i \(0.113040\pi\)
\(194\) −5.31241 19.3759i −0.381409 1.39111i
\(195\) 0 0
\(196\) −0.735625 13.9807i −0.0525447 0.998619i
\(197\) 23.1622i 1.65024i −0.564957 0.825121i \(-0.691107\pi\)
0.564957 0.825121i \(-0.308893\pi\)
\(198\) 0 0
\(199\) −1.81444 1.04757i −0.128622 0.0742602i 0.434308 0.900764i \(-0.356993\pi\)
−0.562931 + 0.826504i \(0.690326\pi\)
\(200\) −7.59061 + 2.17614i −0.536737 + 0.153876i
\(201\) 0 0
\(202\) −4.02902 + 15.3931i −0.283481 + 1.08305i
\(203\) 4.77870 2.89108i 0.335399 0.202914i
\(204\) 0 0
\(205\) −5.92082 10.2552i −0.413528 0.716251i
\(206\) 0.460394 + 0.455084i 0.0320772 + 0.0317072i
\(207\) 0 0
\(208\) −9.79676 + 17.9159i −0.679283 + 1.24225i
\(209\) 4.14055i 0.286408i
\(210\) 0 0
\(211\) 23.1812i 1.59586i −0.602751 0.797929i \(-0.705929\pi\)
0.602751 0.797929i \(-0.294071\pi\)
\(212\) −7.95150 + 0.0922461i −0.546111 + 0.00633549i
\(213\) 0 0
\(214\) −8.84394 + 8.94713i −0.604559 + 0.611613i
\(215\) −4.84891 8.39856i −0.330693 0.572777i
\(216\) 0 0
\(217\) −0.0127020 0.620003i −0.000862268 0.0420885i
\(218\) 9.15770 + 2.39695i 0.620237 + 0.162342i
\(219\) 0 0
\(220\) −4.16180 7.01913i −0.280589 0.473230i
\(221\) 23.1168 + 13.3465i 1.55500 + 0.897782i
\(222\) 0 0
\(223\) 4.82210i 0.322912i 0.986880 + 0.161456i \(0.0516190\pi\)
−0.986880 + 0.161456i \(0.948381\pi\)
\(224\) −4.58401 14.2473i −0.306282 0.951941i
\(225\) 0 0
\(226\) 21.4256 5.87438i 1.42521 0.390758i
\(227\) 5.14352 8.90884i 0.341387 0.591300i −0.643303 0.765611i \(-0.722437\pi\)
0.984691 + 0.174311i \(0.0557699\pi\)
\(228\) 0 0
\(229\) 5.55931 + 9.62901i 0.367370 + 0.636303i 0.989153 0.146886i \(-0.0469250\pi\)
−0.621784 + 0.783189i \(0.713592\pi\)
\(230\) 4.77880 18.2577i 0.315105 1.20387i
\(231\) 0 0
\(232\) 4.14791 4.29483i 0.272323 0.281970i
\(233\) 6.62526 3.82509i 0.434035 0.250590i −0.267029 0.963688i \(-0.586042\pi\)
0.701064 + 0.713098i \(0.252709\pi\)
\(234\) 0 0
\(235\) 5.47568 + 3.16138i 0.357194 + 0.206226i
\(236\) 0.0157466 + 1.35734i 0.00102502 + 0.0883552i
\(237\) 0 0
\(238\) −18.7585 + 5.55867i −1.21594 + 0.360315i
\(239\) 5.59222 0.361731 0.180865 0.983508i \(-0.442110\pi\)
0.180865 + 0.983508i \(0.442110\pi\)
\(240\) 0 0
\(241\) −2.07295 + 3.59046i −0.133531 + 0.231282i −0.925035 0.379882i \(-0.875965\pi\)
0.791505 + 0.611163i \(0.209298\pi\)
\(242\) 3.44107 3.48122i 0.221200 0.223781i
\(243\) 0 0
\(244\) 18.4812 + 10.3861i 1.18314 + 0.664905i
\(245\) −0.426034 10.3933i −0.0272183 0.664003i
\(246\) 0 0
\(247\) 6.66688 3.84913i 0.424203 0.244914i
\(248\) −0.182700 0.637278i −0.0116015 0.0404672i
\(249\) 0 0
\(250\) −15.7919 + 4.32974i −0.998765 + 0.273837i
\(251\) 11.7863 0.743943 0.371972 0.928244i \(-0.378682\pi\)
0.371972 + 0.928244i \(0.378682\pi\)
\(252\) 0 0
\(253\) −24.6576 −1.55021
\(254\) 0.577952 0.158460i 0.0362639 0.00994268i
\(255\) 0 0
\(256\) −8.63413 13.4704i −0.539633 0.841900i
\(257\) −26.2593 + 15.1608i −1.63801 + 0.945707i −0.656497 + 0.754329i \(0.727963\pi\)
−0.981516 + 0.191379i \(0.938704\pi\)
\(258\) 0 0
\(259\) 6.39374 11.6175i 0.397288 0.721877i
\(260\) −7.43294 + 13.2262i −0.460971 + 0.820256i
\(261\) 0 0
\(262\) 7.82290 7.91418i 0.483300 0.488940i
\(263\) −9.23981 + 16.0038i −0.569751 + 0.986838i 0.426839 + 0.904328i \(0.359627\pi\)
−0.996590 + 0.0825101i \(0.973706\pi\)
\(264\) 0 0
\(265\) −5.90837 −0.362948
\(266\) −1.31664 + 5.48672i −0.0807283 + 0.336413i
\(267\) 0 0
\(268\) 21.5882 0.250447i 1.31871 0.0152985i
\(269\) −0.629904 0.363675i −0.0384059 0.0221737i 0.480674 0.876899i \(-0.340392\pi\)
−0.519080 + 0.854726i \(0.673725\pi\)
\(270\) 0 0
\(271\) 7.21987 4.16839i 0.438576 0.253212i −0.264418 0.964408i \(-0.585180\pi\)
0.702993 + 0.711197i \(0.251846\pi\)
\(272\) −17.8660 + 10.8752i −1.08329 + 0.659408i
\(273\) 0 0
\(274\) 1.61983 6.18866i 0.0978576 0.373871i
\(275\) 3.83270 + 6.63843i 0.231120 + 0.400312i
\(276\) 0 0
\(277\) 6.26885 10.8580i 0.376659 0.652392i −0.613915 0.789372i \(-0.710406\pi\)
0.990574 + 0.136980i \(0.0437396\pi\)
\(278\) 12.4433 3.41165i 0.746299 0.204617i
\(279\) 0 0
\(280\) −3.28290 10.6246i −0.196191 0.634941i
\(281\) 14.8047i 0.883173i −0.897219 0.441586i \(-0.854416\pi\)
0.897219 0.441586i \(-0.145584\pi\)
\(282\) 0 0
\(283\) 12.9064 + 7.45154i 0.767208 + 0.442948i 0.831878 0.554959i \(-0.187266\pi\)
−0.0646694 + 0.997907i \(0.520599\pi\)
\(284\) −2.27306 + 1.34775i −0.134881 + 0.0799740i
\(285\) 0 0
\(286\) 19.1762 + 5.01922i 1.13391 + 0.296793i
\(287\) −18.0390 + 10.9135i −1.06481 + 0.644202i
\(288\) 0 0
\(289\) 5.17077 + 8.95604i 0.304163 + 0.526826i
\(290\) 3.11871 3.15510i 0.183137 0.185274i
\(291\) 0 0
\(292\) −0.0812211 7.00115i −0.00475311 0.409712i
\(293\) 15.0676i 0.880258i 0.897934 + 0.440129i \(0.145067\pi\)
−0.897934 + 0.440129i \(0.854933\pi\)
\(294\) 0 0
\(295\) 1.00857i 0.0587214i
\(296\) 3.43028 13.7550i 0.199381 0.799494i
\(297\) 0 0
\(298\) 20.2810 + 20.0471i 1.17485 + 1.16130i
\(299\) 22.9221 + 39.7023i 1.32562 + 2.29604i
\(300\) 0 0
\(301\) −14.7732 + 8.93770i −0.851515 + 0.515161i
\(302\) −2.61761 + 10.0007i −0.150627 + 0.575478i
\(303\) 0 0
\(304\) 0.139939 + 6.03045i 0.00802603 + 0.345870i
\(305\) 13.6411 + 7.87569i 0.781087 + 0.450961i
\(306\) 0 0
\(307\) 4.78619i 0.273162i 0.990629 + 0.136581i \(0.0436114\pi\)
−0.990629 + 0.136581i \(0.956389\pi\)
\(308\) −12.3428 + 7.66430i −0.703297 + 0.436714i
\(309\) 0 0
\(310\) −0.130245 0.475041i −0.00739740 0.0269805i
\(311\) −8.06864 + 13.9753i −0.457530 + 0.792466i −0.998830 0.0483640i \(-0.984599\pi\)
0.541299 + 0.840830i \(0.317933\pi\)
\(312\) 0 0
\(313\) 13.2748 + 22.9926i 0.750336 + 1.29962i 0.947660 + 0.319282i \(0.103442\pi\)
−0.197324 + 0.980338i \(0.563225\pi\)
\(314\) −13.1389 3.43900i −0.741470 0.194074i
\(315\) 0 0
\(316\) −16.3784 + 29.1438i −0.921357 + 1.63947i
\(317\) 8.35634 4.82453i 0.469339 0.270973i −0.246624 0.969111i \(-0.579321\pi\)
0.715963 + 0.698138i \(0.245988\pi\)
\(318\) 0 0
\(319\) −5.01962 2.89808i −0.281045 0.162261i
\(320\) −6.29864 10.0823i −0.352105 0.563617i
\(321\) 0 0
\(322\) −32.6743 7.84079i −1.82087 0.436950i
\(323\) 7.88530 0.438750
\(324\) 0 0
\(325\) 7.12589 12.3424i 0.395273 0.684633i
\(326\) −2.92204 2.88833i −0.161837 0.159970i
\(327\) 0 0
\(328\) −15.6578 + 16.2125i −0.864559 + 0.895183i
\(329\) 5.42781 9.86240i 0.299245 0.543732i
\(330\) 0 0
\(331\) 0.992363 0.572941i 0.0545452 0.0314917i −0.472479 0.881342i \(-0.656641\pi\)
0.527025 + 0.849850i \(0.323308\pi\)
\(332\) 26.3066 15.5978i 1.44376 0.856038i
\(333\) 0 0
\(334\) −4.25320 15.5127i −0.232725 0.848816i
\(335\) 16.0412 0.876422
\(336\) 0 0
\(337\) −1.89202 −0.103065 −0.0515324 0.998671i \(-0.516411\pi\)
−0.0515324 + 0.998671i \(0.516411\pi\)
\(338\) −4.88361 17.8120i −0.265634 0.968844i
\(339\) 0 0
\(340\) −13.3673 + 7.92578i −0.724944 + 0.429836i
\(341\) −0.557336 + 0.321778i −0.0301814 + 0.0174253i
\(342\) 0 0
\(343\) −18.4853 + 1.13740i −0.998112 + 0.0614138i
\(344\) −12.8231 + 13.2774i −0.691377 + 0.715867i
\(345\) 0 0
\(346\) 8.56878 + 8.46995i 0.460661 + 0.455348i
\(347\) −1.96885 + 3.41015i −0.105693 + 0.183066i −0.914021 0.405666i \(-0.867040\pi\)
0.808328 + 0.588733i \(0.200373\pi\)
\(348\) 0 0
\(349\) −22.8441 −1.22282 −0.611409 0.791315i \(-0.709397\pi\)
−0.611409 + 0.791315i \(0.709397\pi\)
\(350\) 2.96785 + 10.0155i 0.158638 + 0.535349i
\(351\) 0 0
\(352\) −10.6597 + 11.2966i −0.568162 + 0.602111i
\(353\) −28.5246 16.4687i −1.51821 0.876541i −0.999770 0.0214280i \(-0.993179\pi\)
−0.518442 0.855113i \(-0.673488\pi\)
\(354\) 0 0
\(355\) −1.70039 + 0.981719i −0.0902472 + 0.0521042i
\(356\) 12.2901 21.8691i 0.651373 1.15906i
\(357\) 0 0
\(358\) −13.1474 3.44124i −0.694864 0.181875i
\(359\) 11.8409 + 20.5090i 0.624939 + 1.08243i 0.988553 + 0.150876i \(0.0482094\pi\)
−0.363614 + 0.931550i \(0.618457\pi\)
\(360\) 0 0
\(361\) −8.36294 + 14.4850i −0.440155 + 0.762370i
\(362\) −7.12558 25.9891i −0.374512 1.36596i
\(363\) 0 0
\(364\) 23.8147 + 12.7488i 1.24823 + 0.668221i
\(365\) 5.20222i 0.272297i
\(366\) 0 0
\(367\) −22.3566 12.9076i −1.16701 0.673772i −0.214034 0.976826i \(-0.568660\pi\)
−0.952973 + 0.303054i \(0.901994\pi\)
\(368\) −35.9123 + 0.833356i −1.87206 + 0.0434417i
\(369\) 0 0
\(370\) 2.66709 10.1897i 0.138655 0.529740i
\(371\) 0.215469 + 10.5173i 0.0111866 + 0.546033i
\(372\) 0 0
\(373\) −18.6182 32.2476i −0.964013 1.66972i −0.712243 0.701933i \(-0.752321\pi\)
−0.251770 0.967787i \(-0.581013\pi\)
\(374\) 14.4400 + 14.2734i 0.746674 + 0.738062i
\(375\) 0 0
\(376\) 2.91205 11.6770i 0.150178 0.602195i
\(377\) 10.7764i 0.555014i
\(378\) 0 0
\(379\) 29.8599i 1.53380i 0.641766 + 0.766901i \(0.278202\pi\)
−0.641766 + 0.766901i \(0.721798\pi\)
\(380\) 0.0519908 + 4.48154i 0.00266707 + 0.229898i
\(381\) 0 0
\(382\) 17.0269 17.2256i 0.871173 0.881338i
\(383\) 6.22015 + 10.7736i 0.317835 + 0.550506i 0.980036 0.198820i \(-0.0637109\pi\)
−0.662201 + 0.749326i \(0.730378\pi\)
\(384\) 0 0
\(385\) −9.23617 + 5.58782i −0.470719 + 0.284782i
\(386\) −6.37400 1.66834i −0.324428 0.0849165i
\(387\) 0 0
\(388\) −24.4399 + 14.4910i −1.24075 + 0.735668i
\(389\) 30.7387 + 17.7470i 1.55851 + 0.899808i 0.997400 + 0.0720702i \(0.0229606\pi\)
0.561114 + 0.827738i \(0.310373\pi\)
\(390\) 0 0
\(391\) 46.9582i 2.37478i
\(392\) −18.7929 + 6.23127i −0.949182 + 0.314727i
\(393\) 0 0
\(394\) −31.5905 + 8.66135i −1.59151 + 0.436352i
\(395\) −12.4195 + 21.5113i −0.624895 + 1.08235i
\(396\) 0 0
\(397\) −7.77378 13.4646i −0.390155 0.675768i 0.602315 0.798259i \(-0.294245\pi\)
−0.992470 + 0.122490i \(0.960912\pi\)
\(398\) −0.750260 + 2.86641i −0.0376071 + 0.143680i
\(399\) 0 0
\(400\) 5.80645 + 9.53892i 0.290322 + 0.476946i
\(401\) 7.50098 4.33070i 0.374581 0.216265i −0.300877 0.953663i \(-0.597279\pi\)
0.675458 + 0.737398i \(0.263946\pi\)
\(402\) 0 0
\(403\) 1.03622 + 0.598261i 0.0516178 + 0.0298015i
\(404\) 22.5009 0.261036i 1.11946 0.0129870i
\(405\) 0 0
\(406\) −5.73005 5.43648i −0.284378 0.269808i
\(407\) −13.7616 −0.682137
\(408\) 0 0
\(409\) −1.74788 + 3.02741i −0.0864270 + 0.149696i −0.905998 0.423281i \(-0.860878\pi\)
0.819571 + 0.572977i \(0.194212\pi\)
\(410\) −11.7727 + 11.9101i −0.581415 + 0.588199i
\(411\) 0 0
\(412\) 0.448519 0.798098i 0.0220969 0.0393195i
\(413\) 1.79533 0.0367810i 0.0883426 0.00180988i
\(414\) 0 0
\(415\) 19.6789 11.3616i 0.966001 0.557721i
\(416\) 28.0986 + 6.66208i 1.37765 + 0.326635i
\(417\) 0 0
\(418\) 5.64721 1.54833i 0.276214 0.0757311i
\(419\) 12.3776 0.604685 0.302342 0.953199i \(-0.402231\pi\)
0.302342 + 0.953199i \(0.402231\pi\)
\(420\) 0 0
\(421\) −22.1948 −1.08171 −0.540855 0.841116i \(-0.681899\pi\)
−0.540855 + 0.841116i \(0.681899\pi\)
\(422\) −31.6163 + 8.66843i −1.53906 + 0.421973i
\(423\) 0 0
\(424\) 3.09922 + 10.8104i 0.150511 + 0.524999i
\(425\) 12.6423 7.29903i 0.613241 0.354055i
\(426\) 0 0
\(427\) 13.5218 24.5694i 0.654368 1.18900i
\(428\) 15.5099 + 8.71635i 0.749701 + 0.421321i
\(429\) 0 0
\(430\) −9.64141 + 9.75391i −0.464950 + 0.470375i
\(431\) 8.07284 13.9826i 0.388855 0.673517i −0.603441 0.797408i \(-0.706204\pi\)
0.992296 + 0.123891i \(0.0395374\pi\)
\(432\) 0 0
\(433\) 11.6739 0.561014 0.280507 0.959852i \(-0.409497\pi\)
0.280507 + 0.959852i \(0.409497\pi\)
\(434\) −0.840859 + 0.249169i −0.0403625 + 0.0119605i
\(435\) 0 0
\(436\) −0.155296 13.3863i −0.00743733 0.641088i
\(437\) 11.7283 + 6.77136i 0.561043 + 0.323918i
\(438\) 0 0
\(439\) −15.4132 + 8.89883i −0.735633 + 0.424718i −0.820479 0.571676i \(-0.806293\pi\)
0.0848464 + 0.996394i \(0.472960\pi\)
\(440\) −8.01698 + 8.30095i −0.382194 + 0.395732i
\(441\) 0 0
\(442\) 9.55865 36.5193i 0.454658 1.73705i
\(443\) −7.77644 13.4692i −0.369470 0.639941i 0.620013 0.784592i \(-0.287127\pi\)
−0.989483 + 0.144651i \(0.953794\pi\)
\(444\) 0 0
\(445\) 9.31943 16.1417i 0.441783 0.765191i
\(446\) 6.57677 1.80319i 0.311419 0.0853835i
\(447\) 0 0
\(448\) −17.7175 + 11.5797i −0.837073 + 0.547091i
\(449\) 32.4167i 1.52984i −0.644127 0.764918i \(-0.722779\pi\)
0.644127 0.764918i \(-0.277221\pi\)
\(450\) 0 0
\(451\) 18.9484 + 10.9399i 0.892247 + 0.515139i
\(452\) −16.0239 27.0252i −0.753700 1.27116i
\(453\) 0 0
\(454\) −14.0740 3.68375i −0.660524 0.172887i
\(455\) 17.5833 + 9.67704i 0.824318 + 0.453666i
\(456\) 0 0
\(457\) 3.46804 + 6.00683i 0.162228 + 0.280988i 0.935668 0.352883i \(-0.114799\pi\)
−0.773439 + 0.633870i \(0.781465\pi\)
\(458\) 11.0540 11.1829i 0.516517 0.522544i
\(459\) 0 0
\(460\) −26.6882 + 0.309613i −1.24435 + 0.0144358i
\(461\) 33.0129i 1.53757i 0.639510 + 0.768783i \(0.279137\pi\)
−0.639510 + 0.768783i \(0.720863\pi\)
\(462\) 0 0
\(463\) 25.8834i 1.20291i 0.798909 + 0.601453i \(0.205411\pi\)
−0.798909 + 0.601453i \(0.794589\pi\)
\(464\) −7.40871 4.05122i −0.343941 0.188073i
\(465\) 0 0
\(466\) −7.69443 7.60569i −0.356438 0.352327i
\(467\) −12.0722 20.9097i −0.558636 0.967586i −0.997611 0.0690867i \(-0.977991\pi\)
0.438974 0.898500i \(-0.355342\pi\)
\(468\) 0 0
\(469\) −0.584995 28.5545i −0.0270126 1.31852i
\(470\) 2.26416 8.65034i 0.104438 0.399010i
\(471\) 0 0
\(472\) 1.84536 0.529043i 0.0849395 0.0243512i
\(473\) 15.5180 + 8.95933i 0.713519 + 0.411950i
\(474\) 0 0
\(475\) 4.21008i 0.193172i
\(476\) 14.5960 + 23.5058i 0.669005 + 1.07739i
\(477\) 0 0
\(478\) −2.09117 7.62711i −0.0956479 0.348856i
\(479\) 20.5106 35.5254i 0.937154 1.62320i 0.166406 0.986057i \(-0.446784\pi\)
0.770748 0.637140i \(-0.219883\pi\)
\(480\) 0 0
\(481\) 12.7930 + 22.1582i 0.583312 + 1.01033i
\(482\) 5.67211 + 1.48463i 0.258358 + 0.0676231i
\(483\) 0 0
\(484\) −6.03473 3.39143i −0.274306 0.154156i
\(485\) −18.2826 + 10.5555i −0.830169 + 0.479298i
\(486\) 0 0
\(487\) −13.0964 7.56120i −0.593454 0.342631i 0.173008 0.984920i \(-0.444651\pi\)
−0.766462 + 0.642290i \(0.777985\pi\)
\(488\) 7.25455 29.0899i 0.328398 1.31684i
\(489\) 0 0
\(490\) −14.0159 + 4.46755i −0.633173 + 0.201824i
\(491\) −36.9285 −1.66656 −0.833280 0.552852i \(-0.813540\pi\)
−0.833280 + 0.552852i \(0.813540\pi\)
\(492\) 0 0
\(493\) −5.51913 + 9.55941i −0.248569 + 0.430534i
\(494\) −7.74277 7.65347i −0.348364 0.344346i
\(495\) 0 0
\(496\) −0.800850 + 0.487486i −0.0359592 + 0.0218888i
\(497\) 1.80954 + 2.99101i 0.0811691 + 0.134165i
\(498\) 0 0
\(499\) −1.47958 + 0.854238i −0.0662353 + 0.0382409i −0.532752 0.846271i \(-0.678842\pi\)
0.466517 + 0.884512i \(0.345509\pi\)
\(500\) 11.8105 + 19.9191i 0.528181 + 0.890810i
\(501\) 0 0
\(502\) −4.40739 16.0751i −0.196711 0.717465i
\(503\) −0.0425771 −0.00189842 −0.000949210 1.00000i \(-0.500302\pi\)
−0.000949210 1.00000i \(0.500302\pi\)
\(504\) 0 0
\(505\) 16.7194 0.744001
\(506\) 9.22052 + 33.6300i 0.409902 + 1.49503i
\(507\) 0 0
\(508\) −0.432241 0.729001i −0.0191776 0.0323442i
\(509\) −8.98568 + 5.18789i −0.398283 + 0.229949i −0.685743 0.727844i \(-0.740523\pi\)
0.287460 + 0.957793i \(0.407189\pi\)
\(510\) 0 0
\(511\) −9.26034 + 0.189717i −0.409653 + 0.00839257i
\(512\) −15.1433 + 16.8131i −0.669247 + 0.743040i
\(513\) 0 0
\(514\) 30.4970 + 30.1453i 1.34517 + 1.32965i
\(515\) 0.340107 0.589082i 0.0149869 0.0259581i
\(516\) 0 0
\(517\) −11.6826 −0.513799
\(518\) −18.2358 4.37601i −0.801234 0.192271i
\(519\) 0 0
\(520\) 20.8185 + 5.19179i 0.912950 + 0.227675i
\(521\) 1.18275 + 0.682859i 0.0518171 + 0.0299166i 0.525685 0.850679i \(-0.323809\pi\)
−0.473868 + 0.880596i \(0.657142\pi\)
\(522\) 0 0
\(523\) −9.31535 + 5.37822i −0.407332 + 0.235173i −0.689643 0.724150i \(-0.742232\pi\)
0.282311 + 0.959323i \(0.408899\pi\)
\(524\) −13.7193 7.71004i −0.599330 0.336815i
\(525\) 0 0
\(526\) 25.2824 + 6.61748i 1.10237 + 0.288536i
\(527\) 0.612798 + 1.06140i 0.0266939 + 0.0462352i
\(528\) 0 0
\(529\) −28.8245 + 49.9255i −1.25324 + 2.17067i
\(530\) 2.20939 + 8.05831i 0.0959698 + 0.350030i
\(531\) 0 0
\(532\) 7.97557 0.255982i 0.345785 0.0110982i
\(533\) 40.6797i 1.76203i
\(534\) 0 0
\(535\) 11.4480 + 6.60951i 0.494940 + 0.285754i
\(536\) −8.41433 29.3501i −0.363444 1.26773i
\(537\) 0 0
\(538\) −0.260461 + 0.995107i −0.0112293 + 0.0429021i
\(539\) 10.2836 + 16.2373i 0.442944 + 0.699389i
\(540\) 0 0
\(541\) −8.24296 14.2772i −0.354393 0.613826i 0.632621 0.774461i \(-0.281979\pi\)
−0.987014 + 0.160635i \(0.948646\pi\)
\(542\) −8.38500 8.28829i −0.360167 0.356012i
\(543\) 0 0
\(544\) 21.5134 + 20.3004i 0.922378 + 0.870371i
\(545\) 9.94672i 0.426071i
\(546\) 0 0
\(547\) 4.03690i 0.172605i 0.996269 + 0.0863027i \(0.0275052\pi\)
−0.996269 + 0.0863027i \(0.972495\pi\)
\(548\) −9.04631 + 0.104947i −0.386439 + 0.00448312i
\(549\) 0 0
\(550\) 7.62080 7.70973i 0.324952 0.328744i
\(551\) 1.59172 + 2.75693i 0.0678094 + 0.117449i
\(552\) 0 0
\(553\) 38.7446 + 21.3232i 1.64759 + 0.906756i
\(554\) −17.1532 4.48970i −0.728768 0.190749i
\(555\) 0 0
\(556\) −9.30615 15.6954i −0.394669 0.665633i
\(557\) −9.29133 5.36435i −0.393686 0.227295i 0.290070 0.957005i \(-0.406321\pi\)
−0.683756 + 0.729711i \(0.739655\pi\)
\(558\) 0 0
\(559\) 33.3150i 1.40907i
\(560\) −13.2631 + 8.45047i −0.560466 + 0.357097i
\(561\) 0 0
\(562\) −20.1918 + 5.53610i −0.851739 + 0.233526i
\(563\) 7.14776 12.3803i 0.301242 0.521766i −0.675176 0.737657i \(-0.735932\pi\)
0.976418 + 0.215891i \(0.0692655\pi\)
\(564\) 0 0
\(565\) −11.6720 20.2166i −0.491046 0.850517i
\(566\) 5.33673 20.3893i 0.224320 0.857025i
\(567\) 0 0
\(568\) 2.68816 + 2.59619i 0.112792 + 0.108934i
\(569\) −21.8632 + 12.6227i −0.916552 + 0.529172i −0.882534 0.470249i \(-0.844164\pi\)
−0.0340189 + 0.999421i \(0.510831\pi\)
\(570\) 0 0
\(571\) 4.21404 + 2.43298i 0.176352 + 0.101817i 0.585578 0.810616i \(-0.300868\pi\)
−0.409226 + 0.912433i \(0.634201\pi\)
\(572\) −0.325190 28.0309i −0.0135969 1.17203i
\(573\) 0 0
\(574\) 21.6302 + 20.5220i 0.902828 + 0.856573i
\(575\) 25.0717 1.04556
\(576\) 0 0
\(577\) −1.36238 + 2.35972i −0.0567168 + 0.0982364i −0.892990 0.450077i \(-0.851397\pi\)
0.836273 + 0.548313i \(0.184730\pi\)
\(578\) 10.2814 10.4014i 0.427649 0.432639i
\(579\) 0 0
\(580\) −5.46940 3.07372i −0.227104 0.127629i
\(581\) −20.9422 34.6156i −0.868830 1.43610i
\(582\) 0 0
\(583\) 9.45431 5.45845i 0.391557 0.226066i
\(584\) −9.51836 + 2.72881i −0.393872 + 0.112919i
\(585\) 0 0
\(586\) 20.5504 5.63441i 0.848928 0.232756i
\(587\) −24.4237 −1.00807 −0.504037 0.863682i \(-0.668153\pi\)
−0.504037 + 0.863682i \(0.668153\pi\)
\(588\) 0 0
\(589\) 0.353461 0.0145641
\(590\) 1.37557 0.377148i 0.0566314 0.0155269i
\(591\) 0 0
\(592\) −20.0429 + 0.465102i −0.823759 + 0.0191156i
\(593\) −28.8809 + 16.6744i −1.18600 + 0.684736i −0.957394 0.288784i \(-0.906749\pi\)
−0.228603 + 0.973520i \(0.573416\pi\)
\(594\) 0 0
\(595\) 10.6415 + 17.5895i 0.436259 + 0.721097i
\(596\) 19.7579 35.1574i 0.809315 1.44010i
\(597\) 0 0
\(598\) 45.5776 46.1094i 1.86381 1.88555i
\(599\) 22.3518 38.7144i 0.913268 1.58183i 0.103852 0.994593i \(-0.466883\pi\)
0.809417 0.587235i \(-0.199783\pi\)
\(600\) 0 0
\(601\) 44.1640 1.80149 0.900745 0.434349i \(-0.143022\pi\)
0.900745 + 0.434349i \(0.143022\pi\)
\(602\) 17.7143 + 16.8067i 0.721980 + 0.684990i
\(603\) 0 0
\(604\) 14.6186 0.169592i 0.594824 0.00690062i
\(605\) −4.45428 2.57168i −0.181092 0.104554i
\(606\) 0 0
\(607\) 29.9771 17.3073i 1.21673 0.702481i 0.252515 0.967593i \(-0.418742\pi\)
0.964218 + 0.265112i \(0.0854091\pi\)
\(608\) 8.17248 2.44590i 0.331438 0.0991944i
\(609\) 0 0
\(610\) 5.64051 21.5499i 0.228377 0.872529i
\(611\) 10.8603 + 18.8106i 0.439362 + 0.760997i
\(612\) 0 0
\(613\) −8.76124 + 15.1749i −0.353863 + 0.612909i −0.986923 0.161194i \(-0.948465\pi\)
0.633060 + 0.774103i \(0.281799\pi\)
\(614\) 6.52779 1.78976i 0.263440 0.0722288i
\(615\) 0 0
\(616\) 15.0687 + 13.9681i 0.607134 + 0.562791i
\(617\) 28.5501i 1.14938i −0.818370 0.574692i \(-0.805122\pi\)
0.818370 0.574692i \(-0.194878\pi\)
\(618\) 0 0
\(619\) −30.8176 17.7925i −1.23866 0.715142i −0.269842 0.962905i \(-0.586971\pi\)
−0.968821 + 0.247762i \(0.920305\pi\)
\(620\) −0.599195 + 0.355276i −0.0240642 + 0.0142682i
\(621\) 0 0
\(622\) 22.0778 + 5.77869i 0.885240 + 0.231704i
\(623\) −29.0733 16.0006i −1.16480 0.641051i
\(624\) 0 0
\(625\) 1.62346 + 2.81191i 0.0649383 + 0.112476i
\(626\) 26.3952 26.7032i 1.05496 1.06727i
\(627\) 0 0
\(628\) 0.222809 + 19.2058i 0.00889104 + 0.766396i
\(629\) 26.2077i 1.04497i
\(630\) 0 0
\(631\) 36.8187i 1.46573i −0.680374 0.732865i \(-0.738183\pi\)
0.680374 0.732865i \(-0.261817\pi\)
\(632\) 45.8732 + 11.4400i 1.82474 + 0.455060i
\(633\) 0 0
\(634\) −9.70487 9.59294i −0.385430 0.380984i
\(635\) −0.314851 0.545338i −0.0124945 0.0216411i
\(636\) 0 0
\(637\) 16.5846 31.6525i 0.657106 1.25412i
\(638\) −2.07558 + 7.92987i −0.0821730 + 0.313947i
\(639\) 0 0
\(640\) −11.3957 + 12.3608i −0.450454 + 0.488603i
\(641\) 26.4156 + 15.2511i 1.04335 + 0.602381i 0.920781 0.390079i \(-0.127552\pi\)
0.122572 + 0.992460i \(0.460886\pi\)
\(642\) 0 0
\(643\) 33.6298i 1.32623i −0.748518 0.663114i \(-0.769234\pi\)
0.748518 0.663114i \(-0.230766\pi\)
\(644\) 1.52441 + 47.4958i 0.0600702 + 1.87160i
\(645\) 0 0
\(646\) −2.94865 10.7546i −0.116013 0.423134i
\(647\) −5.27521 + 9.13694i −0.207390 + 0.359210i −0.950892 0.309524i \(-0.899830\pi\)
0.743502 + 0.668734i \(0.233164\pi\)
\(648\) 0 0
\(649\) −0.931770 1.61387i −0.0365752 0.0633500i
\(650\) −19.4982 5.10350i −0.764783 0.200176i
\(651\) 0 0
\(652\) −2.84667 + 5.06538i −0.111484 + 0.198375i
\(653\) −10.9097 + 6.29874i −0.426931 + 0.246489i −0.698038 0.716060i \(-0.745944\pi\)
0.271107 + 0.962549i \(0.412610\pi\)
\(654\) 0 0
\(655\) −10.1263 5.84643i −0.395668 0.228439i
\(656\) 27.9670 + 15.2929i 1.09193 + 0.597086i
\(657\) 0 0
\(658\) −15.4808 3.71490i −0.603505 0.144822i
\(659\) −31.4057 −1.22339 −0.611696 0.791093i \(-0.709512\pi\)
−0.611696 + 0.791093i \(0.709512\pi\)
\(660\) 0 0
\(661\) 13.6942 23.7190i 0.532642 0.922563i −0.466631 0.884452i \(-0.654533\pi\)
0.999274 0.0381112i \(-0.0121341\pi\)
\(662\) −1.15251 1.13922i −0.0447936 0.0442769i
\(663\) 0 0
\(664\) −31.1106 30.0463i −1.20733 1.16602i
\(665\) 5.92767 0.121440i 0.229865 0.00470925i
\(666\) 0 0
\(667\) −16.4180 + 9.47891i −0.635706 + 0.367025i
\(668\) −19.5670 + 11.6017i −0.757068 + 0.448883i
\(669\) 0 0
\(670\) −5.99847 21.8782i −0.231741 0.845229i
\(671\) −29.1038 −1.12354
\(672\) 0 0
\(673\) −7.59866 −0.292907 −0.146453 0.989218i \(-0.546786\pi\)
−0.146453 + 0.989218i \(0.546786\pi\)
\(674\) 0.707506 + 2.58048i 0.0272521 + 0.0993965i
\(675\) 0 0
\(676\) −22.4672 + 13.3213i −0.864123 + 0.512358i
\(677\) −27.4847 + 15.8683i −1.05632 + 0.609868i −0.924413 0.381394i \(-0.875444\pi\)
−0.131910 + 0.991262i \(0.542111\pi\)
\(678\) 0 0
\(679\) 19.4562 + 32.1594i 0.746661 + 1.23416i
\(680\) 15.8084 + 15.2676i 0.606225 + 0.585486i
\(681\) 0 0
\(682\) 0.647278 + 0.639813i 0.0247856 + 0.0244997i
\(683\) 13.5207 23.4185i 0.517355 0.896085i −0.482442 0.875928i \(-0.660250\pi\)
0.999797 0.0201567i \(-0.00641651\pi\)
\(684\) 0 0
\(685\) −6.72187 −0.256830
\(686\) 8.46371 + 24.7864i 0.323146 + 0.946349i
\(687\) 0 0
\(688\) 22.9038 + 12.5242i 0.873200 + 0.477482i
\(689\) −17.5778 10.1485i −0.669660 0.386629i
\(690\) 0 0
\(691\) 1.85489 1.07092i 0.0705634 0.0407398i −0.464303 0.885676i \(-0.653695\pi\)
0.534867 + 0.844937i \(0.320362\pi\)
\(692\) 8.34776 14.8541i 0.317334 0.564667i
\(693\) 0 0
\(694\) 5.38726 + 1.41007i 0.204498 + 0.0535257i
\(695\) −6.77874 11.7411i −0.257132 0.445366i
\(696\) 0 0
\(697\) 20.8340 36.0856i 0.789145 1.36684i
\(698\) 8.54239 + 31.1566i 0.323334 + 1.17930i
\(699\) 0 0
\(700\) 12.5501 7.79300i 0.474348 0.294548i
\(701\) 26.8988i 1.01596i 0.861370 + 0.507978i \(0.169607\pi\)
−0.861370 + 0.507978i \(0.830393\pi\)
\(702\) 0 0
\(703\) 6.54568 + 3.77915i 0.246875 + 0.142533i
\(704\) 19.3933 + 10.3142i 0.730913 + 0.388731i
\(705\) 0 0
\(706\) −11.7948 + 45.0625i −0.443901 + 1.69595i
\(707\) −0.609728 29.7617i −0.0229312 1.11930i
\(708\) 0 0
\(709\) 19.7791 + 34.2583i 0.742818 + 1.28660i 0.951207 + 0.308553i \(0.0998447\pi\)
−0.208389 + 0.978046i \(0.566822\pi\)
\(710\) 1.97479 + 1.95202i 0.0741127 + 0.0732579i
\(711\) 0 0
\(712\) −34.4225 8.58442i −1.29004 0.321715i
\(713\) 2.10492i 0.0788298i
\(714\) 0 0
\(715\) 20.8284i 0.778939i
\(716\) 0.222954 + 19.2184i 0.00833219 + 0.718224i
\(717\) 0 0
\(718\) 23.5440 23.8188i 0.878656 0.888908i
\(719\) −20.7863 36.0030i −0.775199 1.34268i −0.934683 0.355483i \(-0.884316\pi\)
0.159484 0.987201i \(-0.449017\pi\)
\(720\) 0 0
\(721\) −1.06101 0.583933i −0.0395142 0.0217468i
\(722\) 22.8831 + 5.98947i 0.851621 + 0.222905i
\(723\) 0 0
\(724\) −32.7814 + 19.4369i −1.21831 + 0.722365i
\(725\) 5.10391 + 2.94674i 0.189554 + 0.109439i
\(726\) 0 0
\(727\) 40.5449i 1.50373i −0.659320 0.751863i \(-0.729156\pi\)
0.659320 0.751863i \(-0.270844\pi\)
\(728\) 8.48255 37.2477i 0.314384 1.38049i
\(729\) 0 0
\(730\) −7.09520 + 1.94533i −0.262605 + 0.0719999i
\(731\) 17.0622 29.5527i 0.631069 1.09304i
\(732\) 0 0
\(733\) −4.10278 7.10622i −0.151539 0.262474i 0.780254 0.625463i \(-0.215090\pi\)
−0.931794 + 0.362989i \(0.881756\pi\)
\(734\) −9.24433 + 35.3185i −0.341214 + 1.30363i
\(735\) 0 0
\(736\) 14.5657 + 48.6684i 0.536899 + 1.79394i
\(737\) −25.6683 + 14.8196i −0.945505 + 0.545888i
\(738\) 0 0
\(739\) 26.5794 + 15.3456i 0.977739 + 0.564498i 0.901587 0.432598i \(-0.142403\pi\)
0.0761523 + 0.997096i \(0.475736\pi\)
\(740\) −14.8949 + 0.172798i −0.547548 + 0.00635216i
\(741\) 0 0
\(742\) 14.2638 4.22675i 0.523641 0.155169i
\(743\) −38.6297 −1.41719 −0.708593 0.705617i \(-0.750670\pi\)
−0.708593 + 0.705617i \(0.750670\pi\)
\(744\) 0 0
\(745\) 14.9822 25.9499i 0.548905 0.950731i
\(746\) −37.0198 + 37.4517i −1.35539 + 1.37121i
\(747\) 0 0
\(748\) 14.0675 25.0319i 0.514360 0.915256i
\(749\) 11.3479 20.6193i 0.414644 0.753414i
\(750\) 0 0
\(751\) −37.1150 + 21.4284i −1.35435 + 0.781932i −0.988855 0.148883i \(-0.952432\pi\)
−0.365491 + 0.930815i \(0.619099\pi\)
\(752\) −17.0149 + 0.394837i −0.620471 + 0.0143982i
\(753\) 0 0
\(754\) 14.6977 4.02976i 0.535260 0.146755i
\(755\) 10.8624 0.395323
\(756\) 0 0
\(757\) 28.1662 1.02372 0.511860 0.859069i \(-0.328957\pi\)
0.511860 + 0.859069i \(0.328957\pi\)
\(758\) 40.7253 11.1659i 1.47921 0.405564i
\(759\) 0 0
\(760\) 6.09284 1.74675i 0.221010 0.0633612i
\(761\) 25.6364 14.8012i 0.929319 0.536542i 0.0427226 0.999087i \(-0.486397\pi\)
0.886596 + 0.462545i \(0.153063\pi\)
\(762\) 0 0
\(763\) −17.7059 + 0.362741i −0.640997 + 0.0131321i
\(764\) −29.8607 16.7813i −1.08032 0.607125i
\(765\) 0 0
\(766\) 12.3679 12.5123i 0.446872 0.452086i
\(767\) −1.73238 + 3.00057i −0.0625526 + 0.108344i
\(768\) 0 0
\(769\) −51.3103 −1.85030 −0.925148 0.379606i \(-0.876060\pi\)
−0.925148 + 0.379606i \(0.876060\pi\)
\(770\) 11.0749 + 10.5075i 0.399112 + 0.378664i
\(771\) 0 0
\(772\) 0.108090 + 9.31724i 0.00389025 + 0.335335i
\(773\) 39.3596 + 22.7243i 1.41567 + 0.817335i 0.995914 0.0903047i \(-0.0287841\pi\)
0.419751 + 0.907639i \(0.362117\pi\)
\(774\) 0 0
\(775\) 0.566695 0.327182i 0.0203563 0.0117527i
\(776\) 28.9031 + 27.9143i 1.03756 + 1.00207i
\(777\) 0 0
\(778\) 12.7103 48.5602i 0.455685 1.74097i
\(779\) −6.00853 10.4071i −0.215278 0.372872i
\(780\) 0 0
\(781\) 1.81392 3.14180i 0.0649072 0.112423i
\(782\) 64.0453 17.5597i 2.29025 0.627932i
\(783\) 0 0
\(784\) 15.5261 + 23.3010i 0.554505 + 0.832180i
\(785\) 14.2709i 0.509351i
\(786\) 0 0
\(787\) −40.2785 23.2548i −1.43577 0.828943i −0.438220 0.898868i \(-0.644391\pi\)
−0.997552 + 0.0699244i \(0.977724\pi\)
\(788\) 23.6261 + 39.8468i 0.841644 + 1.41948i
\(789\) 0 0
\(790\) 33.9830 + 8.89478i 1.20906 + 0.316462i
\(791\) −35.5613 + 21.5144i −1.26441 + 0.764962i
\(792\) 0 0
\(793\) 27.0554 + 46.8614i 0.960767 + 1.66410i
\(794\) −15.4571 + 15.6375i −0.548553 + 0.554954i
\(795\) 0 0
\(796\) 4.18999 0.0486085i 0.148510 0.00172288i
\(797\) 6.75950i 0.239434i −0.992808 0.119717i \(-0.961801\pi\)
0.992808 0.119717i \(-0.0381987\pi\)
\(798\) 0 0
\(799\) 22.2484i 0.787092i
\(800\) 10.8387 11.4863i 0.383205 0.406102i
\(801\) 0 0
\(802\) −8.71148 8.61101i −0.307613 0.304065i
\(803\) 4.80607 + 8.32435i 0.169602 + 0.293760i
\(804\) 0 0
\(805\) 0.723195 + 35.3002i 0.0254893 + 1.24417i
\(806\) 0.428470 1.63699i 0.0150922 0.0576606i
\(807\) 0 0
\(808\) −8.77008 30.5909i −0.308530 1.07619i
\(809\) 24.0673 + 13.8953i 0.846160 + 0.488531i 0.859354 0.511382i \(-0.170866\pi\)
−0.0131930 + 0.999913i \(0.504200\pi\)
\(810\) 0 0
\(811\) 24.9697i 0.876804i 0.898779 + 0.438402i \(0.144455\pi\)
−0.898779 + 0.438402i \(0.855545\pi\)
\(812\) −5.27199 + 9.84802i −0.185010 + 0.345598i
\(813\) 0 0
\(814\) 5.14605 + 18.7692i 0.180369 + 0.657859i
\(815\) −2.15859 + 3.73879i −0.0756122 + 0.130964i
\(816\) 0 0
\(817\) −4.92074 8.52298i −0.172155 0.298181i
\(818\) 4.78263 + 1.25182i 0.167221 + 0.0437687i
\(819\) 0 0
\(820\) 20.6463 + 11.6029i 0.721000 + 0.405191i
\(821\) 0.455422 0.262938i 0.0158943 0.00917659i −0.492032 0.870577i \(-0.663746\pi\)
0.507926 + 0.861401i \(0.330412\pi\)
\(822\) 0 0
\(823\) −15.0707 8.70110i −0.525333 0.303301i 0.213781 0.976882i \(-0.431422\pi\)
−0.739114 + 0.673580i \(0.764755\pi\)
\(824\) −1.25623 0.313283i −0.0437628 0.0109137i
\(825\) 0 0
\(826\) −0.721517 2.43487i −0.0251048 0.0847198i
\(827\) 1.24740 0.0433765 0.0216883 0.999765i \(-0.493096\pi\)
0.0216883 + 0.999765i \(0.493096\pi\)
\(828\) 0 0
\(829\) −5.51372 + 9.55004i −0.191499 + 0.331687i −0.945747 0.324903i \(-0.894668\pi\)
0.754248 + 0.656590i \(0.228002\pi\)
\(830\) −22.8547 22.5911i −0.793298 0.784148i
\(831\) 0 0
\(832\) −1.42098 40.8143i −0.0492637 1.41498i
\(833\) 30.9225 19.5841i 1.07140 0.678550i
\(834\) 0 0
\(835\) −14.6373 + 8.45085i −0.506545 + 0.292454i
\(836\) −4.22346 7.12312i −0.146071 0.246358i
\(837\) 0 0
\(838\) −4.62851 16.8815i −0.159889 0.583163i
\(839\) 20.3758 0.703452 0.351726 0.936103i \(-0.385595\pi\)
0.351726 + 0.936103i \(0.385595\pi\)
\(840\) 0 0
\(841\) 24.5437 0.846333
\(842\) 8.29960 + 30.2711i 0.286023 + 1.04321i
\(843\) 0 0
\(844\) 23.6454 + 39.8794i 0.813908 + 1.37270i
\(845\) −16.8069 + 9.70345i −0.578174 + 0.333809i
\(846\) 0 0
\(847\) −4.41534 + 8.02273i −0.151713 + 0.275664i
\(848\) 13.5851 8.26942i 0.466515 0.283973i
\(849\) 0 0
\(850\) −14.6825 14.5131i −0.503605 0.497796i
\(851\) −22.5054 + 38.9805i −0.771476 + 1.33624i
\(852\) 0 0
\(853\) 5.32415 0.182295 0.0911477 0.995837i \(-0.470946\pi\)
0.0911477 + 0.995837i \(0.470946\pi\)
\(854\) −38.5661 9.25463i −1.31970 0.316687i
\(855\) 0 0
\(856\) 6.08823 24.4131i 0.208091 0.834422i
\(857\) 31.3685 + 18.1106i 1.07153 + 0.618647i 0.928599 0.371086i \(-0.121014\pi\)
0.142930 + 0.989733i \(0.454348\pi\)
\(858\) 0 0
\(859\) 25.1177 14.5017i 0.857004 0.494791i −0.00600391 0.999982i \(-0.501911\pi\)
0.863008 + 0.505191i \(0.168578\pi\)
\(860\) 16.9085 + 9.50231i 0.576574 + 0.324026i
\(861\) 0 0
\(862\) −22.0893 5.78170i −0.752365 0.196926i
\(863\) −6.76369 11.7151i −0.230239 0.398785i 0.727640 0.685960i \(-0.240617\pi\)
−0.957878 + 0.287174i \(0.907284\pi\)
\(864\) 0 0
\(865\) 6.33001 10.9639i 0.215227 0.372784i
\(866\) −4.36538 15.9218i −0.148342 0.541046i
\(867\) 0 0
\(868\) 0.654270 + 1.05366i 0.0222074 + 0.0357634i
\(869\) 45.8952i 1.55689i
\(870\) 0 0
\(871\) 47.7235 + 27.5532i 1.61705 + 0.933603i
\(872\) −18.1992 + 5.21752i −0.616304 + 0.176687i
\(873\) 0 0
\(874\) 4.84960 18.5281i 0.164040 0.626724i
\(875\) 26.2107 15.8573i 0.886083 0.536074i
\(876\) 0 0
\(877\) −12.6825 21.9668i −0.428258 0.741765i 0.568460 0.822711i \(-0.307539\pi\)
−0.996718 + 0.0809459i \(0.974206\pi\)
\(878\) 17.9006 + 17.6941i 0.604116 + 0.597148i
\(879\) 0 0
\(880\) 14.3194 + 7.83011i 0.482706 + 0.263953i
\(881\) 6.65140i 0.224091i −0.993703 0.112046i \(-0.964260\pi\)
0.993703 0.112046i \(-0.0357403\pi\)
\(882\) 0 0
\(883\) 21.5373i 0.724789i −0.932025 0.362394i \(-0.881959\pi\)
0.932025 0.362394i \(-0.118041\pi\)
\(884\) −53.3824 + 0.619294i −1.79544 + 0.0208291i
\(885\) 0 0
\(886\) −15.4624 + 15.6428i −0.519470 + 0.525531i
\(887\) −6.11983 10.5999i −0.205484 0.355908i 0.744803 0.667284i \(-0.232543\pi\)
−0.950287 + 0.311376i \(0.899210\pi\)
\(888\) 0 0
\(889\) −0.959260 + 0.580346i −0.0321726 + 0.0194642i
\(890\) −25.5003 6.67450i −0.854772 0.223730i
\(891\) 0 0
\(892\) −4.91867 8.29563i −0.164689 0.277758i
\(893\) 5.55680 + 3.20822i 0.185951 + 0.107359i
\(894\) 0 0
\(895\) 14.2802i 0.477336i
\(896\) 22.4187 + 19.8344i 0.748955 + 0.662620i
\(897\) 0 0
\(898\) −44.2124 + 12.1220i −1.47539 + 0.404515i
\(899\) −0.247397 + 0.428504i −0.00825115 + 0.0142914i
\(900\) 0 0
\(901\) −10.3951 18.0049i −0.346312 0.599830i
\(902\) 7.83506 29.9343i 0.260879 0.996702i
\(903\) 0 0
\(904\) −30.8672 + 31.9605i −1.02663 + 1.06299i
\(905\) −24.5226 + 14.1581i −0.815157 + 0.470631i
\(906\) 0 0
\(907\) 33.1072 + 19.1145i 1.09931 + 0.634685i 0.936039 0.351897i \(-0.114463\pi\)
0.163268 + 0.986582i \(0.447797\pi\)
\(908\) 0.238666 + 20.5727i 0.00792041 + 0.682729i
\(909\) 0 0
\(910\) 6.62316 27.6002i 0.219556 0.914937i
\(911\) −6.62085 −0.219359 −0.109679 0.993967i \(-0.534982\pi\)
−0.109679 + 0.993967i \(0.534982\pi\)
\(912\) 0 0
\(913\) −20.9929 + 36.3608i −0.694763 + 1.20337i
\(914\) 6.89574 6.97620i 0.228091 0.230752i
\(915\) 0 0
\(916\) −19.3857 10.8945i −0.640522 0.359964i
\(917\) −10.0378 + 18.2388i −0.331477 + 0.602299i
\(918\) 0 0
\(919\) 10.6505 6.14908i 0.351328 0.202839i −0.313942 0.949442i \(-0.601650\pi\)
0.665270 + 0.746603i \(0.268316\pi\)
\(920\) 10.4021 + 36.2838i 0.342949 + 1.19624i
\(921\) 0 0
\(922\) 45.0257 12.3449i 1.48284 0.406559i
\(923\) −6.74501 −0.222015
\(924\) 0 0
\(925\) 13.9927 0.460077
\(926\) 35.3019 9.67892i 1.16009 0.318069i
\(927\) 0 0
\(928\) −2.75495 + 11.6195i −0.0904356 + 0.381429i
\(929\) −18.6376 + 10.7604i −0.611480 + 0.353038i −0.773545 0.633742i \(-0.781518\pi\)
0.162064 + 0.986780i \(0.448185\pi\)
\(930\) 0 0
\(931\) −0.432345 10.5473i −0.0141695 0.345673i
\(932\) −7.49596 + 13.3384i −0.245538 + 0.436913i
\(933\) 0 0
\(934\) −24.0040 + 24.2841i −0.785435 + 0.794600i
\(935\) 10.6672 18.4762i 0.348856 0.604237i
\(936\) 0 0
\(937\) 19.0315 0.621733 0.310866 0.950454i \(-0.399381\pi\)
0.310866 + 0.950454i \(0.399381\pi\)
\(938\) −38.7261 + 11.4756i −1.26445 + 0.374691i
\(939\) 0 0
\(940\) −12.6447 + 0.146692i −0.412424 + 0.00478457i
\(941\) −22.4940 12.9869i −0.733283 0.423361i 0.0863390 0.996266i \(-0.472483\pi\)
−0.819622 + 0.572905i \(0.805817\pi\)
\(942\) 0 0
\(943\) 61.9758 35.7817i 2.01821 1.16521i
\(944\) −1.41161 2.31901i −0.0459440 0.0754775i
\(945\) 0 0
\(946\) 6.41660 24.5150i 0.208622 0.797050i
\(947\) −3.23409 5.60161i −0.105094 0.182028i 0.808683 0.588245i \(-0.200181\pi\)
−0.913777 + 0.406217i \(0.866848\pi\)
\(948\) 0 0
\(949\) 8.93561 15.4769i 0.290062 0.502403i
\(950\) −5.74204 + 1.57433i −0.186296 + 0.0510779i
\(951\) 0 0
\(952\) 26.6010 28.6969i 0.862143 0.930073i
\(953\) 17.4347i 0.564765i 0.959302 + 0.282382i \(0.0911247\pi\)
−0.959302 + 0.282382i \(0.908875\pi\)
\(954\) 0 0
\(955\) −22.0404 12.7251i −0.713212 0.411773i
\(956\) −9.62049 + 5.70420i −0.311149 + 0.184487i
\(957\) 0 0
\(958\) −56.1222 14.6895i −1.81323 0.474597i
\(959\) 0.245136 + 11.9654i 0.00791585 + 0.386384i
\(960\) 0 0
\(961\) −15.4725 26.7992i −0.499114 0.864491i
\(962\) 25.4372 25.7340i 0.820129 0.829698i
\(963\) 0 0
\(964\) −0.0961876 8.29125i −0.00309799 0.267043i
\(965\) 6.92319i 0.222865i
\(966\) 0 0
\(967\) 11.5622i 0.371814i 0.982567 + 0.185907i \(0.0595223\pi\)
−0.982567 + 0.185907i \(0.940478\pi\)
\(968\) −2.36885 + 9.49884i −0.0761379 + 0.305304i
\(969\) 0 0
\(970\) 21.2330 + 20.9881i 0.681750 + 0.673887i
\(971\) −27.0715 46.8892i −0.868766 1.50475i −0.863259 0.504762i \(-0.831580\pi\)
−0.00550751 0.999985i \(-0.501753\pi\)
\(972\) 0 0
\(973\) −20.6529 + 12.4948i −0.662100 + 0.400566i
\(974\) −5.41527 + 20.6893i −0.173516 + 0.662929i
\(975\) 0 0
\(976\) −42.3879 + 0.983626i −1.35680 + 0.0314851i
\(977\) −20.1006 11.6051i −0.643076 0.371280i 0.142722 0.989763i \(-0.454414\pi\)
−0.785798 + 0.618483i \(0.787748\pi\)
\(978\) 0 0
\(979\) 34.4390i 1.10068i
\(980\) 11.3343 + 17.4454i 0.362062 + 0.557272i
\(981\) 0 0
\(982\) 13.8091 + 50.3660i 0.440667 + 1.60724i
\(983\) −18.5294 + 32.0939i −0.590996 + 1.02363i 0.403103 + 0.915155i \(0.367932\pi\)
−0.994099 + 0.108480i \(0.965402\pi\)
\(984\) 0 0
\(985\) 17.2096 + 29.8079i 0.548343 + 0.949758i
\(986\) 15.1017 + 3.95276i 0.480937 + 0.125881i
\(987\) 0 0
\(988\) −7.54306 + 13.4222i −0.239977 + 0.427016i
\(989\) 50.7557 29.3038i 1.61394 0.931806i
\(990\) 0 0
\(991\) 6.39309 + 3.69105i 0.203083 + 0.117250i 0.598093 0.801427i \(-0.295925\pi\)
−0.395010 + 0.918677i \(0.629259\pi\)
\(992\) 0.964345 + 0.909972i 0.0306180 + 0.0288916i
\(993\) 0 0
\(994\) 3.40272 3.58646i 0.107928 0.113756i
\(995\) 3.11338 0.0987008
\(996\) 0 0
\(997\) −3.53100 + 6.11587i −0.111828 + 0.193692i −0.916507 0.400018i \(-0.869004\pi\)
0.804679 + 0.593710i \(0.202337\pi\)
\(998\) 1.71836 + 1.69854i 0.0543936 + 0.0537663i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 756.2.be.d.431.6 yes 28
3.2 odd 2 inner 756.2.be.d.431.9 yes 28
4.3 odd 2 756.2.be.c.431.11 yes 28
7.2 even 3 756.2.be.c.107.4 28
12.11 even 2 756.2.be.c.431.4 yes 28
21.2 odd 6 756.2.be.c.107.11 yes 28
28.23 odd 6 inner 756.2.be.d.107.9 yes 28
84.23 even 6 inner 756.2.be.d.107.6 yes 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
756.2.be.c.107.4 28 7.2 even 3
756.2.be.c.107.11 yes 28 21.2 odd 6
756.2.be.c.431.4 yes 28 12.11 even 2
756.2.be.c.431.11 yes 28 4.3 odd 2
756.2.be.d.107.6 yes 28 84.23 even 6 inner
756.2.be.d.107.9 yes 28 28.23 odd 6 inner
756.2.be.d.431.6 yes 28 1.1 even 1 trivial
756.2.be.d.431.9 yes 28 3.2 odd 2 inner