Properties

Label 755.2.h.d.361.3
Level $755$
Weight $2$
Character 755.361
Analytic conductor $6.029$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [755,2,Mod(321,755)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(755, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 6])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("755.321"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 755 = 5 \cdot 151 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 755.h (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-4,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.02870535261\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 5 x^{15} + 14 x^{14} - 22 x^{13} + 54 x^{12} - 181 x^{11} + 697 x^{10} - 1743 x^{9} + 3507 x^{8} + \cdots + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 361.3
Root \(-2.13654 + 1.55228i\) of defining polynomial
Character \(\chi\) \(=\) 755.361
Dual form 755.2.h.d.366.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.40610 q^{2} +(-1.06077 - 0.770696i) q^{3} -0.0228706 q^{4} +(-0.309017 - 0.951057i) q^{5} +(-1.49156 - 1.08368i) q^{6} +(1.62510 + 5.00155i) q^{7} -2.84437 q^{8} +(-0.395787 - 1.21811i) q^{9} +(-0.434510 - 1.33728i) q^{10} +(-0.993622 + 0.721909i) q^{11} +(0.0242605 + 0.0176263i) q^{12} +(3.92067 + 2.84854i) q^{13} +(2.28506 + 7.03270i) q^{14} +(-0.405179 + 1.24701i) q^{15} -3.95374 q^{16} +(-1.97896 + 6.09062i) q^{17} +(-0.556517 - 1.71278i) q^{18} -1.39043 q^{19} +(0.00706741 + 0.0217513i) q^{20} +(2.13081 - 6.55796i) q^{21} +(-1.39714 + 1.01508i) q^{22} +7.39532 q^{23} +(3.01722 + 2.19214i) q^{24} +(-0.809017 + 0.587785i) q^{25} +(5.51288 + 4.00534i) q^{26} +(-1.73449 + 5.33820i) q^{27} +(-0.0371671 - 0.114389i) q^{28} +(-2.02051 + 1.46799i) q^{29} +(-0.569723 + 1.75343i) q^{30} +(1.30724 - 4.02328i) q^{31} +0.129369 q^{32} +1.61038 q^{33} +(-2.78263 + 8.56404i) q^{34} +(4.25457 - 3.09113i) q^{35} +(0.00905189 + 0.0278588i) q^{36} +(5.91595 + 4.29819i) q^{37} -1.95509 q^{38} +(-1.96358 - 6.04329i) q^{39} +(0.878958 + 2.70515i) q^{40} +(4.73550 + 3.44054i) q^{41} +(2.99614 - 9.22117i) q^{42} +(-1.04723 + 3.22304i) q^{43} +(0.0227248 - 0.0165105i) q^{44} +(-1.03618 + 0.752831i) q^{45} +10.3986 q^{46} +(-6.03524 - 4.38486i) q^{47} +(4.19401 + 3.04713i) q^{48} +(-16.7114 + 12.1415i) q^{49} +(-1.13756 + 0.826487i) q^{50} +(6.79324 - 4.93558i) q^{51} +(-0.0896682 - 0.0651478i) q^{52} +(-6.10190 + 4.43329i) q^{53} +(-2.43887 + 7.50606i) q^{54} +(0.993622 + 0.721909i) q^{55} +(-4.62239 - 14.2262i) q^{56} +(1.47493 + 1.07160i) q^{57} +(-2.84105 + 2.06415i) q^{58} +2.83242 q^{59} +(0.00926669 - 0.0285199i) q^{60} +(-8.32476 + 6.04829i) q^{61} +(1.83812 - 5.65715i) q^{62} +(5.44922 - 3.95909i) q^{63} +8.08938 q^{64} +(1.49756 - 4.60903i) q^{65} +2.26436 q^{66} +(2.03629 - 6.26705i) q^{67} +(0.0452601 - 0.139296i) q^{68} +(-7.84474 - 5.69954i) q^{69} +(5.98237 - 4.34645i) q^{70} +(-3.50336 - 10.7822i) q^{71} +(1.12576 + 3.46474i) q^{72} +(-1.04071 - 3.20296i) q^{73} +(8.31845 + 6.04371i) q^{74} +1.31119 q^{75} +0.0318001 q^{76} +(-5.22540 - 3.79647i) q^{77} +(-2.76100 - 8.49750i) q^{78} +(1.99600 + 6.14307i) q^{79} +(1.22177 + 3.76023i) q^{80} +(2.84547 - 2.06735i) q^{81} +(6.65861 + 4.83776i) q^{82} +(3.00648 - 9.25300i) q^{83} +(-0.0487329 + 0.149985i) q^{84} +6.40405 q^{85} +(-1.47251 + 4.53192i) q^{86} +3.27468 q^{87} +(2.82623 - 2.05337i) q^{88} +(1.43761 - 4.42451i) q^{89} +(-1.45698 + 1.05856i) q^{90} +(-7.87560 + 24.2386i) q^{91} -0.169136 q^{92} +(-4.48741 + 3.26029i) q^{93} +(-8.48617 - 6.16557i) q^{94} +(0.429667 + 1.32238i) q^{95} +(-0.137231 - 0.0997044i) q^{96} +(-2.17458 + 6.69267i) q^{97} +(-23.4980 + 17.0723i) q^{98} +(1.27262 + 0.924615i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{2} - 4 q^{3} + 24 q^{4} + 4 q^{5} - 18 q^{6} - q^{7} - 18 q^{8} - q^{10} + 13 q^{11} - 19 q^{12} + 7 q^{13} - q^{14} - q^{15} + 16 q^{16} + 9 q^{17} - 3 q^{18} - 34 q^{19} - 9 q^{20} + 2 q^{21}+ \cdots + 75 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/755\mathbb{Z}\right)^\times\).

\(n\) \(6\) \(152\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.40610 0.994266 0.497133 0.867674i \(-0.334386\pi\)
0.497133 + 0.867674i \(0.334386\pi\)
\(3\) −1.06077 0.770696i −0.612437 0.444961i 0.237835 0.971306i \(-0.423562\pi\)
−0.850272 + 0.526344i \(0.823562\pi\)
\(4\) −0.0228706 −0.0114353
\(5\) −0.309017 0.951057i −0.138197 0.425325i
\(6\) −1.49156 1.08368i −0.608925 0.442410i
\(7\) 1.62510 + 5.00155i 0.614231 + 1.89041i 0.412465 + 0.910974i \(0.364668\pi\)
0.201766 + 0.979434i \(0.435332\pi\)
\(8\) −2.84437 −1.00564
\(9\) −0.395787 1.21811i −0.131929 0.406035i
\(10\) −0.434510 1.33728i −0.137404 0.422887i
\(11\) −0.993622 + 0.721909i −0.299588 + 0.217664i −0.727416 0.686197i \(-0.759279\pi\)
0.427828 + 0.903860i \(0.359279\pi\)
\(12\) 0.0242605 + 0.0176263i 0.00700340 + 0.00508827i
\(13\) 3.92067 + 2.84854i 1.08740 + 0.790042i 0.978958 0.204061i \(-0.0654142\pi\)
0.108441 + 0.994103i \(0.465414\pi\)
\(14\) 2.28506 + 7.03270i 0.610709 + 1.87957i
\(15\) −0.405179 + 1.24701i −0.104617 + 0.321977i
\(16\) −3.95374 −0.988434
\(17\) −1.97896 + 6.09062i −0.479969 + 1.47719i 0.359169 + 0.933272i \(0.383060\pi\)
−0.839138 + 0.543919i \(0.816940\pi\)
\(18\) −0.556517 1.71278i −0.131172 0.403707i
\(19\) −1.39043 −0.318987 −0.159494 0.987199i \(-0.550986\pi\)
−0.159494 + 0.987199i \(0.550986\pi\)
\(20\) 0.00706741 + 0.0217513i 0.00158032 + 0.00486373i
\(21\) 2.13081 6.55796i 0.464981 1.43106i
\(22\) −1.39714 + 1.01508i −0.297870 + 0.216416i
\(23\) 7.39532 1.54203 0.771015 0.636817i \(-0.219749\pi\)
0.771015 + 0.636817i \(0.219749\pi\)
\(24\) 3.01722 + 2.19214i 0.615888 + 0.447469i
\(25\) −0.809017 + 0.587785i −0.161803 + 0.117557i
\(26\) 5.51288 + 4.00534i 1.08116 + 0.785512i
\(27\) −1.73449 + 5.33820i −0.333802 + 1.02734i
\(28\) −0.0371671 0.114389i −0.00702392 0.0216174i
\(29\) −2.02051 + 1.46799i −0.375200 + 0.272599i −0.759364 0.650666i \(-0.774490\pi\)
0.384164 + 0.923265i \(0.374490\pi\)
\(30\) −0.569723 + 1.75343i −0.104017 + 0.320131i
\(31\) 1.30724 4.02328i 0.234788 0.722603i −0.762362 0.647151i \(-0.775960\pi\)
0.997149 0.0754514i \(-0.0240398\pi\)
\(32\) 0.129369 0.0228695
\(33\) 1.61038 0.280331
\(34\) −2.78263 + 8.56404i −0.477216 + 1.46872i
\(35\) 4.25457 3.09113i 0.719154 0.522496i
\(36\) 0.00905189 + 0.0278588i 0.00150865 + 0.00464314i
\(37\) 5.91595 + 4.29819i 0.972577 + 0.706619i 0.956037 0.293245i \(-0.0947351\pi\)
0.0165395 + 0.999863i \(0.494735\pi\)
\(38\) −1.95509 −0.317158
\(39\) −1.96358 6.04329i −0.314425 0.967701i
\(40\) 0.878958 + 2.70515i 0.138975 + 0.427722i
\(41\) 4.73550 + 3.44054i 0.739561 + 0.537323i 0.892574 0.450902i \(-0.148898\pi\)
−0.153013 + 0.988224i \(0.548898\pi\)
\(42\) 2.99614 9.22117i 0.462315 1.42286i
\(43\) −1.04723 + 3.22304i −0.159701 + 0.491508i −0.998607 0.0527679i \(-0.983196\pi\)
0.838906 + 0.544276i \(0.183196\pi\)
\(44\) 0.0227248 0.0165105i 0.00342589 0.00248905i
\(45\) −1.03618 + 0.752831i −0.154465 + 0.112225i
\(46\) 10.3986 1.53319
\(47\) −6.03524 4.38486i −0.880330 0.639597i 0.0530089 0.998594i \(-0.483119\pi\)
−0.933339 + 0.358997i \(0.883119\pi\)
\(48\) 4.19401 + 3.04713i 0.605353 + 0.439815i
\(49\) −16.7114 + 12.1415i −2.38734 + 1.73451i
\(50\) −1.13756 + 0.826487i −0.160876 + 0.116883i
\(51\) 6.79324 4.93558i 0.951243 0.691119i
\(52\) −0.0896682 0.0651478i −0.0124347 0.00903437i
\(53\) −6.10190 + 4.43329i −0.838161 + 0.608959i −0.921856 0.387532i \(-0.873328\pi\)
0.0836956 + 0.996491i \(0.473328\pi\)
\(54\) −2.43887 + 7.50606i −0.331888 + 1.02145i
\(55\) 0.993622 + 0.721909i 0.133980 + 0.0973422i
\(56\) −4.62239 14.2262i −0.617692 1.90106i
\(57\) 1.47493 + 1.07160i 0.195359 + 0.141937i
\(58\) −2.84105 + 2.06415i −0.373049 + 0.271036i
\(59\) 2.83242 0.368750 0.184375 0.982856i \(-0.440974\pi\)
0.184375 + 0.982856i \(0.440974\pi\)
\(60\) 0.00926669 0.0285199i 0.00119632 0.00368191i
\(61\) −8.32476 + 6.04829i −1.06588 + 0.774404i −0.975166 0.221473i \(-0.928913\pi\)
−0.0907095 + 0.995877i \(0.528913\pi\)
\(62\) 1.83812 5.65715i 0.233442 0.718459i
\(63\) 5.44922 3.95909i 0.686537 0.498799i
\(64\) 8.08938 1.01117
\(65\) 1.49756 4.60903i 0.185750 0.571680i
\(66\) 2.26436 0.278723
\(67\) 2.03629 6.26705i 0.248772 0.765642i −0.746221 0.665698i \(-0.768134\pi\)
0.994993 0.0999435i \(-0.0318662\pi\)
\(68\) 0.0452601 0.139296i 0.00548859 0.0168921i
\(69\) −7.84474 5.69954i −0.944396 0.686144i
\(70\) 5.98237 4.34645i 0.715030 0.519500i
\(71\) −3.50336 10.7822i −0.415772 1.27961i −0.911559 0.411170i \(-0.865120\pi\)
0.495787 0.868444i \(-0.334880\pi\)
\(72\) 1.12576 + 3.46474i 0.132672 + 0.408324i
\(73\) −1.04071 3.20296i −0.121805 0.374879i 0.871500 0.490395i \(-0.163148\pi\)
−0.993306 + 0.115517i \(0.963148\pi\)
\(74\) 8.31845 + 6.04371i 0.967000 + 0.702567i
\(75\) 1.31119 0.151403
\(76\) 0.0318001 0.00364772
\(77\) −5.22540 3.79647i −0.595489 0.432648i
\(78\) −2.76100 8.49750i −0.312622 0.962152i
\(79\) 1.99600 + 6.14307i 0.224568 + 0.691149i 0.998335 + 0.0576790i \(0.0183700\pi\)
−0.773767 + 0.633470i \(0.781630\pi\)
\(80\) 1.22177 + 3.76023i 0.136598 + 0.420406i
\(81\) 2.84547 2.06735i 0.316163 0.229706i
\(82\) 6.65861 + 4.83776i 0.735320 + 0.534241i
\(83\) 3.00648 9.25300i 0.330004 1.01565i −0.639127 0.769102i \(-0.720704\pi\)
0.969131 0.246547i \(-0.0792960\pi\)
\(84\) −0.0487329 + 0.149985i −0.00531720 + 0.0163647i
\(85\) 6.40405 0.694617
\(86\) −1.47251 + 4.53192i −0.158785 + 0.488690i
\(87\) 3.27468 0.351082
\(88\) 2.82623 2.05337i 0.301277 0.218890i
\(89\) 1.43761 4.42451i 0.152387 0.468997i −0.845500 0.533975i \(-0.820698\pi\)
0.997887 + 0.0649776i \(0.0206976\pi\)
\(90\) −1.45698 + 1.05856i −0.153579 + 0.111582i
\(91\) −7.87560 + 24.2386i −0.825587 + 2.54090i
\(92\) −0.169136 −0.0176336
\(93\) −4.48741 + 3.26029i −0.465323 + 0.338077i
\(94\) −8.48617 6.16557i −0.875282 0.635930i
\(95\) 0.429667 + 1.32238i 0.0440830 + 0.135673i
\(96\) −0.137231 0.0997044i −0.0140061 0.0101760i
\(97\) −2.17458 + 6.69267i −0.220795 + 0.679537i 0.777896 + 0.628393i \(0.216287\pi\)
−0.998691 + 0.0511445i \(0.983713\pi\)
\(98\) −23.4980 + 17.0723i −2.37365 + 1.72456i
\(99\) 1.27262 + 0.924615i 0.127903 + 0.0929273i
\(100\) 0.0185027 0.0134430i 0.00185027 0.00134430i
\(101\) 11.6656 8.47553i 1.16077 0.843347i 0.170893 0.985290i \(-0.445335\pi\)
0.989875 + 0.141943i \(0.0453348\pi\)
\(102\) 9.55200 6.93993i 0.945789 0.687156i
\(103\) −2.99052 2.17274i −0.294665 0.214086i 0.430624 0.902532i \(-0.358294\pi\)
−0.725288 + 0.688445i \(0.758294\pi\)
\(104\) −11.1518 8.10228i −1.09353 0.794494i
\(105\) −6.89544 −0.672926
\(106\) −8.57991 + 6.23367i −0.833355 + 0.605468i
\(107\) 0.904274 0.656993i 0.0874194 0.0635139i −0.543217 0.839592i \(-0.682794\pi\)
0.630636 + 0.776078i \(0.282794\pi\)
\(108\) 0.0396688 0.122088i 0.00381713 0.0117479i
\(109\) −0.0777573 + 0.239312i −0.00744780 + 0.0229220i −0.954711 0.297534i \(-0.903836\pi\)
0.947264 + 0.320456i \(0.103836\pi\)
\(110\) 1.39714 + 1.01508i 0.133212 + 0.0967840i
\(111\) −2.96288 9.11880i −0.281224 0.865518i
\(112\) −6.42522 19.7748i −0.607126 1.86854i
\(113\) −11.3063 −1.06360 −0.531802 0.846869i \(-0.678485\pi\)
−0.531802 + 0.846869i \(0.678485\pi\)
\(114\) 2.07391 + 1.50678i 0.194239 + 0.141123i
\(115\) −2.28528 7.03336i −0.213103 0.655865i
\(116\) 0.0462104 0.0335738i 0.00429053 0.00311725i
\(117\) 1.91807 5.90321i 0.177325 0.545752i
\(118\) 3.98268 0.366636
\(119\) −33.6785 −3.08731
\(120\) 1.15248 3.54696i 0.105206 0.323792i
\(121\) −2.93305 + 9.02701i −0.266641 + 0.820638i
\(122\) −11.7055 + 8.50453i −1.05976 + 0.769964i
\(123\) −2.37167 7.29926i −0.213847 0.658152i
\(124\) −0.0298975 + 0.0920149i −0.00268487 + 0.00826319i
\(125\) 0.809017 + 0.587785i 0.0723607 + 0.0525731i
\(126\) 7.66217 5.56689i 0.682601 0.495938i
\(127\) −8.71069 6.32869i −0.772949 0.561580i 0.129906 0.991526i \(-0.458533\pi\)
−0.902855 + 0.429946i \(0.858533\pi\)
\(128\) 11.1158 0.982505
\(129\) 3.59485 2.61181i 0.316509 0.229957i
\(130\) 2.10573 6.48077i 0.184685 0.568401i
\(131\) 5.06610 + 15.5919i 0.442628 + 1.36227i 0.885065 + 0.465468i \(0.154114\pi\)
−0.442437 + 0.896799i \(0.645886\pi\)
\(132\) −0.0368303 −0.00320567
\(133\) −2.25959 6.95432i −0.195932 0.603016i
\(134\) 2.86323 8.81212i 0.247346 0.761252i
\(135\) 5.61291 0.483083
\(136\) 5.62889 17.3239i 0.482674 1.48552i
\(137\) −5.30841 16.3376i −0.453528 1.39582i −0.872855 0.487980i \(-0.837734\pi\)
0.419327 0.907835i \(-0.362266\pi\)
\(138\) −11.0305 8.01415i −0.938981 0.682209i
\(139\) 10.5918 + 7.69542i 0.898388 + 0.652717i 0.938051 0.346496i \(-0.112629\pi\)
−0.0396638 + 0.999213i \(0.512629\pi\)
\(140\) −0.0973047 + 0.0706960i −0.00822375 + 0.00597490i
\(141\) 3.02262 + 9.30266i 0.254550 + 0.783425i
\(142\) −4.92609 15.1609i −0.413388 1.27228i
\(143\) −5.95205 −0.497735
\(144\) 1.56484 + 4.81607i 0.130403 + 0.401339i
\(145\) 2.02051 + 1.46799i 0.167795 + 0.121910i
\(146\) −1.46334 4.50370i −0.121107 0.372729i
\(147\) 27.0844 2.23389
\(148\) −0.135302 0.0983023i −0.0111217 0.00808040i
\(149\) 15.3805 1.26002 0.630010 0.776587i \(-0.283051\pi\)
0.630010 + 0.776587i \(0.283051\pi\)
\(150\) 1.84366 0.150535
\(151\) −0.999684 12.2475i −0.0813531 0.996685i
\(152\) 3.95490 0.320785
\(153\) 8.20226 0.663114
\(154\) −7.34745 5.33824i −0.592075 0.430167i
\(155\) −4.23033 −0.339788
\(156\) 0.0449084 + 0.138214i 0.00359555 + 0.0110660i
\(157\) 8.66088 + 6.29250i 0.691214 + 0.502196i 0.877059 0.480383i \(-0.159502\pi\)
−0.185845 + 0.982579i \(0.559502\pi\)
\(158\) 2.80659 + 8.63779i 0.223280 + 0.687186i
\(159\) 9.88944 0.784284
\(160\) −0.0399773 0.123038i −0.00316049 0.00972698i
\(161\) 12.0181 + 36.9880i 0.947162 + 2.91507i
\(162\) 4.00103 2.90692i 0.314350 0.228389i
\(163\) 3.74374 + 2.71999i 0.293232 + 0.213046i 0.724668 0.689098i \(-0.241993\pi\)
−0.431436 + 0.902144i \(0.641993\pi\)
\(164\) −0.108304 0.0786874i −0.00845711 0.00614445i
\(165\) −0.497634 1.53156i −0.0387408 0.119232i
\(166\) 4.22743 13.0107i 0.328112 1.00982i
\(167\) −20.3575 −1.57531 −0.787657 0.616114i \(-0.788706\pi\)
−0.787657 + 0.616114i \(0.788706\pi\)
\(168\) −6.06080 + 18.6532i −0.467601 + 1.43913i
\(169\) 3.24030 + 9.97262i 0.249254 + 0.767125i
\(170\) 9.00477 0.690634
\(171\) 0.550315 + 1.69369i 0.0420836 + 0.129520i
\(172\) 0.0239507 0.0737128i 0.00182623 0.00562055i
\(173\) 15.6388 11.3622i 1.18899 0.863853i 0.195835 0.980637i \(-0.437258\pi\)
0.993157 + 0.116783i \(0.0372584\pi\)
\(174\) 4.60454 0.349069
\(175\) −4.25457 3.09113i −0.321615 0.233667i
\(176\) 3.92852 2.85424i 0.296123 0.215146i
\(177\) −3.00455 2.18294i −0.225836 0.164080i
\(178\) 2.02143 6.22133i 0.151513 0.466308i
\(179\) −4.13868 12.7375i −0.309339 0.952049i −0.978022 0.208501i \(-0.933142\pi\)
0.668683 0.743548i \(-0.266858\pi\)
\(180\) 0.0236981 0.0172177i 0.00176636 0.00128333i
\(181\) 2.54341 7.82782i 0.189050 0.581837i −0.810944 0.585123i \(-0.801046\pi\)
0.999995 + 0.00328638i \(0.00104609\pi\)
\(182\) −11.0739 + 34.0820i −0.820853 + 2.52633i
\(183\) 13.4921 0.997361
\(184\) −21.0350 −1.55072
\(185\) 2.25969 6.95462i 0.166136 0.511314i
\(186\) −6.30977 + 4.58431i −0.462655 + 0.336138i
\(187\) −2.43053 7.48040i −0.177738 0.547021i
\(188\) 0.138030 + 0.100284i 0.0100668 + 0.00731399i
\(189\) −29.5180 −2.14712
\(190\) 0.604157 + 1.85940i 0.0438302 + 0.134895i
\(191\) 1.41810 + 4.36447i 0.102610 + 0.315802i 0.989162 0.146827i \(-0.0469061\pi\)
−0.886552 + 0.462629i \(0.846906\pi\)
\(192\) −8.58098 6.23445i −0.619279 0.449933i
\(193\) −6.06476 + 18.6654i −0.436551 + 1.34357i 0.454938 + 0.890523i \(0.349661\pi\)
−0.891489 + 0.453042i \(0.850339\pi\)
\(194\) −3.05768 + 9.41059i −0.219529 + 0.675641i
\(195\) −5.14073 + 3.73496i −0.368135 + 0.267466i
\(196\) 0.382200 0.277685i 0.0273000 0.0198346i
\(197\) 11.8283 0.842730 0.421365 0.906891i \(-0.361551\pi\)
0.421365 + 0.906891i \(0.361551\pi\)
\(198\) 1.78944 + 1.30011i 0.127170 + 0.0923945i
\(199\) 13.5068 + 9.81324i 0.957469 + 0.695642i 0.952562 0.304346i \(-0.0984379\pi\)
0.00490743 + 0.999988i \(0.498438\pi\)
\(200\) 2.30114 1.67188i 0.162715 0.118220i
\(201\) −6.99002 + 5.07855i −0.493038 + 0.358213i
\(202\) 16.4030 11.9175i 1.15411 0.838511i
\(203\) −10.6258 7.72007i −0.745782 0.541842i
\(204\) −0.155366 + 0.112880i −0.0108778 + 0.00790316i
\(205\) 1.80880 5.56692i 0.126332 0.388810i
\(206\) −4.20498 3.05510i −0.292975 0.212859i
\(207\) −2.92697 9.00828i −0.203438 0.626119i
\(208\) −15.5013 11.2624i −1.07482 0.780904i
\(209\) 1.38157 1.00377i 0.0955649 0.0694319i
\(210\) −9.69571 −0.669068
\(211\) 5.23923 16.1247i 0.360684 1.11007i −0.591956 0.805970i \(-0.701644\pi\)
0.952640 0.304100i \(-0.0983557\pi\)
\(212\) 0.139554 0.101392i 0.00958463 0.00696364i
\(213\) −4.59355 + 14.1375i −0.314745 + 0.968685i
\(214\) 1.27150 0.923801i 0.0869182 0.0631497i
\(215\) 3.38890 0.231121
\(216\) 4.93351 15.1838i 0.335683 1.03313i
\(217\) 22.2470 1.51023
\(218\) −0.109335 + 0.336498i −0.00740510 + 0.0227905i
\(219\) −1.36456 + 4.19968i −0.0922084 + 0.283788i
\(220\) −0.0227248 0.0165105i −0.00153210 0.00111314i
\(221\) −25.1082 + 18.2422i −1.68896 + 1.22710i
\(222\) −4.16612 12.8220i −0.279611 0.860555i
\(223\) 4.15614 + 12.7913i 0.278316 + 0.856568i 0.988323 + 0.152374i \(0.0486917\pi\)
−0.710007 + 0.704195i \(0.751308\pi\)
\(224\) 0.210238 + 0.647047i 0.0140471 + 0.0432327i
\(225\) 1.03618 + 0.752831i 0.0690788 + 0.0501887i
\(226\) −15.8978 −1.05750
\(227\) 23.5399 1.56240 0.781200 0.624281i \(-0.214608\pi\)
0.781200 + 0.624281i \(0.214608\pi\)
\(228\) −0.0337326 0.0245082i −0.00223400 0.00162309i
\(229\) 0.594987 + 1.83118i 0.0393178 + 0.121008i 0.968789 0.247887i \(-0.0797362\pi\)
−0.929471 + 0.368895i \(0.879736\pi\)
\(230\) −3.21334 9.88964i −0.211881 0.652104i
\(231\) 2.61703 + 8.05438i 0.172188 + 0.529939i
\(232\) 5.74708 4.17550i 0.377314 0.274135i
\(233\) 16.8624 + 12.2512i 1.10469 + 0.802604i 0.981819 0.189819i \(-0.0607900\pi\)
0.122871 + 0.992423i \(0.460790\pi\)
\(234\) 2.69700 8.30052i 0.176309 0.542622i
\(235\) −2.30526 + 7.09485i −0.150378 + 0.462817i
\(236\) −0.0647793 −0.00421677
\(237\) 2.61713 8.05470i 0.170001 0.523209i
\(238\) −47.3555 −3.06960
\(239\) −3.44970 + 2.50635i −0.223142 + 0.162122i −0.693740 0.720225i \(-0.744038\pi\)
0.470598 + 0.882348i \(0.344038\pi\)
\(240\) 1.60197 4.93035i 0.103407 0.318253i
\(241\) −12.5347 + 9.10701i −0.807432 + 0.586634i −0.913085 0.407769i \(-0.866307\pi\)
0.105653 + 0.994403i \(0.466307\pi\)
\(242\) −4.12418 + 12.6929i −0.265112 + 0.815932i
\(243\) 12.2270 0.784365
\(244\) 0.190392 0.138328i 0.0121886 0.00885555i
\(245\) 16.7114 + 12.1415i 1.06765 + 0.775695i
\(246\) −3.33482 10.2635i −0.212620 0.654378i
\(247\) −5.45143 3.96070i −0.346866 0.252013i
\(248\) −3.71828 + 11.4437i −0.236111 + 0.726675i
\(249\) −10.3204 + 7.49824i −0.654031 + 0.475181i
\(250\) 1.13756 + 0.826487i 0.0719458 + 0.0522717i
\(251\) 10.2479 7.44551i 0.646840 0.469957i −0.215353 0.976536i \(-0.569090\pi\)
0.862193 + 0.506580i \(0.169090\pi\)
\(252\) −0.124627 + 0.0905469i −0.00785077 + 0.00570392i
\(253\) −7.34815 + 5.33874i −0.461974 + 0.335644i
\(254\) −12.2481 8.89880i −0.768517 0.558360i
\(255\) −6.79324 4.93558i −0.425409 0.309078i
\(256\) −0.548823 −0.0343014
\(257\) 5.84957 4.24996i 0.364886 0.265105i −0.390201 0.920730i \(-0.627594\pi\)
0.755087 + 0.655624i \(0.227594\pi\)
\(258\) 5.05473 3.67248i 0.314694 0.228638i
\(259\) −11.8836 + 36.5739i −0.738410 + 2.27259i
\(260\) −0.0342502 + 0.105411i −0.00212411 + 0.00653733i
\(261\) 2.58786 + 1.88019i 0.160184 + 0.116381i
\(262\) 7.12347 + 21.9238i 0.440089 + 1.35446i
\(263\) 2.90230 + 8.93236i 0.178963 + 0.550793i 0.999792 0.0203814i \(-0.00648806\pi\)
−0.820829 + 0.571174i \(0.806488\pi\)
\(264\) −4.58051 −0.281911
\(265\) 6.10190 + 4.43329i 0.374837 + 0.272335i
\(266\) −3.17723 9.77850i −0.194808 0.599558i
\(267\) −4.93493 + 3.58544i −0.302013 + 0.219425i
\(268\) −0.0465712 + 0.143331i −0.00284479 + 0.00875535i
\(269\) 10.3824 0.633026 0.316513 0.948588i \(-0.397488\pi\)
0.316513 + 0.948588i \(0.397488\pi\)
\(270\) 7.89234 0.480313
\(271\) 4.00957 12.3402i 0.243564 0.749612i −0.752306 0.658814i \(-0.771058\pi\)
0.995869 0.0907978i \(-0.0289417\pi\)
\(272\) 7.82429 24.0807i 0.474417 1.46011i
\(273\) 27.0348 19.6419i 1.63622 1.18878i
\(274\) −7.46417 22.9724i −0.450927 1.38781i
\(275\) 0.379530 1.16807i 0.0228865 0.0704374i
\(276\) 0.179414 + 0.130352i 0.0107995 + 0.00784627i
\(277\) 8.14480 5.91754i 0.489374 0.355551i −0.315570 0.948902i \(-0.602196\pi\)
0.804943 + 0.593352i \(0.202196\pi\)
\(278\) 14.8932 + 10.8206i 0.893236 + 0.648974i
\(279\) −5.41817 −0.324377
\(280\) −12.1016 + 8.79230i −0.723207 + 0.525440i
\(281\) 0.129817 0.399536i 0.00774423 0.0238343i −0.947110 0.320910i \(-0.896011\pi\)
0.954854 + 0.297076i \(0.0960113\pi\)
\(282\) 4.25012 + 13.0805i 0.253091 + 0.778933i
\(283\) 16.8759 1.00317 0.501585 0.865109i \(-0.332751\pi\)
0.501585 + 0.865109i \(0.332751\pi\)
\(284\) 0.0801240 + 0.246596i 0.00475448 + 0.0146328i
\(285\) 0.563374 1.73389i 0.0333714 0.102707i
\(286\) −8.36920 −0.494881
\(287\) −9.51237 + 29.2761i −0.561497 + 1.72811i
\(288\) −0.0512027 0.157586i −0.00301715 0.00928582i
\(289\) −19.4260 14.1138i −1.14271 0.830226i
\(290\) 2.84105 + 2.06415i 0.166832 + 0.121211i
\(291\) 7.46474 5.42345i 0.437591 0.317928i
\(292\) 0.0238016 + 0.0732538i 0.00139288 + 0.00428685i
\(293\) 7.11582 + 21.9002i 0.415711 + 1.27943i 0.911614 + 0.411048i \(0.134837\pi\)
−0.495903 + 0.868378i \(0.665163\pi\)
\(294\) 38.0835 2.22108
\(295\) −0.875267 2.69380i −0.0509600 0.156839i
\(296\) −16.8271 12.2256i −0.978058 0.710601i
\(297\) −2.13027 6.55629i −0.123611 0.380435i
\(298\) 21.6266 1.25279
\(299\) 28.9946 + 21.0658i 1.67680 + 1.21827i
\(300\) −0.0299876 −0.00173134
\(301\) −17.8220 −1.02724
\(302\) −1.40566 17.2212i −0.0808866 0.990970i
\(303\) −18.9066 −1.08615
\(304\) 5.49741 0.315298
\(305\) 8.32476 + 6.04829i 0.476674 + 0.346324i
\(306\) 11.5332 0.659311
\(307\) 0.503138 + 1.54850i 0.0287156 + 0.0883775i 0.964387 0.264494i \(-0.0852051\pi\)
−0.935672 + 0.352872i \(0.885205\pi\)
\(308\) 0.119508 + 0.0868277i 0.00680961 + 0.00494747i
\(309\) 1.49774 + 4.60956i 0.0852033 + 0.262229i
\(310\) −5.94828 −0.337840
\(311\) −8.95402 27.5576i −0.507736 1.56265i −0.796122 0.605136i \(-0.793119\pi\)
0.288387 0.957514i \(-0.406881\pi\)
\(312\) 5.58515 + 17.1893i 0.316197 + 0.973155i
\(313\) 8.33829 6.05812i 0.471308 0.342425i −0.326643 0.945148i \(-0.605917\pi\)
0.797951 + 0.602722i \(0.205917\pi\)
\(314\) 12.1781 + 8.84791i 0.687250 + 0.499317i
\(315\) −5.44922 3.95909i −0.307029 0.223070i
\(316\) −0.0456498 0.140496i −0.00256800 0.00790350i
\(317\) 6.14200 18.9031i 0.344969 1.06171i −0.616631 0.787252i \(-0.711503\pi\)
0.961600 0.274454i \(-0.0884970\pi\)
\(318\) 13.9056 0.779787
\(319\) 0.947873 2.91725i 0.0530707 0.163335i
\(320\) −2.49976 7.69346i −0.139741 0.430077i
\(321\) −1.46557 −0.0818001
\(322\) 16.8988 + 52.0090i 0.941731 + 2.89835i
\(323\) 2.75161 8.46860i 0.153104 0.471205i
\(324\) −0.0650777 + 0.0472817i −0.00361543 + 0.00262676i
\(325\) −4.84622 −0.268820
\(326\) 5.26409 + 3.82459i 0.291551 + 0.211824i
\(327\) 0.266920 0.193929i 0.0147607 0.0107243i
\(328\) −13.4695 9.78617i −0.743729 0.540351i
\(329\) 12.1232 37.3114i 0.668374 2.05704i
\(330\) −0.699726 2.15353i −0.0385186 0.118548i
\(331\) 15.9942 11.6204i 0.879119 0.638717i −0.0538995 0.998546i \(-0.517165\pi\)
0.933018 + 0.359829i \(0.117165\pi\)
\(332\) −0.0687601 + 0.211622i −0.00377370 + 0.0116143i
\(333\) 2.89420 8.90743i 0.158601 0.488124i
\(334\) −28.6248 −1.56628
\(335\) −6.58956 −0.360026
\(336\) −8.42466 + 25.9284i −0.459603 + 1.41451i
\(337\) −3.40658 + 2.47502i −0.185568 + 0.134823i −0.676691 0.736267i \(-0.736587\pi\)
0.491123 + 0.871090i \(0.336587\pi\)
\(338\) 4.55620 + 14.0225i 0.247825 + 0.762726i
\(339\) 11.9934 + 8.71369i 0.651390 + 0.473263i
\(340\) −0.146465 −0.00794316
\(341\) 1.60554 + 4.94133i 0.0869446 + 0.267588i
\(342\) 0.773800 + 2.38151i 0.0418423 + 0.128777i
\(343\) −58.1023 42.2138i −3.13723 2.27933i
\(344\) 2.97870 9.16750i 0.160601 0.494278i
\(345\) −2.99642 + 9.22205i −0.161322 + 0.496498i
\(346\) 21.9897 15.9765i 1.18217 0.858900i
\(347\) −17.0441 + 12.3832i −0.914973 + 0.664767i −0.942268 0.334861i \(-0.891311\pi\)
0.0272949 + 0.999627i \(0.491311\pi\)
\(348\) −0.0748939 −0.00401473
\(349\) 21.6853 + 15.7553i 1.16079 + 0.843360i 0.989877 0.141927i \(-0.0453298\pi\)
0.170908 + 0.985287i \(0.445330\pi\)
\(350\) −5.98237 4.34645i −0.319771 0.232327i
\(351\) −22.0064 + 15.9886i −1.17461 + 0.853407i
\(352\) −0.128544 + 0.0933929i −0.00685144 + 0.00497786i
\(353\) 9.91944 7.20690i 0.527959 0.383584i −0.291635 0.956530i \(-0.594199\pi\)
0.819594 + 0.572945i \(0.194199\pi\)
\(354\) −4.22472 3.06944i −0.224541 0.163139i
\(355\) −9.17191 + 6.66378i −0.486794 + 0.353677i
\(356\) −0.0328791 + 0.101191i −0.00174259 + 0.00536313i
\(357\) 35.7252 + 25.9559i 1.89078 + 1.37373i
\(358\) −5.81941 17.9103i −0.307566 0.946589i
\(359\) −28.8360 20.9506i −1.52191 1.10573i −0.960532 0.278169i \(-0.910272\pi\)
−0.561375 0.827561i \(-0.689728\pi\)
\(360\) 2.94728 2.14133i 0.155336 0.112858i
\(361\) −17.0667 −0.898247
\(362\) 3.57630 11.0067i 0.187966 0.578501i
\(363\) 10.0684 7.31511i 0.528453 0.383943i
\(364\) 0.180120 0.554352i 0.00944084 0.0290559i
\(365\) −2.72460 + 1.97954i −0.142612 + 0.103614i
\(366\) 18.9712 0.991643
\(367\) 0.683455 2.10346i 0.0356761 0.109800i −0.931633 0.363402i \(-0.881615\pi\)
0.967309 + 0.253602i \(0.0816153\pi\)
\(368\) −29.2391 −1.52420
\(369\) 2.31670 7.13006i 0.120602 0.371176i
\(370\) 3.17736 9.77892i 0.165183 0.508382i
\(371\) −32.0895 23.3144i −1.66601 1.21042i
\(372\) 0.102630 0.0745650i 0.00532111 0.00386601i
\(373\) 8.20105 + 25.2402i 0.424634 + 1.30689i 0.903344 + 0.428917i \(0.141105\pi\)
−0.478710 + 0.877973i \(0.658895\pi\)
\(374\) −3.41758 10.5182i −0.176719 0.543884i
\(375\) −0.405179 1.24701i −0.0209233 0.0643954i
\(376\) 17.1664 + 12.4721i 0.885291 + 0.643202i
\(377\) −12.1034 −0.623357
\(378\) −41.5053 −2.13480
\(379\) 12.4879 + 9.07296i 0.641458 + 0.466047i 0.860351 0.509702i \(-0.170244\pi\)
−0.218893 + 0.975749i \(0.570244\pi\)
\(380\) −0.00982676 0.0302437i −0.000504102 0.00155147i
\(381\) 4.36256 + 13.4266i 0.223501 + 0.687865i
\(382\) 1.99400 + 6.13690i 0.102022 + 0.313991i
\(383\) −5.25774 + 3.81997i −0.268658 + 0.195192i −0.713955 0.700191i \(-0.753098\pi\)
0.445297 + 0.895383i \(0.353098\pi\)
\(384\) −11.7913 8.56688i −0.601722 0.437177i
\(385\) −1.99592 + 6.14282i −0.101722 + 0.313067i
\(386\) −8.52768 + 26.2455i −0.434048 + 1.33586i
\(387\) 4.34048 0.220639
\(388\) 0.0497340 0.153065i 0.00252486 0.00777072i
\(389\) −16.7419 −0.848848 −0.424424 0.905464i \(-0.639523\pi\)
−0.424424 + 0.905464i \(0.639523\pi\)
\(390\) −7.22840 + 5.25174i −0.366024 + 0.265932i
\(391\) −14.6350 + 45.0420i −0.740126 + 2.27787i
\(392\) 47.5334 34.5350i 2.40080 1.74428i
\(393\) 6.64260 20.4438i 0.335075 1.03125i
\(394\) 16.6318 0.837898
\(395\) 5.22560 3.79662i 0.262929 0.191029i
\(396\) −0.0291057 0.0211465i −0.00146262 0.00106265i
\(397\) 0.482135 + 1.48386i 0.0241977 + 0.0744728i 0.962426 0.271544i \(-0.0875341\pi\)
−0.938228 + 0.346016i \(0.887534\pi\)
\(398\) 18.9919 + 13.7984i 0.951979 + 0.691653i
\(399\) −2.96275 + 9.11840i −0.148323 + 0.456491i
\(400\) 3.19864 2.32395i 0.159932 0.116197i
\(401\) 22.6806 + 16.4784i 1.13262 + 0.822895i 0.986074 0.166310i \(-0.0531851\pi\)
0.146544 + 0.989204i \(0.453185\pi\)
\(402\) −9.82870 + 7.14097i −0.490211 + 0.356159i
\(403\) 16.5857 12.0502i 0.826194 0.600265i
\(404\) −0.266799 + 0.193841i −0.0132737 + 0.00964394i
\(405\) −2.84547 2.06735i −0.141393 0.102728i
\(406\) −14.9409 10.8552i −0.741506 0.538735i
\(407\) −8.98113 −0.445178
\(408\) −19.3225 + 14.0386i −0.956604 + 0.695014i
\(409\) −8.46905 + 6.15313i −0.418768 + 0.304252i −0.777142 0.629326i \(-0.783331\pi\)
0.358374 + 0.933578i \(0.383331\pi\)
\(410\) 2.54336 7.82766i 0.125608 0.386581i
\(411\) −6.96031 + 21.4216i −0.343327 + 1.05665i
\(412\) 0.0683950 + 0.0496919i 0.00336958 + 0.00244814i
\(413\) 4.60298 + 14.1665i 0.226498 + 0.697088i
\(414\) −4.11562 12.6666i −0.202272 0.622528i
\(415\) −9.72918 −0.477587
\(416\) 0.507215 + 0.368513i 0.0248683 + 0.0180679i
\(417\) −5.30469 16.3262i −0.259772 0.799495i
\(418\) 1.94262 1.41140i 0.0950169 0.0690338i
\(419\) 0.989435 3.04517i 0.0483370 0.148766i −0.923975 0.382453i \(-0.875079\pi\)
0.972312 + 0.233687i \(0.0750792\pi\)
\(420\) 0.157703 0.00769512
\(421\) −20.9899 −1.02299 −0.511494 0.859287i \(-0.670908\pi\)
−0.511494 + 0.859287i \(0.670908\pi\)
\(422\) 7.36691 22.6730i 0.358615 1.10370i
\(423\) −2.95255 + 9.08703i −0.143558 + 0.441826i
\(424\) 17.3560 12.6099i 0.842884 0.612391i
\(425\) −1.97896 6.09062i −0.0959937 0.295438i
\(426\) −6.45901 + 19.8788i −0.312940 + 0.963131i
\(427\) −43.7794 31.8076i −2.11863 1.53928i
\(428\) −0.0206813 + 0.0150258i −0.000999668 + 0.000726302i
\(429\) 6.31377 + 4.58722i 0.304831 + 0.221473i
\(430\) 4.76515 0.229796
\(431\) −1.08747 + 0.790095i −0.0523817 + 0.0380575i −0.613668 0.789564i \(-0.710307\pi\)
0.561286 + 0.827622i \(0.310307\pi\)
\(432\) 6.85770 21.1058i 0.329941 1.01545i
\(433\) 8.11248 + 24.9676i 0.389861 + 1.19987i 0.932892 + 0.360156i \(0.117277\pi\)
−0.543031 + 0.839713i \(0.682723\pi\)
\(434\) 31.2817 1.50157
\(435\) −1.01193 3.11440i −0.0485184 0.149324i
\(436\) 0.00177836 0.00547323i 8.51679e−5 0.000262120i
\(437\) −10.2827 −0.491888
\(438\) −1.91871 + 5.90519i −0.0916796 + 0.282161i
\(439\) 5.68814 + 17.5063i 0.271480 + 0.835530i 0.990129 + 0.140157i \(0.0447607\pi\)
−0.718649 + 0.695373i \(0.755239\pi\)
\(440\) −2.82623 2.05337i −0.134735 0.0978907i
\(441\) 21.4038 + 15.5508i 1.01923 + 0.740514i
\(442\) −35.3047 + 25.6504i −1.67928 + 1.22007i
\(443\) 1.57132 + 4.83602i 0.0746556 + 0.229766i 0.981420 0.191871i \(-0.0614555\pi\)
−0.906765 + 0.421637i \(0.861456\pi\)
\(444\) 0.0677629 + 0.208553i 0.00321588 + 0.00989747i
\(445\) −4.65221 −0.220536
\(446\) 5.84397 + 17.9859i 0.276720 + 0.851657i
\(447\) −16.3152 11.8537i −0.771682 0.560660i
\(448\) 13.1461 + 40.4594i 0.621093 + 1.91153i
\(449\) −8.56071 −0.404005 −0.202002 0.979385i \(-0.564745\pi\)
−0.202002 + 0.979385i \(0.564745\pi\)
\(450\) 1.45698 + 1.05856i 0.0686827 + 0.0499009i
\(451\) −7.18906 −0.338519
\(452\) 0.258581 0.0121626
\(453\) −8.37864 + 13.7622i −0.393663 + 0.646606i
\(454\) 33.0996 1.55344
\(455\) 25.4860 1.19480
\(456\) −4.19525 3.04803i −0.196460 0.142737i
\(457\) −13.5004 −0.631520 −0.315760 0.948839i \(-0.602260\pi\)
−0.315760 + 0.948839i \(0.602260\pi\)
\(458\) 0.836613 + 2.57483i 0.0390924 + 0.120314i
\(459\) −29.0804 21.1282i −1.35736 0.986179i
\(460\) 0.0522657 + 0.160857i 0.00243690 + 0.00750002i
\(461\) −20.4860 −0.954126 −0.477063 0.878869i \(-0.658299\pi\)
−0.477063 + 0.878869i \(0.658299\pi\)
\(462\) 3.67981 + 11.3253i 0.171200 + 0.526901i
\(463\) −11.5378 35.5098i −0.536209 1.65028i −0.741021 0.671481i \(-0.765658\pi\)
0.204812 0.978801i \(-0.434342\pi\)
\(464\) 7.98858 5.80404i 0.370860 0.269446i
\(465\) 4.48741 + 3.26029i 0.208099 + 0.151193i
\(466\) 23.7102 + 17.2265i 1.09836 + 0.798002i
\(467\) −4.59885 14.1538i −0.212809 0.654960i −0.999302 0.0373602i \(-0.988105\pi\)
0.786492 0.617600i \(-0.211895\pi\)
\(468\) −0.0438674 + 0.135010i −0.00202777 + 0.00624084i
\(469\) 34.6541 1.60018
\(470\) −3.24143 + 9.97610i −0.149516 + 0.460163i
\(471\) −4.33762 13.3498i −0.199867 0.615127i
\(472\) −8.05645 −0.370828
\(473\) −1.28619 3.95848i −0.0591390 0.182011i
\(474\) 3.67996 11.3257i 0.169026 0.520209i
\(475\) 1.12488 0.817276i 0.0516132 0.0374992i
\(476\) 0.770249 0.0353043
\(477\) 7.81527 + 5.67813i 0.357837 + 0.259983i
\(478\) −4.85063 + 3.52419i −0.221863 + 0.161193i
\(479\) −6.02915 4.38043i −0.275479 0.200147i 0.441464 0.897279i \(-0.354459\pi\)
−0.716943 + 0.697132i \(0.754459\pi\)
\(480\) −0.0524177 + 0.161325i −0.00239253 + 0.00736345i
\(481\) 10.9510 + 33.7036i 0.499321 + 1.53675i
\(482\) −17.6251 + 12.8054i −0.802803 + 0.583270i
\(483\) 15.7580 48.4982i 0.717014 2.20674i
\(484\) 0.0670808 0.206453i 0.00304913 0.00938425i
\(485\) 7.03709 0.319538
\(486\) 17.1925 0.779868
\(487\) −10.7150 + 32.9773i −0.485542 + 1.49435i 0.345652 + 0.938363i \(0.387658\pi\)
−0.831194 + 0.555983i \(0.812342\pi\)
\(488\) 23.6787 17.2036i 1.07188 0.778769i
\(489\) −1.87497 5.77057i −0.0847892 0.260954i
\(490\) 23.4980 + 17.0723i 1.06153 + 0.771247i
\(491\) −39.7907 −1.79573 −0.897864 0.440272i \(-0.854882\pi\)
−0.897864 + 0.440272i \(0.854882\pi\)
\(492\) 0.0542416 + 0.166939i 0.00244540 + 0.00752617i
\(493\) −4.94244 15.2113i −0.222596 0.685081i
\(494\) −7.66528 5.56916i −0.344877 0.250568i
\(495\) 0.486099 1.49606i 0.0218485 0.0672428i
\(496\) −5.16849 + 15.9070i −0.232072 + 0.714245i
\(497\) 48.2345 35.0444i 2.16361 1.57196i
\(498\) −14.5116 + 10.5433i −0.650281 + 0.472457i
\(499\) −19.8084 −0.886744 −0.443372 0.896338i \(-0.646218\pi\)
−0.443372 + 0.896338i \(0.646218\pi\)
\(500\) −0.0185027 0.0134430i −0.000827467 0.000601190i
\(501\) 21.5947 + 15.6895i 0.964780 + 0.700954i
\(502\) 14.4096 10.4692i 0.643131 0.467262i
\(503\) 30.8969 22.4479i 1.37763 1.00090i 0.380528 0.924770i \(-0.375742\pi\)
0.997098 0.0761338i \(-0.0242576\pi\)
\(504\) −15.4996 + 11.2611i −0.690406 + 0.501610i
\(505\) −11.6656 8.47553i −0.519111 0.377156i
\(506\) −10.3323 + 7.50683i −0.459325 + 0.333719i
\(507\) 4.24864 13.0760i 0.188689 0.580724i
\(508\) 0.199219 + 0.144741i 0.00883891 + 0.00642185i
\(509\) 4.03260 + 12.4111i 0.178742 + 0.550110i 0.999785 0.0207562i \(-0.00660739\pi\)
−0.821043 + 0.570866i \(0.806607\pi\)
\(510\) −9.55200 6.93993i −0.422970 0.307305i
\(511\) 14.3285 10.4103i 0.633857 0.460524i
\(512\) −23.0032 −1.01661
\(513\) 2.41169 7.42241i 0.106479 0.327707i
\(514\) 8.22511 5.97589i 0.362794 0.263585i
\(515\) −1.14228 + 3.51557i −0.0503347 + 0.154914i
\(516\) −0.0822164 + 0.0597337i −0.00361938 + 0.00262963i
\(517\) 9.16221 0.402954
\(518\) −16.7096 + 51.4268i −0.734176 + 2.25956i
\(519\) −25.3460 −1.11256
\(520\) −4.25962 + 13.1098i −0.186797 + 0.574901i
\(521\) 8.06572 24.8237i 0.353366 1.08755i −0.603585 0.797299i \(-0.706262\pi\)
0.956951 0.290250i \(-0.0937383\pi\)
\(522\) 3.63880 + 2.64374i 0.159266 + 0.115713i
\(523\) 14.9436 10.8571i 0.653437 0.474750i −0.211003 0.977485i \(-0.567673\pi\)
0.864440 + 0.502735i \(0.167673\pi\)
\(524\) −0.115865 0.356596i −0.00506158 0.0155780i
\(525\) 2.13081 + 6.55796i 0.0929962 + 0.286213i
\(526\) 4.08094 + 12.5598i 0.177937 + 0.547635i
\(527\) 21.9173 + 15.9238i 0.954732 + 0.693653i
\(528\) −6.36701 −0.277088
\(529\) 31.6907 1.37786
\(530\) 8.57991 + 6.23367i 0.372688 + 0.270773i
\(531\) −1.12104 3.45019i −0.0486488 0.149726i
\(532\) 0.0516783 + 0.159050i 0.00224054 + 0.00689567i
\(533\) 8.76584 + 26.9785i 0.379691 + 1.16857i
\(534\) −6.93903 + 5.04150i −0.300281 + 0.218167i
\(535\) −0.904274 0.656993i −0.0390952 0.0284043i
\(536\) −5.79195 + 17.8258i −0.250174 + 0.769957i
\(537\) −5.42658 + 16.7013i −0.234174 + 0.720713i
\(538\) 14.5987 0.629396
\(539\) 7.83973 24.1282i 0.337681 1.03928i
\(540\) −0.128371 −0.00552420
\(541\) 13.7197 9.96797i 0.589858 0.428557i −0.252407 0.967621i \(-0.581222\pi\)
0.842264 + 0.539065i \(0.181222\pi\)
\(542\) 5.63787 17.3516i 0.242167 0.745314i
\(543\) −8.73084 + 6.34333i −0.374676 + 0.272218i
\(544\) −0.256017 + 0.787939i −0.0109766 + 0.0337826i
\(545\) 0.251628 0.0107786
\(546\) 38.0137 27.6186i 1.62684 1.18197i
\(547\) 31.9512 + 23.2139i 1.36613 + 0.992554i 0.998028 + 0.0627694i \(0.0199933\pi\)
0.368105 + 0.929784i \(0.380007\pi\)
\(548\) 0.121407 + 0.373651i 0.00518623 + 0.0159616i
\(549\) 10.6623 + 7.74660i 0.455055 + 0.330617i
\(550\) 0.533659 1.64243i 0.0227553 0.0700336i
\(551\) 2.80939 2.04114i 0.119684 0.0869555i
\(552\) 22.3133 + 16.2116i 0.949718 + 0.690011i
\(553\) −27.4811 + 19.9662i −1.16862 + 0.849050i
\(554\) 11.4524 8.32068i 0.486568 0.353512i
\(555\) −7.75691 + 5.63573i −0.329263 + 0.239223i
\(556\) −0.242242 0.175999i −0.0102733 0.00746402i
\(557\) −9.29518 6.75335i −0.393850 0.286148i 0.373182 0.927758i \(-0.378267\pi\)
−0.767031 + 0.641610i \(0.778267\pi\)
\(558\) −7.61851 −0.322517
\(559\) −13.2868 + 9.65340i −0.561970 + 0.408295i
\(560\) −16.8214 + 12.2215i −0.710836 + 0.516453i
\(561\) −3.18688 + 9.80819i −0.134550 + 0.414102i
\(562\) 0.182536 0.561789i 0.00769983 0.0236976i
\(563\) −1.76498 1.28233i −0.0743850 0.0540438i 0.549971 0.835184i \(-0.314639\pi\)
−0.624356 + 0.781140i \(0.714639\pi\)
\(564\) −0.0691292 0.212758i −0.00291086 0.00895871i
\(565\) 3.49383 + 10.7529i 0.146986 + 0.452378i
\(566\) 23.7293 0.997417
\(567\) 14.9642 + 10.8721i 0.628435 + 0.456585i
\(568\) 9.96483 + 30.6686i 0.418115 + 1.28683i
\(569\) 17.8884 12.9967i 0.749919 0.544848i −0.145882 0.989302i \(-0.546602\pi\)
0.895802 + 0.444454i \(0.146602\pi\)
\(570\) 0.792162 2.43803i 0.0331800 0.102118i
\(571\) −18.2272 −0.762786 −0.381393 0.924413i \(-0.624555\pi\)
−0.381393 + 0.924413i \(0.624555\pi\)
\(572\) 0.136127 0.00569176
\(573\) 1.85940 5.72263i 0.0776774 0.239066i
\(574\) −13.3754 + 41.1652i −0.558278 + 1.71820i
\(575\) −5.98294 + 4.34686i −0.249506 + 0.181277i
\(576\) −3.20167 9.85372i −0.133403 0.410572i
\(577\) 2.96368 9.12127i 0.123380 0.379723i −0.870223 0.492658i \(-0.836025\pi\)
0.993602 + 0.112935i \(0.0360252\pi\)
\(578\) −27.3150 19.8455i −1.13616 0.825465i
\(579\) 20.8187 15.1256i 0.865194 0.628600i
\(580\) −0.0462104 0.0335738i −0.00191878 0.00139408i
\(581\) 51.1652 2.12269
\(582\) 10.4962 7.62594i 0.435082 0.316105i
\(583\) 2.86255 8.81003i 0.118555 0.364874i
\(584\) 2.96015 + 9.11041i 0.122492 + 0.376991i
\(585\) −6.20700 −0.256628
\(586\) 10.0056 + 30.7940i 0.413327 + 1.27209i
\(587\) 4.01613 12.3604i 0.165764 0.510168i −0.833328 0.552779i \(-0.813568\pi\)
0.999092 + 0.0426108i \(0.0135676\pi\)
\(588\) −0.619438 −0.0255452
\(589\) −1.81763 + 5.59410i −0.0748943 + 0.230501i
\(590\) −1.23072 3.78776i −0.0506678 0.155940i
\(591\) −12.5471 9.11601i −0.516119 0.374982i
\(592\) −23.3901 16.9939i −0.961328 0.698446i
\(593\) 32.7734 23.8112i 1.34584 0.977810i 0.346633 0.938001i \(-0.387325\pi\)
0.999207 0.0398093i \(-0.0126750\pi\)
\(594\) −2.99538 9.21883i −0.122902 0.378253i
\(595\) 10.4072 + 32.0302i 0.426655 + 1.31311i
\(596\) −0.351762 −0.0144087
\(597\) −6.76457 20.8192i −0.276855 0.852073i
\(598\) 40.7695 + 29.6207i 1.66719 + 1.21128i
\(599\) 2.09159 + 6.43727i 0.0854603 + 0.263020i 0.984650 0.174539i \(-0.0558434\pi\)
−0.899190 + 0.437558i \(0.855843\pi\)
\(600\) −3.72949 −0.152256
\(601\) −22.6041 16.4228i −0.922041 0.669902i 0.0219906 0.999758i \(-0.493000\pi\)
−0.944031 + 0.329857i \(0.893000\pi\)
\(602\) −25.0596 −1.02135
\(603\) −8.43986 −0.343698
\(604\) 0.0228634 + 0.280107i 0.000930298 + 0.0113974i
\(605\) 9.49156 0.385887
\(606\) −26.5846 −1.07993
\(607\) 25.5641 + 18.5734i 1.03762 + 0.753872i 0.969819 0.243827i \(-0.0784029\pi\)
0.0677973 + 0.997699i \(0.478403\pi\)
\(608\) −0.179880 −0.00729508
\(609\) 5.32168 + 16.3784i 0.215645 + 0.663688i
\(610\) 11.7055 + 8.50453i 0.473941 + 0.344338i
\(611\) −11.1718 34.3832i −0.451962 1.39099i
\(612\) −0.187591 −0.00758291
\(613\) −14.0115 43.1230i −0.565919 1.74172i −0.665204 0.746661i \(-0.731656\pi\)
0.0992853 0.995059i \(-0.468344\pi\)
\(614\) 0.707464 + 2.17735i 0.0285509 + 0.0878708i
\(615\) −6.20912 + 4.51119i −0.250376 + 0.181909i
\(616\) 14.8630 + 10.7986i 0.598845 + 0.435087i
\(617\) −5.84920 4.24969i −0.235480 0.171086i 0.463787 0.885947i \(-0.346490\pi\)
−0.699267 + 0.714860i \(0.746490\pi\)
\(618\) 2.10597 + 6.48152i 0.0847147 + 0.260725i
\(619\) 0.315999 0.972544i 0.0127011 0.0390898i −0.944505 0.328497i \(-0.893458\pi\)
0.957206 + 0.289407i \(0.0934580\pi\)
\(620\) 0.0967502 0.00388558
\(621\) −12.8271 + 39.4777i −0.514733 + 1.58418i
\(622\) −12.5903 38.7489i −0.504824 1.55369i
\(623\) 24.4657 0.980197
\(624\) 7.76349 + 23.8936i 0.310788 + 0.956508i
\(625\) 0.309017 0.951057i 0.0123607 0.0380423i
\(626\) 11.7245 8.51835i 0.468606 0.340462i
\(627\) −2.23912 −0.0894220
\(628\) −0.198080 0.143913i −0.00790425 0.00574277i
\(629\) −37.8861 + 27.5259i −1.51062 + 1.09753i
\(630\) −7.66217 5.56689i −0.305268 0.221790i
\(631\) 3.84579 11.8361i 0.153099 0.471189i −0.844865 0.534980i \(-0.820319\pi\)
0.997963 + 0.0637910i \(0.0203191\pi\)
\(632\) −5.67737 17.4731i −0.225833 0.695044i
\(633\) −17.9849 + 13.0668i −0.714834 + 0.519357i
\(634\) 8.63629 26.5798i 0.342991 1.05562i
\(635\) −3.32719 + 10.2400i −0.132035 + 0.406363i
\(636\) −0.226178 −0.00896853
\(637\) −100.106 −3.96633
\(638\) 1.33281 4.10196i 0.0527664 0.162398i
\(639\) −11.7473 + 8.53492i −0.464716 + 0.337636i
\(640\) −3.43496 10.5717i −0.135779 0.417884i
\(641\) −3.42749 2.49022i −0.135378 0.0983578i 0.518035 0.855359i \(-0.326664\pi\)
−0.653413 + 0.757001i \(0.726664\pi\)
\(642\) −2.06074 −0.0813311
\(643\) −4.78160 14.7162i −0.188568 0.580352i 0.811424 0.584458i \(-0.198693\pi\)
−0.999992 + 0.00410618i \(0.998693\pi\)
\(644\) −0.274862 0.845939i −0.0108311 0.0333347i
\(645\) −3.59485 2.61181i −0.141547 0.102840i
\(646\) 3.86906 11.9077i 0.152226 0.468503i
\(647\) −5.47960 + 16.8645i −0.215425 + 0.663011i 0.783698 + 0.621142i \(0.213331\pi\)
−0.999123 + 0.0418687i \(0.986669\pi\)
\(648\) −8.09356 + 5.88032i −0.317945 + 0.231001i
\(649\) −2.81436 + 2.04475i −0.110473 + 0.0802635i
\(650\) −6.81429 −0.267278
\(651\) −23.5990 17.1457i −0.924918 0.671993i
\(652\) −0.0856217 0.0622078i −0.00335320 0.00243625i
\(653\) −6.23850 + 4.53253i −0.244131 + 0.177372i −0.703122 0.711069i \(-0.748211\pi\)
0.458991 + 0.888441i \(0.348211\pi\)
\(654\) 0.375317 0.272684i 0.0146761 0.0106628i
\(655\) 13.2632 9.63630i 0.518237 0.376521i
\(656\) −18.7229 13.6030i −0.731007 0.531108i
\(657\) −3.48965 + 2.53538i −0.136144 + 0.0989146i
\(658\) 17.0465 52.4637i 0.664541 2.04525i
\(659\) 17.0866 + 12.4141i 0.665599 + 0.483586i 0.868549 0.495603i \(-0.165053\pi\)
−0.202950 + 0.979189i \(0.565053\pi\)
\(660\) 0.0113812 + 0.0350277i 0.000443013 + 0.00136345i
\(661\) −33.8319 24.5803i −1.31591 0.956062i −0.999973 0.00728051i \(-0.997683\pi\)
−0.315933 0.948782i \(-0.602317\pi\)
\(662\) 22.4895 16.3396i 0.874078 0.635055i
\(663\) 40.6932 1.58039
\(664\) −8.55154 + 26.3189i −0.331864 + 1.02137i
\(665\) −5.91570 + 4.29800i −0.229401 + 0.166669i
\(666\) 4.06954 12.5248i 0.157692 0.485325i
\(667\) −14.9423 + 10.8562i −0.578570 + 0.420356i
\(668\) 0.465590 0.0180142
\(669\) 5.44947 16.7718i 0.210689 0.648434i
\(670\) −9.26562 −0.357962
\(671\) 3.90535 12.0194i 0.150764 0.464005i
\(672\) 0.275662 0.848399i 0.0106339 0.0327277i
\(673\) −25.7314 18.6950i −0.991874 0.720639i −0.0315434 0.999502i \(-0.510042\pi\)
−0.960331 + 0.278864i \(0.910042\pi\)
\(674\) −4.79000 + 3.48014i −0.184504 + 0.134050i
\(675\) −1.73449 5.33820i −0.0667604 0.205467i
\(676\) −0.0741077 0.228080i −0.00285030 0.00877231i
\(677\) −1.53924 4.73731i −0.0591579 0.182069i 0.917111 0.398633i \(-0.130515\pi\)
−0.976269 + 0.216563i \(0.930515\pi\)
\(678\) 16.8639 + 12.2524i 0.647655 + 0.470549i
\(679\) −37.0076 −1.42022
\(680\) −18.2155 −0.698532
\(681\) −24.9705 18.1421i −0.956871 0.695208i
\(682\) 2.25755 + 6.94803i 0.0864461 + 0.266054i
\(683\) 1.18900 + 3.65938i 0.0454959 + 0.140022i 0.971224 0.238168i \(-0.0765467\pi\)
−0.925728 + 0.378190i \(0.876547\pi\)
\(684\) −0.0125860 0.0387359i −0.000481239 0.00148110i
\(685\) −13.8976 + 10.0972i −0.531000 + 0.385794i
\(686\) −81.6979 59.3570i −3.11924 2.26626i
\(687\) 0.780138 2.40102i 0.0297641 0.0916046i
\(688\) 4.14046 12.7430i 0.157854 0.485823i
\(689\) −36.5520 −1.39252
\(690\) −4.21329 + 12.9672i −0.160397 + 0.493651i
\(691\) 46.3058 1.76156 0.880778 0.473529i \(-0.157020\pi\)
0.880778 + 0.473529i \(0.157020\pi\)
\(692\) −0.357668 + 0.259861i −0.0135965 + 0.00987843i
\(693\) −2.55636 + 7.86768i −0.0971083 + 0.298868i
\(694\) −23.9657 + 17.4121i −0.909726 + 0.660955i
\(695\) 4.04572 12.4514i 0.153463 0.472310i
\(696\) −9.31438 −0.353061
\(697\) −30.3264 + 22.0334i −1.14869 + 0.834575i
\(698\) 30.4917 + 22.1535i 1.15413 + 0.838524i
\(699\) −8.44515 25.9915i −0.319425 0.983088i
\(700\) 0.0973047 + 0.0706960i 0.00367777 + 0.00267206i
\(701\) 11.3280 34.8639i 0.427851 1.31679i −0.472386 0.881392i \(-0.656607\pi\)
0.900238 0.435399i \(-0.143393\pi\)
\(702\) −30.9433 + 22.4816i −1.16788 + 0.848514i
\(703\) −8.22574 5.97635i −0.310240 0.225402i
\(704\) −8.03779 + 5.83979i −0.302935 + 0.220095i
\(705\) 7.91332 5.74936i 0.298033 0.216533i
\(706\) 13.9478 10.1337i 0.524931 0.381385i
\(707\) 61.3485 + 44.5723i 2.30725 + 1.67631i
\(708\) 0.0687160 + 0.0499251i 0.00258251 + 0.00187630i
\(709\) 24.5081 0.920420 0.460210 0.887810i \(-0.347774\pi\)
0.460210 + 0.887810i \(0.347774\pi\)
\(710\) −12.8967 + 9.36997i −0.484003 + 0.351649i
\(711\) 6.69291 4.86269i 0.251004 0.182365i
\(712\) −4.08909 + 12.5849i −0.153245 + 0.471641i
\(713\) 9.66748 29.7534i 0.362050 1.11428i
\(714\) 50.2334 + 36.4967i 1.87994 + 1.36585i
\(715\) 1.83928 + 5.66074i 0.0687854 + 0.211700i
\(716\) 0.0946541 + 0.291316i 0.00353739 + 0.0108870i
\(717\) 5.59098 0.208799
\(718\) −40.5465 29.4587i −1.51318 1.09939i
\(719\) −4.40290 13.5507i −0.164200 0.505357i 0.834776 0.550590i \(-0.185597\pi\)
−0.998976 + 0.0452328i \(0.985597\pi\)
\(720\) 4.09679 2.97649i 0.152678 0.110927i
\(721\) 6.00716 18.4881i 0.223718 0.688535i
\(722\) −23.9976 −0.893097
\(723\) 20.3152 0.755531
\(724\) −0.0581694 + 0.179027i −0.00216185 + 0.00665349i
\(725\) 0.771768 2.37526i 0.0286627 0.0882148i
\(726\) 14.1572 10.2858i 0.525423 0.381742i
\(727\) −12.4772 38.4008i −0.462753 1.42421i −0.861786 0.507271i \(-0.830654\pi\)
0.399033 0.916937i \(-0.369346\pi\)
\(728\) 22.4011 68.9435i 0.830240 2.55521i
\(729\) −21.5065 15.6254i −0.796537 0.578718i
\(730\) −3.83108 + 2.78344i −0.141795 + 0.103020i
\(731\) −17.5578 12.7565i −0.649401 0.471817i
\(732\) −0.308572 −0.0114051
\(733\) 26.8233 19.4882i 0.990740 0.719815i 0.0306568 0.999530i \(-0.490240\pi\)
0.960083 + 0.279715i \(0.0902401\pi\)
\(734\) 0.961010 2.95768i 0.0354715 0.109170i
\(735\) −8.36955 25.7588i −0.308715 0.950128i
\(736\) 0.956728 0.0352655
\(737\) 2.50094 + 7.69709i 0.0921232 + 0.283526i
\(738\) 3.25752 10.0256i 0.119911 0.369048i
\(739\) 8.69079 0.319696 0.159848 0.987142i \(-0.448900\pi\)
0.159848 + 0.987142i \(0.448900\pi\)
\(740\) −0.0516806 + 0.159057i −0.00189982 + 0.00584703i
\(741\) 2.73023 + 8.40279i 0.100298 + 0.308684i
\(742\) −45.1212 32.7825i −1.65645 1.20348i
\(743\) 8.44929 + 6.13877i 0.309975 + 0.225210i 0.731886 0.681428i \(-0.238641\pi\)
−0.421911 + 0.906637i \(0.638641\pi\)
\(744\) 12.7638 9.27348i 0.467945 0.339982i
\(745\) −4.75284 14.6277i −0.174130 0.535919i
\(746\) 11.5315 + 35.4904i 0.422199 + 1.29940i
\(747\) −12.4611 −0.455926
\(748\) 0.0555877 + 0.171081i 0.00203249 + 0.00625536i
\(749\) 4.75552 + 3.45509i 0.173763 + 0.126246i
\(750\) −0.569723 1.75343i −0.0208034 0.0640262i
\(751\) 35.7644 1.30506 0.652530 0.757763i \(-0.273708\pi\)
0.652530 + 0.757763i \(0.273708\pi\)
\(752\) 23.8617 + 17.3366i 0.870148 + 0.632199i
\(753\) −16.6089 −0.605261
\(754\) −17.0186 −0.619782
\(755\) −11.3391 + 4.73543i −0.412673 + 0.172340i
\(756\) 0.675094 0.0245529
\(757\) −26.0082 −0.945286 −0.472643 0.881254i \(-0.656700\pi\)
−0.472643 + 0.881254i \(0.656700\pi\)
\(758\) 17.5592 + 12.7575i 0.637780 + 0.463374i
\(759\) 11.9093 0.432279
\(760\) −1.22213 3.76134i −0.0443314 0.136438i
\(761\) 29.0960 + 21.1395i 1.05473 + 0.766307i 0.973106 0.230356i \(-0.0739892\pi\)
0.0816245 + 0.996663i \(0.473989\pi\)
\(762\) 6.13422 + 18.8792i 0.222219 + 0.683920i
\(763\) −1.32330 −0.0479065
\(764\) −0.0324329 0.0998181i −0.00117338 0.00361129i
\(765\) −2.53464 7.80081i −0.0916400 0.282039i
\(766\) −7.39294 + 5.37128i −0.267118 + 0.194072i
\(767\) 11.1050 + 8.06826i 0.400979 + 0.291328i
\(768\) 0.582176 + 0.422975i 0.0210075 + 0.0152628i
\(769\) 3.56271 + 10.9649i 0.128475 + 0.395405i 0.994518 0.104564i \(-0.0333448\pi\)
−0.866043 + 0.499969i \(0.833345\pi\)
\(770\) −2.80648 + 8.63745i −0.101138 + 0.311272i
\(771\) −9.48049 −0.341431
\(772\) 0.138705 0.426889i 0.00499209 0.0153641i
\(773\) 11.0969 + 34.1528i 0.399129 + 1.22839i 0.925699 + 0.378260i \(0.123478\pi\)
−0.526571 + 0.850131i \(0.676522\pi\)
\(774\) 6.10316 0.219374
\(775\) 1.30724 + 4.02328i 0.0469576 + 0.144521i
\(776\) 6.18530 19.0364i 0.222039 0.683367i
\(777\) 40.7931 29.6379i 1.46345 1.06326i
\(778\) −23.5409 −0.843980
\(779\) −6.58440 4.78384i −0.235911 0.171399i
\(780\) 0.117572 0.0854208i 0.00420974 0.00305856i
\(781\) 11.2648 + 8.18435i 0.403086 + 0.292859i
\(782\) −20.5784 + 63.3338i −0.735882 + 2.26481i
\(783\) −4.33186 13.3321i −0.154808 0.476451i
\(784\) 66.0725 48.0045i 2.35973 1.71445i
\(785\) 3.30816 10.1815i 0.118073 0.363393i
\(786\) 9.34019 28.7462i 0.333154 1.02534i
\(787\) 1.78082 0.0634795 0.0317397 0.999496i \(-0.489895\pi\)
0.0317397 + 0.999496i \(0.489895\pi\)
\(788\) −0.270520 −0.00963688
\(789\) 3.80545 11.7120i 0.135478 0.416958i
\(790\) 7.34774 5.33845i 0.261421 0.189933i
\(791\) −18.3738 56.5488i −0.653298 2.01064i
\(792\) −3.61981 2.62994i −0.128624 0.0934510i
\(793\) −49.8674 −1.77084
\(794\) 0.677933 + 2.08646i 0.0240589 + 0.0740458i
\(795\) −3.05601 9.40542i −0.108385 0.333576i
\(796\) −0.308908 0.224435i −0.0109490 0.00795488i
\(797\) −11.8343 + 36.4223i −0.419193 + 1.29014i 0.489253 + 0.872142i \(0.337270\pi\)
−0.908446 + 0.418002i \(0.862730\pi\)
\(798\) −4.16593 + 12.8214i −0.147472 + 0.453873i
\(799\) 38.6500 28.0809i 1.36734 0.993429i
\(800\) −0.104662 + 0.0760414i −0.00370036 + 0.00268847i
\(801\) −5.95851 −0.210534
\(802\) 31.8913 + 23.1704i 1.12612 + 0.818176i
\(803\) 3.34632 + 2.43124i 0.118089 + 0.0857966i
\(804\) 0.159866 0.116150i 0.00563804 0.00409628i
\(805\) 31.4639 22.8599i 1.10896 0.805704i
\(806\) 23.3213 16.9439i 0.821457 0.596823i
\(807\) −11.0133 8.00167i −0.387688 0.281672i
\(808\) −33.1812 + 24.1075i −1.16731 + 0.848100i
\(809\) −11.5769 + 35.6299i −0.407021 + 1.25268i 0.512175 + 0.858881i \(0.328840\pi\)
−0.919196 + 0.393801i \(0.871160\pi\)
\(810\) −4.00103 2.90692i −0.140582 0.102139i
\(811\) 0.130928 + 0.402955i 0.00459751 + 0.0141497i 0.953329 0.301934i \(-0.0976321\pi\)
−0.948731 + 0.316083i \(0.897632\pi\)
\(812\) 0.243018 + 0.176563i 0.00852825 + 0.00619614i
\(813\) −13.7637 + 9.99995i −0.482716 + 0.350714i
\(814\) −12.6284 −0.442625
\(815\) 1.42998 4.40103i 0.0500901 0.154161i
\(816\) −26.8587 + 19.5140i −0.940241 + 0.683125i
\(817\) 1.45610 4.48142i 0.0509425 0.156785i
\(818\) −11.9084 + 8.65194i −0.416366 + 0.302508i
\(819\) 32.6422 1.14061
\(820\) −0.0413684 + 0.127319i −0.00144465 + 0.00444617i
\(821\) 3.72490 0.130000 0.0649999 0.997885i \(-0.479295\pi\)
0.0649999 + 0.997885i \(0.479295\pi\)
\(822\) −9.78692 + 30.1210i −0.341358 + 1.05059i
\(823\) 2.25526 6.94099i 0.0786136 0.241948i −0.904024 0.427481i \(-0.859401\pi\)
0.982638 + 0.185533i \(0.0594012\pi\)
\(824\) 8.50613 + 6.18007i 0.296325 + 0.215293i
\(825\) −1.30282 + 0.946556i −0.0453585 + 0.0329549i
\(826\) 6.47227 + 19.9196i 0.225199 + 0.693091i
\(827\) −8.96368 27.5874i −0.311698 0.959307i −0.977092 0.212815i \(-0.931737\pi\)
0.665395 0.746492i \(-0.268263\pi\)
\(828\) 0.0669416 + 0.206025i 0.00232638 + 0.00715986i
\(829\) −14.0589 10.2144i −0.488287 0.354761i 0.316238 0.948680i \(-0.397580\pi\)
−0.804525 + 0.593918i \(0.797580\pi\)
\(830\) −13.6802 −0.474848
\(831\) −13.2004 −0.457917
\(832\) 31.7158 + 23.0429i 1.09955 + 0.798868i
\(833\) −40.8783 125.810i −1.41635 4.35907i
\(834\) −7.45895 22.9563i −0.258282 0.794911i
\(835\) 6.29083 + 19.3612i 0.217703 + 0.670021i
\(836\) −0.0315973 + 0.0229568i −0.00109281 + 0.000793976i
\(837\) 19.2097 + 13.9566i 0.663983 + 0.482412i
\(838\) 1.39125 4.28182i 0.0480599 0.147913i
\(839\) 1.83262 5.64022i 0.0632690 0.194722i −0.914425 0.404754i \(-0.867357\pi\)
0.977694 + 0.210033i \(0.0673570\pi\)
\(840\) 19.6132 0.676719
\(841\) −7.03401 + 21.6485i −0.242552 + 0.746498i
\(842\) −29.5141 −1.01712
\(843\) −0.445627 + 0.323767i −0.0153482 + 0.0111511i
\(844\) −0.119825 + 0.368782i −0.00412453 + 0.0126940i
\(845\) 8.48322 6.16342i 0.291832 0.212028i
\(846\) −4.15160 + 12.7773i −0.142735 + 0.439293i
\(847\) −49.9155 −1.71512
\(848\) 24.1253 17.5281i 0.828466 0.601916i
\(849\) −17.9015 13.0062i −0.614378 0.446372i
\(850\) −2.78263 8.56404i −0.0954433 0.293744i
\(851\) 43.7504 + 31.7865i 1.49974 + 1.08963i
\(852\) 0.105057 0.323333i 0.00359921 0.0110772i
\(853\) −0.312847 + 0.227297i −0.0107117 + 0.00778249i −0.593128 0.805108i \(-0.702107\pi\)
0.582417 + 0.812891i \(0.302107\pi\)
\(854\) −61.5584 44.7248i −2.10648 1.53045i
\(855\) 1.44074 1.04676i 0.0492724 0.0357985i
\(856\) −2.57209 + 1.86873i −0.0879121 + 0.0638719i
\(857\) −27.6567 + 20.0937i −0.944734 + 0.686389i −0.949555 0.313599i \(-0.898465\pi\)
0.00482162 + 0.999988i \(0.498465\pi\)
\(858\) 8.87781 + 6.45011i 0.303084 + 0.220203i
\(859\) 37.8635 + 27.5094i 1.29189 + 0.938610i 0.999842 0.0177945i \(-0.00566447\pi\)
0.292044 + 0.956405i \(0.405664\pi\)
\(860\) −0.0775063 −0.00264294
\(861\) 32.6534 23.7241i 1.11282 0.808514i
\(862\) −1.52910 + 1.11096i −0.0520814 + 0.0378393i
\(863\) 5.45366 16.7846i 0.185645 0.571356i −0.814314 0.580425i \(-0.802887\pi\)
0.999959 + 0.00906851i \(0.00288664\pi\)
\(864\) −0.224389 + 0.690600i −0.00763388 + 0.0234947i
\(865\) −15.6388 11.3622i −0.531733 0.386327i
\(866\) 11.4070 + 35.1071i 0.387625 + 1.19299i
\(867\) 9.72911 + 29.9431i 0.330418 + 1.01692i
\(868\) −0.508804 −0.0172699
\(869\) −6.41801 4.66295i −0.217716 0.158180i
\(870\) −1.42288 4.37917i −0.0482401 0.148468i
\(871\) 25.8355 18.7706i 0.875403 0.636018i
\(872\) 0.221170 0.680693i 0.00748978 0.0230512i
\(873\) 9.01304 0.305045
\(874\) −14.4585 −0.489067
\(875\) −1.62510 + 5.00155i −0.0549385 + 0.169083i
\(876\) 0.0312083 0.0960493i 0.00105443 0.00324521i
\(877\) −3.81915 + 2.77477i −0.128964 + 0.0936975i −0.650397 0.759594i \(-0.725397\pi\)
0.521434 + 0.853292i \(0.325397\pi\)
\(878\) 7.99812 + 24.6157i 0.269923 + 0.830739i
\(879\) 9.33016 28.7153i 0.314699 0.968543i
\(880\) −3.92852 2.85424i −0.132430 0.0962163i
\(881\) −21.7661 + 15.8140i −0.733319 + 0.532787i −0.890612 0.454765i \(-0.849723\pi\)
0.157293 + 0.987552i \(0.449723\pi\)
\(882\) 30.0960 + 21.8660i 1.01339 + 0.736268i
\(883\) −51.8325 −1.74430 −0.872150 0.489238i \(-0.837275\pi\)
−0.872150 + 0.489238i \(0.837275\pi\)
\(884\) 0.574240 0.417210i 0.0193138 0.0140323i
\(885\) −1.14764 + 3.53207i −0.0385774 + 0.118729i
\(886\) 2.20944 + 6.79995i 0.0742276 + 0.228449i
\(887\) 22.8338 0.766684 0.383342 0.923606i \(-0.374773\pi\)
0.383342 + 0.923606i \(0.374773\pi\)
\(888\) 8.42751 + 25.9372i 0.282809 + 0.870396i
\(889\) 17.4975 53.8517i 0.586847 1.80613i
\(890\) −6.54149 −0.219271
\(891\) −1.33488 + 4.10834i −0.0447202 + 0.137635i
\(892\) −0.0950536 0.292545i −0.00318263 0.00979513i
\(893\) 8.39159 + 6.09685i 0.280814 + 0.204023i
\(894\) −22.9409 16.6675i −0.767258 0.557445i
\(895\) −10.8352 + 7.87223i −0.362181 + 0.263140i
\(896\) 18.0643 + 55.5961i 0.603484 + 1.85733i
\(897\) −14.5213 44.6921i −0.484853 1.49222i
\(898\) −12.0372 −0.401688
\(899\) 3.26483 + 10.0481i 0.108888 + 0.335123i
\(900\) −0.0236981 0.0172177i −0.000789938 0.000573924i
\(901\) −14.9260 45.9377i −0.497259 1.53041i
\(902\) −10.1086 −0.336578
\(903\) 18.9051 + 13.7353i 0.629122 + 0.457084i
\(904\) 32.1592 1.06960
\(905\) −8.23065 −0.273596
\(906\) −11.7812 + 19.3511i −0.391405 + 0.642898i
\(907\) −6.85182 −0.227511 −0.113756 0.993509i \(-0.536288\pi\)
−0.113756 + 0.993509i \(0.536288\pi\)
\(908\) −0.538373 −0.0178665
\(909\) −14.9412 10.8554i −0.495567 0.360051i
\(910\) 35.8359 1.18795
\(911\) −8.53787 26.2769i −0.282872 0.870591i −0.987028 0.160546i \(-0.948674\pi\)
0.704156 0.710045i \(-0.251326\pi\)
\(912\) −5.83149 4.23683i −0.193100 0.140295i
\(913\) 3.69251 + 11.3644i 0.122204 + 0.376106i
\(914\) −18.9829 −0.627899
\(915\) −4.16927 12.8317i −0.137832 0.424203i
\(916\) −0.0136077 0.0418802i −0.000449612 0.00138376i
\(917\) −69.7505 + 50.6767i −2.30337 + 1.67349i
\(918\) −40.8901 29.7084i −1.34958 0.980524i
\(919\) 13.4431 + 9.76701i 0.443448 + 0.322184i 0.787004 0.616949i \(-0.211631\pi\)
−0.343555 + 0.939132i \(0.611631\pi\)
\(920\) 6.50017 + 20.0055i 0.214304 + 0.659561i
\(921\) 0.659707 2.03037i 0.0217381 0.0669030i
\(922\) −28.8054 −0.948655
\(923\) 16.9780 52.2530i 0.558839 1.71993i
\(924\) −0.0598530 0.184209i −0.00196902 0.00606002i
\(925\) −7.31252 −0.240434
\(926\) −16.2234 49.9306i −0.533135 1.64082i
\(927\) −1.46302 + 4.50271i −0.0480519 + 0.147888i
\(928\) −0.261393 + 0.189913i −0.00858064 + 0.00623420i
\(929\) −35.7533 −1.17303 −0.586513 0.809940i \(-0.699500\pi\)
−0.586513 + 0.809940i \(0.699500\pi\)
\(930\) 6.30977 + 4.58431i 0.206905 + 0.150326i
\(931\) 23.2361 16.8820i 0.761532 0.553286i
\(932\) −0.385653 0.280193i −0.0126325 0.00917803i
\(933\) −11.7404 + 36.1332i −0.384363 + 1.18295i
\(934\) −6.46647 19.9017i −0.211589 0.651205i
\(935\) −6.36321 + 4.62314i −0.208099 + 0.151193i
\(936\) −5.45569 + 16.7909i −0.178325 + 0.548827i
\(937\) −8.30346 + 25.5554i −0.271262 + 0.834859i 0.718922 + 0.695091i \(0.244636\pi\)
−0.990184 + 0.139768i \(0.955364\pi\)
\(938\) 48.7273 1.59100
\(939\) −13.5140 −0.441012
\(940\) 0.0527226 0.162264i 0.00171962 0.00529245i
\(941\) −7.92638 + 5.75885i −0.258393 + 0.187733i −0.709438 0.704768i \(-0.751051\pi\)
0.451046 + 0.892501i \(0.351051\pi\)
\(942\) −6.09914 18.7712i −0.198721 0.611600i
\(943\) 35.0205 + 25.4439i 1.14043 + 0.828568i
\(944\) −11.1987 −0.364485
\(945\) 9.12155 + 28.0733i 0.296724 + 0.913223i
\(946\) −1.80852 5.56604i −0.0587999 0.180968i
\(947\) −23.7437 17.2508i −0.771566 0.560575i 0.130870 0.991400i \(-0.458223\pi\)
−0.902436 + 0.430824i \(0.858223\pi\)
\(948\) −0.0598554 + 0.184216i −0.00194401 + 0.00598306i
\(949\) 5.04349 15.5223i 0.163719 0.503874i
\(950\) 1.58170 1.14918i 0.0513173 0.0372842i
\(951\) −21.0838 + 15.3183i −0.683690 + 0.496730i
\(952\) 95.7941 3.10470
\(953\) 33.2070 + 24.1263i 1.07568 + 0.781527i 0.976925 0.213585i \(-0.0685139\pi\)
0.0987552 + 0.995112i \(0.468514\pi\)
\(954\) 10.9891 + 7.98404i 0.355785 + 0.258493i
\(955\) 3.71264 2.69739i 0.120138 0.0872855i
\(956\) 0.0788967 0.0573218i 0.00255170 0.00185392i
\(957\) −3.25379 + 2.36402i −0.105180 + 0.0764178i
\(958\) −8.47762 6.15935i −0.273899 0.198999i
\(959\) 73.0866 53.1005i 2.36009 1.71470i
\(960\) −3.27764 + 10.0875i −0.105785 + 0.325574i
\(961\) 10.6016 + 7.70253i 0.341988 + 0.248469i
\(962\) 15.3982 + 47.3908i 0.496458 + 1.52794i
\(963\) −1.15819 0.841472i −0.0373220 0.0271161i
\(964\) 0.286677 0.208283i 0.00923324 0.00670834i
\(965\) 19.6260 0.631782
\(966\) 22.1574 68.1935i 0.712903 2.19409i
\(967\) −22.3061 + 16.2063i −0.717316 + 0.521160i −0.885525 0.464591i \(-0.846201\pi\)
0.168210 + 0.985751i \(0.446201\pi\)
\(968\) 8.34268 25.6761i 0.268144 0.825262i
\(969\) −9.44554 + 6.86259i −0.303435 + 0.220458i
\(970\) 9.89488 0.317705
\(971\) −2.94703 + 9.07003i −0.0945747 + 0.291071i −0.987143 0.159842i \(-0.948902\pi\)
0.892568 + 0.450913i \(0.148902\pi\)
\(972\) −0.279640 −0.00896946
\(973\) −21.2762 + 65.4814i −0.682083 + 2.09924i
\(974\) −15.0664 + 46.3696i −0.482758 + 1.48578i
\(975\) 5.14073 + 3.73496i 0.164635 + 0.119614i
\(976\) 32.9139 23.9133i 1.05355 0.765447i
\(977\) 4.88566 + 15.0365i 0.156306 + 0.481061i 0.998291 0.0584404i \(-0.0186128\pi\)
−0.841985 + 0.539501i \(0.818613\pi\)
\(978\) −2.63641 8.11402i −0.0843030 0.259458i
\(979\) 1.76565 + 5.43412i 0.0564305 + 0.173675i
\(980\) −0.382200 0.277685i −0.0122089 0.00887031i
\(981\) 0.322283 0.0102897
\(982\) −55.9499 −1.78543
\(983\) 40.5602 + 29.4687i 1.29367 + 0.939906i 0.999873 0.0159622i \(-0.00508114\pi\)
0.293797 + 0.955868i \(0.405081\pi\)
\(984\) 6.74591 + 20.7618i 0.215052 + 0.661861i
\(985\) −3.65514 11.2494i −0.116462 0.358435i
\(986\) −6.94959 21.3886i −0.221320 0.681153i
\(987\) −41.6156 + 30.2355i −1.32464 + 0.962408i
\(988\) 0.124678 + 0.0905836i 0.00396653 + 0.00288185i
\(989\) −7.74458 + 23.8354i −0.246263 + 0.757921i
\(990\) 0.683506 2.10361i 0.0217232 0.0668573i
\(991\) −38.2967 −1.21654 −0.608268 0.793732i \(-0.708135\pi\)
−0.608268 + 0.793732i \(0.708135\pi\)
\(992\) 0.169117 0.520489i 0.00536948 0.0165256i
\(993\) −25.9220 −0.822609
\(994\) 67.8227 49.2761i 2.15121 1.56294i
\(995\) 5.15912 15.8782i 0.163555 0.503371i
\(996\) 0.236035 0.171489i 0.00747905 0.00543385i
\(997\) 0.997752 3.07076i 0.0315991 0.0972521i −0.934013 0.357239i \(-0.883718\pi\)
0.965612 + 0.259987i \(0.0837182\pi\)
\(998\) −27.8526 −0.881659
\(999\) −33.2057 + 24.1254i −1.05058 + 0.763293i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 755.2.h.d.361.3 16
151.64 even 5 inner 755.2.h.d.366.3 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
755.2.h.d.361.3 16 1.1 even 1 trivial
755.2.h.d.366.3 yes 16 151.64 even 5 inner