Properties

Label 755.2.h.d.321.3
Level $755$
Weight $2$
Character 755.321
Analytic conductor $6.029$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [755,2,Mod(321,755)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(755, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 6])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("755.321"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 755 = 5 \cdot 151 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 755.h (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-4,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.02870535261\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 5 x^{15} + 14 x^{14} - 22 x^{13} + 54 x^{12} - 181 x^{11} + 697 x^{10} - 1743 x^{9} + 3507 x^{8} + \cdots + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 321.3
Root \(0.662424 + 2.03873i\) of defining polynomial
Character \(\chi\) \(=\) 755.321
Dual form 755.2.h.d.461.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.488177 q^{2} +(-0.778897 + 2.39720i) q^{3} -1.76168 q^{4} +(0.809017 + 0.587785i) q^{5} +(-0.380239 + 1.17026i) q^{6} +(-2.04327 - 1.48452i) q^{7} -1.83637 q^{8} +(-2.71283 - 1.97099i) q^{9} +(0.394943 + 0.286943i) q^{10} +(-0.818155 - 2.51802i) q^{11} +(1.37217 - 4.22311i) q^{12} +(0.391104 - 1.20370i) q^{13} +(-0.997475 - 0.724708i) q^{14} +(-2.03918 + 1.48155i) q^{15} +2.62690 q^{16} +(1.99426 - 1.44891i) q^{17} +(-1.32434 - 0.962191i) q^{18} -2.81911 q^{19} +(-1.42523 - 1.03549i) q^{20} +(5.15018 - 3.74183i) q^{21} +(-0.399404 - 1.22924i) q^{22} -1.14711 q^{23} +(1.43034 - 4.40214i) q^{24} +(0.309017 + 0.951057i) q^{25} +(0.190928 - 0.587616i) q^{26} +(0.720334 - 0.523353i) q^{27} +(3.59959 + 2.61525i) q^{28} +(-1.55483 - 4.78528i) q^{29} +(-0.995480 + 0.723258i) q^{30} +(1.37129 - 0.996297i) q^{31} +4.95512 q^{32} +6.67346 q^{33} +(0.973550 - 0.707325i) q^{34} +(-0.780458 - 2.40200i) q^{35} +(4.77915 + 3.47226i) q^{36} +(1.27506 - 3.92423i) q^{37} -1.37622 q^{38} +(2.58087 + 1.87511i) q^{39} +(-1.48565 - 1.07939i) q^{40} +(-0.471546 + 1.45127i) q^{41} +(2.51420 - 1.82667i) q^{42} +(4.74909 - 3.45041i) q^{43} +(1.44133 + 4.43596i) q^{44} +(-1.03621 - 3.18913i) q^{45} -0.559992 q^{46} +(-0.632339 + 1.94614i) q^{47} +(-2.04608 + 6.29720i) q^{48} +(-0.191982 - 0.590859i) q^{49} +(0.150855 + 0.464284i) q^{50} +(1.92001 + 5.90919i) q^{51} +(-0.689002 + 2.12053i) q^{52} +(0.922429 + 2.83894i) q^{53} +(0.351650 - 0.255489i) q^{54} +(0.818155 - 2.51802i) q^{55} +(3.75218 + 2.72612i) q^{56} +(2.19580 - 6.75796i) q^{57} +(-0.759032 - 2.33606i) q^{58} -3.94628 q^{59} +(3.59239 - 2.61002i) q^{60} +(-2.62955 - 8.09292i) q^{61} +(0.669430 - 0.486369i) q^{62} +(2.61707 + 8.05451i) q^{63} -2.83482 q^{64} +(1.02392 - 0.743925i) q^{65} +3.25783 q^{66} +(-1.58385 + 1.15074i) q^{67} +(-3.51325 + 2.55253i) q^{68} +(0.893481 - 2.74985i) q^{69} +(-0.381001 - 1.17260i) q^{70} +(-9.62246 - 6.99112i) q^{71} +(4.98176 + 3.61946i) q^{72} +(-0.984339 - 0.715164i) q^{73} +(0.622454 - 1.91572i) q^{74} -2.52056 q^{75} +4.96638 q^{76} +(-2.06635 + 6.35956i) q^{77} +(1.25992 + 0.915385i) q^{78} +(-13.6221 - 9.89704i) q^{79} +(2.12520 + 1.54405i) q^{80} +(-2.41511 - 7.43296i) q^{81} +(-0.230198 + 0.708475i) q^{82} +(-1.32704 + 0.964149i) q^{83} +(-9.07300 + 6.59192i) q^{84} +2.46504 q^{85} +(2.31839 - 1.68441i) q^{86} +12.6823 q^{87} +(1.50243 + 4.62401i) q^{88} +(2.76691 - 2.01028i) q^{89} +(-0.505854 - 1.55686i) q^{90} +(-2.58604 + 1.87887i) q^{91} +2.02084 q^{92} +(1.32023 + 4.06326i) q^{93} +(-0.308693 + 0.950059i) q^{94} +(-2.28071 - 1.65703i) q^{95} +(-3.85953 + 11.8784i) q^{96} +(9.51327 - 6.91180i) q^{97} +(-0.0937209 - 0.288443i) q^{98} +(-2.74348 + 8.44355i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{2} - 4 q^{3} + 24 q^{4} + 4 q^{5} - 18 q^{6} - q^{7} - 18 q^{8} - q^{10} + 13 q^{11} - 19 q^{12} + 7 q^{13} - q^{14} - q^{15} + 16 q^{16} + 9 q^{17} - 3 q^{18} - 34 q^{19} - 9 q^{20} + 2 q^{21}+ \cdots + 75 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/755\mathbb{Z}\right)^\times\).

\(n\) \(6\) \(152\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.488177 0.345193 0.172596 0.984993i \(-0.444784\pi\)
0.172596 + 0.984993i \(0.444784\pi\)
\(3\) −0.778897 + 2.39720i −0.449697 + 1.38402i 0.427553 + 0.903990i \(0.359376\pi\)
−0.877250 + 0.480034i \(0.840624\pi\)
\(4\) −1.76168 −0.880842
\(5\) 0.809017 + 0.587785i 0.361803 + 0.262866i
\(6\) −0.380239 + 1.17026i −0.155232 + 0.477755i
\(7\) −2.04327 1.48452i −0.772282 0.561096i 0.130371 0.991465i \(-0.458383\pi\)
−0.902653 + 0.430370i \(0.858383\pi\)
\(8\) −1.83637 −0.649253
\(9\) −2.71283 1.97099i −0.904278 0.656996i
\(10\) 0.394943 + 0.286943i 0.124892 + 0.0907393i
\(11\) −0.818155 2.51802i −0.246683 0.759213i −0.995355 0.0962720i \(-0.969308\pi\)
0.748672 0.662941i \(-0.230692\pi\)
\(12\) 1.37217 4.22311i 0.396112 1.21911i
\(13\) 0.391104 1.20370i 0.108473 0.333845i −0.882057 0.471143i \(-0.843842\pi\)
0.990530 + 0.137298i \(0.0438417\pi\)
\(14\) −0.997475 0.724708i −0.266586 0.193686i
\(15\) −2.03918 + 1.48155i −0.526514 + 0.382535i
\(16\) 2.62690 0.656724
\(17\) 1.99426 1.44891i 0.483679 0.351413i −0.319070 0.947731i \(-0.603370\pi\)
0.802748 + 0.596318i \(0.203370\pi\)
\(18\) −1.32434 0.962191i −0.312150 0.226791i
\(19\) −2.81911 −0.646748 −0.323374 0.946271i \(-0.604817\pi\)
−0.323374 + 0.946271i \(0.604817\pi\)
\(20\) −1.42523 1.03549i −0.318692 0.231543i
\(21\) 5.15018 3.74183i 1.12386 0.816534i
\(22\) −0.399404 1.22924i −0.0851533 0.262075i
\(23\) −1.14711 −0.239189 −0.119594 0.992823i \(-0.538159\pi\)
−0.119594 + 0.992823i \(0.538159\pi\)
\(24\) 1.43034 4.40214i 0.291967 0.898582i
\(25\) 0.309017 + 0.951057i 0.0618034 + 0.190211i
\(26\) 0.190928 0.587616i 0.0374441 0.115241i
\(27\) 0.720334 0.523353i 0.138628 0.100719i
\(28\) 3.59959 + 2.61525i 0.680258 + 0.494237i
\(29\) −1.55483 4.78528i −0.288725 0.888604i −0.985257 0.171079i \(-0.945275\pi\)
0.696532 0.717525i \(-0.254725\pi\)
\(30\) −0.995480 + 0.723258i −0.181749 + 0.132048i
\(31\) 1.37129 0.996297i 0.246290 0.178940i −0.457791 0.889060i \(-0.651359\pi\)
0.704081 + 0.710120i \(0.251359\pi\)
\(32\) 4.95512 0.875950
\(33\) 6.67346 1.16170
\(34\) 0.973550 0.707325i 0.166962 0.121305i
\(35\) −0.780458 2.40200i −0.131922 0.406013i
\(36\) 4.77915 + 3.47226i 0.796526 + 0.578710i
\(37\) 1.27506 3.92423i 0.209618 0.645139i −0.789874 0.613270i \(-0.789854\pi\)
0.999492 0.0318694i \(-0.0101461\pi\)
\(38\) −1.37622 −0.223253
\(39\) 2.58087 + 1.87511i 0.413270 + 0.300258i
\(40\) −1.48565 1.07939i −0.234902 0.170666i
\(41\) −0.471546 + 1.45127i −0.0736431 + 0.226650i −0.981102 0.193490i \(-0.938019\pi\)
0.907459 + 0.420140i \(0.138019\pi\)
\(42\) 2.51420 1.82667i 0.387949 0.281862i
\(43\) 4.74909 3.45041i 0.724229 0.526183i −0.163503 0.986543i \(-0.552279\pi\)
0.887733 + 0.460360i \(0.152279\pi\)
\(44\) 1.44133 + 4.43596i 0.217289 + 0.668746i
\(45\) −1.03621 3.18913i −0.154469 0.475407i
\(46\) −0.559992 −0.0825663
\(47\) −0.632339 + 1.94614i −0.0922361 + 0.283873i −0.986524 0.163620i \(-0.947683\pi\)
0.894287 + 0.447493i \(0.147683\pi\)
\(48\) −2.04608 + 6.29720i −0.295327 + 0.908922i
\(49\) −0.191982 0.590859i −0.0274259 0.0844084i
\(50\) 0.150855 + 0.464284i 0.0213341 + 0.0656596i
\(51\) 1.92001 + 5.90919i 0.268855 + 0.827452i
\(52\) −0.689002 + 2.12053i −0.0955474 + 0.294065i
\(53\) 0.922429 + 2.83894i 0.126705 + 0.389959i 0.994208 0.107474i \(-0.0342762\pi\)
−0.867503 + 0.497433i \(0.834276\pi\)
\(54\) 0.351650 0.255489i 0.0478535 0.0347676i
\(55\) 0.818155 2.51802i 0.110320 0.339530i
\(56\) 3.75218 + 2.72612i 0.501407 + 0.364293i
\(57\) 2.19580 6.75796i 0.290840 0.895114i
\(58\) −0.759032 2.33606i −0.0996658 0.306740i
\(59\) −3.94628 −0.513762 −0.256881 0.966443i \(-0.582695\pi\)
−0.256881 + 0.966443i \(0.582695\pi\)
\(60\) 3.59239 2.61002i 0.463776 0.336953i
\(61\) −2.62955 8.09292i −0.336679 1.03619i −0.965889 0.258957i \(-0.916621\pi\)
0.629210 0.777236i \(-0.283379\pi\)
\(62\) 0.669430 0.486369i 0.0850176 0.0617689i
\(63\) 2.61707 + 8.05451i 0.329720 + 1.01477i
\(64\) −2.83482 −0.354352
\(65\) 1.02392 0.743925i 0.127002 0.0922725i
\(66\) 3.25783 0.401011
\(67\) −1.58385 + 1.15074i −0.193498 + 0.140585i −0.680316 0.732919i \(-0.738158\pi\)
0.486818 + 0.873504i \(0.338158\pi\)
\(68\) −3.51325 + 2.55253i −0.426044 + 0.309539i
\(69\) 0.893481 2.74985i 0.107562 0.331043i
\(70\) −0.381001 1.17260i −0.0455384 0.140153i
\(71\) −9.62246 6.99112i −1.14198 0.829694i −0.154582 0.987980i \(-0.549403\pi\)
−0.987393 + 0.158286i \(0.949403\pi\)
\(72\) 4.98176 + 3.61946i 0.587105 + 0.426557i
\(73\) −0.984339 0.715164i −0.115208 0.0837036i 0.528689 0.848815i \(-0.322684\pi\)
−0.643897 + 0.765112i \(0.722684\pi\)
\(74\) 0.622454 1.91572i 0.0723588 0.222697i
\(75\) −2.52056 −0.291050
\(76\) 4.96638 0.569682
\(77\) −2.06635 + 6.35956i −0.235482 + 0.724739i
\(78\) 1.25992 + 0.915385i 0.142658 + 0.103647i
\(79\) −13.6221 9.89704i −1.53261 1.11350i −0.954768 0.297352i \(-0.903896\pi\)
−0.577838 0.816151i \(-0.696104\pi\)
\(80\) 2.12520 + 1.54405i 0.237605 + 0.172630i
\(81\) −2.41511 7.43296i −0.268346 0.825884i
\(82\) −0.230198 + 0.708475i −0.0254211 + 0.0782380i
\(83\) −1.32704 + 0.964149i −0.145661 + 0.105829i −0.658229 0.752818i \(-0.728694\pi\)
0.512568 + 0.858647i \(0.328694\pi\)
\(84\) −9.07300 + 6.59192i −0.989945 + 0.719237i
\(85\) 2.46504 0.267371
\(86\) 2.31839 1.68441i 0.249999 0.181635i
\(87\) 12.6823 1.35969
\(88\) 1.50243 + 4.62401i 0.160160 + 0.492921i
\(89\) 2.76691 2.01028i 0.293292 0.213089i −0.431402 0.902160i \(-0.641981\pi\)
0.724694 + 0.689071i \(0.241981\pi\)
\(90\) −0.505854 1.55686i −0.0533217 0.164107i
\(91\) −2.58604 + 1.87887i −0.271091 + 0.196959i
\(92\) 2.02084 0.210688
\(93\) 1.32023 + 4.06326i 0.136902 + 0.421340i
\(94\) −0.308693 + 0.950059i −0.0318392 + 0.0979911i
\(95\) −2.28071 1.65703i −0.233995 0.170008i
\(96\) −3.85953 + 11.8784i −0.393912 + 1.21234i
\(97\) 9.51327 6.91180i 0.965927 0.701787i 0.0114070 0.999935i \(-0.496369\pi\)
0.954520 + 0.298148i \(0.0963690\pi\)
\(98\) −0.0937209 0.288443i −0.00946724 0.0291372i
\(99\) −2.74348 + 8.44355i −0.275730 + 0.848609i
\(100\) −0.544390 1.67546i −0.0544390 0.167546i
\(101\) −1.01923 3.13686i −0.101417 0.312130i 0.887456 0.460893i \(-0.152471\pi\)
−0.988873 + 0.148763i \(0.952471\pi\)
\(102\) 0.937305 + 2.88473i 0.0928070 + 0.285631i
\(103\) 2.45597 7.55870i 0.241994 0.744781i −0.754122 0.656734i \(-0.771937\pi\)
0.996116 0.0880468i \(-0.0280625\pi\)
\(104\) −0.718211 + 2.21043i −0.0704264 + 0.216750i
\(105\) 6.36598 0.621256
\(106\) 0.450308 + 1.38591i 0.0437378 + 0.134611i
\(107\) 0.0592246 + 0.182275i 0.00572546 + 0.0176211i 0.953878 0.300193i \(-0.0970511\pi\)
−0.948153 + 0.317814i \(0.897051\pi\)
\(108\) −1.26900 + 0.921983i −0.122110 + 0.0887179i
\(109\) −16.6033 + 12.0630i −1.59031 + 1.15543i −0.686804 + 0.726842i \(0.740987\pi\)
−0.903502 + 0.428583i \(0.859013\pi\)
\(110\) 0.399404 1.22924i 0.0380817 0.117203i
\(111\) 8.41402 + 6.11314i 0.798623 + 0.580234i
\(112\) −5.36745 3.89968i −0.507176 0.368485i
\(113\) −13.1780 −1.23969 −0.619843 0.784726i \(-0.712804\pi\)
−0.619843 + 0.784726i \(0.712804\pi\)
\(114\) 1.07194 3.29908i 0.100396 0.308987i
\(115\) −0.928031 0.674254i −0.0865394 0.0628745i
\(116\) 2.73912 + 8.43015i 0.254321 + 0.782720i
\(117\) −3.43347 + 2.49456i −0.317425 + 0.230623i
\(118\) −1.92648 −0.177347
\(119\) −6.22574 −0.570713
\(120\) 3.74468 2.72067i 0.341841 0.248362i
\(121\) 3.22812 2.34537i 0.293466 0.213215i
\(122\) −1.28368 3.95077i −0.116219 0.357686i
\(123\) −3.11169 2.26078i −0.280572 0.203848i
\(124\) −2.41577 + 1.75516i −0.216943 + 0.157618i
\(125\) −0.309017 + 0.951057i −0.0276393 + 0.0850651i
\(126\) 1.27759 + 3.93202i 0.113817 + 0.350292i
\(127\) −5.69277 + 17.5205i −0.505152 + 1.55470i 0.295364 + 0.955385i \(0.404559\pi\)
−0.800515 + 0.599312i \(0.795441\pi\)
\(128\) −11.2941 −0.998270
\(129\) 4.57228 + 14.0720i 0.402567 + 1.23897i
\(130\) 0.499856 0.363167i 0.0438403 0.0318518i
\(131\) −8.00312 5.81461i −0.699236 0.508025i 0.180447 0.983585i \(-0.442246\pi\)
−0.879683 + 0.475560i \(0.842246\pi\)
\(132\) −11.7565 −1.02327
\(133\) 5.76019 + 4.18502i 0.499471 + 0.362887i
\(134\) −0.773200 + 0.561762i −0.0667943 + 0.0485289i
\(135\) 0.890382 0.0766319
\(136\) −3.66219 + 2.66073i −0.314030 + 0.228156i
\(137\) 10.5726 + 7.68143i 0.903276 + 0.656269i 0.939305 0.343082i \(-0.111471\pi\)
−0.0360290 + 0.999351i \(0.511471\pi\)
\(138\) 0.436176 1.34241i 0.0371298 0.114274i
\(139\) −1.56264 + 4.80932i −0.132542 + 0.407921i −0.995200 0.0978666i \(-0.968798\pi\)
0.862658 + 0.505788i \(0.168798\pi\)
\(140\) 1.37492 + 4.23157i 0.116202 + 0.357633i
\(141\) −4.17275 3.03168i −0.351409 0.255314i
\(142\) −4.69746 3.41290i −0.394202 0.286404i
\(143\) −3.35092 −0.280218
\(144\) −7.12633 5.17758i −0.593861 0.431465i
\(145\) 1.55483 4.78528i 0.129122 0.397396i
\(146\) −0.480531 0.349126i −0.0397690 0.0288939i
\(147\) 1.56594 0.129157
\(148\) −2.24625 + 6.91325i −0.184641 + 0.568265i
\(149\) −7.20538 −0.590288 −0.295144 0.955453i \(-0.595368\pi\)
−0.295144 + 0.955453i \(0.595368\pi\)
\(150\) −1.23048 −0.100468
\(151\) −7.27232 + 9.90522i −0.591813 + 0.806075i
\(152\) 5.17691 0.419903
\(153\) −8.26588 −0.668257
\(154\) −1.00874 + 3.10459i −0.0812867 + 0.250175i
\(155\) 1.69500 0.136146
\(156\) −4.54667 3.30335i −0.364025 0.264480i
\(157\) −0.114905 + 0.353642i −0.00917044 + 0.0282237i −0.955537 0.294871i \(-0.904723\pi\)
0.946367 + 0.323095i \(0.104723\pi\)
\(158\) −6.64999 4.83150i −0.529045 0.384374i
\(159\) −7.52399 −0.596691
\(160\) 4.00878 + 2.91255i 0.316922 + 0.230257i
\(161\) 2.34385 + 1.70291i 0.184721 + 0.134208i
\(162\) −1.17900 3.62860i −0.0926312 0.285089i
\(163\) 5.09571 15.6830i 0.399127 1.22839i −0.526573 0.850130i \(-0.676523\pi\)
0.925700 0.378257i \(-0.123477\pi\)
\(164\) 0.830714 2.55668i 0.0648679 0.199643i
\(165\) 5.39895 + 3.92256i 0.420307 + 0.305371i
\(166\) −0.647829 + 0.470675i −0.0502813 + 0.0365315i
\(167\) 6.79703 0.525970 0.262985 0.964800i \(-0.415293\pi\)
0.262985 + 0.964800i \(0.415293\pi\)
\(168\) −9.45762 + 6.87136i −0.729671 + 0.530137i
\(169\) 9.22130 + 6.69967i 0.709331 + 0.515359i
\(170\) 1.20337 0.0922946
\(171\) 7.64777 + 5.55643i 0.584840 + 0.424911i
\(172\) −8.36639 + 6.07854i −0.637931 + 0.463484i
\(173\) 1.44824 + 4.45724i 0.110108 + 0.338878i 0.990895 0.134634i \(-0.0429860\pi\)
−0.880787 + 0.473512i \(0.842986\pi\)
\(174\) 6.19121 0.469355
\(175\) 0.780458 2.40200i 0.0589971 0.181574i
\(176\) −2.14921 6.61459i −0.162003 0.498593i
\(177\) 3.07374 9.46001i 0.231037 0.711058i
\(178\) 1.35074 0.981371i 0.101242 0.0735569i
\(179\) 3.41684 + 2.48248i 0.255387 + 0.185549i 0.708111 0.706101i \(-0.249548\pi\)
−0.452724 + 0.891651i \(0.649548\pi\)
\(180\) 1.82547 + 5.61823i 0.136063 + 0.418758i
\(181\) 8.01886 5.82604i 0.596037 0.433046i −0.248433 0.968649i \(-0.579916\pi\)
0.844470 + 0.535603i \(0.179916\pi\)
\(182\) −1.26244 + 0.917219i −0.0935786 + 0.0679888i
\(183\) 21.4485 1.58552
\(184\) 2.10651 0.155294
\(185\) 3.33815 2.42531i 0.245425 0.178312i
\(186\) 0.644507 + 1.98359i 0.0472575 + 0.145444i
\(187\) −5.28001 3.83615i −0.386113 0.280527i
\(188\) 1.11398 3.42848i 0.0812454 0.250048i
\(189\) −2.24876 −0.163573
\(190\) −1.11339 0.808923i −0.0807736 0.0586854i
\(191\) 0.368440 + 0.267688i 0.0266594 + 0.0193692i 0.601035 0.799223i \(-0.294755\pi\)
−0.574376 + 0.818592i \(0.694755\pi\)
\(192\) 2.20803 6.79563i 0.159351 0.490432i
\(193\) −11.3171 + 8.22239i −0.814626 + 0.591861i −0.915168 0.403072i \(-0.867942\pi\)
0.100542 + 0.994933i \(0.467942\pi\)
\(194\) 4.64416 3.37418i 0.333431 0.242252i
\(195\) 0.985804 + 3.03399i 0.0705949 + 0.217269i
\(196\) 0.338211 + 1.04091i 0.0241579 + 0.0743504i
\(197\) 5.55681 0.395907 0.197953 0.980211i \(-0.436571\pi\)
0.197953 + 0.980211i \(0.436571\pi\)
\(198\) −1.33930 + 4.12195i −0.0951800 + 0.292934i
\(199\) 2.04543 6.29518i 0.144997 0.446254i −0.852014 0.523519i \(-0.824619\pi\)
0.997011 + 0.0772654i \(0.0246189\pi\)
\(200\) −0.567468 1.74649i −0.0401261 0.123495i
\(201\) −1.52489 4.69312i −0.107557 0.331027i
\(202\) −0.497564 1.53134i −0.0350085 0.107745i
\(203\) −3.92691 + 12.0858i −0.275615 + 0.848255i
\(204\) −3.38245 10.4101i −0.236819 0.728854i
\(205\) −1.23452 + 0.896933i −0.0862228 + 0.0626445i
\(206\) 1.19895 3.68998i 0.0835346 0.257093i
\(207\) 3.11192 + 2.26094i 0.216293 + 0.157146i
\(208\) 1.02739 3.16198i 0.0712367 0.219244i
\(209\) 2.30647 + 7.09858i 0.159542 + 0.491019i
\(210\) 3.10772 0.214453
\(211\) −13.7370 + 9.98055i −0.945697 + 0.687089i −0.949785 0.312902i \(-0.898699\pi\)
0.00408810 + 0.999992i \(0.498699\pi\)
\(212\) −1.62503 5.00132i −0.111607 0.343492i
\(213\) 24.2540 17.6216i 1.66186 1.20741i
\(214\) 0.0289121 + 0.0889822i 0.00197639 + 0.00608269i
\(215\) 5.87020 0.400344
\(216\) −1.32280 + 0.961068i −0.0900049 + 0.0653924i
\(217\) −4.28092 −0.290608
\(218\) −8.10534 + 5.88887i −0.548963 + 0.398845i
\(219\) 2.48109 1.80262i 0.167657 0.121810i
\(220\) −1.44133 + 4.43596i −0.0971745 + 0.299072i
\(221\) −0.964087 2.96716i −0.0648515 0.199592i
\(222\) 4.10753 + 2.98429i 0.275679 + 0.200293i
\(223\) −7.79199 5.66121i −0.521790 0.379103i 0.295488 0.955347i \(-0.404518\pi\)
−0.817278 + 0.576244i \(0.804518\pi\)
\(224\) −10.1246 7.35597i −0.676480 0.491492i
\(225\) 1.03621 3.18913i 0.0690807 0.212608i
\(226\) −6.43321 −0.427931
\(227\) 11.1068 0.737186 0.368593 0.929591i \(-0.379840\pi\)
0.368593 + 0.929591i \(0.379840\pi\)
\(228\) −3.86830 + 11.9054i −0.256184 + 0.788454i
\(229\) 11.0516 + 8.02946i 0.730310 + 0.530602i 0.889662 0.456620i \(-0.150940\pi\)
−0.159351 + 0.987222i \(0.550940\pi\)
\(230\) −0.453043 0.329155i −0.0298728 0.0217038i
\(231\) −13.6357 9.90689i −0.897161 0.651825i
\(232\) 2.85524 + 8.78753i 0.187456 + 0.576929i
\(233\) 6.57640 20.2401i 0.430834 1.32597i −0.466461 0.884542i \(-0.654471\pi\)
0.897296 0.441430i \(-0.145529\pi\)
\(234\) −1.67614 + 1.21779i −0.109573 + 0.0796093i
\(235\) −1.65548 + 1.20278i −0.107992 + 0.0784607i
\(236\) 6.95209 0.452543
\(237\) 34.3354 24.9461i 2.23032 1.62042i
\(238\) −3.03926 −0.197006
\(239\) 5.15714 + 15.8720i 0.333587 + 1.02668i 0.967414 + 0.253201i \(0.0814834\pi\)
−0.633826 + 0.773475i \(0.718517\pi\)
\(240\) −5.35671 + 3.89188i −0.345774 + 0.251220i
\(241\) −6.06687 18.6719i −0.390802 1.20276i −0.932183 0.361987i \(-0.882099\pi\)
0.541381 0.840777i \(-0.317901\pi\)
\(242\) 1.57589 1.14495i 0.101302 0.0736004i
\(243\) 22.3706 1.43507
\(244\) 4.63243 + 14.2572i 0.296561 + 0.912721i
\(245\) 0.191982 0.590859i 0.0122653 0.0377486i
\(246\) −1.51906 1.10366i −0.0968515 0.0703667i
\(247\) −1.10257 + 3.39335i −0.0701546 + 0.215914i
\(248\) −2.51818 + 1.82957i −0.159905 + 0.116178i
\(249\) −1.27763 3.93215i −0.0809667 0.249190i
\(250\) −0.150855 + 0.464284i −0.00954090 + 0.0293639i
\(251\) 0.339278 + 1.04419i 0.0214151 + 0.0659088i 0.961193 0.275877i \(-0.0889683\pi\)
−0.939778 + 0.341786i \(0.888968\pi\)
\(252\) −4.61045 14.1895i −0.290431 0.893854i
\(253\) 0.938514 + 2.88845i 0.0590039 + 0.181595i
\(254\) −2.77908 + 8.55312i −0.174375 + 0.536670i
\(255\) −1.92001 + 5.90919i −0.120236 + 0.370048i
\(256\) 0.156107 0.00975666
\(257\) 0.489912 + 1.50779i 0.0305598 + 0.0940535i 0.965173 0.261612i \(-0.0842542\pi\)
−0.934613 + 0.355666i \(0.884254\pi\)
\(258\) 2.23208 + 6.86964i 0.138963 + 0.427685i
\(259\) −8.43088 + 6.12539i −0.523869 + 0.380613i
\(260\) −1.80383 + 1.31056i −0.111869 + 0.0812775i
\(261\) −5.21374 + 16.0462i −0.322722 + 0.993237i
\(262\) −3.90694 2.83856i −0.241371 0.175367i
\(263\) −19.2378 13.9771i −1.18626 0.861865i −0.193392 0.981122i \(-0.561949\pi\)
−0.992863 + 0.119257i \(0.961949\pi\)
\(264\) −12.2549 −0.754238
\(265\) −0.922429 + 2.83894i −0.0566643 + 0.174395i
\(266\) 2.81199 + 2.04303i 0.172414 + 0.125266i
\(267\) 2.66390 + 8.19864i 0.163028 + 0.501749i
\(268\) 2.79025 2.02723i 0.170441 0.123833i
\(269\) 17.4397 1.06332 0.531660 0.846958i \(-0.321568\pi\)
0.531660 + 0.846958i \(0.321568\pi\)
\(270\) 0.434664 0.0264528
\(271\) −22.9831 + 16.6982i −1.39612 + 1.01434i −0.400962 + 0.916094i \(0.631324\pi\)
−0.995162 + 0.0982492i \(0.968676\pi\)
\(272\) 5.23871 3.80614i 0.317643 0.230781i
\(273\) −2.48976 7.66270i −0.150687 0.463768i
\(274\) 5.16129 + 3.74989i 0.311805 + 0.226539i
\(275\) 2.14196 1.55622i 0.129165 0.0938438i
\(276\) −1.57403 + 4.84437i −0.0947455 + 0.291597i
\(277\) 4.47620 + 13.7763i 0.268949 + 0.827739i 0.990757 + 0.135646i \(0.0433110\pi\)
−0.721809 + 0.692093i \(0.756689\pi\)
\(278\) −0.762846 + 2.34780i −0.0457524 + 0.140812i
\(279\) −5.68376 −0.340278
\(280\) 1.43321 + 4.41096i 0.0856505 + 0.263605i
\(281\) 22.1167 16.0687i 1.31937 0.958579i 0.319431 0.947610i \(-0.396508\pi\)
0.999940 0.0109693i \(-0.00349170\pi\)
\(282\) −2.03704 1.48000i −0.121304 0.0881325i
\(283\) 5.14080 0.305589 0.152794 0.988258i \(-0.451173\pi\)
0.152794 + 0.988258i \(0.451173\pi\)
\(284\) 16.9517 + 12.3161i 1.00590 + 0.730829i
\(285\) 5.74867 4.17665i 0.340522 0.247403i
\(286\) −1.63584 −0.0967292
\(287\) 3.11793 2.26531i 0.184046 0.133717i
\(288\) −13.4424 9.76649i −0.792102 0.575496i
\(289\) −3.37557 + 10.3889i −0.198563 + 0.611115i
\(290\) 0.759032 2.33606i 0.0445719 0.137178i
\(291\) 9.15910 + 28.1888i 0.536916 + 1.65246i
\(292\) 1.73409 + 1.25989i 0.101480 + 0.0737296i
\(293\) 6.07834 + 4.41617i 0.355100 + 0.257995i 0.751006 0.660296i \(-0.229569\pi\)
−0.395905 + 0.918291i \(0.629569\pi\)
\(294\) 0.764455 0.0445839
\(295\) −3.19261 2.31956i −0.185881 0.135050i
\(296\) −2.34147 + 7.20632i −0.136095 + 0.418859i
\(297\) −1.90716 1.38563i −0.110665 0.0804026i
\(298\) −3.51750 −0.203763
\(299\) −0.448640 + 1.38077i −0.0259455 + 0.0798521i
\(300\) 4.44044 0.256369
\(301\) −14.8259 −0.854548
\(302\) −3.55018 + 4.83549i −0.204290 + 0.278251i
\(303\) 8.31357 0.477602
\(304\) −7.40550 −0.424735
\(305\) 2.62955 8.09292i 0.150568 0.463399i
\(306\) −4.03521 −0.230678
\(307\) 6.33880 + 4.60541i 0.361774 + 0.262844i 0.753792 0.657113i \(-0.228223\pi\)
−0.392017 + 0.919958i \(0.628223\pi\)
\(308\) 3.64025 11.2035i 0.207422 0.638380i
\(309\) 16.2068 + 11.7749i 0.921970 + 0.669851i
\(310\) 0.827460 0.0469966
\(311\) −17.5154 12.7257i −0.993207 0.721607i −0.0325862 0.999469i \(-0.510374\pi\)
−0.960621 + 0.277862i \(0.910374\pi\)
\(312\) −4.73942 3.44339i −0.268317 0.194944i
\(313\) −4.06570 12.5129i −0.229807 0.707272i −0.997768 0.0667761i \(-0.978729\pi\)
0.767961 0.640496i \(-0.221271\pi\)
\(314\) −0.0560941 + 0.172640i −0.00316557 + 0.00974263i
\(315\) −2.61707 + 8.05451i −0.147455 + 0.453820i
\(316\) 23.9978 + 17.4354i 1.34998 + 0.980821i
\(317\) 23.6261 17.1653i 1.32697 0.964102i 0.327155 0.944971i \(-0.393910\pi\)
0.999817 0.0191309i \(-0.00608992\pi\)
\(318\) −3.67304 −0.205974
\(319\) −10.7774 + 7.83021i −0.603416 + 0.438407i
\(320\) −2.29342 1.66626i −0.128206 0.0931470i
\(321\) −0.483078 −0.0269628
\(322\) 1.14421 + 0.831319i 0.0637645 + 0.0463276i
\(323\) −5.62203 + 4.08464i −0.312818 + 0.227276i
\(324\) 4.25467 + 13.0945i 0.236370 + 0.727473i
\(325\) 1.26564 0.0702051
\(326\) 2.48761 7.65607i 0.137776 0.424031i
\(327\) −15.9852 49.1972i −0.883981 2.72061i
\(328\) 0.865931 2.66506i 0.0478130 0.147153i
\(329\) 4.18112 3.03776i 0.230512 0.167477i
\(330\) 2.63564 + 1.91490i 0.145087 + 0.105412i
\(331\) −4.07934 12.5549i −0.224221 0.690081i −0.998370 0.0570775i \(-0.981822\pi\)
0.774149 0.633004i \(-0.218178\pi\)
\(332\) 2.33782 1.69853i 0.128305 0.0932187i
\(333\) −11.1936 + 8.13265i −0.613407 + 0.445666i
\(334\) 3.31815 0.181561
\(335\) −1.95775 −0.106963
\(336\) 13.5290 9.82939i 0.738068 0.536237i
\(337\) −0.0793030 0.244069i −0.00431991 0.0132953i 0.948873 0.315657i \(-0.102225\pi\)
−0.953193 + 0.302362i \(0.902225\pi\)
\(338\) 4.50162 + 3.27062i 0.244856 + 0.177898i
\(339\) 10.2643 31.5904i 0.557483 1.71576i
\(340\) −4.34262 −0.235511
\(341\) −3.63062 2.63780i −0.196609 0.142845i
\(342\) 3.73346 + 2.71252i 0.201882 + 0.146676i
\(343\) −5.94808 + 18.3063i −0.321166 + 0.988448i
\(344\) −8.72106 + 6.33622i −0.470208 + 0.341626i
\(345\) 2.33916 1.69950i 0.125936 0.0914981i
\(346\) 0.706999 + 2.17592i 0.0380085 + 0.116978i
\(347\) 5.65041 + 17.3902i 0.303330 + 0.933553i 0.980295 + 0.197538i \(0.0632947\pi\)
−0.676965 + 0.736015i \(0.736705\pi\)
\(348\) −22.3422 −1.19767
\(349\) −10.4484 + 32.1569i −0.559291 + 1.72132i 0.125042 + 0.992151i \(0.460093\pi\)
−0.684333 + 0.729169i \(0.739907\pi\)
\(350\) 0.381001 1.17260i 0.0203654 0.0626782i
\(351\) −0.348232 1.07175i −0.0185873 0.0572057i
\(352\) −4.05406 12.4771i −0.216082 0.665032i
\(353\) −4.98371 15.3383i −0.265256 0.816375i −0.991634 0.129079i \(-0.958798\pi\)
0.726378 0.687295i \(-0.241202\pi\)
\(354\) 1.50053 4.61816i 0.0797523 0.245452i
\(355\) −3.67545 11.3119i −0.195073 0.600372i
\(356\) −4.87442 + 3.54148i −0.258344 + 0.187698i
\(357\) 4.84921 14.9243i 0.256647 0.789880i
\(358\) 1.66802 + 1.21189i 0.0881576 + 0.0640503i
\(359\) −0.0849648 + 0.261495i −0.00448427 + 0.0138012i −0.953274 0.302108i \(-0.902310\pi\)
0.948789 + 0.315909i \(0.102310\pi\)
\(360\) 1.90286 + 5.85640i 0.100290 + 0.308660i
\(361\) −11.0526 −0.581718
\(362\) 3.91462 2.84414i 0.205748 0.149485i
\(363\) 3.10794 + 9.56526i 0.163125 + 0.502046i
\(364\) 4.55579 3.30997i 0.238788 0.173490i
\(365\) −0.375984 1.15716i −0.0196799 0.0605685i
\(366\) 10.4707 0.547310
\(367\) −14.3527 + 10.4278i −0.749203 + 0.544327i −0.895580 0.444901i \(-0.853239\pi\)
0.146377 + 0.989229i \(0.453239\pi\)
\(368\) −3.01334 −0.157081
\(369\) 4.13966 3.00764i 0.215502 0.156571i
\(370\) 1.62961 1.18398i 0.0847191 0.0615521i
\(371\) 2.32970 7.17008i 0.120952 0.372252i
\(372\) −2.32583 7.15818i −0.120589 0.371134i
\(373\) −1.24157 0.902056i −0.0642863 0.0467067i 0.555178 0.831732i \(-0.312650\pi\)
−0.619464 + 0.785025i \(0.712650\pi\)
\(374\) −2.57758 1.87272i −0.133283 0.0968360i
\(375\) −2.03918 1.48155i −0.105303 0.0765070i
\(376\) 1.16120 3.57382i 0.0598846 0.184306i
\(377\) −6.36812 −0.327975
\(378\) −1.09779 −0.0564644
\(379\) 4.16460 12.8173i 0.213921 0.658382i −0.785307 0.619106i \(-0.787495\pi\)
0.999228 0.0392758i \(-0.0125051\pi\)
\(380\) 4.01788 + 2.91916i 0.206113 + 0.149750i
\(381\) −37.5662 27.2934i −1.92457 1.39828i
\(382\) 0.179864 + 0.130679i 0.00920264 + 0.00668611i
\(383\) −8.56814 26.3700i −0.437812 1.34745i −0.890178 0.455613i \(-0.849420\pi\)
0.452366 0.891832i \(-0.350580\pi\)
\(384\) 8.79697 27.0743i 0.448919 1.38163i
\(385\) −5.40976 + 3.93042i −0.275707 + 0.200313i
\(386\) −5.52477 + 4.01398i −0.281203 + 0.204306i
\(387\) −19.6842 −1.00060
\(388\) −16.7594 + 12.1764i −0.850829 + 0.618163i
\(389\) 28.5544 1.44776 0.723882 0.689924i \(-0.242356\pi\)
0.723882 + 0.689924i \(0.242356\pi\)
\(390\) 0.481246 + 1.48112i 0.0243689 + 0.0749996i
\(391\) −2.28763 + 1.66206i −0.115691 + 0.0840541i
\(392\) 0.352548 + 1.08503i 0.0178064 + 0.0548024i
\(393\) 20.1724 14.6561i 1.01756 0.739303i
\(394\) 2.71271 0.136664
\(395\) −5.20318 16.0137i −0.261800 0.805739i
\(396\) 4.83314 14.8749i 0.242874 0.747490i
\(397\) −1.20654 0.876606i −0.0605547 0.0439956i 0.557096 0.830448i \(-0.311915\pi\)
−0.617651 + 0.786452i \(0.711915\pi\)
\(398\) 0.998530 3.07316i 0.0500518 0.154044i
\(399\) −14.5189 + 10.5486i −0.726855 + 0.528091i
\(400\) 0.811756 + 2.49833i 0.0405878 + 0.124916i
\(401\) −1.49992 + 4.61628i −0.0749024 + 0.230526i −0.981497 0.191476i \(-0.938673\pi\)
0.906595 + 0.422002i \(0.138673\pi\)
\(402\) −0.744413 2.29107i −0.0371280 0.114268i
\(403\) −0.662923 2.04027i −0.0330225 0.101633i
\(404\) 1.79556 + 5.52616i 0.0893324 + 0.274937i
\(405\) 2.41511 7.43296i 0.120008 0.369347i
\(406\) −1.91702 + 5.89999i −0.0951403 + 0.292812i
\(407\) −10.9245 −0.541507
\(408\) −3.52584 10.8514i −0.174555 0.537226i
\(409\) −4.91741 15.1342i −0.243150 0.748340i −0.995935 0.0900733i \(-0.971290\pi\)
0.752785 0.658267i \(-0.228710\pi\)
\(410\) −0.602665 + 0.437862i −0.0297635 + 0.0216245i
\(411\) −26.6489 + 19.3615i −1.31449 + 0.955034i
\(412\) −4.32664 + 13.3160i −0.213158 + 0.656034i
\(413\) 8.06329 + 5.85833i 0.396769 + 0.288269i
\(414\) 1.51917 + 1.10374i 0.0746629 + 0.0542458i
\(415\) −1.64031 −0.0805196
\(416\) 1.93797 5.96446i 0.0950168 0.292432i
\(417\) −10.3118 7.49193i −0.504969 0.366882i
\(418\) 1.12596 + 3.46536i 0.0550727 + 0.169496i
\(419\) 16.6017 12.0618i 0.811046 0.589260i −0.103088 0.994672i \(-0.532872\pi\)
0.914134 + 0.405413i \(0.132872\pi\)
\(420\) −11.2148 −0.547228
\(421\) 2.49095 0.121401 0.0607007 0.998156i \(-0.480666\pi\)
0.0607007 + 0.998156i \(0.480666\pi\)
\(422\) −6.70610 + 4.87227i −0.326448 + 0.237178i
\(423\) 5.55125 4.03322i 0.269911 0.196102i
\(424\) −1.69392 5.21334i −0.0822639 0.253182i
\(425\) 1.99426 + 1.44891i 0.0967357 + 0.0702826i
\(426\) 11.8402 8.60244i 0.573662 0.416790i
\(427\) −6.64123 + 20.4396i −0.321392 + 0.989142i
\(428\) −0.104335 0.321110i −0.00504322 0.0155214i
\(429\) 2.61002 8.03282i 0.126013 0.387828i
\(430\) 2.86569 0.138196
\(431\) 7.92838 + 24.4011i 0.381897 + 1.17536i 0.938706 + 0.344717i \(0.112025\pi\)
−0.556810 + 0.830640i \(0.687975\pi\)
\(432\) 1.89224 1.37480i 0.0910406 0.0661449i
\(433\) −3.13691 2.27910i −0.150750 0.109526i 0.509854 0.860261i \(-0.329700\pi\)
−0.660604 + 0.750735i \(0.729700\pi\)
\(434\) −2.08985 −0.100316
\(435\) 10.2602 + 7.45448i 0.491940 + 0.357415i
\(436\) 29.2497 21.2512i 1.40081 1.01775i
\(437\) 3.23383 0.154695
\(438\) 1.21121 0.879996i 0.0578739 0.0420478i
\(439\) −5.23174 3.80108i −0.249697 0.181416i 0.455895 0.890033i \(-0.349319\pi\)
−0.705593 + 0.708618i \(0.749319\pi\)
\(440\) −1.50243 + 4.62401i −0.0716257 + 0.220441i
\(441\) −0.643762 + 1.98129i −0.0306553 + 0.0943474i
\(442\) −0.470645 1.44850i −0.0223863 0.0688979i
\(443\) 15.8614 + 11.5240i 0.753600 + 0.547522i 0.896941 0.442151i \(-0.145784\pi\)
−0.143341 + 0.989673i \(0.545784\pi\)
\(444\) −14.8228 10.7694i −0.703461 0.511094i
\(445\) 3.42009 0.162128
\(446\) −3.80387 2.76367i −0.180118 0.130864i
\(447\) 5.61225 17.2727i 0.265450 0.816973i
\(448\) 5.79229 + 4.20834i 0.273660 + 0.198826i
\(449\) −2.00893 −0.0948073 −0.0474037 0.998876i \(-0.515095\pi\)
−0.0474037 + 0.998876i \(0.515095\pi\)
\(450\) 0.505854 1.55686i 0.0238462 0.0733910i
\(451\) 4.04013 0.190242
\(452\) 23.2155 1.09197
\(453\) −18.0804 25.1484i −0.849491 1.18157i
\(454\) 5.42210 0.254472
\(455\) −3.19652 −0.149855
\(456\) −4.03228 + 12.4101i −0.188829 + 0.581156i
\(457\) −22.3737 −1.04660 −0.523298 0.852150i \(-0.675299\pi\)
−0.523298 + 0.852150i \(0.675299\pi\)
\(458\) 5.39513 + 3.91979i 0.252098 + 0.183160i
\(459\) 0.678238 2.08740i 0.0316575 0.0974316i
\(460\) 1.63490 + 1.18782i 0.0762275 + 0.0553825i
\(461\) 20.2341 0.942396 0.471198 0.882027i \(-0.343822\pi\)
0.471198 + 0.882027i \(0.343822\pi\)
\(462\) −6.65661 4.83631i −0.309694 0.225006i
\(463\) 6.95214 + 5.05103i 0.323093 + 0.234741i 0.737494 0.675353i \(-0.236009\pi\)
−0.414401 + 0.910094i \(0.636009\pi\)
\(464\) −4.08438 12.5704i −0.189613 0.583568i
\(465\) −1.32023 + 4.06326i −0.0612243 + 0.188429i
\(466\) 3.21044 9.88073i 0.148721 0.457716i
\(467\) 15.7235 + 11.4238i 0.727598 + 0.528631i 0.888803 0.458290i \(-0.151538\pi\)
−0.161205 + 0.986921i \(0.551538\pi\)
\(468\) 6.04869 4.39463i 0.279601 0.203142i
\(469\) 4.94452 0.228317
\(470\) −0.808168 + 0.587169i −0.0372780 + 0.0270841i
\(471\) −0.758252 0.550902i −0.0349384 0.0253842i
\(472\) 7.24681 0.333561
\(473\) −12.5737 9.13534i −0.578140 0.420043i
\(474\) 16.7617 12.1781i 0.769892 0.559359i
\(475\) −0.871152 2.68113i −0.0399712 0.123019i
\(476\) 10.9678 0.502707
\(477\) 3.09313 9.51968i 0.141625 0.435876i
\(478\) 2.51759 + 7.74835i 0.115152 + 0.354401i
\(479\) 7.23335 22.2620i 0.330500 1.01717i −0.638396 0.769708i \(-0.720402\pi\)
0.968896 0.247467i \(-0.0795981\pi\)
\(480\) −10.1044 + 7.34126i −0.461200 + 0.335081i
\(481\) −4.22489 3.06957i −0.192639 0.139960i
\(482\) −2.96171 9.11519i −0.134902 0.415186i
\(483\) −5.90783 + 4.29229i −0.268815 + 0.195306i
\(484\) −5.68693 + 4.13180i −0.258497 + 0.187809i
\(485\) 11.7591 0.533951
\(486\) 10.9208 0.495377
\(487\) 27.6215 20.0682i 1.25165 0.909376i 0.253333 0.967379i \(-0.418473\pi\)
0.998316 + 0.0580031i \(0.0184733\pi\)
\(488\) 4.82881 + 14.8616i 0.218590 + 0.672751i
\(489\) 33.6262 + 24.4309i 1.52063 + 1.10480i
\(490\) 0.0937209 0.288443i 0.00423388 0.0130305i
\(491\) 20.1337 0.908621 0.454311 0.890843i \(-0.349886\pi\)
0.454311 + 0.890843i \(0.349886\pi\)
\(492\) 5.48182 + 3.98278i 0.247140 + 0.179557i
\(493\) −10.0342 7.29027i −0.451917 0.328337i
\(494\) −0.538247 + 1.65655i −0.0242169 + 0.0745318i
\(495\) −7.18252 + 5.21840i −0.322830 + 0.234550i
\(496\) 3.60223 2.61717i 0.161745 0.117514i
\(497\) 9.28278 + 28.5695i 0.416389 + 1.28152i
\(498\) −0.623710 1.91958i −0.0279491 0.0860185i
\(499\) 2.82655 0.126534 0.0632670 0.997997i \(-0.479848\pi\)
0.0632670 + 0.997997i \(0.479848\pi\)
\(500\) 0.544390 1.67546i 0.0243459 0.0749289i
\(501\) −5.29419 + 16.2938i −0.236527 + 0.727955i
\(502\) 0.165628 + 0.509750i 0.00739233 + 0.0227512i
\(503\) 2.91108 + 8.95938i 0.129799 + 0.399479i 0.994745 0.102386i \(-0.0326475\pi\)
−0.864946 + 0.501865i \(0.832648\pi\)
\(504\) −4.80590 14.7910i −0.214072 0.658845i
\(505\) 1.01923 3.13686i 0.0453551 0.139589i
\(506\) 0.458161 + 1.41007i 0.0203677 + 0.0626854i
\(507\) −23.2429 + 16.8869i −1.03225 + 0.749976i
\(508\) 10.0289 30.8657i 0.444959 1.36944i
\(509\) −31.6916 23.0253i −1.40471 1.02058i −0.994066 0.108781i \(-0.965305\pi\)
−0.410640 0.911798i \(-0.634695\pi\)
\(510\) −0.937305 + 2.88473i −0.0415045 + 0.127738i
\(511\) 0.949591 + 2.92254i 0.0420074 + 0.129286i
\(512\) 22.6645 1.00164
\(513\) −2.03070 + 1.47539i −0.0896576 + 0.0651400i
\(514\) 0.239163 + 0.736069i 0.0105490 + 0.0324666i
\(515\) 6.42981 4.67153i 0.283331 0.205852i
\(516\) −8.05491 24.7905i −0.354598 1.09134i
\(517\) 5.41777 0.238273
\(518\) −4.11576 + 2.99027i −0.180836 + 0.131385i
\(519\) −11.8129 −0.518530
\(520\) −1.88030 + 1.36612i −0.0824566 + 0.0599082i
\(521\) 6.06183 4.40418i 0.265574 0.192951i −0.447027 0.894520i \(-0.647517\pi\)
0.712601 + 0.701570i \(0.247517\pi\)
\(522\) −2.54522 + 7.83339i −0.111401 + 0.342858i
\(523\) 0.351405 + 1.08151i 0.0153659 + 0.0472913i 0.958445 0.285276i \(-0.0920852\pi\)
−0.943080 + 0.332567i \(0.892085\pi\)
\(524\) 14.0990 + 10.2435i 0.615917 + 0.447490i
\(525\) 5.15018 + 3.74183i 0.224772 + 0.163307i
\(526\) −9.39146 6.82329i −0.409487 0.297510i
\(527\) 1.29115 3.97375i 0.0562433 0.173099i
\(528\) 17.5305 0.762917
\(529\) −21.6841 −0.942789
\(530\) −0.450308 + 1.38591i −0.0195601 + 0.0601999i
\(531\) 10.7056 + 7.77807i 0.464583 + 0.337539i
\(532\) −10.1476 7.37268i −0.439955 0.319646i
\(533\) 1.56246 + 1.13520i 0.0676778 + 0.0491708i
\(534\) 1.30045 + 4.00238i 0.0562761 + 0.173200i
\(535\) −0.0592246 + 0.182275i −0.00256050 + 0.00788041i
\(536\) 2.90853 2.11317i 0.125629 0.0912751i
\(537\) −8.61236 + 6.25725i −0.371651 + 0.270020i
\(538\) 8.51367 0.367051
\(539\) −1.33073 + 0.966828i −0.0573184 + 0.0416442i
\(540\) −1.56857 −0.0675006
\(541\) 4.64525 + 14.2966i 0.199715 + 0.614659i 0.999889 + 0.0148917i \(0.00474036\pi\)
−0.800174 + 0.599768i \(0.795260\pi\)
\(542\) −11.2198 + 8.15167i −0.481932 + 0.350144i
\(543\) 7.72032 + 23.7607i 0.331311 + 1.01967i
\(544\) 9.88179 7.17954i 0.423678 0.307820i
\(545\) −20.5228 −0.879100
\(546\) −1.21544 3.74075i −0.0520162 0.160089i
\(547\) −6.82292 + 20.9988i −0.291727 + 0.897843i 0.692574 + 0.721346i \(0.256476\pi\)
−0.984301 + 0.176496i \(0.943524\pi\)
\(548\) −18.6255 13.5322i −0.795644 0.578069i
\(549\) −8.81753 + 27.1376i −0.376323 + 1.15820i
\(550\) 1.04565 0.759712i 0.0445868 0.0323942i
\(551\) 4.38324 + 13.4902i 0.186732 + 0.574703i
\(552\) −1.64076 + 5.04973i −0.0698353 + 0.214931i
\(553\) 13.1412 + 40.4446i 0.558822 + 1.71988i
\(554\) 2.18517 + 6.72528i 0.0928392 + 0.285730i
\(555\) 3.21387 + 9.89127i 0.136421 + 0.419861i
\(556\) 2.75288 8.47250i 0.116748 0.359314i
\(557\) −2.78049 + 8.55747i −0.117813 + 0.362592i −0.992523 0.122055i \(-0.961052\pi\)
0.874710 + 0.484646i \(0.161052\pi\)
\(558\) −2.77468 −0.117462
\(559\) −2.29586 7.06593i −0.0971045 0.298857i
\(560\) −2.05018 6.30981i −0.0866360 0.266638i
\(561\) 13.3086 9.66927i 0.561890 0.408237i
\(562\) 10.7968 7.84437i 0.455437 0.330895i
\(563\) −7.20312 + 22.1689i −0.303575 + 0.934309i 0.676630 + 0.736323i \(0.263440\pi\)
−0.980205 + 0.197985i \(0.936560\pi\)
\(564\) 7.35107 + 5.34087i 0.309536 + 0.224891i
\(565\) −10.6613 7.74586i −0.448523 0.325871i
\(566\) 2.50962 0.105487
\(567\) −6.09965 + 18.7728i −0.256161 + 0.788383i
\(568\) 17.6704 + 12.8383i 0.741431 + 0.538681i
\(569\) 0.618922 + 1.90484i 0.0259465 + 0.0798552i 0.963191 0.268817i \(-0.0866327\pi\)
−0.937245 + 0.348672i \(0.886633\pi\)
\(570\) 2.80636 2.03894i 0.117546 0.0854019i
\(571\) −15.1867 −0.635544 −0.317772 0.948167i \(-0.602935\pi\)
−0.317772 + 0.948167i \(0.602935\pi\)
\(572\) 5.90326 0.246828
\(573\) −0.928678 + 0.674724i −0.0387961 + 0.0281870i
\(574\) 1.52210 1.10587i 0.0635312 0.0461582i
\(575\) −0.354476 1.09097i −0.0147827 0.0454964i
\(576\) 7.69039 + 5.58740i 0.320433 + 0.232808i
\(577\) −10.9523 + 7.95732i −0.455951 + 0.331267i −0.791941 0.610598i \(-0.790929\pi\)
0.335990 + 0.941865i \(0.390929\pi\)
\(578\) −1.64788 + 5.07164i −0.0685426 + 0.210952i
\(579\) −10.8958 33.5339i −0.452814 1.39362i
\(580\) −2.73912 + 8.43015i −0.113736 + 0.350043i
\(581\) 4.14279 0.171872
\(582\) 4.47126 + 13.7611i 0.185340 + 0.570416i
\(583\) 6.39384 4.64539i 0.264806 0.192393i
\(584\) 1.80761 + 1.31330i 0.0747993 + 0.0543449i
\(585\) −4.24401 −0.175468
\(586\) 2.96730 + 2.15587i 0.122578 + 0.0890582i
\(587\) 16.3667 11.8911i 0.675526 0.490798i −0.196345 0.980535i \(-0.562907\pi\)
0.871870 + 0.489737i \(0.162907\pi\)
\(588\) −2.75869 −0.113766
\(589\) −3.86580 + 2.80867i −0.159288 + 0.115729i
\(590\) −1.55856 1.13236i −0.0641647 0.0466184i
\(591\) −4.32819 + 13.3208i −0.178038 + 0.547944i
\(592\) 3.34945 10.3085i 0.137661 0.423678i
\(593\) 13.8837 + 42.7297i 0.570137 + 1.75470i 0.652172 + 0.758071i \(0.273858\pi\)
−0.0820354 + 0.996629i \(0.526142\pi\)
\(594\) −0.931032 0.676434i −0.0382007 0.0277544i
\(595\) −5.03673 3.65940i −0.206486 0.150021i
\(596\) 12.6936 0.519950
\(597\) 13.4976 + 9.80660i 0.552421 + 0.401357i
\(598\) −0.219015 + 0.674060i −0.00895621 + 0.0275644i
\(599\) −33.7013 24.4854i −1.37700 1.00045i −0.997154 0.0753980i \(-0.975977\pi\)
−0.379845 0.925050i \(-0.624023\pi\)
\(600\) 4.62868 0.188965
\(601\) 1.83995 5.66278i 0.0750531 0.230990i −0.906491 0.422225i \(-0.861249\pi\)
0.981544 + 0.191235i \(0.0612493\pi\)
\(602\) −7.23764 −0.294984
\(603\) 6.56482 0.267340
\(604\) 12.8115 17.4499i 0.521294 0.710025i
\(605\) 3.99018 0.162224
\(606\) 4.05849 0.164865
\(607\) −7.26893 + 22.3715i −0.295037 + 0.908029i 0.688173 + 0.725547i \(0.258413\pi\)
−0.983209 + 0.182482i \(0.941587\pi\)
\(608\) −13.9690 −0.566518
\(609\) −25.9134 18.8272i −1.05006 0.762915i
\(610\) 1.28368 3.95077i 0.0519749 0.159962i
\(611\) 2.09525 + 1.52229i 0.0847646 + 0.0615851i
\(612\) 14.5619 0.588629
\(613\) −12.8293 9.32103i −0.518170 0.376473i 0.297744 0.954646i \(-0.403766\pi\)
−0.815914 + 0.578173i \(0.803766\pi\)
\(614\) 3.09445 + 2.24825i 0.124882 + 0.0907321i
\(615\) −1.18856 3.65802i −0.0479274 0.147505i
\(616\) 3.79457 11.6785i 0.152887 0.470539i
\(617\) −7.75053 + 23.8537i −0.312025 + 0.960313i 0.664937 + 0.746899i \(0.268458\pi\)
−0.976962 + 0.213414i \(0.931542\pi\)
\(618\) 7.91176 + 5.74823i 0.318258 + 0.231228i
\(619\) 10.6147 7.71200i 0.426639 0.309972i −0.353664 0.935372i \(-0.615065\pi\)
0.780304 + 0.625401i \(0.215065\pi\)
\(620\) −2.98606 −0.119923
\(621\) −0.826302 + 0.600344i −0.0331584 + 0.0240910i
\(622\) −8.55061 6.21238i −0.342848 0.249094i
\(623\) −8.63783 −0.346068
\(624\) 6.77968 + 4.92572i 0.271404 + 0.197187i
\(625\) −0.809017 + 0.587785i −0.0323607 + 0.0235114i
\(626\) −1.98478 6.10852i −0.0793277 0.244145i
\(627\) −18.8132 −0.751327
\(628\) 0.202427 0.623006i 0.00807771 0.0248606i
\(629\) −3.14307 9.67337i −0.125322 0.385702i
\(630\) −1.27759 + 3.93202i −0.0509005 + 0.156656i
\(631\) 28.6732 20.8323i 1.14146 0.829321i 0.154141 0.988049i \(-0.450739\pi\)
0.987322 + 0.158727i \(0.0507391\pi\)
\(632\) 25.0152 + 18.1746i 0.995050 + 0.722946i
\(633\) −13.2256 40.7043i −0.525671 1.61785i
\(634\) 11.5337 8.37972i 0.458061 0.332801i
\(635\) −14.9039 + 10.8283i −0.591442 + 0.429708i
\(636\) 13.2549 0.525591
\(637\) −0.786299 −0.0311543
\(638\) −5.26125 + 3.82252i −0.208295 + 0.151335i
\(639\) 12.3247 + 37.9315i 0.487557 + 1.50055i
\(640\) −9.13715 6.63853i −0.361177 0.262411i
\(641\) 2.33953 7.20034i 0.0924060 0.284397i −0.894163 0.447742i \(-0.852228\pi\)
0.986569 + 0.163345i \(0.0522284\pi\)
\(642\) −0.235827 −0.00930737
\(643\) 15.8052 + 11.4831i 0.623295 + 0.452850i 0.854071 0.520157i \(-0.174126\pi\)
−0.230776 + 0.973007i \(0.574126\pi\)
\(644\) −4.12912 2.99998i −0.162710 0.118216i
\(645\) −4.57228 + 14.0720i −0.180033 + 0.554086i
\(646\) −2.74454 + 1.99403i −0.107983 + 0.0784539i
\(647\) 4.03973 2.93503i 0.158818 0.115388i −0.505538 0.862804i \(-0.668706\pi\)
0.664356 + 0.747416i \(0.268706\pi\)
\(648\) 4.43503 + 13.6496i 0.174225 + 0.536208i
\(649\) 3.22867 + 9.93682i 0.126736 + 0.390054i
\(650\) 0.617856 0.0242343
\(651\) 3.33440 10.2622i 0.130685 0.402208i
\(652\) −8.97704 + 27.6285i −0.351568 + 1.08201i
\(653\) 1.72155 + 5.29838i 0.0673693 + 0.207341i 0.979074 0.203505i \(-0.0652333\pi\)
−0.911705 + 0.410846i \(0.865233\pi\)
\(654\) −7.80358 24.0169i −0.305144 0.939137i
\(655\) −3.05692 9.40824i −0.119444 0.367610i
\(656\) −1.23870 + 3.81233i −0.0483632 + 0.148847i
\(657\) 1.26077 + 3.88024i 0.0491872 + 0.151383i
\(658\) 2.04112 1.48296i 0.0795712 0.0578119i
\(659\) 2.11079 6.49633i 0.0822246 0.253061i −0.901490 0.432801i \(-0.857525\pi\)
0.983714 + 0.179739i \(0.0575254\pi\)
\(660\) −9.51123 6.91032i −0.370224 0.268984i
\(661\) 6.37703 19.6265i 0.248038 0.763381i −0.747084 0.664729i \(-0.768547\pi\)
0.995122 0.0986520i \(-0.0314531\pi\)
\(662\) −1.99144 6.12902i −0.0773995 0.238211i
\(663\) 7.86379 0.305404
\(664\) 2.43693 1.77053i 0.0945711 0.0687099i
\(665\) 2.20020 + 6.77150i 0.0853199 + 0.262588i
\(666\) −5.46447 + 3.97017i −0.211744 + 0.153841i
\(667\) 1.78356 + 5.48924i 0.0690598 + 0.212544i
\(668\) −11.9742 −0.463296
\(669\) 19.6402 14.2694i 0.759334 0.551689i
\(670\) −0.955727 −0.0369230
\(671\) −18.2268 + 13.2425i −0.703637 + 0.511222i
\(672\) 25.5198 18.5412i 0.984447 0.715243i
\(673\) −11.8629 + 36.5103i −0.457282 + 1.40737i 0.411154 + 0.911566i \(0.365126\pi\)
−0.868435 + 0.495802i \(0.834874\pi\)
\(674\) −0.0387139 0.119149i −0.00149120 0.00458945i
\(675\) 0.720334 + 0.523353i 0.0277257 + 0.0201439i
\(676\) −16.2450 11.8027i −0.624808 0.453950i
\(677\) −39.8427 28.9474i −1.53128 1.11254i −0.955523 0.294916i \(-0.904708\pi\)
−0.575755 0.817622i \(-0.695292\pi\)
\(678\) 5.01081 15.4217i 0.192439 0.592267i
\(679\) −29.6988 −1.13974
\(680\) −4.52671 −0.173591
\(681\) −8.65108 + 26.6253i −0.331510 + 1.02028i
\(682\) −1.77239 1.28771i −0.0678682 0.0493091i
\(683\) −5.08286 3.69292i −0.194490 0.141305i 0.486278 0.873804i \(-0.338354\pi\)
−0.680769 + 0.732498i \(0.738354\pi\)
\(684\) −13.4730 9.78867i −0.515151 0.374279i
\(685\) 4.03837 + 12.4288i 0.154298 + 0.474881i
\(686\) −2.90371 + 8.93671i −0.110864 + 0.341205i
\(687\) −27.8563 + 20.2388i −1.06278 + 0.772157i
\(688\) 12.4754 9.06388i 0.475619 0.345557i
\(689\) 3.77799 0.143930
\(690\) 1.14192 0.829657i 0.0434723 0.0315845i
\(691\) 1.26434 0.0480977 0.0240488 0.999711i \(-0.492344\pi\)
0.0240488 + 0.999711i \(0.492344\pi\)
\(692\) −2.55135 7.85225i −0.0969878 0.298498i
\(693\) 18.1403 13.1797i 0.689092 0.500655i
\(694\) 2.75840 + 8.48948i 0.104707 + 0.322256i
\(695\) −4.09105 + 2.97232i −0.155182 + 0.112747i
\(696\) −23.2894 −0.882782
\(697\) 1.16238 + 3.57743i 0.0440282 + 0.135505i
\(698\) −5.10067 + 15.6983i −0.193063 + 0.594188i
\(699\) 43.3972 + 31.5299i 1.64143 + 1.19257i
\(700\) −1.37492 + 4.23157i −0.0519671 + 0.159938i
\(701\) 11.5633 8.40121i 0.436739 0.317309i −0.347599 0.937643i \(-0.613003\pi\)
0.784338 + 0.620334i \(0.213003\pi\)
\(702\) −0.169999 0.523203i −0.00641619 0.0197470i
\(703\) −3.59453 + 11.0628i −0.135570 + 0.417242i
\(704\) 2.31932 + 7.13814i 0.0874128 + 0.269029i
\(705\) −1.59385 4.90537i −0.0600279 0.184747i
\(706\) −2.43293 7.48779i −0.0915646 0.281807i
\(707\) −2.57418 + 7.92251i −0.0968120 + 0.297957i
\(708\) −5.41497 + 16.6656i −0.203507 + 0.626330i
\(709\) −40.0703 −1.50487 −0.752435 0.658666i \(-0.771121\pi\)
−0.752435 + 0.658666i \(0.771121\pi\)
\(710\) −1.79427 5.52219i −0.0673377 0.207244i
\(711\) 17.4475 + 53.6980i 0.654334 + 2.01383i
\(712\) −5.08106 + 3.69161i −0.190421 + 0.138349i
\(713\) −1.57302 + 1.14286i −0.0589099 + 0.0428005i
\(714\) 2.36727 7.28571i 0.0885929 0.272661i
\(715\) −2.71095 1.96962i −0.101384 0.0736596i
\(716\) −6.01939 4.37334i −0.224955 0.163439i
\(717\) −42.0653 −1.57096
\(718\) −0.0414778 + 0.127656i −0.00154794 + 0.00476406i
\(719\) −14.1503 10.2808i −0.527718 0.383410i 0.291785 0.956484i \(-0.405751\pi\)
−0.819504 + 0.573074i \(0.805751\pi\)
\(720\) −2.72202 8.37751i −0.101444 0.312211i
\(721\) −16.2392 + 11.7985i −0.604781 + 0.439399i
\(722\) −5.39564 −0.200805
\(723\) 49.4858 1.84040
\(724\) −14.1267 + 10.2636i −0.525015 + 0.381445i
\(725\) 4.07060 2.95747i 0.151178 0.109838i
\(726\) 1.51722 + 4.66953i 0.0563094 + 0.173303i
\(727\) −25.1435 18.2678i −0.932520 0.677515i 0.0140886 0.999901i \(-0.495515\pi\)
−0.946609 + 0.322385i \(0.895515\pi\)
\(728\) 4.74892 3.45029i 0.176007 0.127876i
\(729\) −10.1790 + 31.3278i −0.377001 + 1.16029i
\(730\) −0.183547 0.564898i −0.00679336 0.0209078i
\(731\) 4.47155 13.7620i 0.165386 0.509007i
\(732\) −37.7855 −1.39659
\(733\) 10.7952 + 33.2244i 0.398732 + 1.22717i 0.926017 + 0.377481i \(0.123210\pi\)
−0.527286 + 0.849688i \(0.676790\pi\)
\(734\) −7.00663 + 5.09061i −0.258619 + 0.187898i
\(735\) 1.26687 + 0.920436i 0.0467293 + 0.0339508i
\(736\) −5.68407 −0.209518
\(737\) 4.19342 + 3.04670i 0.154467 + 0.112226i
\(738\) 2.02088 1.46826i 0.0743898 0.0540474i
\(739\) −9.95202 −0.366091 −0.183045 0.983104i \(-0.558596\pi\)
−0.183045 + 0.983104i \(0.558596\pi\)
\(740\) −5.88076 + 4.27262i −0.216181 + 0.157065i
\(741\) −7.27575 5.28614i −0.267281 0.194191i
\(742\) 1.13731 3.50027i 0.0417518 0.128499i
\(743\) 11.7505 36.1643i 0.431084 1.32674i −0.465964 0.884804i \(-0.654292\pi\)
0.897047 0.441935i \(-0.145708\pi\)
\(744\) −2.42443 7.46163i −0.0888839 0.273557i
\(745\) −5.82928 4.23522i −0.213568 0.155166i
\(746\) −0.606107 0.440363i −0.0221912 0.0161228i
\(747\) 5.50036 0.201248
\(748\) 9.30171 + 6.75809i 0.340104 + 0.247100i
\(749\) 0.149579 0.460355i 0.00546548 0.0168210i
\(750\) −0.995480 0.723258i −0.0363498 0.0264097i
\(751\) −46.1925 −1.68559 −0.842794 0.538236i \(-0.819091\pi\)
−0.842794 + 0.538236i \(0.819091\pi\)
\(752\) −1.66109 + 5.11230i −0.0605736 + 0.186426i
\(753\) −2.76740 −0.100850
\(754\) −3.10877 −0.113215
\(755\) −11.7056 + 3.73892i −0.426009 + 0.136073i
\(756\) 3.96161 0.144082
\(757\) −15.9198 −0.578617 −0.289308 0.957236i \(-0.593425\pi\)
−0.289308 + 0.957236i \(0.593425\pi\)
\(758\) 2.03306 6.25712i 0.0738441 0.227269i
\(759\) −7.65520 −0.277866
\(760\) 4.18821 + 3.04291i 0.151922 + 0.110378i
\(761\) 1.41699 4.36105i 0.0513659 0.158088i −0.922083 0.386992i \(-0.873514\pi\)
0.973449 + 0.228904i \(0.0735142\pi\)
\(762\) −18.3389 13.3240i −0.664349 0.482678i
\(763\) 51.8327 1.87647
\(764\) −0.649075 0.471581i −0.0234827 0.0170612i
\(765\) −6.68724 4.85856i −0.241778 0.175662i
\(766\) −4.18277 12.8732i −0.151130 0.465129i
\(767\) −1.54341 + 4.75012i −0.0557292 + 0.171517i
\(768\) −0.121591 + 0.374219i −0.00438754 + 0.0135035i
\(769\) −7.59515 5.51820i −0.273888 0.198991i 0.442359 0.896838i \(-0.354142\pi\)
−0.716247 + 0.697847i \(0.754142\pi\)
\(770\) −2.64092 + 1.91874i −0.0951722 + 0.0691466i
\(771\) −3.99607 −0.143915
\(772\) 19.9372 14.4852i 0.717557 0.521336i
\(773\) −0.779236 0.566148i −0.0280272 0.0203629i 0.573683 0.819077i \(-0.305514\pi\)
−0.601711 + 0.798714i \(0.705514\pi\)
\(774\) −9.60937 −0.345402
\(775\) 1.37129 + 0.996297i 0.0492580 + 0.0357881i
\(776\) −17.4699 + 12.6926i −0.627131 + 0.455637i
\(777\) −8.11700 24.9815i −0.291196 0.896208i
\(778\) 13.9396 0.499758
\(779\) 1.32934 4.09128i 0.0476285 0.146585i
\(780\) −1.73668 5.34494i −0.0621829 0.191379i
\(781\) −9.73115 + 29.9494i −0.348208 + 1.07167i
\(782\) −1.11677 + 0.811380i −0.0399356 + 0.0290149i
\(783\) −3.62439 2.63327i −0.129525 0.0941055i
\(784\) −0.504316 1.55212i −0.0180113 0.0554330i
\(785\) −0.300826 + 0.218563i −0.0107369 + 0.00780085i
\(786\) 9.84769 7.15477i 0.351255 0.255202i
\(787\) 48.6922 1.73569 0.867845 0.496835i \(-0.165505\pi\)
0.867845 + 0.496835i \(0.165505\pi\)
\(788\) −9.78935 −0.348731
\(789\) 48.4902 35.2302i 1.72630 1.25423i
\(790\) −2.54007 7.81753i −0.0903717 0.278135i
\(791\) 26.9262 + 19.5631i 0.957387 + 0.695583i
\(792\) 5.03803 15.5055i 0.179019 0.550962i
\(793\) −10.7698 −0.382448
\(794\) −0.589007 0.427938i −0.0209031 0.0151870i
\(795\) −6.08704 4.42249i −0.215885 0.156850i
\(796\) −3.60340 + 11.0901i −0.127719 + 0.393079i
\(797\) −18.1771 + 13.2064i −0.643865 + 0.467795i −0.861176 0.508307i \(-0.830272\pi\)
0.217311 + 0.976102i \(0.430272\pi\)
\(798\) −7.08780 + 5.14959i −0.250905 + 0.182293i
\(799\) 1.55874 + 4.79730i 0.0551442 + 0.169716i
\(800\) 1.53122 + 4.71260i 0.0541367 + 0.166616i
\(801\) −11.4684 −0.405216
\(802\) −0.732226 + 2.25356i −0.0258558 + 0.0795760i
\(803\) −0.995458 + 3.06370i −0.0351289 + 0.108116i
\(804\) 2.68637 + 8.26778i 0.0947408 + 0.291582i
\(805\) 0.895271 + 2.75536i 0.0315542 + 0.0971137i
\(806\) −0.323623 0.996011i −0.0113991 0.0350830i
\(807\) −13.5838 + 41.8065i −0.478171 + 1.47166i
\(808\) 1.87168 + 5.76043i 0.0658454 + 0.202651i
\(809\) −3.53493 + 2.56828i −0.124282 + 0.0902958i −0.648190 0.761479i \(-0.724474\pi\)
0.523908 + 0.851775i \(0.324474\pi\)
\(810\) 1.17900 3.62860i 0.0414259 0.127496i
\(811\) 9.77898 + 7.10484i 0.343386 + 0.249485i 0.746089 0.665846i \(-0.231929\pi\)
−0.402703 + 0.915331i \(0.631929\pi\)
\(812\) 6.91797 21.2913i 0.242773 0.747179i
\(813\) −22.1274 68.1013i −0.776043 2.38842i
\(814\) −5.33308 −0.186924
\(815\) 13.3408 9.69262i 0.467306 0.339518i
\(816\) 5.04367 + 15.5228i 0.176564 + 0.543408i
\(817\) −13.3882 + 9.72709i −0.468393 + 0.340308i
\(818\) −2.40057 7.38818i −0.0839338 0.258322i
\(819\) 10.7187 0.374543
\(820\) 2.17484 1.58011i 0.0759487 0.0551799i
\(821\) 3.94256 0.137596 0.0687982 0.997631i \(-0.478084\pi\)
0.0687982 + 0.997631i \(0.478084\pi\)
\(822\) −13.0094 + 9.45185i −0.453753 + 0.329671i
\(823\) 21.9776 15.9677i 0.766092 0.556599i −0.134681 0.990889i \(-0.543001\pi\)
0.900773 + 0.434290i \(0.143001\pi\)
\(824\) −4.51006 + 13.8805i −0.157115 + 0.483551i
\(825\) 2.06221 + 6.34684i 0.0717971 + 0.220969i
\(826\) 3.93631 + 2.85990i 0.136962 + 0.0995086i
\(827\) 30.1083 + 21.8749i 1.04697 + 0.760666i 0.971633 0.236492i \(-0.0759977\pi\)
0.0753339 + 0.997158i \(0.475998\pi\)
\(828\) −5.48222 3.98306i −0.190520 0.138421i
\(829\) 11.1377 34.2782i 0.386827 1.19053i −0.548319 0.836269i \(-0.684732\pi\)
0.935146 0.354263i \(-0.115268\pi\)
\(830\) −0.800760 −0.0277948
\(831\) −36.5111 −1.26656
\(832\) −1.10871 + 3.41226i −0.0384376 + 0.118299i
\(833\) −1.23896 0.900160i −0.0429275 0.0311887i
\(834\) −5.03396 3.65739i −0.174312 0.126645i
\(835\) 5.49891 + 3.99519i 0.190298 + 0.138259i
\(836\) −4.06327 12.5054i −0.140531 0.432510i
\(837\) 0.466368 1.43533i 0.0161200 0.0496124i
\(838\) 8.10456 5.88831i 0.279967 0.203408i
\(839\) 2.06790 1.50242i 0.0713920 0.0518693i −0.551517 0.834164i \(-0.685951\pi\)
0.622909 + 0.782294i \(0.285951\pi\)
\(840\) −11.6903 −0.403352
\(841\) 2.98009 2.16516i 0.102762 0.0746607i
\(842\) 1.21602 0.0419069
\(843\) 21.2933 + 65.5340i 0.733380 + 2.25711i
\(844\) 24.2003 17.5826i 0.833010 0.605217i
\(845\) 3.52222 + 10.8403i 0.121168 + 0.372917i
\(846\) 2.70999 1.96892i 0.0931713 0.0676929i
\(847\) −10.0777 −0.346272
\(848\) 2.42312 + 7.45761i 0.0832104 + 0.256095i
\(849\) −4.00416 + 12.3235i −0.137422 + 0.422942i
\(850\) 0.973550 + 0.707325i 0.0333925 + 0.0242611i
\(851\) −1.46263 + 4.50152i −0.0501384 + 0.154310i
\(852\) −42.7279 + 31.0437i −1.46383 + 1.06354i
\(853\) 11.4827 + 35.3402i 0.393162 + 1.21003i 0.930384 + 0.366586i \(0.119474\pi\)
−0.537222 + 0.843441i \(0.680526\pi\)
\(854\) −3.24209 + 9.97814i −0.110942 + 0.341445i
\(855\) 2.92119 + 8.99049i 0.0999025 + 0.307468i
\(856\) −0.108758 0.334723i −0.00371727 0.0114406i
\(857\) 8.86477 + 27.2830i 0.302815 + 0.931968i 0.980484 + 0.196601i \(0.0629904\pi\)
−0.677669 + 0.735367i \(0.737010\pi\)
\(858\) 1.27415 3.92143i 0.0434988 0.133876i
\(859\) 3.73958 11.5093i 0.127593 0.392691i −0.866772 0.498705i \(-0.833809\pi\)
0.994365 + 0.106014i \(0.0338090\pi\)
\(860\) −10.3414 −0.352640
\(861\) 3.00185 + 9.23874i 0.102303 + 0.314856i
\(862\) 3.87045 + 11.9120i 0.131828 + 0.405725i
\(863\) 25.8067 18.7497i 0.878472 0.638247i −0.0543748 0.998521i \(-0.517317\pi\)
0.932847 + 0.360273i \(0.117317\pi\)
\(864\) 3.56934 2.59328i 0.121432 0.0882252i
\(865\) −1.44824 + 4.45724i −0.0492418 + 0.151551i
\(866\) −1.53136 1.11260i −0.0520379 0.0378077i
\(867\) −22.2752 16.1839i −0.756504 0.549632i
\(868\) 7.54163 0.255980
\(869\) −13.7760 + 42.3981i −0.467318 + 1.43826i
\(870\) 5.00880 + 3.63910i 0.169814 + 0.123377i
\(871\) 0.765684 + 2.35653i 0.0259442 + 0.0798481i
\(872\) 30.4897 22.1521i 1.03251 0.750164i
\(873\) −39.4310 −1.33454
\(874\) 1.57868 0.0533996
\(875\) 2.04327 1.48452i 0.0690750 0.0501859i
\(876\) −4.37090 + 3.17564i −0.147679 + 0.107295i
\(877\) −7.27551 22.3917i −0.245676 0.756114i −0.995524 0.0945041i \(-0.969873\pi\)
0.749848 0.661610i \(-0.230127\pi\)
\(878\) −2.55401 1.85560i −0.0861937 0.0626234i
\(879\) −15.3208 + 11.1312i −0.516759 + 0.375448i
\(880\) 2.14921 6.61459i 0.0724498 0.222978i
\(881\) 11.3949 + 35.0698i 0.383903 + 1.18153i 0.937273 + 0.348597i \(0.113342\pi\)
−0.553369 + 0.832936i \(0.686658\pi\)
\(882\) −0.314269 + 0.967222i −0.0105820 + 0.0325681i
\(883\) −3.20404 −0.107825 −0.0539123 0.998546i \(-0.517169\pi\)
−0.0539123 + 0.998546i \(0.517169\pi\)
\(884\) 1.69842 + 5.22719i 0.0571239 + 0.175809i
\(885\) 8.04717 5.84661i 0.270503 0.196532i
\(886\) 7.74319 + 5.62575i 0.260137 + 0.189001i
\(887\) −44.9416 −1.50899 −0.754496 0.656304i \(-0.772119\pi\)
−0.754496 + 0.656304i \(0.772119\pi\)
\(888\) −15.4512 11.2260i −0.518509 0.376719i
\(889\) 37.6414 27.3481i 1.26245 0.917226i
\(890\) 1.66961 0.0559654
\(891\) −16.7404 + 12.1626i −0.560825 + 0.407463i
\(892\) 13.7270 + 9.97326i 0.459615 + 0.333930i
\(893\) 1.78263 5.48637i 0.0596534 0.183594i
\(894\) 2.73977 8.43215i 0.0916316 0.282013i
\(895\) 1.30512 + 4.01673i 0.0436252 + 0.134265i
\(896\) 23.0769 + 16.7664i 0.770946 + 0.560125i
\(897\) −2.96054 2.15096i −0.0988495 0.0718184i
\(898\) −0.980713 −0.0327268
\(899\) −6.89968 5.01291i −0.230117 0.167190i
\(900\) −1.82547 + 5.61823i −0.0608492 + 0.187274i
\(901\) 5.95294 + 4.32507i 0.198321 + 0.144089i
\(902\) 1.97229 0.0656702
\(903\) 11.5478 35.5405i 0.384287 1.18272i
\(904\) 24.1997 0.804870
\(905\) 9.91186 0.329481
\(906\) −8.82642 12.2768i −0.293238 0.407871i
\(907\) −31.9392 −1.06052 −0.530261 0.847834i \(-0.677906\pi\)
−0.530261 + 0.847834i \(0.677906\pi\)
\(908\) −19.5667 −0.649345
\(909\) −3.41773 + 10.5187i −0.113359 + 0.348883i
\(910\) −1.56047 −0.0517290
\(911\) 29.0881 + 21.1338i 0.963732 + 0.700192i 0.954015 0.299760i \(-0.0969067\pi\)
0.00971762 + 0.999953i \(0.496907\pi\)
\(912\) 5.76813 17.7525i 0.191002 0.587843i
\(913\) 3.51347 + 2.55269i 0.116279 + 0.0844817i
\(914\) −10.9223 −0.361278
\(915\) 17.3522 + 12.6071i 0.573646 + 0.416778i
\(916\) −19.4694 14.1454i −0.643288 0.467376i
\(917\) 7.72061 + 23.7616i 0.254957 + 0.784677i
\(918\) 0.331100 1.01902i 0.0109279 0.0336327i
\(919\) 0.824745 2.53830i 0.0272058 0.0837309i −0.936532 0.350583i \(-0.885983\pi\)
0.963738 + 0.266852i \(0.0859835\pi\)
\(920\) 1.70420 + 1.23818i 0.0561860 + 0.0408215i
\(921\) −15.9774 + 11.6082i −0.526472 + 0.382504i
\(922\) 9.87781 0.325308
\(923\) −12.1786 + 8.84825i −0.400863 + 0.291244i
\(924\) 24.0217 + 17.4528i 0.790257 + 0.574155i
\(925\) 4.12618 0.135668
\(926\) 3.39387 + 2.46579i 0.111530 + 0.0810310i
\(927\) −21.5608 + 15.6648i −0.708148 + 0.514500i
\(928\) −7.70438 23.7116i −0.252909 0.778373i
\(929\) 47.1549 1.54710 0.773551 0.633734i \(-0.218478\pi\)
0.773551 + 0.633734i \(0.218478\pi\)
\(930\) −0.644507 + 1.98359i −0.0211342 + 0.0650444i
\(931\) 0.541217 + 1.66569i 0.0177377 + 0.0545909i
\(932\) −11.5855 + 35.6566i −0.379497 + 1.16797i
\(933\) 44.1487 32.0759i 1.44536 1.05012i
\(934\) 7.67586 + 5.57684i 0.251162 + 0.182480i
\(935\) −2.01678 6.20702i −0.0659559 0.202991i
\(936\) 6.30511 4.58093i 0.206089 0.149732i
\(937\) −29.6394 + 21.5343i −0.968278 + 0.703495i −0.955058 0.296418i \(-0.904208\pi\)
−0.0132194 + 0.999913i \(0.504208\pi\)
\(938\) 2.41380 0.0788133
\(939\) 33.1627 1.08223
\(940\) 2.91644 2.11892i 0.0951237 0.0691114i
\(941\) −17.0079 52.3448i −0.554441 1.70639i −0.697416 0.716667i \(-0.745667\pi\)
0.142975 0.989726i \(-0.454333\pi\)
\(942\) −0.370161 0.268937i −0.0120605 0.00876246i
\(943\) 0.540915 1.66476i 0.0176146 0.0542122i
\(944\) −10.3665 −0.337400
\(945\) −1.81929 1.32179i −0.0591814 0.0429978i
\(946\) −6.13819 4.45966i −0.199570 0.144996i
\(947\) −10.7319 + 33.0295i −0.348741 + 1.07331i 0.610810 + 0.791777i \(0.290844\pi\)
−0.959551 + 0.281536i \(0.909156\pi\)
\(948\) −60.4881 + 43.9472i −1.96456 + 1.42734i
\(949\) −1.24582 + 0.905141i −0.0404410 + 0.0293821i
\(950\) −0.425276 1.30887i −0.0137978 0.0424652i
\(951\) 22.7465 + 70.0064i 0.737605 + 2.27011i
\(952\) 11.4327 0.370537
\(953\) 18.4256 56.7082i 0.596864 1.83696i 0.0516467 0.998665i \(-0.483553\pi\)
0.545218 0.838294i \(-0.316447\pi\)
\(954\) 1.50999 4.64728i 0.0488879 0.150461i
\(955\) 0.140732 + 0.433128i 0.00455397 + 0.0140157i
\(956\) −9.08524 27.9615i −0.293838 0.904339i
\(957\) −10.3761 31.9344i −0.335412 1.03229i
\(958\) 3.53115 10.8678i 0.114086 0.351122i
\(959\) −10.1994 31.3904i −0.329355 1.01365i
\(960\) 5.78071 4.19993i 0.186571 0.135552i
\(961\) −8.69171 + 26.7503i −0.280378 + 0.862914i
\(962\) −2.06249 1.49849i −0.0664975 0.0483133i
\(963\) 0.198595 0.611212i 0.00639962 0.0196960i
\(964\) 10.6879 + 32.8940i 0.344234 + 1.05944i
\(965\) −13.9888 −0.450314
\(966\) −2.88406 + 2.09539i −0.0927932 + 0.0674182i
\(967\) 6.87290 + 21.1526i 0.221018 + 0.680222i 0.998671 + 0.0515296i \(0.0164096\pi\)
−0.777654 + 0.628693i \(0.783590\pi\)
\(968\) −5.92801 + 4.30695i −0.190534 + 0.138431i
\(969\) −5.41272 16.6586i −0.173882 0.535152i
\(970\) 5.74049 0.184316
\(971\) −12.5376 + 9.10908i −0.402350 + 0.292324i −0.770498 0.637443i \(-0.779992\pi\)
0.368147 + 0.929767i \(0.379992\pi\)
\(972\) −39.4098 −1.26407
\(973\) 10.3324 7.50695i 0.331242 0.240662i
\(974\) 13.4842 9.79682i 0.432060 0.313910i
\(975\) −0.985804 + 3.03399i −0.0315710 + 0.0971655i
\(976\) −6.90755 21.2593i −0.221105 0.680492i
\(977\) −23.7772 17.2751i −0.760699 0.552680i 0.138426 0.990373i \(-0.455796\pi\)
−0.899125 + 0.437693i \(0.855796\pi\)
\(978\) 16.4155 + 11.9266i 0.524911 + 0.381370i
\(979\) −7.32569 5.32243i −0.234130 0.170106i
\(980\) −0.338211 + 1.04091i −0.0108037 + 0.0332505i
\(981\) 68.8180 2.19719
\(982\) 9.82880 0.313650
\(983\) 7.76452 23.8967i 0.247650 0.762187i −0.747540 0.664217i \(-0.768765\pi\)
0.995189 0.0979701i \(-0.0312349\pi\)
\(984\) 5.71421 + 4.15162i 0.182162 + 0.132349i
\(985\) 4.49556 + 3.26621i 0.143240 + 0.104070i
\(986\) −4.89846 3.55894i −0.155999 0.113340i
\(987\) 4.02545 + 12.3891i 0.128132 + 0.394348i
\(988\) 1.94237 5.97800i 0.0617951 0.190186i
\(989\) −5.44772 + 3.95800i −0.173228 + 0.125857i
\(990\) −3.50634 + 2.54750i −0.111439 + 0.0809649i
\(991\) 57.0751 1.81305 0.906526 0.422150i \(-0.138725\pi\)
0.906526 + 0.422150i \(0.138725\pi\)
\(992\) 6.79489 4.93677i 0.215738 0.156743i
\(993\) 33.2741 1.05592
\(994\) 4.53163 + 13.9469i 0.143735 + 0.442370i
\(995\) 5.35500 3.89064i 0.169765 0.123341i
\(996\) 2.25078 + 6.92720i 0.0713188 + 0.219497i
\(997\) 47.9875 34.8649i 1.51978 1.10418i 0.558182 0.829719i \(-0.311499\pi\)
0.961597 0.274465i \(-0.0885008\pi\)
\(998\) 1.37986 0.0436786
\(999\) −1.13529 3.49406i −0.0359190 0.110547i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 755.2.h.d.321.3 16
151.8 even 5 inner 755.2.h.d.461.3 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
755.2.h.d.321.3 16 1.1 even 1 trivial
755.2.h.d.461.3 yes 16 151.8 even 5 inner