Properties

Label 755.2.f.e.603.18
Level $755$
Weight $2$
Character 755.603
Analytic conductor $6.029$
Analytic rank $0$
Dimension $108$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [755,2,Mod(452,755)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(755, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("755.452"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 755 = 5 \cdot 151 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 755.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [108,0,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.02870535261\)
Analytic rank: \(0\)
Dimension: \(108\)
Relative dimension: \(54\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 603.18
Character \(\chi\) \(=\) 755.603
Dual form 755.2.f.e.452.18

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.02416 + 1.02416i) q^{2} +(1.50524 - 1.50524i) q^{3} -0.0978212i q^{4} +(-1.59568 - 1.56646i) q^{5} +3.08322i q^{6} +(1.61807 + 1.61807i) q^{7} +(-1.94814 - 1.94814i) q^{8} -1.53150i q^{9} +(3.23855 - 0.0299191i) q^{10} -3.89135 q^{11} +(-0.147244 - 0.147244i) q^{12} +(-3.39143 + 3.39143i) q^{13} -3.31433 q^{14} +(-4.75979 + 0.0439729i) q^{15} +4.18607 q^{16} +(-1.95449 + 1.95449i) q^{17} +(1.56851 + 1.56851i) q^{18} +5.23589i q^{19} +(-0.153233 + 0.156091i) q^{20} +4.87116 q^{21} +(3.98538 - 3.98538i) q^{22} +(-1.01371 + 1.01371i) q^{23} -5.86484 q^{24} +(0.0923762 + 4.99915i) q^{25} -6.94676i q^{26} +(2.21045 + 2.21045i) q^{27} +(0.158281 - 0.158281i) q^{28} +2.26555i q^{29} +(4.82976 - 4.91983i) q^{30} +6.03258 q^{31} +(-0.390939 + 0.390939i) q^{32} +(-5.85743 + 5.85743i) q^{33} -4.00343i q^{34} +(-0.0472689 - 5.11656i) q^{35} -0.149813 q^{36} +(0.341972 - 0.341972i) q^{37} +(-5.36241 - 5.36241i) q^{38} +10.2098i q^{39} +(0.0569114 + 6.16030i) q^{40} +0.909743i q^{41} +(-4.98886 + 4.98886i) q^{42} +(-3.13702 - 3.13702i) q^{43} +0.380657i q^{44} +(-2.39904 + 2.44378i) q^{45} -2.07641i q^{46} +(-0.568201 + 0.568201i) q^{47} +(6.30105 - 6.30105i) q^{48} -1.76372i q^{49} +(-5.21455 - 5.02533i) q^{50} +5.88395i q^{51} +(0.331754 + 0.331754i) q^{52} +(-3.49745 + 3.49745i) q^{53} -4.52772 q^{54} +(6.20935 + 6.09567i) q^{55} -6.30444i q^{56} +(7.88128 + 7.88128i) q^{57} +(-2.32030 - 2.32030i) q^{58} +8.62899i q^{59} +(0.00430148 + 0.465608i) q^{60} +9.34466i q^{61} +(-6.17835 + 6.17835i) q^{62} +(2.47807 - 2.47807i) q^{63} +7.57138i q^{64} +(10.7242 - 0.0990744i) q^{65} -11.9979i q^{66} +(-7.42355 - 7.42355i) q^{67} +(0.191190 + 0.191190i) q^{68} +3.05176i q^{69} +(5.28860 + 5.19178i) q^{70} -5.66988i q^{71} +(-2.98358 + 2.98358i) q^{72} +(5.20174 - 5.20174i) q^{73} +0.700470i q^{74} +(7.66397 + 7.38587i) q^{75} +0.512181 q^{76} +(-6.29647 - 6.29647i) q^{77} +(-10.4565 - 10.4565i) q^{78} -7.68350 q^{79} +(-6.67962 - 6.55734i) q^{80} +11.2490 q^{81} +(-0.931726 - 0.931726i) q^{82} +(3.07254 - 3.07254i) q^{83} -0.476502i q^{84} +(6.18037 - 0.0570968i) q^{85} +6.42564 q^{86} +(3.41020 + 3.41020i) q^{87} +(7.58091 + 7.58091i) q^{88} -9.17958 q^{89} +(-0.0458210 - 4.95984i) q^{90} -10.9751 q^{91} +(0.0991625 + 0.0991625i) q^{92} +(9.08048 - 9.08048i) q^{93} -1.16386i q^{94} +(8.20184 - 8.35480i) q^{95} +1.17692i q^{96} +(-2.31637 + 2.31637i) q^{97} +(1.80634 + 1.80634i) q^{98} +5.95961i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 108 q - 12 q^{5} + 12 q^{8} + 16 q^{10} - 24 q^{16} + 8 q^{17} + 4 q^{18} + 48 q^{20} - 44 q^{21} - 32 q^{22} - 40 q^{25} + 20 q^{31} - 56 q^{32} - 304 q^{36} - 8 q^{37} + 16 q^{38} + 44 q^{42} + 20 q^{43}+ \cdots - 188 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/755\mathbb{Z}\right)^\times\).

\(n\) \(6\) \(152\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.02416 + 1.02416i −0.724193 + 0.724193i −0.969456 0.245264i \(-0.921125\pi\)
0.245264 + 0.969456i \(0.421125\pi\)
\(3\) 1.50524 1.50524i 0.869051 0.869051i −0.123316 0.992367i \(-0.539353\pi\)
0.992367 + 0.123316i \(0.0393530\pi\)
\(4\) 0.0978212i 0.0489106i
\(5\) −1.59568 1.56646i −0.713609 0.700544i
\(6\) 3.08322i 1.25872i
\(7\) 1.61807 + 1.61807i 0.611572 + 0.611572i 0.943355 0.331784i \(-0.107650\pi\)
−0.331784 + 0.943355i \(0.607650\pi\)
\(8\) −1.94814 1.94814i −0.688772 0.688772i
\(9\) 1.53150i 0.510500i
\(10\) 3.23855 0.0299191i 1.02412 0.00946124i
\(11\) −3.89135 −1.17329 −0.586644 0.809845i \(-0.699551\pi\)
−0.586644 + 0.809845i \(0.699551\pi\)
\(12\) −0.147244 0.147244i −0.0425058 0.0425058i
\(13\) −3.39143 + 3.39143i −0.940613 + 0.940613i −0.998333 0.0577196i \(-0.981617\pi\)
0.0577196 + 0.998333i \(0.481617\pi\)
\(14\) −3.31433 −0.885791
\(15\) −4.75979 + 0.0439729i −1.22897 + 0.0113537i
\(16\) 4.18607 1.04652
\(17\) −1.95449 + 1.95449i −0.474033 + 0.474033i −0.903217 0.429184i \(-0.858801\pi\)
0.429184 + 0.903217i \(0.358801\pi\)
\(18\) 1.56851 + 1.56851i 0.369700 + 0.369700i
\(19\) 5.23589i 1.20120i 0.799551 + 0.600598i \(0.205071\pi\)
−0.799551 + 0.600598i \(0.794929\pi\)
\(20\) −0.153233 + 0.156091i −0.0342640 + 0.0349030i
\(21\) 4.87116 1.06297
\(22\) 3.98538 3.98538i 0.849687 0.849687i
\(23\) −1.01371 + 1.01371i −0.211374 + 0.211374i −0.804851 0.593477i \(-0.797755\pi\)
0.593477 + 0.804851i \(0.297755\pi\)
\(24\) −5.86484 −1.19716
\(25\) 0.0923762 + 4.99915i 0.0184752 + 0.999829i
\(26\) 6.94676i 1.36237i
\(27\) 2.21045 + 2.21045i 0.425401 + 0.425401i
\(28\) 0.158281 0.158281i 0.0299123 0.0299123i
\(29\) 2.26555i 0.420703i 0.977626 + 0.210351i \(0.0674608\pi\)
−0.977626 + 0.210351i \(0.932539\pi\)
\(30\) 4.82976 4.91983i 0.881790 0.898235i
\(31\) 6.03258 1.08348 0.541742 0.840545i \(-0.317765\pi\)
0.541742 + 0.840545i \(0.317765\pi\)
\(32\) −0.390939 + 0.390939i −0.0691090 + 0.0691090i
\(33\) −5.85743 + 5.85743i −1.01965 + 1.01965i
\(34\) 4.00343i 0.686583i
\(35\) −0.0472689 5.11656i −0.00798989 0.864856i
\(36\) −0.149813 −0.0249688
\(37\) 0.341972 0.341972i 0.0562198 0.0562198i −0.678438 0.734658i \(-0.737343\pi\)
0.734658 + 0.678438i \(0.237343\pi\)
\(38\) −5.36241 5.36241i −0.869898 0.869898i
\(39\) 10.2098i 1.63488i
\(40\) 0.0569114 + 6.16030i 0.00899848 + 0.974029i
\(41\) 0.909743i 0.142078i 0.997474 + 0.0710390i \(0.0226315\pi\)
−0.997474 + 0.0710390i \(0.977369\pi\)
\(42\) −4.98886 + 4.98886i −0.769798 + 0.769798i
\(43\) −3.13702 3.13702i −0.478391 0.478391i 0.426226 0.904617i \(-0.359843\pi\)
−0.904617 + 0.426226i \(0.859843\pi\)
\(44\) 0.380657i 0.0573862i
\(45\) −2.39904 + 2.44378i −0.357628 + 0.364297i
\(46\) 2.07641i 0.306150i
\(47\) −0.568201 + 0.568201i −0.0828806 + 0.0828806i −0.747332 0.664451i \(-0.768665\pi\)
0.664451 + 0.747332i \(0.268665\pi\)
\(48\) 6.30105 6.30105i 0.909478 0.909478i
\(49\) 1.76372i 0.251961i
\(50\) −5.21455 5.02533i −0.737449 0.710690i
\(51\) 5.88395i 0.823918i
\(52\) 0.331754 + 0.331754i 0.0460059 + 0.0460059i
\(53\) −3.49745 + 3.49745i −0.480412 + 0.480412i −0.905263 0.424851i \(-0.860326\pi\)
0.424851 + 0.905263i \(0.360326\pi\)
\(54\) −4.52772 −0.616144
\(55\) 6.20935 + 6.09567i 0.837268 + 0.821940i
\(56\) 6.30444i 0.842467i
\(57\) 7.88128 + 7.88128i 1.04390 + 1.04390i
\(58\) −2.32030 2.32030i −0.304670 0.304670i
\(59\) 8.62899i 1.12340i 0.827341 + 0.561699i \(0.189852\pi\)
−0.827341 + 0.561699i \(0.810148\pi\)
\(60\) 0.00430148 + 0.465608i 0.000555318 + 0.0601097i
\(61\) 9.34466i 1.19646i 0.801324 + 0.598231i \(0.204129\pi\)
−0.801324 + 0.598231i \(0.795871\pi\)
\(62\) −6.17835 + 6.17835i −0.784651 + 0.784651i
\(63\) 2.47807 2.47807i 0.312207 0.312207i
\(64\) 7.57138i 0.946422i
\(65\) 10.7242 0.0990744i 1.33017 0.0122887i
\(66\) 11.9979i 1.47684i
\(67\) −7.42355 7.42355i −0.906931 0.906931i 0.0890925 0.996023i \(-0.471603\pi\)
−0.996023 + 0.0890925i \(0.971603\pi\)
\(68\) 0.191190 + 0.191190i 0.0231852 + 0.0231852i
\(69\) 3.05176i 0.367389i
\(70\) 5.28860 + 5.19178i 0.632109 + 0.620536i
\(71\) 5.66988i 0.672892i −0.941703 0.336446i \(-0.890775\pi\)
0.941703 0.336446i \(-0.109225\pi\)
\(72\) −2.98358 + 2.98358i −0.351618 + 0.351618i
\(73\) 5.20174 5.20174i 0.608818 0.608818i −0.333819 0.942637i \(-0.608338\pi\)
0.942637 + 0.333819i \(0.108338\pi\)
\(74\) 0.700470i 0.0814280i
\(75\) 7.66397 + 7.38587i 0.884959 + 0.852847i
\(76\) 0.512181 0.0587512
\(77\) −6.29647 6.29647i −0.717549 0.717549i
\(78\) −10.4565 10.4565i −1.18397 1.18397i
\(79\) −7.68350 −0.864461 −0.432231 0.901763i \(-0.642273\pi\)
−0.432231 + 0.901763i \(0.642273\pi\)
\(80\) −6.67962 6.55734i −0.746805 0.733133i
\(81\) 11.2490 1.24989
\(82\) −0.931726 0.931726i −0.102892 0.102892i
\(83\) 3.07254 3.07254i 0.337255 0.337255i −0.518078 0.855333i \(-0.673352\pi\)
0.855333 + 0.518078i \(0.173352\pi\)
\(84\) 0.476502i 0.0519907i
\(85\) 6.18037 0.0570968i 0.670355 0.00619302i
\(86\) 6.42564 0.692895
\(87\) 3.41020 + 3.41020i 0.365612 + 0.365612i
\(88\) 7.58091 + 7.58091i 0.808128 + 0.808128i
\(89\) −9.17958 −0.973033 −0.486517 0.873671i \(-0.661733\pi\)
−0.486517 + 0.873671i \(0.661733\pi\)
\(90\) −0.0458210 4.95984i −0.00482996 0.522813i
\(91\) −10.9751 −1.15050
\(92\) 0.0991625 + 0.0991625i 0.0103384 + 0.0103384i
\(93\) 9.08048 9.08048i 0.941602 0.941602i
\(94\) 1.16386i 0.120043i
\(95\) 8.20184 8.35480i 0.841491 0.857185i
\(96\) 1.17692i 0.120118i
\(97\) −2.31637 + 2.31637i −0.235192 + 0.235192i −0.814856 0.579664i \(-0.803184\pi\)
0.579664 + 0.814856i \(0.303184\pi\)
\(98\) 1.80634 + 1.80634i 0.182468 + 0.182468i
\(99\) 5.95961i 0.598963i
\(100\) 0.489022 0.00903635i 0.0489022 0.000903635i
\(101\) 1.48124i 0.147389i 0.997281 + 0.0736944i \(0.0234789\pi\)
−0.997281 + 0.0736944i \(0.976521\pi\)
\(102\) −6.02613 6.02613i −0.596676 0.596676i
\(103\) −8.37437 8.37437i −0.825151 0.825151i 0.161690 0.986842i \(-0.448305\pi\)
−0.986842 + 0.161690i \(0.948305\pi\)
\(104\) 13.2140 1.29574
\(105\) −7.77280 7.63050i −0.758548 0.744660i
\(106\) 7.16393i 0.695822i
\(107\) −5.72708 5.72708i −0.553658 0.553658i 0.373837 0.927495i \(-0.378042\pi\)
−0.927495 + 0.373837i \(0.878042\pi\)
\(108\) 0.216229 0.216229i 0.0208066 0.0208066i
\(109\) −19.3084 −1.84941 −0.924705 0.380684i \(-0.875689\pi\)
−0.924705 + 0.380684i \(0.875689\pi\)
\(110\) −12.6023 + 0.116426i −1.20159 + 0.0111008i
\(111\) 1.02950i 0.0977158i
\(112\) 6.77334 + 6.77334i 0.640021 + 0.640021i
\(113\) −14.7988 + 14.7988i −1.39215 + 1.39215i −0.571657 + 0.820493i \(0.693699\pi\)
−0.820493 + 0.571657i \(0.806301\pi\)
\(114\) −16.1434 −1.51197
\(115\) 3.20550 0.0296137i 0.298915 0.00276150i
\(116\) 0.221619 0.0205768
\(117\) 5.19397 + 5.19397i 0.480183 + 0.480183i
\(118\) −8.83750 8.83750i −0.813557 0.813557i
\(119\) −6.32498 −0.579810
\(120\) 9.35840 + 9.18707i 0.854301 + 0.838661i
\(121\) 4.14264 0.376604
\(122\) −9.57046 9.57046i −0.866469 0.866469i
\(123\) 1.36938 + 1.36938i 0.123473 + 0.123473i
\(124\) 0.590114i 0.0529938i
\(125\) 7.68358 8.12173i 0.687241 0.726430i
\(126\) 5.07589i 0.452196i
\(127\) 8.24946 8.24946i 0.732021 0.732021i −0.238999 0.971020i \(-0.576819\pi\)
0.971020 + 0.238999i \(0.0768191\pi\)
\(128\) −8.53620 8.53620i −0.754501 0.754501i
\(129\) −9.44394 −0.831493
\(130\) −10.8818 + 11.0848i −0.954401 + 0.972200i
\(131\) 15.7771i 1.37846i 0.724545 + 0.689228i \(0.242050\pi\)
−0.724545 + 0.689228i \(0.757950\pi\)
\(132\) 0.572980 + 0.572980i 0.0498715 + 0.0498715i
\(133\) −8.47202 + 8.47202i −0.734618 + 0.734618i
\(134\) 15.2059 1.31359
\(135\) −0.0645742 6.98975i −0.00555766 0.601582i
\(136\) 7.61524 0.653002
\(137\) 7.11810 7.11810i 0.608141 0.608141i −0.334319 0.942460i \(-0.608506\pi\)
0.942460 + 0.334319i \(0.108506\pi\)
\(138\) −3.12550 3.12550i −0.266060 0.266060i
\(139\) 9.63234i 0.817005i 0.912757 + 0.408502i \(0.133949\pi\)
−0.912757 + 0.408502i \(0.866051\pi\)
\(140\) −0.500508 + 0.00462390i −0.0423006 + 0.000390790i
\(141\) 1.71056i 0.144055i
\(142\) 5.80689 + 5.80689i 0.487303 + 0.487303i
\(143\) 13.1973 13.1973i 1.10361 1.10361i
\(144\) 6.41097i 0.534247i
\(145\) 3.54891 3.61509i 0.294721 0.300217i
\(146\) 10.6549i 0.881803i
\(147\) −2.65483 2.65483i −0.218967 0.218967i
\(148\) −0.0334521 0.0334521i −0.00274975 0.00274975i
\(149\) 8.50873 0.697062 0.348531 0.937297i \(-0.386681\pi\)
0.348531 + 0.937297i \(0.386681\pi\)
\(150\) −15.4135 + 0.284817i −1.25851 + 0.0232552i
\(151\) 10.3324 6.65144i 0.840838 0.541286i
\(152\) 10.2003 10.2003i 0.827351 0.827351i
\(153\) 2.99330 + 2.99330i 0.241994 + 0.241994i
\(154\) 12.8972 1.03929
\(155\) −9.62605 9.44982i −0.773183 0.759028i
\(156\) 0.998738 0.0799630
\(157\) −10.3804 10.3804i −0.828445 0.828445i 0.158857 0.987302i \(-0.449219\pi\)
−0.987302 + 0.158857i \(0.949219\pi\)
\(158\) 7.86916 7.86916i 0.626037 0.626037i
\(159\) 10.5290i 0.835005i
\(160\) 1.23621 0.0114206i 0.0977306 0.000902876i
\(161\) −3.28051 −0.258540
\(162\) −11.5208 + 11.5208i −0.905161 + 0.905161i
\(163\) 15.8721 15.8721i 1.24320 1.24320i 0.284531 0.958667i \(-0.408162\pi\)
0.958667 0.284531i \(-0.0918380\pi\)
\(164\) 0.0889922 0.00694912
\(165\) 18.5220 0.171114i 1.44194 0.0133212i
\(166\) 6.29357i 0.488476i
\(167\) 11.3166 11.3166i 0.875703 0.875703i −0.117384 0.993087i \(-0.537451\pi\)
0.993087 + 0.117384i \(0.0374507\pi\)
\(168\) −9.48971 9.48971i −0.732147 0.732147i
\(169\) 10.0036i 0.769507i
\(170\) −6.27123 + 6.38819i −0.480982 + 0.489952i
\(171\) 8.01877 0.613210
\(172\) −0.306867 + 0.306867i −0.0233984 + 0.0233984i
\(173\) 7.91225 + 7.91225i 0.601557 + 0.601557i 0.940726 0.339168i \(-0.110146\pi\)
−0.339168 + 0.940726i \(0.610146\pi\)
\(174\) −6.98521 −0.529547
\(175\) −7.93948 + 8.23842i −0.600168 + 0.622766i
\(176\) −16.2895 −1.22787
\(177\) 12.9887 + 12.9887i 0.976291 + 0.976291i
\(178\) 9.40139 9.40139i 0.704664 0.704664i
\(179\) 25.7277 1.92298 0.961491 0.274838i \(-0.0886242\pi\)
0.961491 + 0.274838i \(0.0886242\pi\)
\(180\) 0.239053 + 0.234677i 0.0178180 + 0.0174918i
\(181\) 18.6620i 1.38713i 0.720393 + 0.693566i \(0.243961\pi\)
−0.720393 + 0.693566i \(0.756039\pi\)
\(182\) 11.2403 11.2403i 0.833187 0.833187i
\(183\) 14.0660 + 14.0660i 1.03979 + 1.03979i
\(184\) 3.94971 0.291176
\(185\) −1.08136 + 0.00999009i −0.0795035 + 0.000734486i
\(186\) 18.5998i 1.36380i
\(187\) 7.60561 7.60561i 0.556177 0.556177i
\(188\) 0.0555821 + 0.0555821i 0.00405374 + 0.00405374i
\(189\) 7.15330i 0.520326i
\(190\) 0.156653 + 16.9567i 0.0113648 + 1.23017i
\(191\) 4.80675 0.347804 0.173902 0.984763i \(-0.444362\pi\)
0.173902 + 0.984763i \(0.444362\pi\)
\(192\) 11.3967 + 11.3967i 0.822489 + 0.822489i
\(193\) 3.94027 + 3.94027i 0.283627 + 0.283627i 0.834554 0.550927i \(-0.185726\pi\)
−0.550927 + 0.834554i \(0.685726\pi\)
\(194\) 4.74469i 0.340649i
\(195\) 15.9933 16.2916i 1.14531 1.16667i
\(196\) −0.172530 −0.0123235
\(197\) 1.56471 + 1.56471i 0.111481 + 0.111481i 0.760647 0.649166i \(-0.224882\pi\)
−0.649166 + 0.760647i \(0.724882\pi\)
\(198\) −6.10361 6.10361i −0.433765 0.433765i
\(199\) −8.43614 −0.598022 −0.299011 0.954250i \(-0.596657\pi\)
−0.299011 + 0.954250i \(0.596657\pi\)
\(200\) 9.55908 9.91901i 0.675929 0.701380i
\(201\) −22.3485 −1.57634
\(202\) −1.51703 1.51703i −0.106738 0.106738i
\(203\) −3.66581 + 3.66581i −0.257290 + 0.257290i
\(204\) 0.575575 0.0402983
\(205\) 1.42508 1.45166i 0.0995320 0.101388i
\(206\) 17.1535 1.19514
\(207\) 1.55250 + 1.55250i 0.107906 + 0.107906i
\(208\) −14.1968 + 14.1968i −0.984369 + 0.984369i
\(209\) 20.3747i 1.40935i
\(210\) 15.7755 0.145740i 1.08861 0.0100570i
\(211\) 26.9327i 1.85413i 0.374905 + 0.927063i \(0.377675\pi\)
−0.374905 + 0.927063i \(0.622325\pi\)
\(212\) 0.342125 + 0.342125i 0.0234972 + 0.0234972i
\(213\) −8.53454 8.53454i −0.584777 0.584777i
\(214\) 11.7309 0.801910
\(215\) 0.0916424 + 9.91971i 0.00624996 + 0.676519i
\(216\) 8.61253i 0.586009i
\(217\) 9.76111 + 9.76111i 0.662628 + 0.662628i
\(218\) 19.7750 19.7750i 1.33933 1.33933i
\(219\) 15.6597i 1.05819i
\(220\) 0.596286 0.607406i 0.0402016 0.0409513i
\(221\) 13.2570i 0.891764i
\(222\) 1.05438 + 1.05438i 0.0707651 + 0.0707651i
\(223\) 6.45689 + 6.45689i 0.432385 + 0.432385i 0.889439 0.457054i \(-0.151095\pi\)
−0.457054 + 0.889439i \(0.651095\pi\)
\(224\) −1.26513 −0.0845301
\(225\) 7.65619 0.141474i 0.510412 0.00943161i
\(226\) 30.3127i 2.01637i
\(227\) −1.72903 + 1.72903i −0.114759 + 0.114759i −0.762155 0.647395i \(-0.775858\pi\)
0.647395 + 0.762155i \(0.275858\pi\)
\(228\) 0.770956 0.770956i 0.0510578 0.0510578i
\(229\) 16.6245i 1.09858i −0.835632 0.549290i \(-0.814898\pi\)
0.835632 0.549290i \(-0.185102\pi\)
\(230\) −3.25263 + 3.31329i −0.214472 + 0.218472i
\(231\) −18.9554 −1.24717
\(232\) 4.41362 4.41362i 0.289768 0.289768i
\(233\) 6.30147 6.30147i 0.412823 0.412823i −0.469898 0.882721i \(-0.655709\pi\)
0.882721 + 0.469898i \(0.155709\pi\)
\(234\) −10.6389 −0.695490
\(235\) 1.79673 0.0165990i 0.117206 0.00108280i
\(236\) 0.844098 0.0549461
\(237\) −11.5655 + 11.5655i −0.751261 + 0.751261i
\(238\) 6.47782 6.47782i 0.419894 0.419894i
\(239\) 27.0204i 1.74780i 0.486104 + 0.873901i \(0.338418\pi\)
−0.486104 + 0.873901i \(0.661582\pi\)
\(240\) −19.9248 + 0.184074i −1.28614 + 0.0118819i
\(241\) 25.8554 1.66549 0.832745 0.553657i \(-0.186768\pi\)
0.832745 + 0.553657i \(0.186768\pi\)
\(242\) −4.24274 + 4.24274i −0.272734 + 0.272734i
\(243\) 10.3011 10.3011i 0.660817 0.660817i
\(244\) 0.914106 0.0585196
\(245\) −2.76281 + 2.81434i −0.176510 + 0.179801i
\(246\) −2.80494 −0.178837
\(247\) −17.7572 17.7572i −1.12986 1.12986i
\(248\) −11.7523 11.7523i −0.746273 0.746273i
\(249\) 9.24983i 0.586184i
\(250\) 0.448735 + 16.1872i 0.0283805 + 1.02377i
\(251\) 1.57563 0.0994530 0.0497265 0.998763i \(-0.484165\pi\)
0.0497265 + 0.998763i \(0.484165\pi\)
\(252\) −0.242407 0.242407i −0.0152702 0.0152702i
\(253\) 3.94471 3.94471i 0.248002 0.248002i
\(254\) 16.8976i 1.06025i
\(255\) 9.21700 9.38889i 0.577191 0.587955i
\(256\) 2.34218 0.146386
\(257\) −8.81254 8.81254i −0.549711 0.549711i 0.376646 0.926357i \(-0.377077\pi\)
−0.926357 + 0.376646i \(0.877077\pi\)
\(258\) 9.67214 9.67214i 0.602161 0.602161i
\(259\) 1.10667 0.0687649
\(260\) −0.00969158 1.04905i −0.000601046 0.0650595i
\(261\) 3.46969 0.214769
\(262\) −16.1584 16.1584i −0.998267 0.998267i
\(263\) −4.15625 + 4.15625i −0.256285 + 0.256285i −0.823541 0.567256i \(-0.808005\pi\)
0.567256 + 0.823541i \(0.308005\pi\)
\(264\) 22.8222 1.40461
\(265\) 11.0594 0.102172i 0.679376 0.00627636i
\(266\) 17.3535i 1.06401i
\(267\) −13.8175 + 13.8175i −0.845616 + 0.845616i
\(268\) −0.726180 + 0.726180i −0.0443585 + 0.0443585i
\(269\) 24.6302i 1.50173i −0.660454 0.750866i \(-0.729636\pi\)
0.660454 0.750866i \(-0.270364\pi\)
\(270\) 7.22478 + 7.09251i 0.439686 + 0.431637i
\(271\) 1.28890i 0.0782949i 0.999233 + 0.0391475i \(0.0124642\pi\)
−0.999233 + 0.0391475i \(0.987536\pi\)
\(272\) −8.18163 + 8.18163i −0.496084 + 0.496084i
\(273\) −16.5202 + 16.5202i −0.999847 + 0.999847i
\(274\) 14.5802i 0.880822i
\(275\) −0.359469 19.4535i −0.0216768 1.17309i
\(276\) 0.298527 0.0179692
\(277\) 3.15554 + 3.15554i 0.189598 + 0.189598i 0.795522 0.605924i \(-0.207197\pi\)
−0.605924 + 0.795522i \(0.707197\pi\)
\(278\) −9.86509 9.86509i −0.591669 0.591669i
\(279\) 9.23889i 0.553118i
\(280\) −9.87569 + 10.0599i −0.590185 + 0.601192i
\(281\) 7.91571i 0.472212i 0.971727 + 0.236106i \(0.0758712\pi\)
−0.971727 + 0.236106i \(0.924129\pi\)
\(282\) −1.75189 1.75189i −0.104324 0.104324i
\(283\) −13.5039 + 13.5039i −0.802723 + 0.802723i −0.983520 0.180798i \(-0.942132\pi\)
0.180798 + 0.983520i \(0.442132\pi\)
\(284\) −0.554635 −0.0329115
\(285\) −0.230237 24.9217i −0.0136381 1.47624i
\(286\) 27.0323i 1.59845i
\(287\) −1.47202 + 1.47202i −0.0868909 + 0.0868909i
\(288\) 0.598723 + 0.598723i 0.0352801 + 0.0352801i
\(289\) 9.35995i 0.550585i
\(290\) 0.0677832 + 7.33711i 0.00398037 + 0.430850i
\(291\) 6.97340i 0.408788i
\(292\) −0.508840 0.508840i −0.0297776 0.0297776i
\(293\) 0.131887 0.131887i 0.00770494 0.00770494i −0.703244 0.710949i \(-0.748266\pi\)
0.710949 + 0.703244i \(0.248266\pi\)
\(294\) 5.43796 0.317148
\(295\) 13.5170 13.7691i 0.786991 0.801667i
\(296\) −1.33242 −0.0774453
\(297\) −8.60164 8.60164i −0.499118 0.499118i
\(298\) −8.71433 + 8.71433i −0.504807 + 0.504807i
\(299\) 6.87587i 0.397642i
\(300\) 0.722495 0.749698i 0.0417132 0.0432839i
\(301\) 10.1518i 0.585141i
\(302\) −3.76990 + 17.3942i −0.216933 + 1.00092i
\(303\) 2.22962 + 2.22962i 0.128088 + 0.128088i
\(304\) 21.9178i 1.25707i
\(305\) 14.6381 14.9111i 0.838174 0.853805i
\(306\) −6.13125 −0.350500
\(307\) −17.7482 + 17.7482i −1.01294 + 1.01294i −0.0130256 + 0.999915i \(0.504146\pi\)
−0.999915 + 0.0130256i \(0.995854\pi\)
\(308\) −0.615928 + 0.615928i −0.0350958 + 0.0350958i
\(309\) −25.2109 −1.43420
\(310\) 19.5368 0.180489i 1.10962 0.0102511i
\(311\) 8.95991 0.508070 0.254035 0.967195i \(-0.418242\pi\)
0.254035 + 0.967195i \(0.418242\pi\)
\(312\) 19.8902 19.8902i 1.12606 1.12606i
\(313\) 9.33716 + 9.33716i 0.527768 + 0.527768i 0.919906 0.392139i \(-0.128265\pi\)
−0.392139 + 0.919906i \(0.628265\pi\)
\(314\) 21.2624 1.19991
\(315\) −7.83600 + 0.0723922i −0.441509 + 0.00407884i
\(316\) 0.751609i 0.0422813i
\(317\) −0.718402 0.718402i −0.0403495 0.0403495i 0.686644 0.726994i \(-0.259083\pi\)
−0.726994 + 0.686644i \(0.759083\pi\)
\(318\) −10.7834 10.7834i −0.604705 0.604705i
\(319\) 8.81607i 0.493605i
\(320\) 11.8603 12.0815i 0.663011 0.675375i
\(321\) −17.2413 −0.962314
\(322\) 3.35977 3.35977i 0.187233 0.187233i
\(323\) −10.2335 10.2335i −0.569407 0.569407i
\(324\) 1.10039i 0.0611328i
\(325\) −17.2675 16.6410i −0.957831 0.923075i
\(326\) 32.5112i 1.80063i
\(327\) −29.0638 + 29.0638i −1.60723 + 1.60723i
\(328\) 1.77231 1.77231i 0.0978594 0.0978594i
\(329\) −1.83877 −0.101375
\(330\) −18.7943 + 19.1448i −1.03459 + 1.05389i
\(331\) 19.7692 1.08661 0.543307 0.839534i \(-0.317172\pi\)
0.543307 + 0.839534i \(0.317172\pi\)
\(332\) −0.300560 0.300560i −0.0164954 0.0164954i
\(333\) −0.523730 0.523730i −0.0287002 0.0287002i
\(334\) 23.1801i 1.26836i
\(335\) 0.216865 + 23.4743i 0.0118486 + 1.28254i
\(336\) 20.3910 1.11242
\(337\) 11.8333 + 11.8333i 0.644600 + 0.644600i 0.951683 0.307083i \(-0.0993529\pi\)
−0.307083 + 0.951683i \(0.599353\pi\)
\(338\) 10.2453 + 10.2453i 0.557271 + 0.557271i
\(339\) 44.5514i 2.41970i
\(340\) −0.00558528 0.604571i −0.000302904 0.0327875i
\(341\) −23.4749 −1.27124
\(342\) −8.21253 + 8.21253i −0.444083 + 0.444083i
\(343\) 14.1803 14.1803i 0.765663 0.765663i
\(344\) 12.2227i 0.659005i
\(345\) 4.78048 4.86963i 0.257372 0.262172i
\(346\) −16.2069 −0.871287
\(347\) −22.1860 + 22.1860i −1.19100 + 1.19100i −0.214219 + 0.976786i \(0.568720\pi\)
−0.976786 + 0.214219i \(0.931280\pi\)
\(348\) 0.333590 0.333590i 0.0178823 0.0178823i
\(349\) 11.6900i 0.625754i −0.949794 0.312877i \(-0.898707\pi\)
0.949794 0.312877i \(-0.101293\pi\)
\(350\) −0.306165 16.5688i −0.0163652 0.885640i
\(351\) −14.9932 −0.800275
\(352\) 1.52128 1.52128i 0.0810847 0.0810847i
\(353\) −10.1118 + 10.1118i −0.538197 + 0.538197i −0.922999 0.384802i \(-0.874270\pi\)
0.384802 + 0.922999i \(0.374270\pi\)
\(354\) −26.6051 −1.41405
\(355\) −8.88167 + 9.04731i −0.471390 + 0.480181i
\(356\) 0.897957i 0.0475916i
\(357\) −9.52062 + 9.52062i −0.503885 + 0.503885i
\(358\) −26.3494 + 26.3494i −1.39261 + 1.39261i
\(359\) −15.9331 −0.840916 −0.420458 0.907312i \(-0.638131\pi\)
−0.420458 + 0.907312i \(0.638131\pi\)
\(360\) 9.43450 0.0871598i 0.497242 0.00459372i
\(361\) −8.41459 −0.442873
\(362\) −19.1129 19.1129i −1.00455 1.00455i
\(363\) 6.23567 6.23567i 0.327288 0.327288i
\(364\) 1.07360i 0.0562719i
\(365\) −16.4486 + 0.151959i −0.860962 + 0.00795392i
\(366\) −28.8117 −1.50601
\(367\) −10.4159 10.4159i −0.543706 0.543706i 0.380907 0.924613i \(-0.375612\pi\)
−0.924613 + 0.380907i \(0.875612\pi\)
\(368\) −4.24347 + 4.24347i −0.221206 + 0.221206i
\(369\) 1.39327 0.0725308
\(370\) 1.09726 1.11772i 0.0570439 0.0581078i
\(371\) −11.3182 −0.587613
\(372\) −0.888264 0.888264i −0.0460543 0.0460543i
\(373\) 11.1987 11.1987i 0.579846 0.579846i −0.355015 0.934861i \(-0.615524\pi\)
0.934861 + 0.355015i \(0.115524\pi\)
\(374\) 15.5788i 0.805559i
\(375\) −0.659518 23.7908i −0.0340574 1.22855i
\(376\) 2.21387 0.114172
\(377\) −7.68346 7.68346i −0.395718 0.395718i
\(378\) −7.32615 7.32615i −0.376816 0.376816i
\(379\) −6.44019 −0.330810 −0.165405 0.986226i \(-0.552893\pi\)
−0.165405 + 0.986226i \(0.552893\pi\)
\(380\) −0.817276 0.802314i −0.0419254 0.0411578i
\(381\) 24.8348i 1.27233i
\(382\) −4.92289 + 4.92289i −0.251877 + 0.251877i
\(383\) −10.9241 10.9241i −0.558195 0.558195i 0.370598 0.928793i \(-0.379153\pi\)
−0.928793 + 0.370598i \(0.879153\pi\)
\(384\) −25.6981 −1.31140
\(385\) 0.183940 + 19.9103i 0.00937444 + 1.01472i
\(386\) −8.07096 −0.410801
\(387\) −4.80434 + 4.80434i −0.244219 + 0.244219i
\(388\) 0.226590 + 0.226590i 0.0115034 + 0.0115034i
\(389\) 32.8285 1.66447 0.832237 0.554420i \(-0.187060\pi\)
0.832237 + 0.554420i \(0.187060\pi\)
\(390\) 0.305469 + 33.0651i 0.0154680 + 1.67431i
\(391\) 3.96258i 0.200396i
\(392\) −3.43598 + 3.43598i −0.173543 + 0.173543i
\(393\) 23.7484 + 23.7484i 1.19795 + 1.19795i
\(394\) −3.20503 −0.161467
\(395\) 12.2604 + 12.0359i 0.616887 + 0.605594i
\(396\) 0.582976 0.0292956
\(397\) 12.4365 12.4365i 0.624168 0.624168i −0.322426 0.946595i \(-0.604498\pi\)
0.946595 + 0.322426i \(0.104498\pi\)
\(398\) 8.63999 8.63999i 0.433084 0.433084i
\(399\) 25.5049i 1.27684i
\(400\) 0.386694 + 20.9268i 0.0193347 + 1.04634i
\(401\) 5.27485 0.263414 0.131707 0.991289i \(-0.457954\pi\)
0.131707 + 0.991289i \(0.457954\pi\)
\(402\) 22.8885 22.8885i 1.14157 1.14157i
\(403\) −20.4591 + 20.4591i −1.01914 + 1.01914i
\(404\) 0.144897 0.00720888
\(405\) −17.9498 17.6212i −0.891932 0.875603i
\(406\) 7.50879i 0.372655i
\(407\) −1.33073 + 1.33073i −0.0659620 + 0.0659620i
\(408\) 11.4628 11.4628i 0.567492 0.567492i
\(409\) 38.4432 1.90090 0.950448 0.310884i \(-0.100625\pi\)
0.950448 + 0.310884i \(0.100625\pi\)
\(410\) 0.0272187 + 2.94625i 0.00134423 + 0.145505i
\(411\) 21.4289i 1.05701i
\(412\) −0.819191 + 0.819191i −0.0403586 + 0.0403586i
\(413\) −13.9623 + 13.9623i −0.687039 + 0.687039i
\(414\) −3.18002 −0.156290
\(415\) −9.71581 + 0.0897587i −0.476931 + 0.00440608i
\(416\) 2.65169i 0.130010i
\(417\) 14.4990 + 14.4990i 0.710019 + 0.710019i
\(418\) 20.8670 + 20.8670i 1.02064 + 1.02064i
\(419\) −22.9048 −1.11897 −0.559486 0.828840i \(-0.689001\pi\)
−0.559486 + 0.828840i \(0.689001\pi\)
\(420\) −0.746424 + 0.760344i −0.0364218 + 0.0371010i
\(421\) 10.0352i 0.489085i −0.969639 0.244542i \(-0.921362\pi\)
0.969639 0.244542i \(-0.0786377\pi\)
\(422\) −27.5835 27.5835i −1.34275 1.34275i
\(423\) 0.870199 + 0.870199i 0.0423105 + 0.0423105i
\(424\) 13.6271 0.661789
\(425\) −9.95132 9.59023i −0.482710 0.465194i
\(426\) 17.4815 0.846983
\(427\) −15.1203 + 15.1203i −0.731722 + 0.731722i
\(428\) −0.560230 + 0.560230i −0.0270797 + 0.0270797i
\(429\) 39.7301i 1.91819i
\(430\) −10.2533 10.0655i −0.494456 0.485404i
\(431\) 6.26071i 0.301568i 0.988567 + 0.150784i \(0.0481798\pi\)
−0.988567 + 0.150784i \(0.951820\pi\)
\(432\) 9.25310 + 9.25310i 0.445190 + 0.445190i
\(433\) 5.15242 5.15242i 0.247609 0.247609i −0.572379 0.819989i \(-0.693980\pi\)
0.819989 + 0.572379i \(0.193980\pi\)
\(434\) −19.9939 −0.959740
\(435\) −0.0996228 10.7835i −0.00477655 0.517031i
\(436\) 1.88877i 0.0904558i
\(437\) −5.30769 5.30769i −0.253901 0.253901i
\(438\) 16.0381 + 16.0381i 0.766332 + 0.766332i
\(439\) 26.3739i 1.25876i −0.777098 0.629379i \(-0.783309\pi\)
0.777098 0.629379i \(-0.216691\pi\)
\(440\) −0.221463 23.9719i −0.0105578 1.14282i
\(441\) −2.70114 −0.128626
\(442\) 13.5774 + 13.5774i 0.645809 + 0.645809i
\(443\) −3.24985 + 3.24985i −0.154405 + 0.154405i −0.780082 0.625677i \(-0.784823\pi\)
0.625677 + 0.780082i \(0.284823\pi\)
\(444\) −0.100707 −0.00477934
\(445\) 14.6477 + 14.3795i 0.694365 + 0.681653i
\(446\) −13.2258 −0.626261
\(447\) 12.8077 12.8077i 0.605783 0.605783i
\(448\) −12.2510 + 12.2510i −0.578805 + 0.578805i
\(449\) −2.06066 −0.0972487 −0.0486243 0.998817i \(-0.515484\pi\)
−0.0486243 + 0.998817i \(0.515484\pi\)
\(450\) −7.69629 + 7.98608i −0.362807 + 0.376467i
\(451\) 3.54013i 0.166698i
\(452\) 1.44763 + 1.44763i 0.0680909 + 0.0680909i
\(453\) 5.54072 25.5648i 0.260326 1.20114i
\(454\) 3.54161i 0.166216i
\(455\) 17.5127 + 17.1921i 0.821010 + 0.805979i
\(456\) 30.7077i 1.43802i
\(457\) −21.4026 + 21.4026i −1.00117 + 1.00117i −0.00117364 + 0.999999i \(0.500374\pi\)
−0.999999 + 0.00117364i \(0.999626\pi\)
\(458\) 17.0262 + 17.0262i 0.795584 + 0.795584i
\(459\) −8.64059 −0.403308
\(460\) −0.00289685 0.313566i −0.000135066 0.0146201i
\(461\) −21.1897 −0.986901 −0.493451 0.869774i \(-0.664265\pi\)
−0.493451 + 0.869774i \(0.664265\pi\)
\(462\) 19.4134 19.4134i 0.903195 0.903195i
\(463\) 9.02486 + 9.02486i 0.419421 + 0.419421i 0.885004 0.465583i \(-0.154155\pi\)
−0.465583 + 0.885004i \(0.654155\pi\)
\(464\) 9.48377i 0.440273i
\(465\) −28.7138 + 0.265270i −1.33157 + 0.0123016i
\(466\) 12.9075i 0.597927i
\(467\) −2.02167 2.02167i −0.0935519 0.0935519i 0.658782 0.752334i \(-0.271072\pi\)
−0.752334 + 0.658782i \(0.771072\pi\)
\(468\) 0.508080 0.508080i 0.0234860 0.0234860i
\(469\) 24.0236i 1.10931i
\(470\) −1.82315 + 1.85715i −0.0840955 + 0.0856638i
\(471\) −31.2500 −1.43992
\(472\) 16.8105 16.8105i 0.773766 0.773766i
\(473\) 12.2073 + 12.2073i 0.561291 + 0.561291i
\(474\) 23.6900i 1.08812i
\(475\) −26.1750 + 0.483672i −1.20099 + 0.0221924i
\(476\) 0.618717i 0.0283589i
\(477\) 5.35635 + 5.35635i 0.245250 + 0.245250i
\(478\) −27.6733 27.6733i −1.26575 1.26575i
\(479\) 31.4472 1.43686 0.718430 0.695599i \(-0.244861\pi\)
0.718430 + 0.695599i \(0.244861\pi\)
\(480\) 1.84360 1.87798i 0.0841483 0.0857176i
\(481\) 2.31955i 0.105762i
\(482\) −26.4801 + 26.4801i −1.20614 + 1.20614i
\(483\) −4.93795 + 4.93795i −0.224685 + 0.224685i
\(484\) 0.405238i 0.0184199i
\(485\) 7.32470 0.0676686i 0.332598 0.00307267i
\(486\) 21.1001i 0.957118i
\(487\) −12.8981 + 12.8981i −0.584469 + 0.584469i −0.936128 0.351659i \(-0.885618\pi\)
0.351659 + 0.936128i \(0.385618\pi\)
\(488\) 18.2047 18.2047i 0.824089 0.824089i
\(489\) 47.7826i 2.16081i
\(490\) −0.0527690 5.71191i −0.00238386 0.258038i
\(491\) −18.4117 −0.830910 −0.415455 0.909614i \(-0.636378\pi\)
−0.415455 + 0.909614i \(0.636378\pi\)
\(492\) 0.133955 0.133955i 0.00603914 0.00603914i
\(493\) −4.42800 4.42800i −0.199427 0.199427i
\(494\) 36.3725 1.63648
\(495\) 9.33551 9.50961i 0.419600 0.427425i
\(496\) 25.2528 1.13389
\(497\) 9.17425 9.17425i 0.411521 0.411521i
\(498\) 9.47334 + 9.47334i 0.424510 + 0.424510i
\(499\) 28.9664 1.29671 0.648357 0.761337i \(-0.275457\pi\)
0.648357 + 0.761337i \(0.275457\pi\)
\(500\) −0.794477 0.751617i −0.0355301 0.0336133i
\(501\) 34.0683i 1.52206i
\(502\) −1.61370 + 1.61370i −0.0720232 + 0.0720232i
\(503\) 5.83543 + 5.83543i 0.260189 + 0.260189i 0.825131 0.564942i \(-0.191101\pi\)
−0.564942 + 0.825131i \(0.691101\pi\)
\(504\) −9.65525 −0.430079
\(505\) 2.32031 2.36358i 0.103252 0.105178i
\(506\) 8.08006i 0.359203i
\(507\) −15.0578 15.0578i −0.668741 0.668741i
\(508\) −0.806972 0.806972i −0.0358036 0.0358036i
\(509\) −39.6593 −1.75787 −0.878934 0.476943i \(-0.841745\pi\)
−0.878934 + 0.476943i \(0.841745\pi\)
\(510\) 0.176042 + 19.0555i 0.00779529 + 0.843791i
\(511\) 16.8335 0.744671
\(512\) 14.6736 14.6736i 0.648489 0.648489i
\(513\) −11.5737 + 11.5737i −0.510990 + 0.510990i
\(514\) 18.0510 0.796194
\(515\) 0.244642 + 26.4810i 0.0107802 + 1.16689i
\(516\) 0.923818i 0.0406688i
\(517\) 2.21107 2.21107i 0.0972428 0.0972428i
\(518\) −1.13341 + 1.13341i −0.0497991 + 0.0497991i
\(519\) 23.8197 1.04557
\(520\) −21.0852 20.6992i −0.924649 0.907721i
\(521\) 32.3087 1.41547 0.707736 0.706477i \(-0.249717\pi\)
0.707736 + 0.706477i \(0.249717\pi\)
\(522\) −3.55353 + 3.55353i −0.155534 + 0.155534i
\(523\) −12.6695 + 12.6695i −0.553999 + 0.553999i −0.927593 0.373594i \(-0.878125\pi\)
0.373594 + 0.927593i \(0.378125\pi\)
\(524\) 1.54334 0.0674210
\(525\) 0.449979 + 24.3516i 0.0196387 + 1.06279i
\(526\) 8.51335i 0.371200i
\(527\) −11.7906 + 11.7906i −0.513607 + 0.513607i
\(528\) −24.5196 + 24.5196i −1.06708 + 1.06708i
\(529\) 20.9448i 0.910642i
\(530\) −11.2220 + 11.4313i −0.487454 + 0.496545i
\(531\) 13.2153 0.573495
\(532\) 0.828743 + 0.828743i 0.0359306 + 0.0359306i
\(533\) −3.08533 3.08533i −0.133640 0.133640i
\(534\) 28.3027i 1.22478i
\(535\) 0.167306 + 18.1098i 0.00723328 + 0.782957i
\(536\) 28.9243i 1.24934i
\(537\) 38.7264 38.7264i 1.67117 1.67117i
\(538\) 25.2254 + 25.2254i 1.08754 + 1.08754i
\(539\) 6.86327i 0.295622i
\(540\) −0.683746 + 0.00631672i −0.0294237 + 0.000271829i
\(541\) −19.1475 −0.823217 −0.411608 0.911361i \(-0.635033\pi\)
−0.411608 + 0.911361i \(0.635033\pi\)
\(542\) −1.32004 1.32004i −0.0567006 0.0567006i
\(543\) 28.0907 + 28.0907i 1.20549 + 1.20549i
\(544\) 1.52817i 0.0655199i
\(545\) 30.8100 + 30.2460i 1.31976 + 1.29559i
\(546\) 33.8387i 1.44816i
\(547\) 21.6525 21.6525i 0.925794 0.925794i −0.0716372 0.997431i \(-0.522822\pi\)
0.997431 + 0.0716372i \(0.0228224\pi\)
\(548\) −0.696301 0.696301i −0.0297445 0.0297445i
\(549\) 14.3113 0.610793
\(550\) 20.2917 + 19.5554i 0.865240 + 0.833843i
\(551\) −11.8622 −0.505347
\(552\) 5.94526 5.94526i 0.253047 0.253047i
\(553\) −12.4324 12.4324i −0.528680 0.528680i
\(554\) −6.46358 −0.274611
\(555\) −1.61268 + 1.64275i −0.0684543 + 0.0697309i
\(556\) 0.942247 0.0399602
\(557\) 7.68227 + 7.68227i 0.325508 + 0.325508i 0.850876 0.525367i \(-0.176072\pi\)
−0.525367 + 0.850876i \(0.676072\pi\)
\(558\) 9.46213 + 9.46213i 0.400564 + 0.400564i
\(559\) 21.2780 0.899962
\(560\) −0.197871 21.4183i −0.00836157 0.905088i
\(561\) 22.8965i 0.966693i
\(562\) −8.10698 8.10698i −0.341972 0.341972i
\(563\) 27.6370 + 27.6370i 1.16476 + 1.16476i 0.983420 + 0.181342i \(0.0580441\pi\)
0.181342 + 0.983420i \(0.441956\pi\)
\(564\) 0.167329 0.00704581
\(565\) 46.7958 0.432319i 1.96871 0.0181878i
\(566\) 27.6604i 1.16265i
\(567\) 18.2016 + 18.2016i 0.764397 + 0.764397i
\(568\) −11.0457 + 11.0457i −0.463469 + 0.463469i
\(569\) 2.68404i 0.112521i 0.998416 + 0.0562605i \(0.0179177\pi\)
−0.998416 + 0.0562605i \(0.982082\pi\)
\(570\) 25.7597 + 25.2881i 1.07896 + 1.05920i
\(571\) −24.4895 −1.02485 −0.512427 0.858731i \(-0.671254\pi\)
−0.512427 + 0.858731i \(0.671254\pi\)
\(572\) −1.29097 1.29097i −0.0539782 0.0539782i
\(573\) 7.23531 7.23531i 0.302259 0.302259i
\(574\) 3.01519i 0.125852i
\(575\) −5.16134 4.97405i −0.215243 0.207432i
\(576\) 11.5956 0.483148
\(577\) 12.8249 12.8249i 0.533906 0.533906i −0.387827 0.921732i \(-0.626774\pi\)
0.921732 + 0.387827i \(0.126774\pi\)
\(578\) −9.58612 9.58612i −0.398730 0.398730i
\(579\) 11.8621 0.492973
\(580\) −0.353633 0.347158i −0.0146838 0.0144150i
\(581\) 9.94315 0.412511
\(582\) −7.14190 7.14190i −0.296041 0.296041i
\(583\) 13.6098 13.6098i 0.563662 0.563662i
\(584\) −20.2675 −0.838674
\(585\) −0.151732 16.4241i −0.00627336 0.679052i
\(586\) 0.270148i 0.0111597i
\(587\) 21.5052 + 21.5052i 0.887613 + 0.887613i 0.994293 0.106680i \(-0.0340220\pi\)
−0.106680 + 0.994293i \(0.534022\pi\)
\(588\) −0.259698 + 0.259698i −0.0107098 + 0.0107098i
\(589\) 31.5859i 1.30148i
\(590\) 0.258171 + 27.9454i 0.0106287 + 1.15049i
\(591\) 4.71053 0.193765
\(592\) 1.43152 1.43152i 0.0588351 0.0588351i
\(593\) −23.6825 + 23.6825i −0.972524 + 0.972524i −0.999632 0.0271087i \(-0.991370\pi\)
0.0271087 + 0.999632i \(0.491370\pi\)
\(594\) 17.6190 0.722915
\(595\) 10.0926 + 9.90786i 0.413758 + 0.406183i
\(596\) 0.832334i 0.0340937i
\(597\) −12.6984 + 12.6984i −0.519712 + 0.519712i
\(598\) 7.04201 + 7.04201i 0.287969 + 0.287969i
\(599\) −35.2676 −1.44100 −0.720498 0.693457i \(-0.756087\pi\)
−0.720498 + 0.693457i \(0.756087\pi\)
\(600\) −0.541772 29.3192i −0.0221178 1.19695i
\(601\) 23.5101 0.958997 0.479498 0.877543i \(-0.340819\pi\)
0.479498 + 0.877543i \(0.340819\pi\)
\(602\) 10.3971 + 10.3971i 0.423755 + 0.423755i
\(603\) −11.3692 + 11.3692i −0.462988 + 0.462988i
\(604\) −0.650652 1.01073i −0.0264746 0.0411259i
\(605\) −6.61032 6.48930i −0.268748 0.263828i
\(606\) −4.56699 −0.185521
\(607\) 23.3439 + 23.3439i 0.947500 + 0.947500i 0.998689 0.0511890i \(-0.0163011\pi\)
−0.0511890 + 0.998689i \(0.516301\pi\)
\(608\) −2.04692 2.04692i −0.0830134 0.0830134i
\(609\) 11.0359i 0.447196i
\(610\) 0.279584 + 30.2632i 0.0113200 + 1.22532i
\(611\) 3.85403i 0.155917i
\(612\) 0.292808 0.292808i 0.0118361 0.0118361i
\(613\) −32.5328 32.5328i −1.31399 1.31399i −0.918450 0.395536i \(-0.870559\pi\)
−0.395536 0.918450i \(-0.629441\pi\)
\(614\) 36.3540i 1.46713i
\(615\) −0.0400040 4.33018i −0.00161312 0.174610i
\(616\) 24.5328i 0.988456i
\(617\) −6.36711 6.36711i −0.256330 0.256330i 0.567229 0.823560i \(-0.308015\pi\)
−0.823560 + 0.567229i \(0.808015\pi\)
\(618\) 25.8201 25.8201i 1.03864 1.03864i
\(619\) −1.44338 −0.0580144 −0.0290072 0.999579i \(-0.509235\pi\)
−0.0290072 + 0.999579i \(0.509235\pi\)
\(620\) −0.924393 + 0.941632i −0.0371245 + 0.0378168i
\(621\) −4.48151 −0.179837
\(622\) −9.17641 + 9.17641i −0.367941 + 0.367941i
\(623\) −14.8532 14.8532i −0.595080 0.595080i
\(624\) 42.7391i 1.71093i
\(625\) −24.9829 + 0.923605i −0.999317 + 0.0369442i
\(626\) −19.1256 −0.764411
\(627\) −30.6689 30.6689i −1.22480 1.22480i
\(628\) −1.01542 + 1.01542i −0.0405197 + 0.0405197i
\(629\) 1.33676i 0.0533001i
\(630\) 7.95120 8.09949i 0.316784 0.322691i
\(631\) 9.73385i 0.387499i 0.981051 + 0.193749i \(0.0620648\pi\)
−0.981051 + 0.193749i \(0.937935\pi\)
\(632\) 14.9686 + 14.9686i 0.595417 + 0.595417i
\(633\) 40.5403 + 40.5403i 1.61133 + 1.61133i
\(634\) 1.47152 0.0584416
\(635\) −26.0860 + 0.240993i −1.03519 + 0.00956351i
\(636\) 1.02996 0.0408406
\(637\) 5.98154 + 5.98154i 0.236997 + 0.236997i
\(638\) 9.02910 + 9.02910i 0.357465 + 0.357465i
\(639\) −8.68342 −0.343511
\(640\) 0.249370 + 26.9927i 0.00985720 + 1.06698i
\(641\) 39.0462 1.54223 0.771117 0.636694i \(-0.219699\pi\)
0.771117 + 0.636694i \(0.219699\pi\)
\(642\) 17.6579 17.6579i 0.696901 0.696901i
\(643\) 21.0572 + 21.0572i 0.830415 + 0.830415i 0.987573 0.157158i \(-0.0502333\pi\)
−0.157158 + 0.987573i \(0.550233\pi\)
\(644\) 0.320903i 0.0126453i
\(645\) 15.0695 + 14.7936i 0.593361 + 0.582498i
\(646\) 20.9615 0.824721
\(647\) 21.0075 21.0075i 0.825889 0.825889i −0.161056 0.986945i \(-0.551490\pi\)
0.986945 + 0.161056i \(0.0514900\pi\)
\(648\) −21.9147 21.9147i −0.860889 0.860889i
\(649\) 33.5785i 1.31807i
\(650\) 34.7278 0.641715i 1.36214 0.0251701i
\(651\) 29.3856 1.15171
\(652\) −1.55263 1.55263i −0.0608056 0.0608056i
\(653\) −19.3008 19.3008i −0.755300 0.755300i 0.220163 0.975463i \(-0.429341\pi\)
−0.975463 + 0.220163i \(0.929341\pi\)
\(654\) 59.5322i 2.32789i
\(655\) 24.7143 25.1752i 0.965669 0.983678i
\(656\) 3.80825i 0.148687i
\(657\) −7.96646 7.96646i −0.310801 0.310801i
\(658\) 1.88320 1.88320i 0.0734150 0.0734150i
\(659\) 31.7996i 1.23874i 0.785101 + 0.619368i \(0.212611\pi\)
−0.785101 + 0.619368i \(0.787389\pi\)
\(660\) −0.0167386 1.81185i −0.000651548 0.0705260i
\(661\) 1.31704i 0.0512269i 0.999672 + 0.0256134i \(0.00815390\pi\)
−0.999672 + 0.0256134i \(0.991846\pi\)
\(662\) −20.2469 + 20.2469i −0.786918 + 0.786918i
\(663\) −19.9550 19.9550i −0.774988 0.774988i
\(664\) −11.9715 −0.464584
\(665\) 26.7897 0.247495i 1.03886 0.00959743i
\(666\) 1.07277 0.0415690
\(667\) −2.29662 2.29662i −0.0889254 0.0889254i
\(668\) −1.10700 1.10700i −0.0428312 0.0428312i
\(669\) 19.4383 0.751530
\(670\) −24.2636 23.8194i −0.937386 0.920225i
\(671\) 36.3634i 1.40379i
\(672\) −1.90433 + 1.90433i −0.0734610 + 0.0734610i
\(673\) −17.1772 17.1772i −0.662133 0.662133i 0.293750 0.955882i \(-0.405097\pi\)
−0.955882 + 0.293750i \(0.905097\pi\)
\(674\) −24.2384 −0.933629
\(675\) −10.8462 + 11.2545i −0.417469 + 0.433188i
\(676\) −0.978562 −0.0376370
\(677\) 21.0327 + 21.0327i 0.808352 + 0.808352i 0.984384 0.176032i \(-0.0563263\pi\)
−0.176032 + 0.984384i \(0.556326\pi\)
\(678\) −45.6279 45.6279i −1.75233 1.75233i
\(679\) −7.49609 −0.287674
\(680\) −12.1515 11.9290i −0.465988 0.457457i
\(681\) 5.20520i 0.199464i
\(682\) 24.0421 24.0421i 0.920621 0.920621i
\(683\) −32.7677 + 32.7677i −1.25382 + 1.25382i −0.299826 + 0.953994i \(0.596929\pi\)
−0.953994 + 0.299826i \(0.903071\pi\)
\(684\) 0.784405i 0.0299925i
\(685\) −22.5085 + 0.207942i −0.860004 + 0.00794507i
\(686\) 29.0459i 1.10898i
\(687\) −25.0239 25.0239i −0.954722 0.954722i
\(688\) −13.1318 13.1318i −0.500645 0.500645i
\(689\) 23.7227i 0.903764i
\(690\) 0.0913058 + 9.88328i 0.00347595 + 0.376250i
\(691\) 41.7477i 1.58816i 0.607815 + 0.794079i \(0.292046\pi\)
−0.607815 + 0.794079i \(0.707954\pi\)
\(692\) 0.773986 0.773986i 0.0294225 0.0294225i
\(693\) −9.64304 + 9.64304i −0.366309 + 0.366309i
\(694\) 45.4441i 1.72503i
\(695\) 15.0887 15.3701i 0.572348 0.583022i
\(696\) 13.2871i 0.503647i
\(697\) −1.77808 1.77808i −0.0673497 0.0673497i
\(698\) 11.9725 + 11.9725i 0.453166 + 0.453166i
\(699\) 18.9704i 0.717528i
\(700\) 0.805892 + 0.776649i 0.0304599 + 0.0293546i
\(701\) 43.7305 1.65168 0.825839 0.563906i \(-0.190702\pi\)
0.825839 + 0.563906i \(0.190702\pi\)
\(702\) 15.3554 15.3554i 0.579554 0.579554i
\(703\) 1.79053 + 1.79053i 0.0675311 + 0.0675311i
\(704\) 29.4629i 1.11043i
\(705\) 2.67953 2.72950i 0.100917 0.102799i
\(706\) 20.7123i 0.779517i
\(707\) −2.39674 + 2.39674i −0.0901388 + 0.0901388i
\(708\) 1.27057 1.27057i 0.0477510 0.0477510i
\(709\) 23.7423i 0.891659i −0.895118 0.445830i \(-0.852909\pi\)
0.895118 0.445830i \(-0.147091\pi\)
\(710\) −0.169638 18.3622i −0.00636639 0.689121i
\(711\) 11.7673i 0.441307i
\(712\) 17.8831 + 17.8831i 0.670198 + 0.670198i
\(713\) −6.11530 + 6.11530i −0.229020 + 0.229020i
\(714\) 19.5013i 0.729820i
\(715\) −41.7316 + 0.385534i −1.56067 + 0.0144181i
\(716\) 2.51672i 0.0940541i
\(717\) 40.6721 + 40.6721i 1.51893 + 1.51893i
\(718\) 16.3181 16.3181i 0.608985 0.608985i
\(719\) −42.3081 −1.57782 −0.788912 0.614506i \(-0.789355\pi\)
−0.788912 + 0.614506i \(0.789355\pi\)
\(720\) −10.0426 + 10.2298i −0.374264 + 0.381244i
\(721\) 27.1006i 1.00928i
\(722\) 8.61791 8.61791i 0.320726 0.320726i
\(723\) 38.9185 38.9185i 1.44740 1.44740i
\(724\) 1.82553 0.0678455
\(725\) −11.3258 + 0.209283i −0.420631 + 0.00777259i
\(726\) 12.7727i 0.474039i
\(727\) 21.1365 21.1365i 0.783910 0.783910i −0.196578 0.980488i \(-0.562983\pi\)
0.980488 + 0.196578i \(0.0629830\pi\)
\(728\) 21.3811 + 21.3811i 0.792436 + 0.792436i
\(729\) 2.73569i 0.101322i
\(730\) 16.6905 17.0017i 0.617742 0.629262i
\(731\) 12.2625 0.453547
\(732\) 1.37595 1.37595i 0.0508565 0.0508565i
\(733\) 28.5346 28.5346i 1.05395 1.05395i 0.0554887 0.998459i \(-0.482328\pi\)
0.998459 0.0554887i \(-0.0176717\pi\)
\(734\) 21.3352 0.787496
\(735\) 0.0775560 + 8.39495i 0.00286070 + 0.309652i
\(736\) 0.792600i 0.0292156i
\(737\) 28.8877 + 28.8877i 1.06409 + 1.06409i
\(738\) −1.42694 + 1.42694i −0.0525263 + 0.0525263i
\(739\) −37.0093 −1.36141 −0.680704 0.732559i \(-0.738326\pi\)
−0.680704 + 0.732559i \(0.738326\pi\)
\(740\) 0.000977242 0.105780i 3.59241e−5 0.00388856i
\(741\) −53.4576 −1.96381
\(742\) 11.5917 11.5917i 0.425545 0.425545i
\(743\) 23.6279 + 23.6279i 0.866822 + 0.866822i 0.992119 0.125297i \(-0.0399884\pi\)
−0.125297 + 0.992119i \(0.539988\pi\)
\(744\) −35.3801 −1.29710
\(745\) −13.5772 13.3286i −0.497430 0.488323i
\(746\) 22.9386i 0.839841i
\(747\) −4.70559 4.70559i −0.172169 0.172169i
\(748\) −0.743990 0.743990i −0.0272030 0.0272030i
\(749\) 18.5336i 0.677203i
\(750\) 25.0411 + 23.6902i 0.914373 + 0.865044i
\(751\) 23.5877i 0.860728i −0.902655 0.430364i \(-0.858385\pi\)
0.902655 0.430364i \(-0.141615\pi\)
\(752\) −2.37853 + 2.37853i −0.0867361 + 0.0867361i
\(753\) 2.37171 2.37171i 0.0864298 0.0864298i
\(754\) 15.7382 0.573153
\(755\) −26.9064 5.57178i −0.979225 0.202778i
\(756\) 0.699744 0.0254495
\(757\) −29.4275 + 29.4275i −1.06956 + 1.06956i −0.0721677 + 0.997393i \(0.522992\pi\)
−0.997393 + 0.0721677i \(0.977008\pi\)
\(758\) 6.59581 6.59581i 0.239571 0.239571i
\(759\) 11.8755i 0.431053i
\(760\) −32.2547 + 0.297982i −1.17000 + 0.0108089i
\(761\) 44.2984i 1.60582i −0.596102 0.802909i \(-0.703285\pi\)
0.596102 0.802909i \(-0.296715\pi\)
\(762\) 25.4349 + 25.4349i 0.921411 + 0.921411i
\(763\) −31.2423 31.2423i −1.13105 1.13105i
\(764\) 0.470202i 0.0170113i
\(765\) −0.0874437 9.46523i −0.00316153 0.342216i
\(766\) 22.3761 0.808481
\(767\) −29.2646 29.2646i −1.05668 1.05668i
\(768\) 3.52555 3.52555i 0.127217 0.127217i
\(769\) 9.83353 0.354606 0.177303 0.984156i \(-0.443263\pi\)
0.177303 + 0.984156i \(0.443263\pi\)
\(770\) −20.5798 20.2031i −0.741645 0.728067i
\(771\) −26.5300 −0.955454
\(772\) 0.385442 0.385442i 0.0138724 0.0138724i
\(773\) 23.4758 + 23.4758i 0.844364 + 0.844364i 0.989423 0.145059i \(-0.0463372\pi\)
−0.145059 + 0.989423i \(0.546337\pi\)
\(774\) 9.84087i 0.353723i
\(775\) 0.557267 + 30.1577i 0.0200176 + 1.08330i
\(776\) 9.02525 0.323988
\(777\) 1.66580 1.66580i 0.0597602 0.0597602i
\(778\) −33.6218 + 33.6218i −1.20540 + 1.20540i
\(779\) −4.76332 −0.170664
\(780\) −1.59366 1.56449i −0.0570623 0.0560177i
\(781\) 22.0635i 0.789495i
\(782\) 4.05833 + 4.05833i 0.145125 + 0.145125i
\(783\) −5.00789 + 5.00789i −0.178967 + 0.178967i
\(784\) 7.38308i 0.263681i
\(785\) 0.303244 + 32.8243i 0.0108232 + 1.17155i
\(786\) −48.6445 −1.73509
\(787\) −21.5201 + 21.5201i −0.767107 + 0.767107i −0.977596 0.210489i \(-0.932494\pi\)
0.210489 + 0.977596i \(0.432494\pi\)
\(788\) 0.153062 0.153062i 0.00545260 0.00545260i
\(789\) 12.5123i 0.445450i
\(790\) −24.8834 + 0.229883i −0.885312 + 0.00817888i
\(791\) −47.8907 −1.70280
\(792\) 11.6102 11.6102i 0.412549 0.412549i
\(793\) −31.6918 31.6918i −1.12541 1.12541i
\(794\) 25.4739i 0.904036i
\(795\) 16.4933 16.8009i 0.584958 0.595867i
\(796\) 0.825234i 0.0292496i
\(797\) −10.0417 + 10.0417i −0.355697 + 0.355697i −0.862224 0.506527i \(-0.830929\pi\)
0.506527 + 0.862224i \(0.330929\pi\)
\(798\) −26.1212 26.1212i −0.924679 0.924679i
\(799\) 2.22108i 0.0785763i
\(800\) −1.99048 1.91825i −0.0703740 0.0678204i
\(801\) 14.0585i 0.496733i
\(802\) −5.40231 + 5.40231i −0.190762 + 0.190762i
\(803\) −20.2418 + 20.2418i −0.714318 + 0.714318i
\(804\) 2.18615i 0.0770996i
\(805\) 5.23463 + 5.13880i 0.184497 + 0.181119i
\(806\) 41.9069i 1.47611i
\(807\) −37.0745 37.0745i −1.30508 1.30508i
\(808\) 2.88566 2.88566i 0.101517 0.101517i
\(809\) 33.8527 1.19020 0.595098 0.803653i \(-0.297113\pi\)
0.595098 + 0.803653i \(0.297113\pi\)
\(810\) 36.4305 0.336560i 1.28004 0.0118255i
\(811\) 11.2856i 0.396292i 0.980172 + 0.198146i \(0.0634921\pi\)
−0.980172 + 0.198146i \(0.936508\pi\)
\(812\) 0.358594 + 0.358594i 0.0125842 + 0.0125842i
\(813\) 1.94010 + 1.94010i 0.0680423 + 0.0680423i
\(814\) 2.72578i 0.0955385i
\(815\) −50.1898 + 0.463674i −1.75807 + 0.0162418i
\(816\) 24.6307i 0.862245i
\(817\) 16.4251 16.4251i 0.574642 0.574642i
\(818\) −39.3722 + 39.3722i −1.37662 + 1.37662i
\(819\) 16.8084i 0.587332i
\(820\) −0.142003 0.139403i −0.00495895 0.00486817i
\(821\) 7.56295i 0.263949i 0.991253 + 0.131974i \(0.0421316\pi\)
−0.991253 + 0.131974i \(0.957868\pi\)
\(822\) 21.9467 + 21.9467i 0.765479 + 0.765479i
\(823\) 1.53884 + 1.53884i 0.0536407 + 0.0536407i 0.733418 0.679778i \(-0.237924\pi\)
−0.679778 + 0.733418i \(0.737924\pi\)
\(824\) 32.6289i 1.13668i
\(825\) −29.8232 28.7410i −1.03831 1.00063i
\(826\) 28.5993i 0.995097i
\(827\) −14.0520 + 14.0520i −0.488637 + 0.488637i −0.907876 0.419239i \(-0.862297\pi\)
0.419239 + 0.907876i \(0.362297\pi\)
\(828\) 0.151867 0.151867i 0.00527775 0.00527775i
\(829\) 43.9734i 1.52726i 0.645654 + 0.763630i \(0.276585\pi\)
−0.645654 + 0.763630i \(0.723415\pi\)
\(830\) 9.85865 10.0425i 0.342199 0.348581i
\(831\) 9.49970 0.329541
\(832\) −25.6778 25.6778i −0.890217 0.890217i
\(833\) 3.44718 + 3.44718i 0.119438 + 0.119438i
\(834\) −29.6987 −1.02838
\(835\) −35.7846 + 0.330593i −1.23838 + 0.0114407i
\(836\) −1.99308 −0.0689321
\(837\) 13.3347 + 13.3347i 0.460915 + 0.460915i
\(838\) 23.4582 23.4582i 0.810351 0.810351i
\(839\) 15.4171i 0.532256i −0.963938 0.266128i \(-0.914256\pi\)
0.963938 0.266128i \(-0.0857444\pi\)
\(840\) 0.277224 + 30.0078i 0.00956515 + 1.03537i
\(841\) 23.8673 0.823009
\(842\) 10.2777 + 10.2777i 0.354192 + 0.354192i
\(843\) 11.9151 + 11.9151i 0.410376 + 0.410376i
\(844\) 2.63459 0.0906864
\(845\) −15.6703 + 15.9625i −0.539073 + 0.549127i
\(846\) −1.78245 −0.0612820
\(847\) 6.70307 + 6.70307i 0.230320 + 0.230320i
\(848\) −14.6406 + 14.6406i −0.502760 + 0.502760i
\(849\) 40.6532i 1.39521i
\(850\) 20.0137 0.369822i 0.686466 0.0126848i
\(851\) 0.693322i 0.0237668i
\(852\) −0.834859 + 0.834859i −0.0286018 + 0.0286018i
\(853\) −25.8981 25.8981i −0.886734 0.886734i 0.107474 0.994208i \(-0.465724\pi\)
−0.994208 + 0.107474i \(0.965724\pi\)
\(854\) 30.9713i 1.05982i
\(855\) −12.7954 12.5611i −0.437592 0.429581i
\(856\) 22.3143i 0.762688i
\(857\) −18.9810 18.9810i −0.648377 0.648377i 0.304223 0.952601i \(-0.401603\pi\)
−0.952601 + 0.304223i \(0.901603\pi\)
\(858\) 40.6901 + 40.6901i 1.38914 + 1.38914i
\(859\) −4.47754 −0.152772 −0.0763859 0.997078i \(-0.524338\pi\)
−0.0763859 + 0.997078i \(0.524338\pi\)
\(860\) 0.970358 0.00896456i 0.0330889 0.000305689i
\(861\) 4.43150i 0.151025i
\(862\) −6.41199 6.41199i −0.218393 0.218393i
\(863\) 23.2449 23.2449i 0.791266 0.791266i −0.190434 0.981700i \(-0.560989\pi\)
0.981700 + 0.190434i \(0.0609894\pi\)
\(864\) −1.72830 −0.0587980
\(865\) −0.231142 25.0197i −0.00785906 0.850694i
\(866\) 10.5538i 0.358634i
\(867\) 14.0890 + 14.0890i 0.478487 + 0.478487i
\(868\) 0.954844 0.954844i 0.0324095 0.0324095i
\(869\) 29.8992 1.01426
\(870\) 11.1461 + 10.9421i 0.377890 + 0.370971i
\(871\) 50.3529 1.70614
\(872\) 37.6155 + 37.6155i 1.27382 + 1.27382i
\(873\) 3.54752 + 3.54752i 0.120065 + 0.120065i
\(874\) 10.8719 0.367747
\(875\) 25.5740 0.708952i 0.864561 0.0239670i
\(876\) −1.53185 −0.0517566
\(877\) −18.7993 18.7993i −0.634809 0.634809i 0.314461 0.949270i \(-0.398176\pi\)
−0.949270 + 0.314461i \(0.898176\pi\)
\(878\) 27.0112 + 27.0112i 0.911584 + 0.911584i
\(879\) 0.397044i 0.0133920i
\(880\) 25.9928 + 25.5169i 0.876217 + 0.860175i
\(881\) 27.1596i 0.915032i −0.889202 0.457516i \(-0.848739\pi\)
0.889202 0.457516i \(-0.151261\pi\)
\(882\) 2.76641 2.76641i 0.0931499 0.0931499i
\(883\) −6.66095 6.66095i −0.224159 0.224159i 0.586088 0.810247i \(-0.300667\pi\)
−0.810247 + 0.586088i \(0.800667\pi\)
\(884\) −1.29682 −0.0436167
\(885\) −0.379441 41.0721i −0.0127548 1.38063i
\(886\) 6.65675i 0.223638i
\(887\) 33.1187 + 33.1187i 1.11202 + 1.11202i 0.992877 + 0.119141i \(0.0380142\pi\)
0.119141 + 0.992877i \(0.461986\pi\)
\(888\) −2.00561 + 2.00561i −0.0673039 + 0.0673039i
\(889\) 26.6963 0.895367
\(890\) −29.7285 + 0.274644i −0.996503 + 0.00920610i
\(891\) −43.7739 −1.46648
\(892\) 0.631621 0.631621i 0.0211482 0.0211482i
\(893\) −2.97504 2.97504i −0.0995559 0.0995559i
\(894\) 26.2343i 0.877407i
\(895\) −41.0532 40.3016i −1.37226 1.34713i
\(896\) 27.6243i 0.922863i
\(897\) −10.3498 10.3498i −0.345571 0.345571i
\(898\) 2.11045 2.11045i 0.0704268 0.0704268i
\(899\) 13.6671i 0.455824i
\(900\) −0.0138392 0.748937i −0.000461305 0.0249646i
\(901\) 13.6715i 0.455462i
\(902\) 3.62568 + 3.62568i 0.120722 + 0.120722i
\(903\) −15.2809 15.2809i −0.508517 0.508517i
\(904\) 57.6601 1.91775
\(905\) 29.2333 29.7785i 0.971748 0.989870i
\(906\) 20.5079 + 31.8571i 0.681329 + 1.05838i
\(907\) −25.9678 + 25.9678i −0.862246 + 0.862246i −0.991599 0.129352i \(-0.958710\pi\)
0.129352 + 0.991599i \(0.458710\pi\)
\(908\) 0.169135 + 0.169135i 0.00561295 + 0.00561295i
\(909\) 2.26852 0.0752420
\(910\) −35.5435 + 0.328365i −1.17825 + 0.0108852i
\(911\) −21.8858 −0.725108 −0.362554 0.931963i \(-0.618095\pi\)
−0.362554 + 0.931963i \(0.618095\pi\)
\(912\) 32.9916 + 32.9916i 1.09246 + 1.09246i
\(913\) −11.9563 + 11.9563i −0.395697 + 0.395697i
\(914\) 43.8396i 1.45008i
\(915\) −0.410912 44.4786i −0.0135843 1.47042i
\(916\) −1.62623 −0.0537322
\(917\) −25.5285 + 25.5285i −0.843024 + 0.843024i
\(918\) 8.84937 8.84937i 0.292073 0.292073i
\(919\) −30.4412 −1.00416 −0.502082 0.864820i \(-0.667432\pi\)
−0.502082 + 0.864820i \(0.667432\pi\)
\(920\) −6.30246 6.18708i −0.207786 0.203982i
\(921\) 53.4305i 1.76059i
\(922\) 21.7017 21.7017i 0.714707 0.714707i
\(923\) 19.2290 + 19.2290i 0.632931 + 0.632931i
\(924\) 1.85424i 0.0610000i
\(925\) 1.74116 + 1.67798i 0.0572489 + 0.0551716i
\(926\) −18.4859 −0.607483
\(927\) −12.8253 + 12.8253i −0.421240 + 0.421240i
\(928\) −0.885694 0.885694i −0.0290743 0.0290743i
\(929\) −26.7133 −0.876435 −0.438218 0.898869i \(-0.644390\pi\)
−0.438218 + 0.898869i \(0.644390\pi\)
\(930\) 29.1359 29.6793i 0.955405 0.973222i
\(931\) 9.23467 0.302654
\(932\) −0.616417 0.616417i −0.0201914 0.0201914i
\(933\) 13.4868 13.4868i 0.441539 0.441539i
\(934\) 4.14105 0.135499
\(935\) −24.0500 + 0.222184i −0.786520 + 0.00726619i
\(936\) 20.2372i 0.661473i
\(937\) 18.5312 18.5312i 0.605387 0.605387i −0.336350 0.941737i \(-0.609193\pi\)
0.941737 + 0.336350i \(0.109193\pi\)
\(938\) 24.6041 + 24.6041i 0.803352 + 0.803352i
\(939\) 28.1094 0.917314
\(940\) −0.00162373 0.175758i −5.29602e−5 0.00573261i
\(941\) 3.66320i 0.119417i 0.998216 + 0.0597084i \(0.0190171\pi\)
−0.998216 + 0.0597084i \(0.980983\pi\)
\(942\) 32.0051 32.0051i 1.04278 1.04278i
\(943\) −0.922218 0.922218i −0.0300315 0.0300315i
\(944\) 36.1216i 1.17566i
\(945\) 11.2054 11.4144i 0.364511 0.371309i
\(946\) −25.0045 −0.812965
\(947\) −38.9964 38.9964i −1.26721 1.26721i −0.947522 0.319691i \(-0.896421\pi\)
−0.319691 0.947522i \(-0.603579\pi\)
\(948\) 1.13135 + 1.13135i 0.0367446 + 0.0367446i
\(949\) 35.2827i 1.14532i
\(950\) 26.3121 27.3028i 0.853678 0.885821i
\(951\) −2.16274 −0.0701315
\(952\) 12.3220 + 12.3220i 0.399357 + 0.399357i
\(953\) 41.4646 + 41.4646i 1.34317 + 1.34317i 0.892885 + 0.450284i \(0.148677\pi\)
0.450284 + 0.892885i \(0.351323\pi\)
\(954\) −10.9715 −0.355217
\(955\) −7.67002 7.52960i −0.248196 0.243652i
\(956\) 2.64316 0.0854860
\(957\) −13.2703 13.2703i −0.428968 0.428968i
\(958\) −32.2071 + 32.2071i −1.04056 + 1.04056i
\(959\) 23.0351 0.743843
\(960\) −0.332935 36.0381i −0.0107454 1.16313i
\(961\) 5.39202 0.173936
\(962\) −2.37560 2.37560i −0.0765923 0.0765923i
\(963\) −8.77102 + 8.77102i −0.282642 + 0.282642i
\(964\) 2.52920i 0.0814601i
\(965\) −0.115108 12.4597i −0.00370545 0.401092i
\(966\) 10.1145i 0.325430i
\(967\) −5.53167 5.53167i −0.177887 0.177887i 0.612547 0.790434i \(-0.290145\pi\)
−0.790434 + 0.612547i \(0.790145\pi\)
\(968\) −8.07045 8.07045i −0.259394 0.259394i
\(969\) −30.8077 −0.989687
\(970\) −7.43239 + 7.57100i −0.238640 + 0.243090i
\(971\) 25.9263i 0.832014i −0.909361 0.416007i \(-0.863429\pi\)
0.909361 0.416007i \(-0.136571\pi\)
\(972\) −1.00767 1.00767i −0.0323210 0.0323210i
\(973\) −15.5858 + 15.5858i −0.499657 + 0.499657i
\(974\) 26.4195i 0.846537i
\(975\) −51.0405 + 0.943146i −1.63460 + 0.0302048i
\(976\) 39.1174i 1.25212i
\(977\) −21.7619 21.7619i −0.696223 0.696223i 0.267370 0.963594i \(-0.413845\pi\)
−0.963594 + 0.267370i \(0.913845\pi\)
\(978\) 48.9372 + 48.9372i 1.56484 + 1.56484i
\(979\) 35.7210 1.14165
\(980\) 0.275302 + 0.270261i 0.00879419 + 0.00863318i
\(981\) 29.5708i 0.944123i
\(982\) 18.8566 18.8566i 0.601739 0.601739i
\(983\) −21.5710 + 21.5710i −0.688007 + 0.688007i −0.961791 0.273784i \(-0.911725\pi\)
0.273784 + 0.961791i \(0.411725\pi\)
\(984\) 5.33550i 0.170090i
\(985\) −0.0457101 4.94783i −0.00145645 0.157651i
\(986\) 9.06998 0.288847
\(987\) −2.76780 + 2.76780i −0.0880999 + 0.0880999i
\(988\) −1.73703 + 1.73703i −0.0552622 + 0.0552622i
\(989\) 6.36007 0.202239
\(990\) 0.178306 + 19.3005i 0.00566693 + 0.613410i
\(991\) −27.0109 −0.858031 −0.429015 0.903297i \(-0.641139\pi\)
−0.429015 + 0.903297i \(0.641139\pi\)
\(992\) −2.35837 + 2.35837i −0.0748784 + 0.0748784i
\(993\) 29.7574 29.7574i 0.944323 0.944323i
\(994\) 18.7919i 0.596042i
\(995\) 13.4614 + 13.2149i 0.426754 + 0.418941i
\(996\) −0.904829 −0.0286706
\(997\) 31.3919 31.3919i 0.994190 0.994190i −0.00579293 0.999983i \(-0.501844\pi\)
0.999983 + 0.00579293i \(0.00184396\pi\)
\(998\) −29.6663 + 29.6663i −0.939071 + 0.939071i
\(999\) 1.51182 0.0478319
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 755.2.f.e.603.18 yes 108
5.2 odd 4 inner 755.2.f.e.452.17 108
151.150 odd 2 inner 755.2.f.e.603.17 yes 108
755.452 even 4 inner 755.2.f.e.452.18 yes 108
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
755.2.f.e.452.17 108 5.2 odd 4 inner
755.2.f.e.452.18 yes 108 755.452 even 4 inner
755.2.f.e.603.17 yes 108 151.150 odd 2 inner
755.2.f.e.603.18 yes 108 1.1 even 1 trivial