Properties

Label 756.2.be.c.107.4
Level $756$
Weight $2$
Character 756.107
Analytic conductor $6.037$
Analytic rank $0$
Dimension $28$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [756,2,Mod(107,756)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("756.107"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 756.be (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,0,0,-4,0,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.03669039281\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 107.4
Character \(\chi\) \(=\) 756.107
Dual form 756.2.be.c.431.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.994183 + 1.00578i) q^{2} +(-0.0232006 - 1.99987i) q^{4} +(1.28692 + 0.743002i) q^{5} +(-1.36953 + 2.26371i) q^{7} +(2.03450 + 1.96490i) q^{8} +(-2.02673 + 0.555680i) q^{10} +(1.37284 + 2.37783i) q^{11} -5.10488 q^{13} +(-0.915240 - 3.62799i) q^{14} +(-3.99892 + 0.0927963i) q^{16} +(4.52837 - 2.61446i) q^{17} +(1.30598 + 0.754009i) q^{19} +(1.45605 - 2.59090i) q^{20} +(-3.75644 - 0.983219i) q^{22} +(-4.49024 + 7.77732i) q^{23} +(-1.39590 - 2.41776i) q^{25} +(5.07518 - 5.13440i) q^{26} +(4.55889 + 2.68636i) q^{28} -2.11100i q^{29} +(0.202986 - 0.117194i) q^{31} +(3.88233 - 4.11431i) q^{32} +(-1.87245 + 7.15381i) q^{34} +(-3.44441 + 1.89564i) q^{35} +(-2.50604 + 4.34059i) q^{37} +(-2.05675 + 0.563912i) q^{38} +(1.15831 + 4.04029i) q^{40} +7.96878i q^{41} +6.52611i q^{43} +(4.72350 - 2.80067i) q^{44} +(-3.35818 - 12.2483i) q^{46} +(-2.12744 + 3.68483i) q^{47} +(-3.24878 - 6.20044i) q^{49} +(3.81952 + 0.999730i) q^{50} +(0.118437 + 10.2091i) q^{52} +(-3.44333 + 1.98801i) q^{53} +4.08010i q^{55} +(-7.23426 + 1.91453i) q^{56} +(2.12321 + 2.09872i) q^{58} +(0.339358 + 0.587784i) q^{59} +(-5.29992 + 9.17972i) q^{61} +(-0.0839334 + 0.320672i) q^{62} +(0.278358 + 7.99516i) q^{64} +(-6.56955 - 3.79293i) q^{65} +(9.34860 - 5.39742i) q^{67} +(-5.33362 - 8.99548i) q^{68} +(1.51777 - 5.34895i) q^{70} +1.32129 q^{71} +(-1.75041 - 3.03179i) q^{73} +(-1.87423 - 6.83587i) q^{74} +(1.47762 - 2.62928i) q^{76} +(-7.26288 - 0.148795i) q^{77} +(-14.4759 - 8.35768i) q^{79} +(-5.21523 - 2.85179i) q^{80} +(-8.01487 - 7.92242i) q^{82} -15.2915 q^{83} +7.77018 q^{85} +(-6.56385 - 6.48815i) q^{86} +(-1.87915 + 7.53519i) q^{88} +(10.8625 + 6.27147i) q^{89} +(6.99129 - 11.5560i) q^{91} +(15.6578 + 8.79944i) q^{92} +(-1.59108 - 5.80314i) q^{94} +(1.12046 + 1.94069i) q^{95} +14.2065 q^{97} +(9.46618 + 2.89681i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 4 q^{4} - 2 q^{7} - 20 q^{10} + 8 q^{13} + 12 q^{16} + 42 q^{19} + 4 q^{22} + 6 q^{25} - 28 q^{28} - 30 q^{31} + 24 q^{34} + 12 q^{37} + 36 q^{40} - 12 q^{46} - 14 q^{49} + 84 q^{52} + 28 q^{58}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/756\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\) \(379\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.994183 + 1.00578i −0.702993 + 0.711196i
\(3\) 0 0
\(4\) −0.0232006 1.99987i −0.0116003 0.999933i
\(5\) 1.28692 + 0.743002i 0.575527 + 0.332280i 0.759354 0.650678i \(-0.225515\pi\)
−0.183827 + 0.982959i \(0.558849\pi\)
\(6\) 0 0
\(7\) −1.36953 + 2.26371i −0.517634 + 0.855602i
\(8\) 2.03450 + 1.96490i 0.719303 + 0.694696i
\(9\) 0 0
\(10\) −2.02673 + 0.555680i −0.640908 + 0.175721i
\(11\) 1.37284 + 2.37783i 0.413928 + 0.716944i 0.995315 0.0966827i \(-0.0308232\pi\)
−0.581387 + 0.813627i \(0.697490\pi\)
\(12\) 0 0
\(13\) −5.10488 −1.41584 −0.707919 0.706293i \(-0.750366\pi\)
−0.707919 + 0.706293i \(0.750366\pi\)
\(14\) −0.915240 3.62799i −0.244608 0.969622i
\(15\) 0 0
\(16\) −3.99892 + 0.0927963i −0.999731 + 0.0231991i
\(17\) 4.52837 2.61446i 1.09829 0.634099i 0.162520 0.986705i \(-0.448038\pi\)
0.935772 + 0.352606i \(0.114704\pi\)
\(18\) 0 0
\(19\) 1.30598 + 0.754009i 0.299613 + 0.172982i 0.642269 0.766479i \(-0.277993\pi\)
−0.342656 + 0.939461i \(0.611327\pi\)
\(20\) 1.45605 2.59090i 0.325582 0.579342i
\(21\) 0 0
\(22\) −3.75644 0.983219i −0.800877 0.209623i
\(23\) −4.49024 + 7.77732i −0.936280 + 1.62168i −0.163944 + 0.986470i \(0.552422\pi\)
−0.772336 + 0.635214i \(0.780912\pi\)
\(24\) 0 0
\(25\) −1.39590 2.41776i −0.279179 0.483553i
\(26\) 5.07518 5.13440i 0.995325 1.00694i
\(27\) 0 0
\(28\) 4.55889 + 2.68636i 0.861550 + 0.507674i
\(29\) 2.11100i 0.392004i −0.980604 0.196002i \(-0.937204\pi\)
0.980604 0.196002i \(-0.0627958\pi\)
\(30\) 0 0
\(31\) 0.202986 0.117194i 0.0364574 0.0210487i −0.481661 0.876358i \(-0.659966\pi\)
0.518118 + 0.855309i \(0.326633\pi\)
\(32\) 3.88233 4.11431i 0.686305 0.727314i
\(33\) 0 0
\(34\) −1.87245 + 7.15381i −0.321123 + 1.22687i
\(35\) −3.44441 + 1.89564i −0.582212 + 0.320422i
\(36\) 0 0
\(37\) −2.50604 + 4.34059i −0.411990 + 0.713588i −0.995107 0.0988002i \(-0.968500\pi\)
0.583117 + 0.812388i \(0.301833\pi\)
\(38\) −2.05675 + 0.563912i −0.333650 + 0.0914786i
\(39\) 0 0
\(40\) 1.15831 + 4.04029i 0.183144 + 0.638827i
\(41\) 7.96878i 1.24451i 0.782813 + 0.622257i \(0.213784\pi\)
−0.782813 + 0.622257i \(0.786216\pi\)
\(42\) 0 0
\(43\) 6.52611i 0.995222i 0.867400 + 0.497611i \(0.165789\pi\)
−0.867400 + 0.497611i \(0.834211\pi\)
\(44\) 4.72350 2.80067i 0.712094 0.422217i
\(45\) 0 0
\(46\) −3.35818 12.2483i −0.495137 1.80591i
\(47\) −2.12744 + 3.68483i −0.310319 + 0.537488i −0.978431 0.206572i \(-0.933769\pi\)
0.668112 + 0.744060i \(0.267103\pi\)
\(48\) 0 0
\(49\) −3.24878 6.20044i −0.464111 0.885777i
\(50\) 3.81952 + 0.999730i 0.540162 + 0.141383i
\(51\) 0 0
\(52\) 0.118437 + 10.2091i 0.0164242 + 1.41574i
\(53\) −3.44333 + 1.98801i −0.472978 + 0.273074i −0.717485 0.696573i \(-0.754707\pi\)
0.244508 + 0.969647i \(0.421374\pi\)
\(54\) 0 0
\(55\) 4.08010i 0.550161i
\(56\) −7.23426 + 1.91453i −0.966719 + 0.255840i
\(57\) 0 0
\(58\) 2.12321 + 2.09872i 0.278791 + 0.275576i
\(59\) 0.339358 + 0.587784i 0.0441806 + 0.0765230i 0.887270 0.461250i \(-0.152599\pi\)
−0.843089 + 0.537773i \(0.819266\pi\)
\(60\) 0 0
\(61\) −5.29992 + 9.17972i −0.678585 + 1.17534i 0.296822 + 0.954933i \(0.404073\pi\)
−0.975407 + 0.220411i \(0.929260\pi\)
\(62\) −0.0839334 + 0.320672i −0.0106596 + 0.0407254i
\(63\) 0 0
\(64\) 0.278358 + 7.99516i 0.0347947 + 0.999394i
\(65\) −6.56955 3.79293i −0.814853 0.470456i
\(66\) 0 0
\(67\) 9.34860 5.39742i 1.14211 0.659399i 0.195160 0.980771i \(-0.437477\pi\)
0.946953 + 0.321372i \(0.104144\pi\)
\(68\) −5.33362 8.99548i −0.646797 1.09086i
\(69\) 0 0
\(70\) 1.51777 5.34895i 0.181408 0.639322i
\(71\) 1.32129 0.156808 0.0784040 0.996922i \(-0.475018\pi\)
0.0784040 + 0.996922i \(0.475018\pi\)
\(72\) 0 0
\(73\) −1.75041 3.03179i −0.204870 0.354844i 0.745222 0.666817i \(-0.232344\pi\)
−0.950091 + 0.311972i \(0.899010\pi\)
\(74\) −1.87423 6.83587i −0.217875 0.794654i
\(75\) 0 0
\(76\) 1.47762 2.62928i 0.169494 0.301599i
\(77\) −7.26288 0.148795i −0.827682 0.0169567i
\(78\) 0 0
\(79\) −14.4759 8.35768i −1.62867 0.940313i −0.984490 0.175438i \(-0.943866\pi\)
−0.644179 0.764874i \(-0.722801\pi\)
\(80\) −5.21523 2.85179i −0.583080 0.318839i
\(81\) 0 0
\(82\) −8.01487 7.92242i −0.885094 0.874885i
\(83\) −15.2915 −1.67846 −0.839232 0.543773i \(-0.816995\pi\)
−0.839232 + 0.543773i \(0.816995\pi\)
\(84\) 0 0
\(85\) 7.77018 0.842795
\(86\) −6.56385 6.48815i −0.707798 0.699635i
\(87\) 0 0
\(88\) −1.87915 + 7.53519i −0.200319 + 0.803254i
\(89\) 10.8625 + 6.27147i 1.15142 + 0.664775i 0.949234 0.314572i \(-0.101861\pi\)
0.202190 + 0.979346i \(0.435194\pi\)
\(90\) 0 0
\(91\) 6.99129 11.5560i 0.732886 1.21140i
\(92\) 15.6578 + 8.79944i 1.63244 + 0.917405i
\(93\) 0 0
\(94\) −1.59108 5.80314i −0.164107 0.598549i
\(95\) 1.12046 + 1.94069i 0.114957 + 0.199111i
\(96\) 0 0
\(97\) 14.2065 1.44245 0.721226 0.692700i \(-0.243579\pi\)
0.721226 + 0.692700i \(0.243579\pi\)
\(98\) 9.46618 + 2.89681i 0.956228 + 0.292622i
\(99\) 0 0
\(100\) −4.80282 + 2.84770i −0.480282 + 0.284770i
\(101\) 9.74384 5.62561i 0.969549 0.559769i 0.0704500 0.997515i \(-0.477556\pi\)
0.899099 + 0.437746i \(0.144223\pi\)
\(102\) 0 0
\(103\) 0.396421 + 0.228874i 0.0390605 + 0.0225516i 0.519403 0.854529i \(-0.326154\pi\)
−0.480343 + 0.877081i \(0.659488\pi\)
\(104\) −10.3859 10.0306i −1.01842 0.983578i
\(105\) 0 0
\(106\) 1.42380 5.43969i 0.138291 0.528349i
\(107\) −4.44784 + 7.70389i −0.429989 + 0.744763i −0.996872 0.0790354i \(-0.974816\pi\)
0.566883 + 0.823799i \(0.308149\pi\)
\(108\) 0 0
\(109\) −3.34680 5.79684i −0.320566 0.555236i 0.660039 0.751231i \(-0.270540\pi\)
−0.980605 + 0.195995i \(0.937206\pi\)
\(110\) −4.10370 4.05637i −0.391272 0.386759i
\(111\) 0 0
\(112\) 5.26658 9.17949i 0.497645 0.867381i
\(113\) 15.7093i 1.47781i 0.673811 + 0.738903i \(0.264656\pi\)
−0.673811 + 0.738903i \(0.735344\pi\)
\(114\) 0 0
\(115\) −11.5571 + 6.67251i −1.07771 + 0.622215i
\(116\) −4.22172 + 0.0489767i −0.391977 + 0.00454737i
\(117\) 0 0
\(118\) −0.928567 0.243045i −0.0854816 0.0223741i
\(119\) −0.283366 + 13.8315i −0.0259761 + 1.26793i
\(120\) 0 0
\(121\) 1.73060 2.99749i 0.157327 0.272499i
\(122\) −3.96373 14.4569i −0.358859 1.30887i
\(123\) 0 0
\(124\) −0.239082 0.403226i −0.0214702 0.0362107i
\(125\) 11.5786i 1.03562i
\(126\) 0 0
\(127\) 0.423756i 0.0376022i 0.999823 + 0.0188011i \(0.00598493\pi\)
−0.999823 + 0.0188011i \(0.994015\pi\)
\(128\) −8.31813 7.66868i −0.735226 0.677822i
\(129\) 0 0
\(130\) 10.3462 2.83668i 0.907423 0.248793i
\(131\) 3.93433 6.81447i 0.343744 0.595383i −0.641380 0.767223i \(-0.721638\pi\)
0.985125 + 0.171840i \(0.0549713\pi\)
\(132\) 0 0
\(133\) −3.49544 + 1.92373i −0.303093 + 0.166808i
\(134\) −3.86559 + 14.7687i −0.333936 + 1.27582i
\(135\) 0 0
\(136\) 14.3501 + 3.57868i 1.23051 + 0.306869i
\(137\) −3.91743 + 2.26173i −0.334689 + 0.193233i −0.657921 0.753087i \(-0.728564\pi\)
0.323232 + 0.946320i \(0.395231\pi\)
\(138\) 0 0
\(139\) 9.12345i 0.773841i 0.922113 + 0.386921i \(0.126461\pi\)
−0.922113 + 0.386921i \(0.873539\pi\)
\(140\) 3.87095 + 6.84438i 0.327155 + 0.578456i
\(141\) 0 0
\(142\) −1.31360 + 1.32893i −0.110235 + 0.111521i
\(143\) −7.00820 12.1386i −0.586055 1.01508i
\(144\) 0 0
\(145\) 1.56848 2.71669i 0.130255 0.225608i
\(146\) 4.78955 + 1.25363i 0.396386 + 0.103751i
\(147\) 0 0
\(148\) 8.73873 + 4.91104i 0.718319 + 0.403685i
\(149\) 17.4629 + 10.0822i 1.43062 + 0.825967i 0.997168 0.0752118i \(-0.0239633\pi\)
0.433448 + 0.901178i \(0.357297\pi\)
\(150\) 0 0
\(151\) 6.33048 3.65491i 0.515168 0.297432i −0.219788 0.975548i \(-0.570536\pi\)
0.734955 + 0.678116i \(0.237203\pi\)
\(152\) 1.17547 + 4.10015i 0.0953429 + 0.332566i
\(153\) 0 0
\(154\) 7.37029 7.15696i 0.593915 0.576724i
\(155\) 0.348301 0.0279762
\(156\) 0 0
\(157\) 4.80178 + 8.31693i 0.383224 + 0.663763i 0.991521 0.129946i \(-0.0414805\pi\)
−0.608297 + 0.793709i \(0.708147\pi\)
\(158\) 22.7977 6.25059i 1.81369 0.497270i
\(159\) 0 0
\(160\) 8.05317 2.41019i 0.636659 0.190543i
\(161\) −11.4561 20.8159i −0.902867 1.64052i
\(162\) 0 0
\(163\) −2.51601 1.45262i −0.197069 0.113778i 0.398219 0.917291i \(-0.369629\pi\)
−0.595288 + 0.803513i \(0.702962\pi\)
\(164\) 15.9365 0.184881i 1.24443 0.0144368i
\(165\) 0 0
\(166\) 15.2026 15.3800i 1.17995 1.19372i
\(167\) 11.3739 0.880141 0.440071 0.897963i \(-0.354953\pi\)
0.440071 + 0.897963i \(0.354953\pi\)
\(168\) 0 0
\(169\) 13.0598 1.00460
\(170\) −7.72498 + 7.81512i −0.592479 + 0.599393i
\(171\) 0 0
\(172\) 13.0513 0.151410i 0.995155 0.0115449i
\(173\) 7.37811 + 4.25976i 0.560948 + 0.323863i 0.753526 0.657418i \(-0.228352\pi\)
−0.192578 + 0.981282i \(0.561685\pi\)
\(174\) 0 0
\(175\) 7.38484 + 0.151293i 0.558242 + 0.0114367i
\(176\) −5.71055 9.38138i −0.430449 0.707148i
\(177\) 0 0
\(178\) −17.1071 + 4.69034i −1.28223 + 0.351556i
\(179\) 4.80491 + 8.32235i 0.359136 + 0.622042i 0.987817 0.155622i \(-0.0497381\pi\)
−0.628681 + 0.777664i \(0.716405\pi\)
\(180\) 0 0
\(181\) 19.0553 1.41637 0.708184 0.706028i \(-0.249515\pi\)
0.708184 + 0.706028i \(0.249515\pi\)
\(182\) 4.67219 + 18.5205i 0.346326 + 1.37283i
\(183\) 0 0
\(184\) −24.4170 + 7.00008i −1.80005 + 0.516053i
\(185\) −6.45012 + 3.72398i −0.474223 + 0.273793i
\(186\) 0 0
\(187\) 12.4335 + 7.17848i 0.909227 + 0.524943i
\(188\) 7.41853 + 4.16910i 0.541052 + 0.304063i
\(189\) 0 0
\(190\) −3.06586 0.802464i −0.222421 0.0582169i
\(191\) 8.56327 14.8320i 0.619617 1.07321i −0.369939 0.929056i \(-0.620621\pi\)
0.989556 0.144152i \(-0.0460453\pi\)
\(192\) 0 0
\(193\) 2.32947 + 4.03475i 0.167679 + 0.290428i 0.937603 0.347707i \(-0.113040\pi\)
−0.769925 + 0.638135i \(0.779706\pi\)
\(194\) −14.1239 + 14.2887i −1.01403 + 1.02587i
\(195\) 0 0
\(196\) −12.3247 + 6.64097i −0.880334 + 0.474355i
\(197\) 23.1622i 1.65024i −0.564957 0.825121i \(-0.691107\pi\)
0.564957 0.825121i \(-0.308893\pi\)
\(198\) 0 0
\(199\) 1.81444 1.04757i 0.128622 0.0742602i −0.434308 0.900764i \(-0.643007\pi\)
0.562931 + 0.826504i \(0.309674\pi\)
\(200\) 1.91071 7.66173i 0.135108 0.541766i
\(201\) 0 0
\(202\) −4.02902 + 15.3931i −0.283481 + 1.08305i
\(203\) 4.77870 + 2.89108i 0.335399 + 0.202914i
\(204\) 0 0
\(205\) −5.92082 + 10.2552i −0.413528 + 0.716251i
\(206\) −0.624312 + 0.171171i −0.0434979 + 0.0119261i
\(207\) 0 0
\(208\) 20.4140 0.473714i 1.41546 0.0328462i
\(209\) 4.14055i 0.286408i
\(210\) 0 0
\(211\) 23.1812i 1.59586i −0.602751 0.797929i \(-0.705929\pi\)
0.602751 0.797929i \(-0.294071\pi\)
\(212\) 4.05564 + 6.84007i 0.278542 + 0.469778i
\(213\) 0 0
\(214\) −3.32648 12.1326i −0.227393 0.829370i
\(215\) −4.84891 + 8.39856i −0.330693 + 0.572777i
\(216\) 0 0
\(217\) −0.0127020 + 0.620003i −0.000862268 + 0.0420885i
\(218\) 9.15770 + 2.39695i 0.620237 + 0.162342i
\(219\) 0 0
\(220\) 8.15965 0.0946610i 0.550124 0.00638204i
\(221\) −23.1168 + 13.3465i −1.55500 + 0.897782i
\(222\) 0 0
\(223\) 4.82210i 0.322912i 0.986880 + 0.161456i \(0.0516190\pi\)
−0.986880 + 0.161456i \(0.948381\pi\)
\(224\) 3.99664 + 14.4231i 0.267037 + 0.963686i
\(225\) 0 0
\(226\) −15.8002 15.6179i −1.05101 1.03889i
\(227\) 5.14352 + 8.90884i 0.341387 + 0.591300i 0.984691 0.174311i \(-0.0557699\pi\)
−0.643303 + 0.765611i \(0.722437\pi\)
\(228\) 0 0
\(229\) 5.55931 9.62901i 0.367370 0.636303i −0.621784 0.783189i \(-0.713592\pi\)
0.989153 + 0.146886i \(0.0469250\pi\)
\(230\) 4.77880 18.2577i 0.315105 1.20387i
\(231\) 0 0
\(232\) 4.14791 4.29483i 0.272323 0.281970i
\(233\) −6.62526 3.82509i −0.434035 0.250590i 0.267029 0.963688i \(-0.413958\pi\)
−0.701064 + 0.713098i \(0.747291\pi\)
\(234\) 0 0
\(235\) −5.47568 + 3.16138i −0.357194 + 0.206226i
\(236\) 1.16762 0.692306i 0.0760054 0.0450653i
\(237\) 0 0
\(238\) −13.6298 14.0361i −0.883487 0.909822i
\(239\) 5.59222 0.361731 0.180865 0.983508i \(-0.442110\pi\)
0.180865 + 0.983508i \(0.442110\pi\)
\(240\) 0 0
\(241\) −2.07295 3.59046i −0.133531 0.231282i 0.791505 0.611163i \(-0.209298\pi\)
−0.925035 + 0.379882i \(0.875965\pi\)
\(242\) 1.29429 + 4.72066i 0.0832002 + 0.303456i
\(243\) 0 0
\(244\) 18.4812 + 10.3861i 1.18314 + 0.664905i
\(245\) 0.426034 10.3933i 0.0272183 0.664003i
\(246\) 0 0
\(247\) −6.66688 3.84913i −0.424203 0.244914i
\(248\) 0.643249 + 0.160416i 0.0408463 + 0.0101864i
\(249\) 0 0
\(250\) 11.6456 + 11.5113i 0.736532 + 0.728037i
\(251\) 11.7863 0.743943 0.371972 0.928244i \(-0.378682\pi\)
0.371972 + 0.928244i \(0.378682\pi\)
\(252\) 0 0
\(253\) −24.6576 −1.55021
\(254\) −0.426206 0.421291i −0.0267426 0.0264341i
\(255\) 0 0
\(256\) 15.9828 0.742171i 0.998924 0.0463857i
\(257\) 26.2593 + 15.1608i 1.63801 + 0.945707i 0.981516 + 0.191379i \(0.0612958\pi\)
0.656497 + 0.754329i \(0.272037\pi\)
\(258\) 0 0
\(259\) −6.39374 11.6175i −0.397288 0.721877i
\(260\) −7.43294 + 13.2262i −0.460971 + 0.820256i
\(261\) 0 0
\(262\) 2.94243 + 10.7319i 0.181784 + 0.663020i
\(263\) −9.23981 16.0038i −0.569751 0.986838i −0.996590 0.0825101i \(-0.973706\pi\)
0.426839 0.904328i \(-0.359627\pi\)
\(264\) 0 0
\(265\) −5.90837 −0.362948
\(266\) 1.54025 5.42819i 0.0944390 0.332824i
\(267\) 0 0
\(268\) −11.0110 18.5707i −0.672604 1.13439i
\(269\) 0.629904 0.363675i 0.0384059 0.0221737i −0.480674 0.876899i \(-0.659608\pi\)
0.519080 + 0.854726i \(0.326275\pi\)
\(270\) 0 0
\(271\) −7.21987 4.16839i −0.438576 0.253212i 0.264418 0.964408i \(-0.414820\pi\)
−0.702993 + 0.711197i \(0.748154\pi\)
\(272\) −17.8660 + 10.8752i −1.08329 + 0.659408i
\(273\) 0 0
\(274\) 1.61983 6.18866i 0.0978576 0.373871i
\(275\) 3.83270 6.63843i 0.231120 0.400312i
\(276\) 0 0
\(277\) 6.26885 + 10.8580i 0.376659 + 0.652392i 0.990574 0.136980i \(-0.0437396\pi\)
−0.613915 + 0.789372i \(0.710406\pi\)
\(278\) −9.17622 9.07038i −0.550353 0.544005i
\(279\) 0 0
\(280\) −10.7324 2.91123i −0.641383 0.173979i
\(281\) 14.8047i 0.883173i −0.897219 0.441586i \(-0.854416\pi\)
0.897219 0.441586i \(-0.145584\pi\)
\(282\) 0 0
\(283\) −12.9064 + 7.45154i −0.767208 + 0.442948i −0.831878 0.554959i \(-0.812734\pi\)
0.0646694 + 0.997907i \(0.479401\pi\)
\(284\) −0.0306547 2.64240i −0.00181902 0.156797i
\(285\) 0 0
\(286\) 19.1762 + 5.01922i 1.13391 + 0.296793i
\(287\) −18.0390 10.9135i −1.06481 0.644202i
\(288\) 0 0
\(289\) 5.17077 8.95604i 0.304163 0.526826i
\(290\) 1.17304 + 4.27843i 0.0688834 + 0.251238i
\(291\) 0 0
\(292\) −6.02257 + 3.57092i −0.352444 + 0.208972i
\(293\) 15.0676i 0.880258i 0.897934 + 0.440129i \(0.145067\pi\)
−0.897934 + 0.440129i \(0.854933\pi\)
\(294\) 0 0
\(295\) 1.00857i 0.0587214i
\(296\) −13.6273 + 3.90680i −0.792073 + 0.227078i
\(297\) 0 0
\(298\) −27.5018 + 7.54033i −1.59314 + 0.436800i
\(299\) 22.9221 39.7023i 1.32562 2.29604i
\(300\) 0 0
\(301\) −14.7732 8.93770i −0.851515 0.515161i
\(302\) −2.61761 + 10.0007i −0.150627 + 0.575478i
\(303\) 0 0
\(304\) −5.29249 2.89403i −0.303545 0.165984i
\(305\) −13.6411 + 7.87569i −0.781087 + 0.450961i
\(306\) 0 0
\(307\) 4.78619i 0.273162i 0.990629 + 0.136581i \(0.0436114\pi\)
−0.990629 + 0.136581i \(0.956389\pi\)
\(308\) −0.129066 + 14.5282i −0.00735421 + 0.827823i
\(309\) 0 0
\(310\) −0.346275 + 0.350316i −0.0196671 + 0.0198966i
\(311\) −8.06864 13.9753i −0.457530 0.792466i 0.541299 0.840830i \(-0.317933\pi\)
−0.998830 + 0.0483640i \(0.984599\pi\)
\(312\) 0 0
\(313\) 13.2748 22.9926i 0.750336 1.29962i −0.197324 0.980338i \(-0.563225\pi\)
0.947660 0.319282i \(-0.103442\pi\)
\(314\) −13.1389 3.43900i −0.741470 0.194074i
\(315\) 0 0
\(316\) −16.3784 + 29.1438i −0.921357 + 1.63947i
\(317\) −8.35634 4.82453i −0.469339 0.270973i 0.246624 0.969111i \(-0.420679\pi\)
−0.715963 + 0.698138i \(0.754012\pi\)
\(318\) 0 0
\(319\) 5.01962 2.89808i 0.281045 0.162261i
\(320\) −5.58219 + 10.4959i −0.312054 + 0.586740i
\(321\) 0 0
\(322\) 32.3257 + 9.17244i 1.80144 + 0.511160i
\(323\) 7.88530 0.438750
\(324\) 0 0
\(325\) 7.12589 + 12.3424i 0.395273 + 0.684633i
\(326\) 3.96239 1.08639i 0.219456 0.0601696i
\(327\) 0 0
\(328\) −15.6578 + 16.2125i −0.864559 + 0.895183i
\(329\) −5.42781 9.86240i −0.299245 0.543732i
\(330\) 0 0
\(331\) −0.992363 0.572941i −0.0545452 0.0314917i 0.472479 0.881342i \(-0.343359\pi\)
−0.527025 + 0.849850i \(0.676692\pi\)
\(332\) 0.354774 + 30.5810i 0.0194707 + 1.67835i
\(333\) 0 0
\(334\) −11.3078 + 11.4397i −0.618734 + 0.625953i
\(335\) 16.0412 0.876422
\(336\) 0 0
\(337\) −1.89202 −0.103065 −0.0515324 0.998671i \(-0.516411\pi\)
−0.0515324 + 0.998671i \(0.516411\pi\)
\(338\) −12.9838 + 13.1353i −0.706227 + 0.714467i
\(339\) 0 0
\(340\) −0.180273 15.5393i −0.00977669 0.842738i
\(341\) 0.557336 + 0.321778i 0.0301814 + 0.0174253i
\(342\) 0 0
\(343\) 18.4853 + 1.13740i 0.998112 + 0.0614138i
\(344\) −12.8231 + 13.2774i −0.691377 + 0.715867i
\(345\) 0 0
\(346\) −11.6196 + 3.18581i −0.624673 + 0.171270i
\(347\) −1.96885 3.41015i −0.105693 0.183066i 0.808328 0.588733i \(-0.200373\pi\)
−0.914021 + 0.405666i \(0.867040\pi\)
\(348\) 0 0
\(349\) −22.8441 −1.22282 −0.611409 0.791315i \(-0.709397\pi\)
−0.611409 + 0.791315i \(0.709397\pi\)
\(350\) −7.49405 + 7.27714i −0.400574 + 0.388979i
\(351\) 0 0
\(352\) 15.1130 + 3.58324i 0.805524 + 0.190987i
\(353\) 28.5246 16.4687i 1.51821 0.876541i 0.518442 0.855113i \(-0.326512\pi\)
0.999770 0.0214280i \(-0.00682128\pi\)
\(354\) 0 0
\(355\) 1.70039 + 0.981719i 0.0902472 + 0.0521042i
\(356\) 12.2901 21.8691i 0.651373 1.15906i
\(357\) 0 0
\(358\) −13.1474 3.44124i −0.694864 0.181875i
\(359\) 11.8409 20.5090i 0.624939 1.08243i −0.363614 0.931550i \(-0.618457\pi\)
0.988553 0.150876i \(-0.0482094\pi\)
\(360\) 0 0
\(361\) −8.36294 14.4850i −0.440155 0.762370i
\(362\) −18.9444 + 19.1655i −0.995697 + 1.00732i
\(363\) 0 0
\(364\) −23.2726 13.7135i −1.21982 0.718784i
\(365\) 5.20222i 0.272297i
\(366\) 0 0
\(367\) 22.3566 12.9076i 1.16701 0.673772i 0.214034 0.976826i \(-0.431340\pi\)
0.952973 + 0.303054i \(0.0980063\pi\)
\(368\) 17.2344 31.5176i 0.898406 1.64297i
\(369\) 0 0
\(370\) 2.66709 10.1897i 0.138655 0.529740i
\(371\) 0.215469 10.5173i 0.0111866 0.546033i
\(372\) 0 0
\(373\) −18.6182 + 32.2476i −0.964013 + 1.66972i −0.251770 + 0.967787i \(0.581013\pi\)
−0.712243 + 0.701933i \(0.752321\pi\)
\(374\) −19.5812 + 5.36868i −1.01252 + 0.277608i
\(375\) 0 0
\(376\) −11.5686 + 3.31658i −0.596605 + 0.171040i
\(377\) 10.7764i 0.555014i
\(378\) 0 0
\(379\) 29.8599i 1.53380i 0.641766 + 0.766901i \(0.278202\pi\)
−0.641766 + 0.766901i \(0.721798\pi\)
\(380\) 3.85513 2.28579i 0.197764 0.117259i
\(381\) 0 0
\(382\) 6.40434 + 23.3585i 0.327675 + 1.19513i
\(383\) 6.22015 10.7736i 0.317835 0.550506i −0.662201 0.749326i \(-0.730378\pi\)
0.980036 + 0.198820i \(0.0637109\pi\)
\(384\) 0 0
\(385\) −9.23617 5.58782i −0.470719 0.284782i
\(386\) −6.37400 1.66834i −0.324428 0.0849165i
\(387\) 0 0
\(388\) −0.329600 28.4111i −0.0167329 1.44235i
\(389\) −30.7387 + 17.7470i −1.55851 + 0.899808i −0.561114 + 0.827738i \(0.689627\pi\)
−0.997400 + 0.0720702i \(0.977039\pi\)
\(390\) 0 0
\(391\) 46.9582i 2.37478i
\(392\) 5.57360 18.9983i 0.281509 0.959558i
\(393\) 0 0
\(394\) 23.2962 + 23.0275i 1.17365 + 1.16011i
\(395\) −12.4195 21.5113i −0.624895 1.08235i
\(396\) 0 0
\(397\) −7.77378 + 13.4646i −0.390155 + 0.675768i −0.992470 0.122490i \(-0.960912\pi\)
0.602315 + 0.798259i \(0.294245\pi\)
\(398\) −0.750260 + 2.86641i −0.0376071 + 0.143680i
\(399\) 0 0
\(400\) 5.80645 + 9.53892i 0.290322 + 0.476946i
\(401\) −7.50098 4.33070i −0.374581 0.216265i 0.300877 0.953663i \(-0.402721\pi\)
−0.675458 + 0.737398i \(0.736054\pi\)
\(402\) 0 0
\(403\) −1.03622 + 0.598261i −0.0516178 + 0.0298015i
\(404\) −11.4765 19.3559i −0.570979 0.962990i
\(405\) 0 0
\(406\) −7.65871 + 1.93207i −0.380095 + 0.0958873i
\(407\) −13.7616 −0.682137
\(408\) 0 0
\(409\) −1.74788 3.02741i −0.0864270 0.149696i 0.819571 0.572977i \(-0.194212\pi\)
−0.905998 + 0.423281i \(0.860878\pi\)
\(410\) −4.42809 16.1506i −0.218688 0.797619i
\(411\) 0 0
\(412\) 0.448519 0.798098i 0.0220969 0.0393195i
\(413\) −1.79533 0.0367810i −0.0883426 0.00180988i
\(414\) 0 0
\(415\) −19.6789 11.3616i −0.966001 0.557721i
\(416\) −19.8188 + 21.0030i −0.971698 + 1.02976i
\(417\) 0 0
\(418\) −4.16449 4.11646i −0.203692 0.201343i
\(419\) 12.3776 0.604685 0.302342 0.953199i \(-0.402231\pi\)
0.302342 + 0.953199i \(0.402231\pi\)
\(420\) 0 0
\(421\) −22.1948 −1.08171 −0.540855 0.841116i \(-0.681899\pi\)
−0.540855 + 0.841116i \(0.681899\pi\)
\(422\) 23.3153 + 23.0463i 1.13497 + 1.12188i
\(423\) 0 0
\(424\) −10.9117 2.72119i −0.529918 0.132153i
\(425\) −12.6423 7.29903i −0.613241 0.354055i
\(426\) 0 0
\(427\) −13.5218 24.5694i −0.654368 1.18900i
\(428\) 15.5099 + 8.71635i 0.749701 + 0.421321i
\(429\) 0 0
\(430\) −3.62643 13.2267i −0.174882 0.637846i
\(431\) 8.07284 + 13.9826i 0.388855 + 0.673517i 0.992296 0.123891i \(-0.0395374\pi\)
−0.603441 + 0.797408i \(0.706204\pi\)
\(432\) 0 0
\(433\) 11.6739 0.561014 0.280507 0.959852i \(-0.409497\pi\)
0.280507 + 0.959852i \(0.409497\pi\)
\(434\) −0.610960 0.629171i −0.0293270 0.0302012i
\(435\) 0 0
\(436\) −11.5152 + 6.82765i −0.551480 + 0.326985i
\(437\) −11.7283 + 6.77136i −0.561043 + 0.323918i
\(438\) 0 0
\(439\) 15.4132 + 8.89883i 0.735633 + 0.424718i 0.820479 0.571676i \(-0.193707\pi\)
−0.0848464 + 0.996394i \(0.527040\pi\)
\(440\) −8.01698 + 8.30095i −0.382194 + 0.395732i
\(441\) 0 0
\(442\) 9.55865 36.5193i 0.454658 1.73705i
\(443\) −7.77644 + 13.4692i −0.369470 + 0.639941i −0.989483 0.144651i \(-0.953794\pi\)
0.620013 + 0.784592i \(0.287127\pi\)
\(444\) 0 0
\(445\) 9.31943 + 16.1417i 0.441783 + 0.765191i
\(446\) −4.84999 4.79405i −0.229654 0.227005i
\(447\) 0 0
\(448\) −18.4799 10.3195i −0.873095 0.487550i
\(449\) 32.4167i 1.52984i −0.644127 0.764918i \(-0.722779\pi\)
0.644127 0.764918i \(-0.277221\pi\)
\(450\) 0 0
\(451\) −18.9484 + 10.9399i −0.892247 + 0.515139i
\(452\) 31.4165 0.364466i 1.47771 0.0171430i
\(453\) 0 0
\(454\) −14.0740 3.68375i −0.660524 0.172887i
\(455\) 17.5833 9.67704i 0.824318 0.453666i
\(456\) 0 0
\(457\) 3.46804 6.00683i 0.162228 0.280988i −0.773439 0.633870i \(-0.781465\pi\)
0.935668 + 0.352883i \(0.114799\pi\)
\(458\) 4.15773 + 15.1645i 0.194278 + 0.708589i
\(459\) 0 0
\(460\) 13.6123 + 22.9579i 0.634675 + 1.07042i
\(461\) 33.0129i 1.53757i 0.639510 + 0.768783i \(0.279137\pi\)
−0.639510 + 0.768783i \(0.720863\pi\)
\(462\) 0 0
\(463\) 25.8834i 1.20291i 0.798909 + 0.601453i \(0.205411\pi\)
−0.798909 + 0.601453i \(0.794589\pi\)
\(464\) 0.195893 + 8.44174i 0.00909412 + 0.391898i
\(465\) 0 0
\(466\) 10.4339 2.86073i 0.483343 0.132521i
\(467\) −12.0722 + 20.9097i −0.558636 + 0.967586i 0.438974 + 0.898500i \(0.355342\pi\)
−0.997611 + 0.0690867i \(0.977991\pi\)
\(468\) 0 0
\(469\) −0.584995 + 28.5545i −0.0270126 + 1.31852i
\(470\) 2.26416 8.65034i 0.104438 0.399010i
\(471\) 0 0
\(472\) −0.464514 + 1.86265i −0.0213810 + 0.0857353i
\(473\) −15.5180 + 8.95933i −0.713519 + 0.411950i
\(474\) 0 0
\(475\) 4.21008i 0.193172i
\(476\) 27.6677 + 0.245794i 1.26815 + 0.0112660i
\(477\) 0 0
\(478\) −5.55969 + 5.62456i −0.254294 + 0.257262i
\(479\) 20.5106 + 35.5254i 0.937154 + 1.62320i 0.770748 + 0.637140i \(0.219883\pi\)
0.166406 + 0.986057i \(0.446784\pi\)
\(480\) 0 0
\(481\) 12.7930 22.1582i 0.583312 1.01033i
\(482\) 5.67211 + 1.48463i 0.258358 + 0.0676231i
\(483\) 0 0
\(484\) −6.03473 3.39143i −0.274306 0.154156i
\(485\) 18.2826 + 10.5555i 0.830169 + 0.479298i
\(486\) 0 0
\(487\) 13.0964 7.56120i 0.593454 0.342631i −0.173008 0.984920i \(-0.555349\pi\)
0.766462 + 0.642290i \(0.222015\pi\)
\(488\) −28.8199 + 8.26233i −1.30461 + 0.374018i
\(489\) 0 0
\(490\) 10.0298 + 10.7613i 0.453102 + 0.486148i
\(491\) −36.9285 −1.66656 −0.833280 0.552852i \(-0.813540\pi\)
−0.833280 + 0.552852i \(0.813540\pi\)
\(492\) 0 0
\(493\) −5.51913 9.55941i −0.248569 0.430534i
\(494\) 10.4995 2.87870i 0.472394 0.129519i
\(495\) 0 0
\(496\) −0.800850 + 0.487486i −0.0359592 + 0.0218888i
\(497\) −1.80954 + 2.99101i −0.0811691 + 0.134165i
\(498\) 0 0
\(499\) 1.47958 + 0.854238i 0.0662353 + 0.0382409i 0.532752 0.846271i \(-0.321158\pi\)
−0.466517 + 0.884512i \(0.654491\pi\)
\(500\) −23.1557 + 0.268632i −1.03555 + 0.0120136i
\(501\) 0 0
\(502\) −11.7177 + 11.8544i −0.522987 + 0.529090i
\(503\) −0.0425771 −0.00189842 −0.000949210 1.00000i \(-0.500302\pi\)
−0.000949210 1.00000i \(0.500302\pi\)
\(504\) 0 0
\(505\) 16.7194 0.744001
\(506\) 24.5142 24.8002i 1.08979 1.10250i
\(507\) 0 0
\(508\) 0.847454 0.00983141i 0.0375997 0.000436198i
\(509\) 8.98568 + 5.18789i 0.398283 + 0.229949i 0.685743 0.727844i \(-0.259477\pi\)
−0.287460 + 0.957793i \(0.592811\pi\)
\(510\) 0 0
\(511\) 9.26034 + 0.189717i 0.409653 + 0.00839257i
\(512\) −15.1433 + 16.8131i −0.669247 + 0.743040i
\(513\) 0 0
\(514\) −41.3551 + 11.3386i −1.82410 + 0.500123i
\(515\) 0.340107 + 0.589082i 0.0149869 + 0.0259581i
\(516\) 0 0
\(517\) −11.6826 −0.513799
\(518\) 18.0412 + 5.11921i 0.792687 + 0.224925i
\(519\) 0 0
\(520\) −5.91301 20.6252i −0.259303 0.904475i
\(521\) −1.18275 + 0.682859i −0.0518171 + 0.0299166i −0.525685 0.850679i \(-0.676191\pi\)
0.473868 + 0.880596i \(0.342858\pi\)
\(522\) 0 0
\(523\) 9.31535 + 5.37822i 0.407332 + 0.235173i 0.689643 0.724150i \(-0.257768\pi\)
−0.282311 + 0.959323i \(0.591101\pi\)
\(524\) −13.7193 7.71004i −0.599330 0.336815i
\(525\) 0 0
\(526\) 25.2824 + 6.61748i 1.10237 + 0.288536i
\(527\) 0.612798 1.06140i 0.0266939 0.0462352i
\(528\) 0 0
\(529\) −28.8245 49.9255i −1.25324 2.17067i
\(530\) 5.87400 5.94254i 0.255150 0.258128i
\(531\) 0 0
\(532\) 3.92829 + 6.94578i 0.170313 + 0.301138i
\(533\) 40.6797i 1.76203i
\(534\) 0 0
\(535\) −11.4480 + 6.60951i −0.494940 + 0.285754i
\(536\) 29.6251 + 7.38801i 1.27961 + 0.319113i
\(537\) 0 0
\(538\) −0.260461 + 0.995107i −0.0112293 + 0.0429021i
\(539\) 10.2836 16.2373i 0.442944 0.699389i
\(540\) 0 0
\(541\) −8.24296 + 14.2772i −0.354393 + 0.613826i −0.987014 0.160635i \(-0.948646\pi\)
0.632621 + 0.774461i \(0.281979\pi\)
\(542\) 11.3704 3.11748i 0.488399 0.133907i
\(543\) 0 0
\(544\) 6.82395 28.7813i 0.292574 1.23399i
\(545\) 9.94672i 0.426071i
\(546\) 0 0
\(547\) 4.03690i 0.172605i 0.996269 + 0.0863027i \(0.0275052\pi\)
−0.996269 + 0.0863027i \(0.972495\pi\)
\(548\) 4.61404 + 7.78186i 0.197102 + 0.332425i
\(549\) 0 0
\(550\) 2.86642 + 10.4547i 0.122224 + 0.445789i
\(551\) 1.59172 2.75693i 0.0678094 0.117449i
\(552\) 0 0
\(553\) 38.7446 21.3232i 1.64759 0.906756i
\(554\) −17.1532 4.48970i −0.728768 0.190749i
\(555\) 0 0
\(556\) 18.2457 0.211670i 0.773789 0.00897681i
\(557\) 9.29133 5.36435i 0.393686 0.227295i −0.290070 0.957005i \(-0.593679\pi\)
0.683756 + 0.729711i \(0.260345\pi\)
\(558\) 0 0
\(559\) 33.3150i 1.40907i
\(560\) 13.5980 7.90017i 0.574622 0.333843i
\(561\) 0 0
\(562\) 14.8903 + 14.7186i 0.628109 + 0.620865i
\(563\) 7.14776 + 12.3803i 0.301242 + 0.521766i 0.976418 0.215891i \(-0.0692655\pi\)
−0.675176 + 0.737657i \(0.735932\pi\)
\(564\) 0 0
\(565\) −11.6720 + 20.2166i −0.491046 + 0.850517i
\(566\) 5.33673 20.3893i 0.224320 0.857025i
\(567\) 0 0
\(568\) 2.68816 + 2.59619i 0.112792 + 0.108934i
\(569\) 21.8632 + 12.6227i 0.916552 + 0.529172i 0.882534 0.470249i \(-0.155836\pi\)
0.0340189 + 0.999421i \(0.489169\pi\)
\(570\) 0 0
\(571\) −4.21404 + 2.43298i −0.176352 + 0.101817i −0.585578 0.810616i \(-0.699132\pi\)
0.409226 + 0.912433i \(0.365799\pi\)
\(572\) −24.1129 + 14.2971i −1.00821 + 0.597791i
\(573\) 0 0
\(574\) 28.9107 7.29334i 1.20671 0.304418i
\(575\) 25.0717 1.04556
\(576\) 0 0
\(577\) −1.36238 2.35972i −0.0567168 0.0982364i 0.836273 0.548313i \(-0.184730\pi\)
−0.892990 + 0.450077i \(0.851397\pi\)
\(578\) 3.86714 + 14.1046i 0.160852 + 0.586675i
\(579\) 0 0
\(580\) −5.46940 3.07372i −0.227104 0.127629i
\(581\) 20.9422 34.6156i 0.868830 1.43610i
\(582\) 0 0
\(583\) −9.45431 5.45845i −0.391557 0.226066i
\(584\) 2.39596 9.60754i 0.0991457 0.397563i
\(585\) 0 0
\(586\) −15.1547 14.9799i −0.626036 0.618816i
\(587\) −24.4237 −1.00807 −0.504037 0.863682i \(-0.668153\pi\)
−0.504037 + 0.863682i \(0.668153\pi\)
\(588\) 0 0
\(589\) 0.353461 0.0145641
\(590\) −1.01441 1.00271i −0.0417624 0.0412807i
\(591\) 0 0
\(592\) 9.61867 17.5902i 0.395325 0.722954i
\(593\) 28.8809 + 16.6744i 1.18600 + 0.684736i 0.957394 0.288784i \(-0.0932508\pi\)
0.228603 + 0.973520i \(0.426584\pi\)
\(594\) 0 0
\(595\) −10.6415 + 17.5895i −0.436259 + 0.721097i
\(596\) 19.7579 35.1574i 0.809315 1.44010i
\(597\) 0 0
\(598\) 17.1431 + 62.5261i 0.701034 + 2.55688i
\(599\) 22.3518 + 38.7144i 0.913268 + 1.58183i 0.809417 + 0.587235i \(0.199783\pi\)
0.103852 + 0.994593i \(0.466883\pi\)
\(600\) 0 0
\(601\) 44.1640 1.80149 0.900745 0.434349i \(-0.143022\pi\)
0.900745 + 0.434349i \(0.143022\pi\)
\(602\) 23.6767 5.97296i 0.964989 0.243439i
\(603\) 0 0
\(604\) −7.45619 12.5753i −0.303388 0.511683i
\(605\) 4.45428 2.57168i 0.181092 0.104554i
\(606\) 0 0
\(607\) −29.9771 17.3073i −1.21673 0.702481i −0.252515 0.967593i \(-0.581258\pi\)
−0.964218 + 0.265112i \(0.914591\pi\)
\(608\) 8.17248 2.44590i 0.331438 0.0991944i
\(609\) 0 0
\(610\) 5.64051 21.5499i 0.228377 0.872529i
\(611\) 10.8603 18.8106i 0.439362 0.760997i
\(612\) 0 0
\(613\) −8.76124 15.1749i −0.353863 0.612909i 0.633060 0.774103i \(-0.281799\pi\)
−0.986923 + 0.161194i \(0.948465\pi\)
\(614\) −4.81387 4.75835i −0.194272 0.192031i
\(615\) 0 0
\(616\) −14.4839 14.5735i −0.583575 0.587185i
\(617\) 28.5501i 1.14938i −0.818370 0.574692i \(-0.805122\pi\)
0.818370 0.574692i \(-0.194878\pi\)
\(618\) 0 0
\(619\) 30.8176 17.7925i 1.23866 0.715142i 0.269842 0.962905i \(-0.413029\pi\)
0.968821 + 0.247762i \(0.0796952\pi\)
\(620\) −0.00808082 0.696556i −0.000324534 0.0279744i
\(621\) 0 0
\(622\) 22.0778 + 5.77869i 0.885240 + 0.231704i
\(623\) −29.0733 + 16.0006i −1.16480 + 0.641051i
\(624\) 0 0
\(625\) 1.62346 2.81191i 0.0649383 0.112476i
\(626\) 9.92803 + 36.2105i 0.396804 + 1.44726i
\(627\) 0 0
\(628\) 16.5213 9.79587i 0.659273 0.390898i
\(629\) 26.2077i 1.04497i
\(630\) 0 0
\(631\) 36.8187i 1.46573i −0.680374 0.732865i \(-0.738183\pi\)
0.680374 0.732865i \(-0.261817\pi\)
\(632\) −13.0293 45.4474i −0.518276 1.80780i
\(633\) 0 0
\(634\) 13.1602 3.60820i 0.522657 0.143300i
\(635\) −0.314851 + 0.545338i −0.0124945 + 0.0216411i
\(636\) 0 0
\(637\) 16.5846 + 31.6525i 0.657106 + 1.25412i
\(638\) −2.07558 + 7.92987i −0.0821730 + 0.313947i
\(639\) 0 0
\(640\) −5.00690 16.0493i −0.197915 0.634406i
\(641\) −26.4156 + 15.2511i −1.04335 + 0.602381i −0.920781 0.390079i \(-0.872448\pi\)
−0.122572 + 0.992460i \(0.539114\pi\)
\(642\) 0 0
\(643\) 33.6298i 1.32623i −0.748518 0.663114i \(-0.769234\pi\)
0.748518 0.663114i \(-0.230766\pi\)
\(644\) −41.3632 + 23.3936i −1.62994 + 0.921837i
\(645\) 0 0
\(646\) −7.83943 + 7.93090i −0.308438 + 0.312037i
\(647\) −5.27521 9.13694i −0.207390 0.359210i 0.743502 0.668734i \(-0.233164\pi\)
−0.950892 + 0.309524i \(0.899830\pi\)
\(648\) 0 0
\(649\) −0.931770 + 1.61387i −0.0365752 + 0.0633500i
\(650\) −19.4982 5.10350i −0.764783 0.200176i
\(651\) 0 0
\(652\) −2.84667 + 5.06538i −0.111484 + 0.198375i
\(653\) 10.9097 + 6.29874i 0.426931 + 0.246489i 0.698038 0.716060i \(-0.254056\pi\)
−0.271107 + 0.962549i \(0.587390\pi\)
\(654\) 0 0
\(655\) 10.1263 5.84643i 0.395668 0.228439i
\(656\) −0.739474 31.8665i −0.0288716 1.24418i
\(657\) 0 0
\(658\) 15.3157 + 4.34583i 0.597067 + 0.169418i
\(659\) −31.4057 −1.22339 −0.611696 0.791093i \(-0.709512\pi\)
−0.611696 + 0.791093i \(0.709512\pi\)
\(660\) 0 0
\(661\) 13.6942 + 23.7190i 0.532642 + 0.922563i 0.999274 + 0.0381112i \(0.0121341\pi\)
−0.466631 + 0.884452i \(0.654533\pi\)
\(662\) 1.56285 0.428494i 0.0607417 0.0166539i
\(663\) 0 0
\(664\) −31.1106 30.0463i −1.20733 1.16602i
\(665\) −5.92767 0.121440i −0.229865 0.00470925i
\(666\) 0 0
\(667\) 16.4180 + 9.47891i 0.635706 + 0.367025i
\(668\) −0.263883 22.7463i −0.0102099 0.880082i
\(669\) 0 0
\(670\) −15.9478 + 16.1339i −0.616119 + 0.623308i
\(671\) −29.1038 −1.12354
\(672\) 0 0
\(673\) −7.59866 −0.292907 −0.146453 0.989218i \(-0.546786\pi\)
−0.146453 + 0.989218i \(0.546786\pi\)
\(674\) 1.88101 1.90296i 0.0724539 0.0732993i
\(675\) 0 0
\(676\) −0.302996 26.1178i −0.0116537 1.00453i
\(677\) 27.4847 + 15.8683i 1.05632 + 0.609868i 0.924413 0.381394i \(-0.124556\pi\)
0.131910 + 0.991262i \(0.457889\pi\)
\(678\) 0 0
\(679\) −19.4562 + 32.1594i −0.746661 + 1.23416i
\(680\) 15.8084 + 15.2676i 0.606225 + 0.585486i
\(681\) 0 0
\(682\) −0.877733 + 0.240653i −0.0336101 + 0.00921508i
\(683\) 13.5207 + 23.4185i 0.517355 + 0.896085i 0.999797 + 0.0201567i \(0.00641651\pi\)
−0.482442 + 0.875928i \(0.660250\pi\)
\(684\) 0 0
\(685\) −6.72187 −0.256830
\(686\) −19.5217 + 17.4614i −0.745344 + 0.666680i
\(687\) 0 0
\(688\) −0.605599 26.0974i −0.0230882 0.994954i
\(689\) 17.5778 10.1485i 0.669660 0.386629i
\(690\) 0 0
\(691\) −1.85489 1.07092i −0.0705634 0.0407398i 0.464303 0.885676i \(-0.346305\pi\)
−0.534867 + 0.844937i \(0.679638\pi\)
\(692\) 8.34776 14.8541i 0.317334 0.564667i
\(693\) 0 0
\(694\) 5.38726 + 1.41007i 0.204498 + 0.0535257i
\(695\) −6.77874 + 11.7411i −0.257132 + 0.445366i
\(696\) 0 0
\(697\) 20.8340 + 36.0856i 0.789145 + 1.36684i
\(698\) 22.7112 22.9762i 0.859633 0.869663i
\(699\) 0 0
\(700\) 0.131233 14.7722i 0.00496015 0.558337i
\(701\) 26.8988i 1.01596i 0.861370 + 0.507978i \(0.169607\pi\)
−0.861370 + 0.507978i \(0.830393\pi\)
\(702\) 0 0
\(703\) −6.54568 + 3.77915i −0.246875 + 0.142533i
\(704\) −18.6290 + 11.6380i −0.702108 + 0.438623i
\(705\) 0 0
\(706\) −11.7948 + 45.0625i −0.443901 + 1.69595i
\(707\) −0.609728 + 29.7617i −0.0229312 + 1.11930i
\(708\) 0 0
\(709\) 19.7791 34.2583i 0.742818 1.28660i −0.208389 0.978046i \(-0.566822\pi\)
0.951207 0.308553i \(-0.0998447\pi\)
\(710\) −2.67789 + 0.734213i −0.100499 + 0.0275545i
\(711\) 0 0
\(712\) 9.77694 + 34.1030i 0.366406 + 1.27806i
\(713\) 2.10492i 0.0788298i
\(714\) 0 0
\(715\) 20.8284i 0.778939i
\(716\) 16.5321 9.80226i 0.617834 0.366328i
\(717\) 0 0
\(718\) 8.85563 + 32.2991i 0.330489 + 1.20539i
\(719\) −20.7863 + 36.0030i −0.775199 + 1.34268i 0.159484 + 0.987201i \(0.449017\pi\)
−0.934683 + 0.355483i \(0.884316\pi\)
\(720\) 0 0
\(721\) −1.06101 + 0.583933i −0.0395142 + 0.0217468i
\(722\) 22.8831 + 5.98947i 0.851621 + 0.222905i
\(723\) 0 0
\(724\) −0.442095 38.1080i −0.0164303 1.41627i
\(725\) −5.10391 + 2.94674i −0.189554 + 0.109439i
\(726\) 0 0
\(727\) 40.5449i 1.50373i −0.659320 0.751863i \(-0.729156\pi\)
0.659320 0.751863i \(-0.270844\pi\)
\(728\) 36.9300 9.77344i 1.36872 0.362228i
\(729\) 0 0
\(730\) 5.23231 + 5.17196i 0.193656 + 0.191423i
\(731\) 17.0622 + 29.5527i 0.631069 + 1.09304i
\(732\) 0 0
\(733\) −4.10278 + 7.10622i −0.151539 + 0.262474i −0.931794 0.362989i \(-0.881756\pi\)
0.780254 + 0.625463i \(0.215090\pi\)
\(734\) −9.24433 + 35.3185i −0.341214 + 1.30363i
\(735\) 0 0
\(736\) 14.5657 + 48.6684i 0.536899 + 1.79394i
\(737\) 25.6683 + 14.8196i 0.945505 + 0.545888i
\(738\) 0 0
\(739\) −26.5794 + 15.3456i −0.977739 + 0.564498i −0.901587 0.432598i \(-0.857597\pi\)
−0.0761523 + 0.997096i \(0.524264\pi\)
\(740\) 7.59711 + 12.8130i 0.279275 + 0.471015i
\(741\) 0 0
\(742\) 10.3640 + 10.6729i 0.380473 + 0.391814i
\(743\) −38.6297 −1.41719 −0.708593 0.705617i \(-0.750670\pi\)
−0.708593 + 0.705617i \(0.750670\pi\)
\(744\) 0 0
\(745\) 14.9822 + 25.9499i 0.548905 + 0.950731i
\(746\) −13.9243 50.7859i −0.509804 1.85940i
\(747\) 0 0
\(748\) 14.0675 25.0319i 0.514360 0.915256i
\(749\) −11.3479 20.6193i −0.414644 0.753414i
\(750\) 0 0
\(751\) 37.1150 + 21.4284i 1.35435 + 0.781932i 0.988855 0.148883i \(-0.0475678\pi\)
0.365491 + 0.930815i \(0.380901\pi\)
\(752\) 8.16553 14.9328i 0.297766 0.544543i
\(753\) 0 0
\(754\) −10.8387 10.7137i −0.394724 0.390171i
\(755\) 10.8624 0.395323
\(756\) 0 0
\(757\) 28.1662 1.02372 0.511860 0.859069i \(-0.328957\pi\)
0.511860 + 0.859069i \(0.328957\pi\)
\(758\) −30.0326 29.6862i −1.09083 1.07825i
\(759\) 0 0
\(760\) −1.53369 + 6.14992i −0.0556328 + 0.223081i
\(761\) −25.6364 14.8012i −0.929319 0.536542i −0.0427226 0.999087i \(-0.513603\pi\)
−0.886596 + 0.462545i \(0.846937\pi\)
\(762\) 0 0
\(763\) 17.7059 + 0.362741i 0.640997 + 0.0131321i
\(764\) −29.8607 16.7813i −1.08032 0.607125i
\(765\) 0 0
\(766\) 4.65196 + 16.9671i 0.168082 + 0.613045i
\(767\) −1.73238 3.00057i −0.0625526 0.108344i
\(768\) 0 0
\(769\) −51.3103 −1.85030 −0.925148 0.379606i \(-0.876060\pi\)
−0.925148 + 0.379606i \(0.876060\pi\)
\(770\) 14.8026 3.73427i 0.533448 0.134574i
\(771\) 0 0
\(772\) 8.01492 4.75223i 0.288463 0.171036i
\(773\) −39.3596 + 22.7243i −1.41567 + 0.817335i −0.995914 0.0903047i \(-0.971216\pi\)
−0.419751 + 0.907639i \(0.637883\pi\)
\(774\) 0 0
\(775\) −0.566695 0.327182i −0.0203563 0.0117527i
\(776\) 28.9031 + 27.9143i 1.03756 + 1.00207i
\(777\) 0 0
\(778\) 12.7103 48.5602i 0.455685 1.74097i
\(779\) −6.00853 + 10.4071i −0.215278 + 0.372872i
\(780\) 0 0
\(781\) 1.81392 + 3.14180i 0.0649072 + 0.112423i
\(782\) −47.2297 46.6850i −1.68893 1.66945i
\(783\) 0 0
\(784\) 13.5670 + 24.4936i 0.484535 + 0.874772i
\(785\) 14.2709i 0.509351i
\(786\) 0 0
\(787\) 40.2785 23.2548i 1.43577 0.828943i 0.438220 0.898868i \(-0.355609\pi\)
0.997552 + 0.0699244i \(0.0222758\pi\)
\(788\) −46.3214 + 0.537379i −1.65013 + 0.0191433i
\(789\) 0 0
\(790\) 33.9830 + 8.89478i 1.20906 + 0.316462i
\(791\) −35.5613 21.5144i −1.26441 0.764962i
\(792\) 0 0
\(793\) 27.0554 46.8614i 0.960767 1.66410i
\(794\) −5.81390 21.2050i −0.206327 0.752538i
\(795\) 0 0
\(796\) −2.13709 3.60434i −0.0757472 0.127752i
\(797\) 6.75950i 0.239434i −0.992808 0.119717i \(-0.961801\pi\)
0.992808 0.119717i \(-0.0381987\pi\)
\(798\) 0 0
\(799\) 22.2484i 0.787092i
\(800\) −15.3668 3.64341i −0.543297 0.128814i
\(801\) 0 0
\(802\) 11.8131 3.23886i 0.417135 0.114368i
\(803\) 4.80607 8.32435i 0.169602 0.293760i
\(804\) 0 0
\(805\) 0.723195 35.3002i 0.0254893 1.24417i
\(806\) 0.428470 1.63699i 0.0150922 0.0576606i
\(807\) 0 0
\(808\) 30.8776 + 7.70036i 1.08627 + 0.270898i
\(809\) −24.0673 + 13.8953i −0.846160 + 0.488531i −0.859354 0.511382i \(-0.829134\pi\)
0.0131930 + 0.999913i \(0.495800\pi\)
\(810\) 0 0
\(811\) 24.9697i 0.876804i 0.898779 + 0.438402i \(0.144455\pi\)
−0.898779 + 0.438402i \(0.855545\pi\)
\(812\) 5.67091 9.62384i 0.199010 0.337730i
\(813\) 0 0
\(814\) 13.6815 13.8412i 0.479538 0.485133i
\(815\) −2.15859 3.73879i −0.0756122 0.130964i
\(816\) 0 0
\(817\) −4.92074 + 8.52298i −0.172155 + 0.298181i
\(818\) 4.78263 + 1.25182i 0.167221 + 0.0437687i
\(819\) 0 0
\(820\) 20.6463 + 11.6029i 0.721000 + 0.405191i
\(821\) −0.455422 0.262938i −0.0158943 0.00917659i 0.492032 0.870577i \(-0.336254\pi\)
−0.507926 + 0.861401i \(0.669588\pi\)
\(822\) 0 0
\(823\) 15.0707 8.70110i 0.525333 0.303301i −0.213781 0.976882i \(-0.568578\pi\)
0.739114 + 0.673580i \(0.235245\pi\)
\(824\) 0.356804 + 1.24457i 0.0124298 + 0.0433566i
\(825\) 0 0
\(826\) 1.82188 1.76915i 0.0633915 0.0615566i
\(827\) 1.24740 0.0433765 0.0216883 0.999765i \(-0.493096\pi\)
0.0216883 + 0.999765i \(0.493096\pi\)
\(828\) 0 0
\(829\) −5.51372 9.55004i −0.191499 0.331687i 0.754248 0.656590i \(-0.228002\pi\)
−0.945747 + 0.324903i \(0.894668\pi\)
\(830\) 30.9918 8.49720i 1.07574 0.294942i
\(831\) 0 0
\(832\) −1.42098 40.8143i −0.0492637 1.41498i
\(833\) −30.9225 19.5841i −1.07140 0.678550i
\(834\) 0 0
\(835\) 14.6373 + 8.45085i 0.506545 + 0.292454i
\(836\) 8.28053 0.0960633i 0.286388 0.00332242i
\(837\) 0 0
\(838\) −12.3056 + 12.4492i −0.425089 + 0.430050i
\(839\) 20.3758 0.703452 0.351726 0.936103i \(-0.385595\pi\)
0.351726 + 0.936103i \(0.385595\pi\)
\(840\) 0 0
\(841\) 24.5437 0.846333
\(842\) 22.0657 22.3232i 0.760435 0.769308i
\(843\) 0 0
\(844\) −46.3593 + 0.537818i −1.59575 + 0.0185125i
\(845\) 16.8069 + 9.70345i 0.578174 + 0.333809i
\(846\) 0 0
\(847\) 4.41534 + 8.02273i 0.151713 + 0.275664i
\(848\) 13.5851 8.26942i 0.466515 0.283973i
\(849\) 0 0
\(850\) 19.9100 5.45883i 0.682907 0.187236i
\(851\) −22.5054 38.9805i −0.771476 1.33624i
\(852\) 0 0
\(853\) 5.32415 0.182295 0.0911477 0.995837i \(-0.470946\pi\)
0.0911477 + 0.995837i \(0.470946\pi\)
\(854\) 38.1547 + 10.8264i 1.30563 + 0.370472i
\(855\) 0 0
\(856\) −24.1865 + 6.93399i −0.826677 + 0.236999i
\(857\) −31.3685 + 18.1106i −1.07153 + 0.618647i −0.928599 0.371086i \(-0.878986\pi\)
−0.142930 + 0.989733i \(0.545652\pi\)
\(858\) 0 0
\(859\) −25.1177 14.5017i −0.857004 0.494791i 0.00600391 0.999982i \(-0.498089\pi\)
−0.863008 + 0.505191i \(0.831422\pi\)
\(860\) 16.9085 + 9.50231i 0.576574 + 0.324026i
\(861\) 0 0
\(862\) −22.0893 5.78170i −0.752365 0.196926i
\(863\) −6.76369 + 11.7151i −0.230239 + 0.398785i −0.957878 0.287174i \(-0.907284\pi\)
0.727640 + 0.685960i \(0.240617\pi\)
\(864\) 0 0
\(865\) 6.33001 + 10.9639i 0.215227 + 0.372784i
\(866\) −11.6060 + 11.7415i −0.394389 + 0.398991i
\(867\) 0 0
\(868\) 1.24022 + 0.0110178i 0.0420957 + 0.000373969i
\(869\) 45.8952i 1.55689i
\(870\) 0 0
\(871\) −47.7235 + 27.5532i −1.61705 + 0.933603i
\(872\) 4.58112 18.3698i 0.155136 0.622079i
\(873\) 0 0
\(874\) 4.84960 18.5281i 0.164040 0.626724i
\(875\) 26.2107 + 15.8573i 0.886083 + 0.536074i
\(876\) 0 0
\(877\) −12.6825 + 21.9668i −0.428258 + 0.741765i −0.996718 0.0809459i \(-0.974206\pi\)
0.568460 + 0.822711i \(0.307539\pi\)
\(878\) −24.2739 + 6.65530i −0.819203 + 0.224606i
\(879\) 0 0
\(880\) −0.378618 16.3160i −0.0127632 0.550013i
\(881\) 6.65140i 0.224091i −0.993703 0.112046i \(-0.964260\pi\)
0.993703 0.112046i \(-0.0357403\pi\)
\(882\) 0 0
\(883\) 21.5373i 0.724789i −0.932025 0.362394i \(-0.881959\pi\)
0.932025 0.362394i \(-0.118041\pi\)
\(884\) 27.2275 + 45.9208i 0.915760 + 1.54448i
\(885\) 0 0
\(886\) −5.81589 21.2123i −0.195389 0.712640i
\(887\) −6.11983 + 10.5999i −0.205484 + 0.355908i −0.950287 0.311376i \(-0.899210\pi\)
0.744803 + 0.667284i \(0.232543\pi\)
\(888\) 0 0
\(889\) −0.959260 0.580346i −0.0321726 0.0194642i
\(890\) −25.5003 6.67450i −0.854772 0.223730i
\(891\) 0 0
\(892\) 9.64356 0.111876i 0.322890 0.00374588i
\(893\) −5.55680 + 3.20822i −0.185951 + 0.107359i
\(894\) 0 0
\(895\) 14.2802i 0.477336i
\(896\) 28.7516 8.32737i 0.960524 0.278198i
\(897\) 0 0
\(898\) 32.6041 + 32.2281i 1.08801 + 1.07547i
\(899\) −0.247397 0.428504i −0.00825115 0.0142914i
\(900\) 0 0
\(901\) −10.3951 + 18.0049i −0.346312 + 0.599830i
\(902\) 7.83506 29.9343i 0.260879 0.996702i
\(903\) 0 0
\(904\) −30.8672 + 31.9605i −1.02663 + 1.06299i
\(905\) 24.5226 + 14.1581i 0.815157 + 0.470631i
\(906\) 0 0
\(907\) −33.1072 + 19.1145i −1.09931 + 0.634685i −0.936039 0.351897i \(-0.885537\pi\)
−0.163268 + 0.986582i \(0.552203\pi\)
\(908\) 17.6971 10.4930i 0.587300 0.348224i
\(909\) 0 0
\(910\) −7.74802 + 27.3057i −0.256844 + 0.905177i
\(911\) −6.62085 −0.219359 −0.109679 0.993967i \(-0.534982\pi\)
−0.109679 + 0.993967i \(0.534982\pi\)
\(912\) 0 0
\(913\) −20.9929 36.3608i −0.694763 1.20337i
\(914\) 2.59370 + 9.45999i 0.0857919 + 0.312909i
\(915\) 0 0
\(916\) −19.3857 10.8945i −0.640522 0.359964i
\(917\) 10.0378 + 18.2388i 0.331477 + 0.602299i
\(918\) 0 0
\(919\) −10.6505 6.14908i −0.351328 0.202839i 0.313942 0.949442i \(-0.398350\pi\)
−0.665270 + 0.746603i \(0.731684\pi\)
\(920\) −36.6237 9.13336i −1.20745 0.301118i
\(921\) 0 0
\(922\) −33.2039 32.8209i −1.09351 1.08090i
\(923\) −6.74501 −0.222015
\(924\) 0 0
\(925\) 13.9927 0.460077
\(926\) −26.0331 25.7329i −0.855502 0.845634i
\(927\) 0 0
\(928\) −8.68532 8.19561i −0.285110 0.269034i
\(929\) 18.6376 + 10.7604i 0.611480 + 0.353038i 0.773545 0.633742i \(-0.218482\pi\)
−0.162064 + 0.986780i \(0.551815\pi\)
\(930\) 0 0
\(931\) 0.432345 10.5473i 0.0141695 0.345673i
\(932\) −7.49596 + 13.3384i −0.245538 + 0.436913i
\(933\) 0 0
\(934\) −9.02864 32.9301i −0.295426 1.07751i
\(935\) 10.6672 + 18.4762i 0.348856 + 0.604237i
\(936\) 0 0
\(937\) 19.0315 0.621733 0.310866 0.950454i \(-0.399381\pi\)
0.310866 + 0.950454i \(0.399381\pi\)
\(938\) −28.1380 28.9767i −0.918738 0.946124i
\(939\) 0 0
\(940\) 6.44938 + 10.8773i 0.210356 + 0.354777i
\(941\) 22.4940 12.9869i 0.733283 0.423361i −0.0863390 0.996266i \(-0.527517\pi\)
0.819622 + 0.572905i \(0.194183\pi\)
\(942\) 0 0
\(943\) −61.9758 35.7817i −2.01821 1.16521i
\(944\) −1.41161 2.31901i −0.0459440 0.0754775i
\(945\) 0 0
\(946\) 6.41660 24.5150i 0.208622 0.797050i
\(947\) −3.23409 + 5.60161i −0.105094 + 0.182028i −0.913777 0.406217i \(-0.866848\pi\)
0.808683 + 0.588245i \(0.200181\pi\)
\(948\) 0 0
\(949\) 8.93561 + 15.4769i 0.290062 + 0.502403i
\(950\) 4.23442 + 4.18559i 0.137383 + 0.135798i
\(951\) 0 0
\(952\) −27.7540 + 27.5834i −0.899512 + 0.893982i
\(953\) 17.4347i 0.564765i 0.959302 + 0.282382i \(0.0911247\pi\)
−0.959302 + 0.282382i \(0.908875\pi\)
\(954\) 0 0
\(955\) 22.0404 12.7251i 0.713212 0.411773i
\(956\) −0.129743 11.1837i −0.00419619 0.361706i
\(957\) 0 0
\(958\) −56.1222 14.6895i −1.81323 0.474597i
\(959\) 0.245136 11.9654i 0.00791585 0.386384i
\(960\) 0 0
\(961\) −15.4725 + 26.7992i −0.499114 + 0.864491i
\(962\) 9.56771 + 34.8963i 0.308475 + 1.12510i
\(963\) 0 0
\(964\) −7.13234 + 4.22892i −0.229717 + 0.136204i
\(965\) 6.92319i 0.222865i
\(966\) 0 0
\(967\) 11.5622i 0.371814i 0.982567 + 0.185907i \(0.0595223\pi\)
−0.982567 + 0.185907i \(0.940478\pi\)
\(968\) 9.41066 2.69793i 0.302470 0.0867147i
\(969\) 0 0
\(970\) −28.7927 + 7.89426i −0.924479 + 0.253470i
\(971\) −27.0715 + 46.8892i −0.868766 + 1.50475i −0.00550751 + 0.999985i \(0.501753\pi\)
−0.863259 + 0.504762i \(0.831580\pi\)
\(972\) 0 0
\(973\) −20.6529 12.4948i −0.662100 0.400566i
\(974\) −5.41527 + 20.6893i −0.173516 + 0.662929i
\(975\) 0 0
\(976\) 20.3421 37.2008i 0.651135 1.19077i
\(977\) 20.1006 11.6051i 0.643076 0.371280i −0.142722 0.989763i \(-0.545586\pi\)
0.785798 + 0.618483i \(0.212252\pi\)
\(978\) 0 0
\(979\) 34.4390i 1.10068i
\(980\) −20.7951 0.610879i −0.664274 0.0195138i
\(981\) 0 0
\(982\) 36.7137 37.1421i 1.17158 1.18525i
\(983\) −18.5294 32.0939i −0.590996 1.02363i −0.994099 0.108480i \(-0.965402\pi\)
0.403103 0.915155i \(-0.367932\pi\)
\(984\) 0 0
\(985\) 17.2096 29.8079i 0.548343 0.949758i
\(986\) 15.1017 + 3.95276i 0.480937 + 0.125881i
\(987\) 0 0
\(988\) −7.54306 + 13.4222i −0.239977 + 0.427016i
\(989\) −50.7557 29.3038i −1.61394 0.931806i
\(990\) 0 0
\(991\) −6.39309 + 3.69105i −0.203083 + 0.117250i −0.598093 0.801427i \(-0.704075\pi\)
0.395010 + 0.918677i \(0.370741\pi\)
\(992\) 0.305886 1.29013i 0.00971189 0.0409618i
\(993\) 0 0
\(994\) −1.20929 4.79362i −0.0383565 0.152044i
\(995\) 3.11338 0.0987008
\(996\) 0 0
\(997\) −3.53100 6.11587i −0.111828 0.193692i 0.804679 0.593710i \(-0.202337\pi\)
−0.916507 + 0.400018i \(0.869004\pi\)
\(998\) −2.33016 + 0.638872i −0.0737598 + 0.0202231i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 756.2.be.c.107.4 28
3.2 odd 2 inner 756.2.be.c.107.11 yes 28
4.3 odd 2 756.2.be.d.107.9 yes 28
7.4 even 3 756.2.be.d.431.6 yes 28
12.11 even 2 756.2.be.d.107.6 yes 28
21.11 odd 6 756.2.be.d.431.9 yes 28
28.11 odd 6 inner 756.2.be.c.431.11 yes 28
84.11 even 6 inner 756.2.be.c.431.4 yes 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
756.2.be.c.107.4 28 1.1 even 1 trivial
756.2.be.c.107.11 yes 28 3.2 odd 2 inner
756.2.be.c.431.4 yes 28 84.11 even 6 inner
756.2.be.c.431.11 yes 28 28.11 odd 6 inner
756.2.be.d.107.6 yes 28 12.11 even 2
756.2.be.d.107.9 yes 28 4.3 odd 2
756.2.be.d.431.6 yes 28 7.4 even 3
756.2.be.d.431.9 yes 28 21.11 odd 6