Properties

Label 755.2.f.e.603.17
Level $755$
Weight $2$
Character 755.603
Analytic conductor $6.029$
Analytic rank $0$
Dimension $108$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [755,2,Mod(452,755)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(755, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("755.452"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 755 = 5 \cdot 151 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 755.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [108,0,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.02870535261\)
Analytic rank: \(0\)
Dimension: \(108\)
Relative dimension: \(54\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 603.17
Character \(\chi\) \(=\) 755.603
Dual form 755.2.f.e.452.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.02416 + 1.02416i) q^{2} +(-1.50524 + 1.50524i) q^{3} -0.0978212i q^{4} +(-1.59568 - 1.56646i) q^{5} -3.08322i q^{6} +(-1.61807 - 1.61807i) q^{7} +(-1.94814 - 1.94814i) q^{8} -1.53150i q^{9} +(3.23855 - 0.0299191i) q^{10} -3.89135 q^{11} +(0.147244 + 0.147244i) q^{12} +(3.39143 - 3.39143i) q^{13} +3.31433 q^{14} +(4.75979 - 0.0439729i) q^{15} +4.18607 q^{16} +(-1.95449 + 1.95449i) q^{17} +(1.56851 + 1.56851i) q^{18} +5.23589i q^{19} +(-0.153233 + 0.156091i) q^{20} +4.87116 q^{21} +(3.98538 - 3.98538i) q^{22} +(1.01371 - 1.01371i) q^{23} +5.86484 q^{24} +(0.0923762 + 4.99915i) q^{25} +6.94676i q^{26} +(-2.21045 - 2.21045i) q^{27} +(-0.158281 + 0.158281i) q^{28} +2.26555i q^{29} +(-4.82976 + 4.91983i) q^{30} +6.03258 q^{31} +(-0.390939 + 0.390939i) q^{32} +(5.85743 - 5.85743i) q^{33} -4.00343i q^{34} +(0.0472689 + 5.11656i) q^{35} -0.149813 q^{36} +(0.341972 - 0.341972i) q^{37} +(-5.36241 - 5.36241i) q^{38} +10.2098i q^{39} +(0.0569114 + 6.16030i) q^{40} -0.909743i q^{41} +(-4.98886 + 4.98886i) q^{42} +(-3.13702 - 3.13702i) q^{43} +0.380657i q^{44} +(-2.39904 + 2.44378i) q^{45} +2.07641i q^{46} +(-0.568201 + 0.568201i) q^{47} +(-6.30105 + 6.30105i) q^{48} -1.76372i q^{49} +(-5.21455 - 5.02533i) q^{50} -5.88395i q^{51} +(-0.331754 - 0.331754i) q^{52} +(3.49745 - 3.49745i) q^{53} +4.52772 q^{54} +(6.20935 + 6.09567i) q^{55} +6.30444i q^{56} +(-7.88128 - 7.88128i) q^{57} +(-2.32030 - 2.32030i) q^{58} +8.62899i q^{59} +(-0.00430148 - 0.465608i) q^{60} -9.34466i q^{61} +(-6.17835 + 6.17835i) q^{62} +(-2.47807 + 2.47807i) q^{63} +7.57138i q^{64} +(-10.7242 + 0.0990744i) q^{65} +11.9979i q^{66} +(7.42355 + 7.42355i) q^{67} +(0.191190 + 0.191190i) q^{68} +3.05176i q^{69} +(-5.28860 - 5.19178i) q^{70} +5.66988i q^{71} +(-2.98358 + 2.98358i) q^{72} +(-5.20174 + 5.20174i) q^{73} +0.700470i q^{74} +(-7.66397 - 7.38587i) q^{75} +0.512181 q^{76} +(6.29647 + 6.29647i) q^{77} +(-10.4565 - 10.4565i) q^{78} +7.68350 q^{79} +(-6.67962 - 6.55734i) q^{80} +11.2490 q^{81} +(0.931726 + 0.931726i) q^{82} +(-3.07254 + 3.07254i) q^{83} -0.476502i q^{84} +(6.18037 - 0.0570968i) q^{85} +6.42564 q^{86} +(-3.41020 - 3.41020i) q^{87} +(7.58091 + 7.58091i) q^{88} +9.17958 q^{89} +(-0.0458210 - 4.95984i) q^{90} -10.9751 q^{91} +(-0.0991625 - 0.0991625i) q^{92} +(-9.08048 + 9.08048i) q^{93} -1.16386i q^{94} +(8.20184 - 8.35480i) q^{95} -1.17692i q^{96} +(-2.31637 + 2.31637i) q^{97} +(1.80634 + 1.80634i) q^{98} +5.95961i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 108 q - 12 q^{5} + 12 q^{8} + 16 q^{10} - 24 q^{16} + 8 q^{17} + 4 q^{18} + 48 q^{20} - 44 q^{21} - 32 q^{22} - 40 q^{25} + 20 q^{31} - 56 q^{32} - 304 q^{36} - 8 q^{37} + 16 q^{38} + 44 q^{42} + 20 q^{43}+ \cdots - 188 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/755\mathbb{Z}\right)^\times\).

\(n\) \(6\) \(152\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.02416 + 1.02416i −0.724193 + 0.724193i −0.969456 0.245264i \(-0.921125\pi\)
0.245264 + 0.969456i \(0.421125\pi\)
\(3\) −1.50524 + 1.50524i −0.869051 + 0.869051i −0.992367 0.123316i \(-0.960647\pi\)
0.123316 + 0.992367i \(0.460647\pi\)
\(4\) 0.0978212i 0.0489106i
\(5\) −1.59568 1.56646i −0.713609 0.700544i
\(6\) 3.08322i 1.25872i
\(7\) −1.61807 1.61807i −0.611572 0.611572i 0.331784 0.943355i \(-0.392350\pi\)
−0.943355 + 0.331784i \(0.892350\pi\)
\(8\) −1.94814 1.94814i −0.688772 0.688772i
\(9\) 1.53150i 0.510500i
\(10\) 3.23855 0.0299191i 1.02412 0.00946124i
\(11\) −3.89135 −1.17329 −0.586644 0.809845i \(-0.699551\pi\)
−0.586644 + 0.809845i \(0.699551\pi\)
\(12\) 0.147244 + 0.147244i 0.0425058 + 0.0425058i
\(13\) 3.39143 3.39143i 0.940613 0.940613i −0.0577196 0.998333i \(-0.518383\pi\)
0.998333 + 0.0577196i \(0.0183829\pi\)
\(14\) 3.31433 0.885791
\(15\) 4.75979 0.0439729i 1.22897 0.0113537i
\(16\) 4.18607 1.04652
\(17\) −1.95449 + 1.95449i −0.474033 + 0.474033i −0.903217 0.429184i \(-0.858801\pi\)
0.429184 + 0.903217i \(0.358801\pi\)
\(18\) 1.56851 + 1.56851i 0.369700 + 0.369700i
\(19\) 5.23589i 1.20120i 0.799551 + 0.600598i \(0.205071\pi\)
−0.799551 + 0.600598i \(0.794929\pi\)
\(20\) −0.153233 + 0.156091i −0.0342640 + 0.0349030i
\(21\) 4.87116 1.06297
\(22\) 3.98538 3.98538i 0.849687 0.849687i
\(23\) 1.01371 1.01371i 0.211374 0.211374i −0.593477 0.804851i \(-0.702245\pi\)
0.804851 + 0.593477i \(0.202245\pi\)
\(24\) 5.86484 1.19716
\(25\) 0.0923762 + 4.99915i 0.0184752 + 0.999829i
\(26\) 6.94676i 1.36237i
\(27\) −2.21045 2.21045i −0.425401 0.425401i
\(28\) −0.158281 + 0.158281i −0.0299123 + 0.0299123i
\(29\) 2.26555i 0.420703i 0.977626 + 0.210351i \(0.0674608\pi\)
−0.977626 + 0.210351i \(0.932539\pi\)
\(30\) −4.82976 + 4.91983i −0.881790 + 0.898235i
\(31\) 6.03258 1.08348 0.541742 0.840545i \(-0.317765\pi\)
0.541742 + 0.840545i \(0.317765\pi\)
\(32\) −0.390939 + 0.390939i −0.0691090 + 0.0691090i
\(33\) 5.85743 5.85743i 1.01965 1.01965i
\(34\) 4.00343i 0.686583i
\(35\) 0.0472689 + 5.11656i 0.00798989 + 0.864856i
\(36\) −0.149813 −0.0249688
\(37\) 0.341972 0.341972i 0.0562198 0.0562198i −0.678438 0.734658i \(-0.737343\pi\)
0.734658 + 0.678438i \(0.237343\pi\)
\(38\) −5.36241 5.36241i −0.869898 0.869898i
\(39\) 10.2098i 1.63488i
\(40\) 0.0569114 + 6.16030i 0.00899848 + 0.974029i
\(41\) 0.909743i 0.142078i −0.997474 0.0710390i \(-0.977369\pi\)
0.997474 0.0710390i \(-0.0226315\pi\)
\(42\) −4.98886 + 4.98886i −0.769798 + 0.769798i
\(43\) −3.13702 3.13702i −0.478391 0.478391i 0.426226 0.904617i \(-0.359843\pi\)
−0.904617 + 0.426226i \(0.859843\pi\)
\(44\) 0.380657i 0.0573862i
\(45\) −2.39904 + 2.44378i −0.357628 + 0.364297i
\(46\) 2.07641i 0.306150i
\(47\) −0.568201 + 0.568201i −0.0828806 + 0.0828806i −0.747332 0.664451i \(-0.768665\pi\)
0.664451 + 0.747332i \(0.268665\pi\)
\(48\) −6.30105 + 6.30105i −0.909478 + 0.909478i
\(49\) 1.76372i 0.251961i
\(50\) −5.21455 5.02533i −0.737449 0.710690i
\(51\) 5.88395i 0.823918i
\(52\) −0.331754 0.331754i −0.0460059 0.0460059i
\(53\) 3.49745 3.49745i 0.480412 0.480412i −0.424851 0.905263i \(-0.639674\pi\)
0.905263 + 0.424851i \(0.139674\pi\)
\(54\) 4.52772 0.616144
\(55\) 6.20935 + 6.09567i 0.837268 + 0.821940i
\(56\) 6.30444i 0.842467i
\(57\) −7.88128 7.88128i −1.04390 1.04390i
\(58\) −2.32030 2.32030i −0.304670 0.304670i
\(59\) 8.62899i 1.12340i 0.827341 + 0.561699i \(0.189852\pi\)
−0.827341 + 0.561699i \(0.810148\pi\)
\(60\) −0.00430148 0.465608i −0.000555318 0.0601097i
\(61\) 9.34466i 1.19646i −0.801324 0.598231i \(-0.795871\pi\)
0.801324 0.598231i \(-0.204129\pi\)
\(62\) −6.17835 + 6.17835i −0.784651 + 0.784651i
\(63\) −2.47807 + 2.47807i −0.312207 + 0.312207i
\(64\) 7.57138i 0.946422i
\(65\) −10.7242 + 0.0990744i −1.33017 + 0.0122887i
\(66\) 11.9979i 1.47684i
\(67\) 7.42355 + 7.42355i 0.906931 + 0.906931i 0.996023 0.0890925i \(-0.0283967\pi\)
−0.0890925 + 0.996023i \(0.528397\pi\)
\(68\) 0.191190 + 0.191190i 0.0231852 + 0.0231852i
\(69\) 3.05176i 0.367389i
\(70\) −5.28860 5.19178i −0.632109 0.620536i
\(71\) 5.66988i 0.672892i 0.941703 + 0.336446i \(0.109225\pi\)
−0.941703 + 0.336446i \(0.890775\pi\)
\(72\) −2.98358 + 2.98358i −0.351618 + 0.351618i
\(73\) −5.20174 + 5.20174i −0.608818 + 0.608818i −0.942637 0.333819i \(-0.891662\pi\)
0.333819 + 0.942637i \(0.391662\pi\)
\(74\) 0.700470i 0.0814280i
\(75\) −7.66397 7.38587i −0.884959 0.852847i
\(76\) 0.512181 0.0587512
\(77\) 6.29647 + 6.29647i 0.717549 + 0.717549i
\(78\) −10.4565 10.4565i −1.18397 1.18397i
\(79\) 7.68350 0.864461 0.432231 0.901763i \(-0.357727\pi\)
0.432231 + 0.901763i \(0.357727\pi\)
\(80\) −6.67962 6.55734i −0.746805 0.733133i
\(81\) 11.2490 1.24989
\(82\) 0.931726 + 0.931726i 0.102892 + 0.102892i
\(83\) −3.07254 + 3.07254i −0.337255 + 0.337255i −0.855333 0.518078i \(-0.826648\pi\)
0.518078 + 0.855333i \(0.326648\pi\)
\(84\) 0.476502i 0.0519907i
\(85\) 6.18037 0.0570968i 0.670355 0.00619302i
\(86\) 6.42564 0.692895
\(87\) −3.41020 3.41020i −0.365612 0.365612i
\(88\) 7.58091 + 7.58091i 0.808128 + 0.808128i
\(89\) 9.17958 0.973033 0.486517 0.873671i \(-0.338267\pi\)
0.486517 + 0.873671i \(0.338267\pi\)
\(90\) −0.0458210 4.95984i −0.00482996 0.522813i
\(91\) −10.9751 −1.15050
\(92\) −0.0991625 0.0991625i −0.0103384 0.0103384i
\(93\) −9.08048 + 9.08048i −0.941602 + 0.941602i
\(94\) 1.16386i 0.120043i
\(95\) 8.20184 8.35480i 0.841491 0.857185i
\(96\) 1.17692i 0.120118i
\(97\) −2.31637 + 2.31637i −0.235192 + 0.235192i −0.814856 0.579664i \(-0.803184\pi\)
0.579664 + 0.814856i \(0.303184\pi\)
\(98\) 1.80634 + 1.80634i 0.182468 + 0.182468i
\(99\) 5.95961i 0.598963i
\(100\) 0.489022 0.00903635i 0.0489022 0.000903635i
\(101\) 1.48124i 0.147389i −0.997281 0.0736944i \(-0.976521\pi\)
0.997281 0.0736944i \(-0.0234789\pi\)
\(102\) 6.02613 + 6.02613i 0.596676 + 0.596676i
\(103\) −8.37437 8.37437i −0.825151 0.825151i 0.161690 0.986842i \(-0.448305\pi\)
−0.986842 + 0.161690i \(0.948305\pi\)
\(104\) −13.2140 −1.29574
\(105\) −7.77280 7.63050i −0.758548 0.744660i
\(106\) 7.16393i 0.695822i
\(107\) 5.72708 + 5.72708i 0.553658 + 0.553658i 0.927495 0.373837i \(-0.121958\pi\)
−0.373837 + 0.927495i \(0.621958\pi\)
\(108\) −0.216229 + 0.216229i −0.0208066 + 0.0208066i
\(109\) 19.3084 1.84941 0.924705 0.380684i \(-0.124311\pi\)
0.924705 + 0.380684i \(0.124311\pi\)
\(110\) −12.6023 + 0.116426i −1.20159 + 0.0111008i
\(111\) 1.02950i 0.0977158i
\(112\) −6.77334 6.77334i −0.640021 0.640021i
\(113\) 14.7988 14.7988i 1.39215 1.39215i 0.571657 0.820493i \(-0.306301\pi\)
0.820493 0.571657i \(-0.193699\pi\)
\(114\) 16.1434 1.51197
\(115\) −3.20550 + 0.0296137i −0.298915 + 0.00276150i
\(116\) 0.221619 0.0205768
\(117\) −5.19397 5.19397i −0.480183 0.480183i
\(118\) −8.83750 8.83750i −0.813557 0.813557i
\(119\) 6.32498 0.579810
\(120\) −9.35840 9.18707i −0.854301 0.838661i
\(121\) 4.14264 0.376604
\(122\) 9.57046 + 9.57046i 0.866469 + 0.866469i
\(123\) 1.36938 + 1.36938i 0.123473 + 0.123473i
\(124\) 0.590114i 0.0529938i
\(125\) 7.68358 8.12173i 0.687241 0.726430i
\(126\) 5.07589i 0.452196i
\(127\) 8.24946 8.24946i 0.732021 0.732021i −0.238999 0.971020i \(-0.576819\pi\)
0.971020 + 0.238999i \(0.0768191\pi\)
\(128\) −8.53620 8.53620i −0.754501 0.754501i
\(129\) 9.44394 0.831493
\(130\) 10.8818 11.0848i 0.954401 0.972200i
\(131\) 15.7771i 1.37846i −0.724545 0.689228i \(-0.757950\pi\)
0.724545 0.689228i \(-0.242050\pi\)
\(132\) −0.572980 0.572980i −0.0498715 0.0498715i
\(133\) 8.47202 8.47202i 0.734618 0.734618i
\(134\) −15.2059 −1.31359
\(135\) 0.0645742 + 6.98975i 0.00555766 + 0.601582i
\(136\) 7.61524 0.653002
\(137\) 7.11810 7.11810i 0.608141 0.608141i −0.334319 0.942460i \(-0.608506\pi\)
0.942460 + 0.334319i \(0.108506\pi\)
\(138\) −3.12550 3.12550i −0.266060 0.266060i
\(139\) 9.63234i 0.817005i 0.912757 + 0.408502i \(0.133949\pi\)
−0.912757 + 0.408502i \(0.866051\pi\)
\(140\) 0.500508 0.00462390i 0.0423006 0.000390790i
\(141\) 1.71056i 0.144055i
\(142\) −5.80689 5.80689i −0.487303 0.487303i
\(143\) −13.1973 + 13.1973i −1.10361 + 1.10361i
\(144\) 6.41097i 0.534247i
\(145\) 3.54891 3.61509i 0.294721 0.300217i
\(146\) 10.6549i 0.881803i
\(147\) 2.65483 + 2.65483i 0.218967 + 0.218967i
\(148\) −0.0334521 0.0334521i −0.00274975 0.00274975i
\(149\) −8.50873 −0.697062 −0.348531 0.937297i \(-0.613319\pi\)
−0.348531 + 0.937297i \(0.613319\pi\)
\(150\) 15.4135 0.284817i 1.25851 0.0232552i
\(151\) 10.3324 + 6.65144i 0.840838 + 0.541286i
\(152\) 10.2003 10.2003i 0.827351 0.827351i
\(153\) 2.99330 + 2.99330i 0.241994 + 0.241994i
\(154\) −12.8972 −1.03929
\(155\) −9.62605 9.44982i −0.773183 0.759028i
\(156\) 0.998738 0.0799630
\(157\) 10.3804 + 10.3804i 0.828445 + 0.828445i 0.987302 0.158857i \(-0.0507807\pi\)
−0.158857 + 0.987302i \(0.550781\pi\)
\(158\) −7.86916 + 7.86916i −0.626037 + 0.626037i
\(159\) 10.5290i 0.835005i
\(160\) 1.23621 0.0114206i 0.0977306 0.000902876i
\(161\) −3.28051 −0.258540
\(162\) −11.5208 + 11.5208i −0.905161 + 0.905161i
\(163\) −15.8721 + 15.8721i −1.24320 + 1.24320i −0.284531 + 0.958667i \(0.591838\pi\)
−0.958667 + 0.284531i \(0.908162\pi\)
\(164\) −0.0889922 −0.00694912
\(165\) −18.5220 + 0.171114i −1.44194 + 0.0133212i
\(166\) 6.29357i 0.488476i
\(167\) 11.3166 11.3166i 0.875703 0.875703i −0.117384 0.993087i \(-0.537451\pi\)
0.993087 + 0.117384i \(0.0374507\pi\)
\(168\) −9.48971 9.48971i −0.732147 0.732147i
\(169\) 10.0036i 0.769507i
\(170\) −6.27123 + 6.38819i −0.480982 + 0.489952i
\(171\) 8.01877 0.613210
\(172\) −0.306867 + 0.306867i −0.0233984 + 0.0233984i
\(173\) 7.91225 + 7.91225i 0.601557 + 0.601557i 0.940726 0.339168i \(-0.110146\pi\)
−0.339168 + 0.940726i \(0.610146\pi\)
\(174\) 6.98521 0.529547
\(175\) 7.93948 8.23842i 0.600168 0.622766i
\(176\) −16.2895 −1.22787
\(177\) −12.9887 12.9887i −0.976291 0.976291i
\(178\) −9.40139 + 9.40139i −0.704664 + 0.704664i
\(179\) −25.7277 −1.92298 −0.961491 0.274838i \(-0.911376\pi\)
−0.961491 + 0.274838i \(0.911376\pi\)
\(180\) 0.239053 + 0.234677i 0.0178180 + 0.0174918i
\(181\) 18.6620i 1.38713i −0.720393 0.693566i \(-0.756039\pi\)
0.720393 0.693566i \(-0.243961\pi\)
\(182\) 11.2403 11.2403i 0.833187 0.833187i
\(183\) 14.0660 + 14.0660i 1.03979 + 1.03979i
\(184\) −3.94971 −0.291176
\(185\) −1.08136 + 0.00999009i −0.0795035 + 0.000734486i
\(186\) 18.5998i 1.36380i
\(187\) 7.60561 7.60561i 0.556177 0.556177i
\(188\) 0.0555821 + 0.0555821i 0.00405374 + 0.00405374i
\(189\) 7.15330i 0.520326i
\(190\) 0.156653 + 16.9567i 0.0113648 + 1.23017i
\(191\) 4.80675 0.347804 0.173902 0.984763i \(-0.444362\pi\)
0.173902 + 0.984763i \(0.444362\pi\)
\(192\) −11.3967 11.3967i −0.822489 0.822489i
\(193\) 3.94027 + 3.94027i 0.283627 + 0.283627i 0.834554 0.550927i \(-0.185726\pi\)
−0.550927 + 0.834554i \(0.685726\pi\)
\(194\) 4.74469i 0.340649i
\(195\) 15.9933 16.2916i 1.14531 1.16667i
\(196\) −0.172530 −0.0123235
\(197\) −1.56471 1.56471i −0.111481 0.111481i 0.649166 0.760647i \(-0.275118\pi\)
−0.760647 + 0.649166i \(0.775118\pi\)
\(198\) −6.10361 6.10361i −0.433765 0.433765i
\(199\) 8.43614 0.598022 0.299011 0.954250i \(-0.403343\pi\)
0.299011 + 0.954250i \(0.403343\pi\)
\(200\) 9.55908 9.91901i 0.675929 0.701380i
\(201\) −22.3485 −1.57634
\(202\) 1.51703 + 1.51703i 0.106738 + 0.106738i
\(203\) 3.66581 3.66581i 0.257290 0.257290i
\(204\) −0.575575 −0.0402983
\(205\) −1.42508 + 1.45166i −0.0995320 + 0.101388i
\(206\) 17.1535 1.19514
\(207\) −1.55250 1.55250i −0.107906 0.107906i
\(208\) 14.1968 14.1968i 0.984369 0.984369i
\(209\) 20.3747i 1.40935i
\(210\) 15.7755 0.145740i 1.08861 0.0100570i
\(211\) 26.9327i 1.85413i −0.374905 0.927063i \(-0.622325\pi\)
0.374905 0.927063i \(-0.377675\pi\)
\(212\) −0.342125 0.342125i −0.0234972 0.0234972i
\(213\) −8.53454 8.53454i −0.584777 0.584777i
\(214\) −11.7309 −0.801910
\(215\) 0.0916424 + 9.91971i 0.00624996 + 0.676519i
\(216\) 8.61253i 0.586009i
\(217\) −9.76111 9.76111i −0.662628 0.662628i
\(218\) −19.7750 + 19.7750i −1.33933 + 1.33933i
\(219\) 15.6597i 1.05819i
\(220\) 0.596286 0.607406i 0.0402016 0.0409513i
\(221\) 13.2570i 0.891764i
\(222\) −1.05438 1.05438i −0.0707651 0.0707651i
\(223\) 6.45689 + 6.45689i 0.432385 + 0.432385i 0.889439 0.457054i \(-0.151095\pi\)
−0.457054 + 0.889439i \(0.651095\pi\)
\(224\) 1.26513 0.0845301
\(225\) 7.65619 0.141474i 0.510412 0.00943161i
\(226\) 30.3127i 2.01637i
\(227\) −1.72903 + 1.72903i −0.114759 + 0.114759i −0.762155 0.647395i \(-0.775858\pi\)
0.647395 + 0.762155i \(0.275858\pi\)
\(228\) −0.770956 + 0.770956i −0.0510578 + 0.0510578i
\(229\) 16.6245i 1.09858i −0.835632 0.549290i \(-0.814898\pi\)
0.835632 0.549290i \(-0.185102\pi\)
\(230\) 3.25263 3.31329i 0.214472 0.218472i
\(231\) −18.9554 −1.24717
\(232\) 4.41362 4.41362i 0.289768 0.289768i
\(233\) −6.30147 + 6.30147i −0.412823 + 0.412823i −0.882721 0.469898i \(-0.844291\pi\)
0.469898 + 0.882721i \(0.344291\pi\)
\(234\) 10.6389 0.695490
\(235\) 1.79673 0.0165990i 0.117206 0.00108280i
\(236\) 0.844098 0.0549461
\(237\) −11.5655 + 11.5655i −0.751261 + 0.751261i
\(238\) −6.47782 + 6.47782i −0.419894 + 0.419894i
\(239\) 27.0204i 1.74780i 0.486104 + 0.873901i \(0.338418\pi\)
−0.486104 + 0.873901i \(0.661582\pi\)
\(240\) 19.9248 0.184074i 1.28614 0.0118819i
\(241\) 25.8554 1.66549 0.832745 0.553657i \(-0.186768\pi\)
0.832745 + 0.553657i \(0.186768\pi\)
\(242\) −4.24274 + 4.24274i −0.272734 + 0.272734i
\(243\) −10.3011 + 10.3011i −0.660817 + 0.660817i
\(244\) −0.914106 −0.0585196
\(245\) −2.76281 + 2.81434i −0.176510 + 0.179801i
\(246\) −2.80494 −0.178837
\(247\) 17.7572 + 17.7572i 1.12986 + 1.12986i
\(248\) −11.7523 11.7523i −0.746273 0.746273i
\(249\) 9.24983i 0.586184i
\(250\) 0.448735 + 16.1872i 0.0283805 + 1.02377i
\(251\) 1.57563 0.0994530 0.0497265 0.998763i \(-0.484165\pi\)
0.0497265 + 0.998763i \(0.484165\pi\)
\(252\) 0.242407 + 0.242407i 0.0152702 + 0.0152702i
\(253\) −3.94471 + 3.94471i −0.248002 + 0.248002i
\(254\) 16.8976i 1.06025i
\(255\) −9.21700 + 9.38889i −0.577191 + 0.587955i
\(256\) 2.34218 0.146386
\(257\) 8.81254 + 8.81254i 0.549711 + 0.549711i 0.926357 0.376646i \(-0.122923\pi\)
−0.376646 + 0.926357i \(0.622923\pi\)
\(258\) −9.67214 + 9.67214i −0.602161 + 0.602161i
\(259\) −1.10667 −0.0687649
\(260\) 0.00969158 + 1.04905i 0.000601046 + 0.0650595i
\(261\) 3.46969 0.214769
\(262\) 16.1584 + 16.1584i 0.998267 + 0.998267i
\(263\) 4.15625 4.15625i 0.256285 0.256285i −0.567256 0.823541i \(-0.691995\pi\)
0.823541 + 0.567256i \(0.191995\pi\)
\(264\) −22.8222 −1.40461
\(265\) −11.0594 + 0.102172i −0.679376 + 0.00627636i
\(266\) 17.3535i 1.06401i
\(267\) −13.8175 + 13.8175i −0.845616 + 0.845616i
\(268\) 0.726180 0.726180i 0.0443585 0.0443585i
\(269\) 24.6302i 1.50173i −0.660454 0.750866i \(-0.729636\pi\)
0.660454 0.750866i \(-0.270364\pi\)
\(270\) −7.22478 7.09251i −0.439686 0.431637i
\(271\) 1.28890i 0.0782949i −0.999233 0.0391475i \(-0.987536\pi\)
0.999233 0.0391475i \(-0.0124642\pi\)
\(272\) −8.18163 + 8.18163i −0.496084 + 0.496084i
\(273\) 16.5202 16.5202i 0.999847 0.999847i
\(274\) 14.5802i 0.880822i
\(275\) −0.359469 19.4535i −0.0216768 1.17309i
\(276\) 0.298527 0.0179692
\(277\) −3.15554 3.15554i −0.189598 0.189598i 0.605924 0.795522i \(-0.292803\pi\)
−0.795522 + 0.605924i \(0.792803\pi\)
\(278\) −9.86509 9.86509i −0.591669 0.591669i
\(279\) 9.23889i 0.553118i
\(280\) 9.87569 10.0599i 0.590185 0.601192i
\(281\) 7.91571i 0.472212i −0.971727 0.236106i \(-0.924129\pi\)
0.971727 0.236106i \(-0.0758712\pi\)
\(282\) 1.75189 + 1.75189i 0.104324 + 0.104324i
\(283\) 13.5039 13.5039i 0.802723 0.802723i −0.180798 0.983520i \(-0.557868\pi\)
0.983520 + 0.180798i \(0.0578679\pi\)
\(284\) 0.554635 0.0329115
\(285\) 0.230237 + 24.9217i 0.0136381 + 1.47624i
\(286\) 27.0323i 1.59845i
\(287\) −1.47202 + 1.47202i −0.0868909 + 0.0868909i
\(288\) 0.598723 + 0.598723i 0.0352801 + 0.0352801i
\(289\) 9.35995i 0.550585i
\(290\) 0.0677832 + 7.33711i 0.00398037 + 0.430850i
\(291\) 6.97340i 0.408788i
\(292\) 0.508840 + 0.508840i 0.0297776 + 0.0297776i
\(293\) −0.131887 + 0.131887i −0.00770494 + 0.00770494i −0.710949 0.703244i \(-0.751734\pi\)
0.703244 + 0.710949i \(0.251734\pi\)
\(294\) −5.43796 −0.317148
\(295\) 13.5170 13.7691i 0.786991 0.801667i
\(296\) −1.33242 −0.0774453
\(297\) 8.60164 + 8.60164i 0.499118 + 0.499118i
\(298\) 8.71433 8.71433i 0.504807 0.504807i
\(299\) 6.87587i 0.397642i
\(300\) −0.722495 + 0.749698i −0.0417132 + 0.0432839i
\(301\) 10.1518i 0.585141i
\(302\) −17.3942 + 3.76990i −1.00092 + 0.216933i
\(303\) 2.22962 + 2.22962i 0.128088 + 0.128088i
\(304\) 21.9178i 1.25707i
\(305\) −14.6381 + 14.9111i −0.838174 + 0.853805i
\(306\) −6.13125 −0.350500
\(307\) −17.7482 + 17.7482i −1.01294 + 1.01294i −0.0130256 + 0.999915i \(0.504146\pi\)
−0.999915 + 0.0130256i \(0.995854\pi\)
\(308\) 0.615928 0.615928i 0.0350958 0.0350958i
\(309\) 25.2109 1.43420
\(310\) 19.5368 0.180489i 1.10962 0.0102511i
\(311\) 8.95991 0.508070 0.254035 0.967195i \(-0.418242\pi\)
0.254035 + 0.967195i \(0.418242\pi\)
\(312\) 19.8902 19.8902i 1.12606 1.12606i
\(313\) 9.33716 + 9.33716i 0.527768 + 0.527768i 0.919906 0.392139i \(-0.128265\pi\)
−0.392139 + 0.919906i \(0.628265\pi\)
\(314\) −21.2624 −1.19991
\(315\) 7.83600 0.0723922i 0.441509 0.00407884i
\(316\) 0.751609i 0.0422813i
\(317\) 0.718402 + 0.718402i 0.0403495 + 0.0403495i 0.726994 0.686644i \(-0.240917\pi\)
−0.686644 + 0.726994i \(0.740917\pi\)
\(318\) −10.7834 10.7834i −0.604705 0.604705i
\(319\) 8.81607i 0.493605i
\(320\) 11.8603 12.0815i 0.663011 0.675375i
\(321\) −17.2413 −0.962314
\(322\) 3.35977 3.35977i 0.187233 0.187233i
\(323\) −10.2335 10.2335i −0.569407 0.569407i
\(324\) 1.10039i 0.0611328i
\(325\) 17.2675 + 16.6410i 0.957831 + 0.923075i
\(326\) 32.5112i 1.80063i
\(327\) −29.0638 + 29.0638i −1.60723 + 1.60723i
\(328\) −1.77231 + 1.77231i −0.0978594 + 0.0978594i
\(329\) 1.83877 0.101375
\(330\) 18.7943 19.1448i 1.03459 1.05389i
\(331\) 19.7692 1.08661 0.543307 0.839534i \(-0.317172\pi\)
0.543307 + 0.839534i \(0.317172\pi\)
\(332\) 0.300560 + 0.300560i 0.0164954 + 0.0164954i
\(333\) −0.523730 0.523730i −0.0287002 0.0287002i
\(334\) 23.1801i 1.26836i
\(335\) −0.216865 23.4743i −0.0118486 1.28254i
\(336\) 20.3910 1.11242
\(337\) −11.8333 11.8333i −0.644600 0.644600i 0.307083 0.951683i \(-0.400647\pi\)
−0.951683 + 0.307083i \(0.900647\pi\)
\(338\) 10.2453 + 10.2453i 0.557271 + 0.557271i
\(339\) 44.5514i 2.41970i
\(340\) −0.00558528 0.604571i −0.000302904 0.0327875i
\(341\) −23.4749 −1.27124
\(342\) −8.21253 + 8.21253i −0.444083 + 0.444083i
\(343\) −14.1803 + 14.1803i −0.765663 + 0.765663i
\(344\) 12.2227i 0.659005i
\(345\) 4.78048 4.86963i 0.257372 0.262172i
\(346\) −16.2069 −0.871287
\(347\) −22.1860 + 22.1860i −1.19100 + 1.19100i −0.214219 + 0.976786i \(0.568720\pi\)
−0.976786 + 0.214219i \(0.931280\pi\)
\(348\) −0.333590 + 0.333590i −0.0178823 + 0.0178823i
\(349\) 11.6900i 0.625754i −0.949794 0.312877i \(-0.898707\pi\)
0.949794 0.312877i \(-0.101293\pi\)
\(350\) 0.306165 + 16.5688i 0.0163652 + 0.885640i
\(351\) −14.9932 −0.800275
\(352\) 1.52128 1.52128i 0.0810847 0.0810847i
\(353\) 10.1118 10.1118i 0.538197 0.538197i −0.384802 0.922999i \(-0.625730\pi\)
0.922999 + 0.384802i \(0.125730\pi\)
\(354\) 26.6051 1.41405
\(355\) 8.88167 9.04731i 0.471390 0.480181i
\(356\) 0.897957i 0.0475916i
\(357\) −9.52062 + 9.52062i −0.503885 + 0.503885i
\(358\) 26.3494 26.3494i 1.39261 1.39261i
\(359\) 15.9331 0.840916 0.420458 0.907312i \(-0.361869\pi\)
0.420458 + 0.907312i \(0.361869\pi\)
\(360\) 9.43450 0.0871598i 0.497242 0.00459372i
\(361\) −8.41459 −0.442873
\(362\) 19.1129 + 19.1129i 1.00455 + 1.00455i
\(363\) −6.23567 + 6.23567i −0.327288 + 0.327288i
\(364\) 1.07360i 0.0562719i
\(365\) 16.4486 0.151959i 0.860962 0.00795392i
\(366\) −28.8117 −1.50601
\(367\) 10.4159 + 10.4159i 0.543706 + 0.543706i 0.924613 0.380907i \(-0.124388\pi\)
−0.380907 + 0.924613i \(0.624388\pi\)
\(368\) 4.24347 4.24347i 0.221206 0.221206i
\(369\) −1.39327 −0.0725308
\(370\) 1.09726 1.11772i 0.0570439 0.0581078i
\(371\) −11.3182 −0.587613
\(372\) 0.888264 + 0.888264i 0.0460543 + 0.0460543i
\(373\) −11.1987 + 11.1987i −0.579846 + 0.579846i −0.934861 0.355015i \(-0.884476\pi\)
0.355015 + 0.934861i \(0.384476\pi\)
\(374\) 15.5788i 0.805559i
\(375\) 0.659518 + 23.7908i 0.0340574 + 1.22855i
\(376\) 2.21387 0.114172
\(377\) 7.68346 + 7.68346i 0.395718 + 0.395718i
\(378\) −7.32615 7.32615i −0.376816 0.376816i
\(379\) 6.44019 0.330810 0.165405 0.986226i \(-0.447107\pi\)
0.165405 + 0.986226i \(0.447107\pi\)
\(380\) −0.817276 0.802314i −0.0419254 0.0411578i
\(381\) 24.8348i 1.27233i
\(382\) −4.92289 + 4.92289i −0.251877 + 0.251877i
\(383\) −10.9241 10.9241i −0.558195 0.558195i 0.370598 0.928793i \(-0.379153\pi\)
−0.928793 + 0.370598i \(0.879153\pi\)
\(384\) 25.6981 1.31140
\(385\) −0.183940 19.9103i −0.00937444 1.01472i
\(386\) −8.07096 −0.410801
\(387\) −4.80434 + 4.80434i −0.244219 + 0.244219i
\(388\) 0.226590 + 0.226590i 0.0115034 + 0.0115034i
\(389\) −32.8285 −1.66447 −0.832237 0.554420i \(-0.812940\pi\)
−0.832237 + 0.554420i \(0.812940\pi\)
\(390\) 0.305469 + 33.0651i 0.0154680 + 1.67431i
\(391\) 3.96258i 0.200396i
\(392\) −3.43598 + 3.43598i −0.173543 + 0.173543i
\(393\) 23.7484 + 23.7484i 1.19795 + 1.19795i
\(394\) 3.20503 0.161467
\(395\) −12.2604 12.0359i −0.616887 0.605594i
\(396\) 0.582976 0.0292956
\(397\) 12.4365 12.4365i 0.624168 0.624168i −0.322426 0.946595i \(-0.604498\pi\)
0.946595 + 0.322426i \(0.104498\pi\)
\(398\) −8.63999 + 8.63999i −0.433084 + 0.433084i
\(399\) 25.5049i 1.27684i
\(400\) 0.386694 + 20.9268i 0.0193347 + 1.04634i
\(401\) 5.27485 0.263414 0.131707 0.991289i \(-0.457954\pi\)
0.131707 + 0.991289i \(0.457954\pi\)
\(402\) 22.8885 22.8885i 1.14157 1.14157i
\(403\) 20.4591 20.4591i 1.01914 1.01914i
\(404\) −0.144897 −0.00720888
\(405\) −17.9498 17.6212i −0.891932 0.875603i
\(406\) 7.50879i 0.372655i
\(407\) −1.33073 + 1.33073i −0.0659620 + 0.0659620i
\(408\) −11.4628 + 11.4628i −0.567492 + 0.567492i
\(409\) −38.4432 −1.90090 −0.950448 0.310884i \(-0.899375\pi\)
−0.950448 + 0.310884i \(0.899375\pi\)
\(410\) −0.0272187 2.94625i −0.00134423 0.145505i
\(411\) 21.4289i 1.05701i
\(412\) −0.819191 + 0.819191i −0.0403586 + 0.0403586i
\(413\) 13.9623 13.9623i 0.687039 0.687039i
\(414\) 3.18002 0.156290
\(415\) 9.71581 0.0897587i 0.476931 0.00440608i
\(416\) 2.65169i 0.130010i
\(417\) −14.4990 14.4990i −0.710019 0.710019i
\(418\) 20.8670 + 20.8670i 1.02064 + 1.02064i
\(419\) 22.9048 1.11897 0.559486 0.828840i \(-0.310999\pi\)
0.559486 + 0.828840i \(0.310999\pi\)
\(420\) −0.746424 + 0.760344i −0.0364218 + 0.0371010i
\(421\) 10.0352i 0.489085i 0.969639 + 0.244542i \(0.0786377\pi\)
−0.969639 + 0.244542i \(0.921362\pi\)
\(422\) 27.5835 + 27.5835i 1.34275 + 1.34275i
\(423\) 0.870199 + 0.870199i 0.0423105 + 0.0423105i
\(424\) −13.6271 −0.661789
\(425\) −9.95132 9.59023i −0.482710 0.465194i
\(426\) 17.4815 0.846983
\(427\) −15.1203 + 15.1203i −0.731722 + 0.731722i
\(428\) 0.560230 0.560230i 0.0270797 0.0270797i
\(429\) 39.7301i 1.91819i
\(430\) −10.2533 10.0655i −0.494456 0.485404i
\(431\) 6.26071i 0.301568i −0.988567 0.150784i \(-0.951820\pi\)
0.988567 0.150784i \(-0.0481798\pi\)
\(432\) −9.25310 9.25310i −0.445190 0.445190i
\(433\) −5.15242 + 5.15242i −0.247609 + 0.247609i −0.819989 0.572379i \(-0.806020\pi\)
0.572379 + 0.819989i \(0.306020\pi\)
\(434\) 19.9939 0.959740
\(435\) 0.0996228 + 10.7835i 0.00477655 + 0.517031i
\(436\) 1.88877i 0.0904558i
\(437\) 5.30769 + 5.30769i 0.253901 + 0.253901i
\(438\) 16.0381 + 16.0381i 0.766332 + 0.766332i
\(439\) 26.3739i 1.25876i −0.777098 0.629379i \(-0.783309\pi\)
0.777098 0.629379i \(-0.216691\pi\)
\(440\) −0.221463 23.9719i −0.0105578 1.14282i
\(441\) −2.70114 −0.128626
\(442\) −13.5774 13.5774i −0.645809 0.645809i
\(443\) 3.24985 3.24985i 0.154405 0.154405i −0.625677 0.780082i \(-0.715177\pi\)
0.780082 + 0.625677i \(0.215177\pi\)
\(444\) 0.100707 0.00477934
\(445\) −14.6477 14.3795i −0.694365 0.681653i
\(446\) −13.2258 −0.626261
\(447\) 12.8077 12.8077i 0.605783 0.605783i
\(448\) 12.2510 12.2510i 0.578805 0.578805i
\(449\) 2.06066 0.0972487 0.0486243 0.998817i \(-0.484516\pi\)
0.0486243 + 0.998817i \(0.484516\pi\)
\(450\) −7.69629 + 7.98608i −0.362807 + 0.376467i
\(451\) 3.54013i 0.166698i
\(452\) −1.44763 1.44763i −0.0680909 0.0680909i
\(453\) −25.5648 + 5.54072i −1.20114 + 0.260326i
\(454\) 3.54161i 0.166216i
\(455\) 17.5127 + 17.1921i 0.821010 + 0.805979i
\(456\) 30.7077i 1.43802i
\(457\) −21.4026 + 21.4026i −1.00117 + 1.00117i −0.00117364 + 0.999999i \(0.500374\pi\)
−0.999999 + 0.00117364i \(0.999626\pi\)
\(458\) 17.0262 + 17.0262i 0.795584 + 0.795584i
\(459\) 8.64059 0.403308
\(460\) 0.00289685 + 0.313566i 0.000135066 + 0.0146201i
\(461\) −21.1897 −0.986901 −0.493451 0.869774i \(-0.664265\pi\)
−0.493451 + 0.869774i \(0.664265\pi\)
\(462\) 19.4134 19.4134i 0.903195 0.903195i
\(463\) 9.02486 + 9.02486i 0.419421 + 0.419421i 0.885004 0.465583i \(-0.154155\pi\)
−0.465583 + 0.885004i \(0.654155\pi\)
\(464\) 9.48377i 0.440273i
\(465\) 28.7138 0.265270i 1.33157 0.0123016i
\(466\) 12.9075i 0.597927i
\(467\) 2.02167 + 2.02167i 0.0935519 + 0.0935519i 0.752334 0.658782i \(-0.228928\pi\)
−0.658782 + 0.752334i \(0.728928\pi\)
\(468\) −0.508080 + 0.508080i −0.0234860 + 0.0234860i
\(469\) 24.0236i 1.10931i
\(470\) −1.82315 + 1.85715i −0.0840955 + 0.0856638i
\(471\) −31.2500 −1.43992
\(472\) 16.8105 16.8105i 0.773766 0.773766i
\(473\) 12.2073 + 12.2073i 0.561291 + 0.561291i
\(474\) 23.6900i 1.08812i
\(475\) −26.1750 + 0.483672i −1.20099 + 0.0221924i
\(476\) 0.618717i 0.0283589i
\(477\) −5.35635 5.35635i −0.245250 0.245250i
\(478\) −27.6733 27.6733i −1.26575 1.26575i
\(479\) −31.4472 −1.43686 −0.718430 0.695599i \(-0.755139\pi\)
−0.718430 + 0.695599i \(0.755139\pi\)
\(480\) −1.84360 + 1.87798i −0.0841483 + 0.0857176i
\(481\) 2.31955i 0.105762i
\(482\) −26.4801 + 26.4801i −1.20614 + 1.20614i
\(483\) 4.93795 4.93795i 0.224685 0.224685i
\(484\) 0.405238i 0.0184199i
\(485\) 7.32470 0.0676686i 0.332598 0.00307267i
\(486\) 21.1001i 0.957118i
\(487\) −12.8981 + 12.8981i −0.584469 + 0.584469i −0.936128 0.351659i \(-0.885618\pi\)
0.351659 + 0.936128i \(0.385618\pi\)
\(488\) −18.2047 + 18.2047i −0.824089 + 0.824089i
\(489\) 47.7826i 2.16081i
\(490\) −0.0527690 5.71191i −0.00238386 0.258038i
\(491\) −18.4117 −0.830910 −0.415455 0.909614i \(-0.636378\pi\)
−0.415455 + 0.909614i \(0.636378\pi\)
\(492\) 0.133955 0.133955i 0.00603914 0.00603914i
\(493\) −4.42800 4.42800i −0.199427 0.199427i
\(494\) −36.3725 −1.63648
\(495\) 9.33551 9.50961i 0.419600 0.427425i
\(496\) 25.2528 1.13389
\(497\) 9.17425 9.17425i 0.411521 0.411521i
\(498\) 9.47334 + 9.47334i 0.424510 + 0.424510i
\(499\) −28.9664 −1.29671 −0.648357 0.761337i \(-0.724543\pi\)
−0.648357 + 0.761337i \(0.724543\pi\)
\(500\) −0.794477 0.751617i −0.0355301 0.0336133i
\(501\) 34.0683i 1.52206i
\(502\) −1.61370 + 1.61370i −0.0720232 + 0.0720232i
\(503\) 5.83543 + 5.83543i 0.260189 + 0.260189i 0.825131 0.564942i \(-0.191101\pi\)
−0.564942 + 0.825131i \(0.691101\pi\)
\(504\) 9.65525 0.430079
\(505\) −2.32031 + 2.36358i −0.103252 + 0.105178i
\(506\) 8.08006i 0.359203i
\(507\) 15.0578 + 15.0578i 0.668741 + 0.668741i
\(508\) −0.806972 0.806972i −0.0358036 0.0358036i
\(509\) 39.6593 1.75787 0.878934 0.476943i \(-0.158255\pi\)
0.878934 + 0.476943i \(0.158255\pi\)
\(510\) −0.176042 19.0555i −0.00779529 0.843791i
\(511\) 16.8335 0.744671
\(512\) 14.6736 14.6736i 0.648489 0.648489i
\(513\) 11.5737 11.5737i 0.510990 0.510990i
\(514\) −18.0510 −0.796194
\(515\) 0.244642 + 26.4810i 0.0107802 + 1.16689i
\(516\) 0.923818i 0.0406688i
\(517\) 2.21107 2.21107i 0.0972428 0.0972428i
\(518\) 1.13341 1.13341i 0.0497991 0.0497991i
\(519\) −23.8197 −1.04557
\(520\) 21.0852 + 20.6992i 0.924649 + 0.907721i
\(521\) 32.3087 1.41547 0.707736 0.706477i \(-0.249717\pi\)
0.707736 + 0.706477i \(0.249717\pi\)
\(522\) −3.55353 + 3.55353i −0.155534 + 0.155534i
\(523\) 12.6695 12.6695i 0.553999 0.553999i −0.373594 0.927593i \(-0.621875\pi\)
0.927593 + 0.373594i \(0.121875\pi\)
\(524\) −1.54334 −0.0674210
\(525\) 0.449979 + 24.3516i 0.0196387 + 1.06279i
\(526\) 8.51335i 0.371200i
\(527\) −11.7906 + 11.7906i −0.513607 + 0.513607i
\(528\) 24.5196 24.5196i 1.06708 1.06708i
\(529\) 20.9448i 0.910642i
\(530\) 11.2220 11.4313i 0.487454 0.496545i
\(531\) 13.2153 0.573495
\(532\) −0.828743 0.828743i −0.0359306 0.0359306i
\(533\) −3.08533 3.08533i −0.133640 0.133640i
\(534\) 28.3027i 1.22478i
\(535\) −0.167306 18.1098i −0.00723328 0.782957i
\(536\) 28.9243i 1.24934i
\(537\) 38.7264 38.7264i 1.67117 1.67117i
\(538\) 25.2254 + 25.2254i 1.08754 + 1.08754i
\(539\) 6.86327i 0.295622i
\(540\) 0.683746 0.00631672i 0.0294237 0.000271829i
\(541\) −19.1475 −0.823217 −0.411608 0.911361i \(-0.635033\pi\)
−0.411608 + 0.911361i \(0.635033\pi\)
\(542\) 1.32004 + 1.32004i 0.0567006 + 0.0567006i
\(543\) 28.0907 + 28.0907i 1.20549 + 1.20549i
\(544\) 1.52817i 0.0655199i
\(545\) −30.8100 30.2460i −1.31976 1.29559i
\(546\) 33.8387i 1.44816i
\(547\) 21.6525 21.6525i 0.925794 0.925794i −0.0716372 0.997431i \(-0.522822\pi\)
0.997431 + 0.0716372i \(0.0228224\pi\)
\(548\) −0.696301 0.696301i −0.0297445 0.0297445i
\(549\) −14.3113 −0.610793
\(550\) 20.2917 + 19.5554i 0.865240 + 0.833843i
\(551\) −11.8622 −0.505347
\(552\) 5.94526 5.94526i 0.253047 0.253047i
\(553\) −12.4324 12.4324i −0.528680 0.528680i
\(554\) 6.46358 0.274611
\(555\) 1.61268 1.64275i 0.0684543 0.0697309i
\(556\) 0.942247 0.0399602
\(557\) −7.68227 7.68227i −0.325508 0.325508i 0.525367 0.850876i \(-0.323928\pi\)
−0.850876 + 0.525367i \(0.823928\pi\)
\(558\) 9.46213 + 9.46213i 0.400564 + 0.400564i
\(559\) −21.2780 −0.899962
\(560\) 0.197871 + 21.4183i 0.00836157 + 0.905088i
\(561\) 22.8965i 0.966693i
\(562\) 8.10698 + 8.10698i 0.341972 + 0.341972i
\(563\) 27.6370 + 27.6370i 1.16476 + 1.16476i 0.983420 + 0.181342i \(0.0580441\pi\)
0.181342 + 0.983420i \(0.441956\pi\)
\(564\) −0.167329 −0.00704581
\(565\) −46.7958 + 0.432319i −1.96871 + 0.0181878i
\(566\) 27.6604i 1.16265i
\(567\) −18.2016 18.2016i −0.764397 0.764397i
\(568\) 11.0457 11.0457i 0.463469 0.463469i
\(569\) 2.68404i 0.112521i 0.998416 + 0.0562605i \(0.0179177\pi\)
−0.998416 + 0.0562605i \(0.982082\pi\)
\(570\) −25.7597 25.2881i −1.07896 1.05920i
\(571\) −24.4895 −1.02485 −0.512427 0.858731i \(-0.671254\pi\)
−0.512427 + 0.858731i \(0.671254\pi\)
\(572\) 1.29097 + 1.29097i 0.0539782 + 0.0539782i
\(573\) −7.23531 + 7.23531i −0.302259 + 0.302259i
\(574\) 3.01519i 0.125852i
\(575\) 5.16134 + 4.97405i 0.215243 + 0.207432i
\(576\) 11.5956 0.483148
\(577\) 12.8249 12.8249i 0.533906 0.533906i −0.387827 0.921732i \(-0.626774\pi\)
0.921732 + 0.387827i \(0.126774\pi\)
\(578\) −9.58612 9.58612i −0.398730 0.398730i
\(579\) −11.8621 −0.492973
\(580\) −0.353633 0.347158i −0.0146838 0.0144150i
\(581\) 9.94315 0.412511
\(582\) 7.14190 + 7.14190i 0.296041 + 0.296041i
\(583\) −13.6098 + 13.6098i −0.563662 + 0.563662i
\(584\) 20.2675 0.838674
\(585\) 0.151732 + 16.4241i 0.00627336 + 0.679052i
\(586\) 0.270148i 0.0111597i
\(587\) −21.5052 21.5052i −0.887613 0.887613i 0.106680 0.994293i \(-0.465978\pi\)
−0.994293 + 0.106680i \(0.965978\pi\)
\(588\) 0.259698 0.259698i 0.0107098 0.0107098i
\(589\) 31.5859i 1.30148i
\(590\) 0.258171 + 27.9454i 0.0106287 + 1.15049i
\(591\) 4.71053 0.193765
\(592\) 1.43152 1.43152i 0.0588351 0.0588351i
\(593\) 23.6825 23.6825i 0.972524 0.972524i −0.0271087 0.999632i \(-0.508630\pi\)
0.999632 + 0.0271087i \(0.00863002\pi\)
\(594\) −17.6190 −0.722915
\(595\) −10.0926 9.90786i −0.413758 0.406183i
\(596\) 0.832334i 0.0340937i
\(597\) −12.6984 + 12.6984i −0.519712 + 0.519712i
\(598\) 7.04201 + 7.04201i 0.287969 + 0.287969i
\(599\) 35.2676 1.44100 0.720498 0.693457i \(-0.243913\pi\)
0.720498 + 0.693457i \(0.243913\pi\)
\(600\) 0.541772 + 29.3192i 0.0221178 + 1.19695i
\(601\) 23.5101 0.958997 0.479498 0.877543i \(-0.340819\pi\)
0.479498 + 0.877543i \(0.340819\pi\)
\(602\) −10.3971 10.3971i −0.423755 0.423755i
\(603\) 11.3692 11.3692i 0.462988 0.462988i
\(604\) 0.650652 1.01073i 0.0264746 0.0411259i
\(605\) −6.61032 6.48930i −0.268748 0.263828i
\(606\) −4.56699 −0.185521
\(607\) −23.3439 23.3439i −0.947500 0.947500i 0.0511890 0.998689i \(-0.483699\pi\)
−0.998689 + 0.0511890i \(0.983699\pi\)
\(608\) −2.04692 2.04692i −0.0830134 0.0830134i
\(609\) 11.0359i 0.447196i
\(610\) −0.279584 30.2632i −0.0113200 1.22532i
\(611\) 3.85403i 0.155917i
\(612\) 0.292808 0.292808i 0.0118361 0.0118361i
\(613\) −32.5328 32.5328i −1.31399 1.31399i −0.918450 0.395536i \(-0.870559\pi\)
−0.395536 0.918450i \(-0.629441\pi\)
\(614\) 36.3540i 1.46713i
\(615\) −0.0400040 4.33018i −0.00161312 0.174610i
\(616\) 24.5328i 0.988456i
\(617\) 6.36711 + 6.36711i 0.256330 + 0.256330i 0.823560 0.567229i \(-0.191985\pi\)
−0.567229 + 0.823560i \(0.691985\pi\)
\(618\) −25.8201 + 25.8201i −1.03864 + 1.03864i
\(619\) 1.44338 0.0580144 0.0290072 0.999579i \(-0.490765\pi\)
0.0290072 + 0.999579i \(0.490765\pi\)
\(620\) −0.924393 + 0.941632i −0.0371245 + 0.0378168i
\(621\) −4.48151 −0.179837
\(622\) −9.17641 + 9.17641i −0.367941 + 0.367941i
\(623\) −14.8532 14.8532i −0.595080 0.595080i
\(624\) 42.7391i 1.71093i
\(625\) −24.9829 + 0.923605i −0.999317 + 0.0369442i
\(626\) −19.1256 −0.764411
\(627\) 30.6689 + 30.6689i 1.22480 + 1.22480i
\(628\) 1.01542 1.01542i 0.0405197 0.0405197i
\(629\) 1.33676i 0.0533001i
\(630\) −7.95120 + 8.09949i −0.316784 + 0.322691i
\(631\) 9.73385i 0.387499i −0.981051 0.193749i \(-0.937935\pi\)
0.981051 0.193749i \(-0.0620648\pi\)
\(632\) −14.9686 14.9686i −0.595417 0.595417i
\(633\) 40.5403 + 40.5403i 1.61133 + 1.61133i
\(634\) −1.47152 −0.0584416
\(635\) −26.0860 + 0.240993i −1.03519 + 0.00956351i
\(636\) 1.02996 0.0408406
\(637\) −5.98154 5.98154i −0.236997 0.236997i
\(638\) 9.02910 + 9.02910i 0.357465 + 0.357465i
\(639\) 8.68342 0.343511
\(640\) 0.249370 + 26.9927i 0.00985720 + 1.06698i
\(641\) 39.0462 1.54223 0.771117 0.636694i \(-0.219699\pi\)
0.771117 + 0.636694i \(0.219699\pi\)
\(642\) 17.6579 17.6579i 0.696901 0.696901i
\(643\) 21.0572 + 21.0572i 0.830415 + 0.830415i 0.987573 0.157158i \(-0.0502333\pi\)
−0.157158 + 0.987573i \(0.550233\pi\)
\(644\) 0.320903i 0.0126453i
\(645\) −15.0695 14.7936i −0.593361 0.582498i
\(646\) 20.9615 0.824721
\(647\) 21.0075 21.0075i 0.825889 0.825889i −0.161056 0.986945i \(-0.551490\pi\)
0.986945 + 0.161056i \(0.0514900\pi\)
\(648\) −21.9147 21.9147i −0.860889 0.860889i
\(649\) 33.5785i 1.31807i
\(650\) −34.7278 + 0.641715i −1.36214 + 0.0251701i
\(651\) 29.3856 1.15171
\(652\) 1.55263 + 1.55263i 0.0608056 + 0.0608056i
\(653\) −19.3008 19.3008i −0.755300 0.755300i 0.220163 0.975463i \(-0.429341\pi\)
−0.975463 + 0.220163i \(0.929341\pi\)
\(654\) 59.5322i 2.32789i
\(655\) −24.7143 + 25.1752i −0.965669 + 0.983678i
\(656\) 3.80825i 0.148687i
\(657\) 7.96646 + 7.96646i 0.310801 + 0.310801i
\(658\) −1.88320 + 1.88320i −0.0734150 + 0.0734150i
\(659\) 31.7996i 1.23874i 0.785101 + 0.619368i \(0.212611\pi\)
−0.785101 + 0.619368i \(0.787389\pi\)
\(660\) 0.0167386 + 1.81185i 0.000651548 + 0.0705260i
\(661\) 1.31704i 0.0512269i −0.999672 0.0256134i \(-0.991846\pi\)
0.999672 0.0256134i \(-0.00815390\pi\)
\(662\) −20.2469 + 20.2469i −0.786918 + 0.786918i
\(663\) −19.9550 19.9550i −0.774988 0.774988i
\(664\) 11.9715 0.464584
\(665\) −26.7897 + 0.247495i −1.03886 + 0.00959743i
\(666\) 1.07277 0.0415690
\(667\) 2.29662 + 2.29662i 0.0889254 + 0.0889254i
\(668\) −1.10700 1.10700i −0.0428312 0.0428312i
\(669\) −19.4383 −0.751530
\(670\) 24.2636 + 23.8194i 0.937386 + 0.920225i
\(671\) 36.3634i 1.40379i
\(672\) −1.90433 + 1.90433i −0.0734610 + 0.0734610i
\(673\) −17.1772 17.1772i −0.662133 0.662133i 0.293750 0.955882i \(-0.405097\pi\)
−0.955882 + 0.293750i \(0.905097\pi\)
\(674\) 24.2384 0.933629
\(675\) 10.8462 11.2545i 0.417469 0.433188i
\(676\) −0.978562 −0.0376370
\(677\) −21.0327 21.0327i −0.808352 0.808352i 0.176032 0.984384i \(-0.443674\pi\)
−0.984384 + 0.176032i \(0.943674\pi\)
\(678\) −45.6279 45.6279i −1.75233 1.75233i
\(679\) 7.49609 0.287674
\(680\) −12.1515 11.9290i −0.465988 0.457457i
\(681\) 5.20520i 0.199464i
\(682\) 24.0421 24.0421i 0.920621 0.920621i
\(683\) 32.7677 32.7677i 1.25382 1.25382i 0.299826 0.953994i \(-0.403071\pi\)
0.953994 0.299826i \(-0.0969286\pi\)
\(684\) 0.784405i 0.0299925i
\(685\) −22.5085 + 0.207942i −0.860004 + 0.00794507i
\(686\) 29.0459i 1.10898i
\(687\) 25.0239 + 25.0239i 0.954722 + 0.954722i
\(688\) −13.1318 13.1318i −0.500645 0.500645i
\(689\) 23.7227i 0.903764i
\(690\) 0.0913058 + 9.88328i 0.00347595 + 0.376250i
\(691\) 41.7477i 1.58816i −0.607815 0.794079i \(-0.707954\pi\)
0.607815 0.794079i \(-0.292046\pi\)
\(692\) 0.773986 0.773986i 0.0294225 0.0294225i
\(693\) 9.64304 9.64304i 0.366309 0.366309i
\(694\) 45.4441i 1.72503i
\(695\) 15.0887 15.3701i 0.572348 0.583022i
\(696\) 13.2871i 0.503647i
\(697\) 1.77808 + 1.77808i 0.0673497 + 0.0673497i
\(698\) 11.9725 + 11.9725i 0.453166 + 0.453166i
\(699\) 18.9704i 0.717528i
\(700\) −0.805892 0.776649i −0.0304599 0.0293546i
\(701\) 43.7305 1.65168 0.825839 0.563906i \(-0.190702\pi\)
0.825839 + 0.563906i \(0.190702\pi\)
\(702\) 15.3554 15.3554i 0.579554 0.579554i
\(703\) 1.79053 + 1.79053i 0.0675311 + 0.0675311i
\(704\) 29.4629i 1.11043i
\(705\) −2.67953 + 2.72950i −0.100917 + 0.102799i
\(706\) 20.7123i 0.779517i
\(707\) −2.39674 + 2.39674i −0.0901388 + 0.0901388i
\(708\) −1.27057 + 1.27057i −0.0477510 + 0.0477510i
\(709\) 23.7423i 0.891659i −0.895118 0.445830i \(-0.852909\pi\)
0.895118 0.445830i \(-0.147091\pi\)
\(710\) 0.169638 + 18.3622i 0.00636639 + 0.689121i
\(711\) 11.7673i 0.441307i
\(712\) −17.8831 17.8831i −0.670198 0.670198i
\(713\) 6.11530 6.11530i 0.229020 0.229020i
\(714\) 19.5013i 0.729820i
\(715\) 41.7316 0.385534i 1.56067 0.0144181i
\(716\) 2.51672i 0.0940541i
\(717\) −40.6721 40.6721i −1.51893 1.51893i
\(718\) −16.3181 + 16.3181i −0.608985 + 0.608985i
\(719\) 42.3081 1.57782 0.788912 0.614506i \(-0.210645\pi\)
0.788912 + 0.614506i \(0.210645\pi\)
\(720\) −10.0426 + 10.2298i −0.374264 + 0.381244i
\(721\) 27.1006i 1.00928i
\(722\) 8.61791 8.61791i 0.320726 0.320726i
\(723\) −38.9185 + 38.9185i −1.44740 + 1.44740i
\(724\) −1.82553 −0.0678455
\(725\) −11.3258 + 0.209283i −0.420631 + 0.00777259i
\(726\) 12.7727i 0.474039i
\(727\) 21.1365 21.1365i 0.783910 0.783910i −0.196578 0.980488i \(-0.562983\pi\)
0.980488 + 0.196578i \(0.0629830\pi\)
\(728\) 21.3811 + 21.3811i 0.792436 + 0.792436i
\(729\) 2.73569i 0.101322i
\(730\) −16.6905 + 17.0017i −0.617742 + 0.629262i
\(731\) 12.2625 0.453547
\(732\) 1.37595 1.37595i 0.0508565 0.0508565i
\(733\) −28.5346 + 28.5346i −1.05395 + 1.05395i −0.0554887 + 0.998459i \(0.517672\pi\)
−0.998459 + 0.0554887i \(0.982328\pi\)
\(734\) −21.3352 −0.787496
\(735\) −0.0775560 8.39495i −0.00286070 0.309652i
\(736\) 0.792600i 0.0292156i
\(737\) −28.8877 28.8877i −1.06409 1.06409i
\(738\) 1.42694 1.42694i 0.0525263 0.0525263i
\(739\) 37.0093 1.36141 0.680704 0.732559i \(-0.261674\pi\)
0.680704 + 0.732559i \(0.261674\pi\)
\(740\) 0.000977242 0.105780i 3.59241e−5 0.00388856i
\(741\) −53.4576 −1.96381
\(742\) 11.5917 11.5917i 0.425545 0.425545i
\(743\) 23.6279 + 23.6279i 0.866822 + 0.866822i 0.992119 0.125297i \(-0.0399884\pi\)
−0.125297 + 0.992119i \(0.539988\pi\)
\(744\) 35.3801 1.29710
\(745\) 13.5772 + 13.3286i 0.497430 + 0.488323i
\(746\) 22.9386i 0.839841i
\(747\) 4.70559 + 4.70559i 0.172169 + 0.172169i
\(748\) −0.743990 0.743990i −0.0272030 0.0272030i
\(749\) 18.5336i 0.677203i
\(750\) −25.0411 23.6902i −0.914373 0.865044i
\(751\) 23.5877i 0.860728i 0.902655 + 0.430364i \(0.141615\pi\)
−0.902655 + 0.430364i \(0.858385\pi\)
\(752\) −2.37853 + 2.37853i −0.0867361 + 0.0867361i
\(753\) −2.37171 + 2.37171i −0.0864298 + 0.0864298i
\(754\) −15.7382 −0.573153
\(755\) −6.06793 26.7989i −0.220834 0.975311i
\(756\) 0.699744 0.0254495
\(757\) −29.4275 + 29.4275i −1.06956 + 1.06956i −0.0721677 + 0.997393i \(0.522992\pi\)
−0.997393 + 0.0721677i \(0.977008\pi\)
\(758\) −6.59581 + 6.59581i −0.239571 + 0.239571i
\(759\) 11.8755i 0.431053i
\(760\) −32.2547 + 0.297982i −1.17000 + 0.0108089i
\(761\) 44.2984i 1.60582i 0.596102 + 0.802909i \(0.296715\pi\)
−0.596102 + 0.802909i \(0.703285\pi\)
\(762\) −25.4349 25.4349i −0.921411 0.921411i
\(763\) −31.2423 31.2423i −1.13105 1.13105i
\(764\) 0.470202i 0.0170113i
\(765\) −0.0874437 9.46523i −0.00316153 0.342216i
\(766\) 22.3761 0.808481
\(767\) 29.2646 + 29.2646i 1.05668 + 1.05668i
\(768\) −3.52555 + 3.52555i −0.127217 + 0.127217i
\(769\) −9.83353 −0.354606 −0.177303 0.984156i \(-0.556737\pi\)
−0.177303 + 0.984156i \(0.556737\pi\)
\(770\) 20.5798 + 20.2031i 0.741645 + 0.728067i
\(771\) −26.5300 −0.955454
\(772\) 0.385442 0.385442i 0.0138724 0.0138724i
\(773\) 23.4758 + 23.4758i 0.844364 + 0.844364i 0.989423 0.145059i \(-0.0463372\pi\)
−0.145059 + 0.989423i \(0.546337\pi\)
\(774\) 9.84087i 0.353723i
\(775\) 0.557267 + 30.1577i 0.0200176 + 1.08330i
\(776\) 9.02525 0.323988
\(777\) 1.66580 1.66580i 0.0597602 0.0597602i
\(778\) 33.6218 33.6218i 1.20540 1.20540i
\(779\) 4.76332 0.170664
\(780\) −1.59366 1.56449i −0.0570623 0.0560177i
\(781\) 22.0635i 0.789495i
\(782\) −4.05833 4.05833i −0.145125 0.145125i
\(783\) 5.00789 5.00789i 0.178967 0.178967i
\(784\) 7.38308i 0.263681i
\(785\) −0.303244 32.8243i −0.0108232 1.17155i
\(786\) −48.6445 −1.73509
\(787\) −21.5201 + 21.5201i −0.767107 + 0.767107i −0.977596 0.210489i \(-0.932494\pi\)
0.210489 + 0.977596i \(0.432494\pi\)
\(788\) −0.153062 + 0.153062i −0.00545260 + 0.00545260i
\(789\) 12.5123i 0.445450i
\(790\) 24.8834 0.229883i 0.885312 0.00817888i
\(791\) −47.8907 −1.70280
\(792\) 11.6102 11.6102i 0.412549 0.412549i
\(793\) −31.6918 31.6918i −1.12541 1.12541i
\(794\) 25.4739i 0.904036i
\(795\) 16.4933 16.8009i 0.584958 0.595867i
\(796\) 0.825234i 0.0292496i
\(797\) −10.0417 + 10.0417i −0.355697 + 0.355697i −0.862224 0.506527i \(-0.830929\pi\)
0.506527 + 0.862224i \(0.330929\pi\)
\(798\) −26.1212 26.1212i −0.924679 0.924679i
\(799\) 2.22108i 0.0785763i
\(800\) −1.99048 1.91825i −0.0703740 0.0678204i
\(801\) 14.0585i 0.496733i
\(802\) −5.40231 + 5.40231i −0.190762 + 0.190762i
\(803\) 20.2418 20.2418i 0.714318 0.714318i
\(804\) 2.18615i 0.0770996i
\(805\) 5.23463 + 5.13880i 0.184497 + 0.181119i
\(806\) 41.9069i 1.47611i
\(807\) 37.0745 + 37.0745i 1.30508 + 1.30508i
\(808\) −2.88566 + 2.88566i −0.101517 + 0.101517i
\(809\) −33.8527 −1.19020 −0.595098 0.803653i \(-0.702887\pi\)
−0.595098 + 0.803653i \(0.702887\pi\)
\(810\) 36.4305 0.336560i 1.28004 0.0118255i
\(811\) 11.2856i 0.396292i −0.980172 0.198146i \(-0.936508\pi\)
0.980172 0.198146i \(-0.0634921\pi\)
\(812\) −0.358594 0.358594i −0.0125842 0.0125842i
\(813\) 1.94010 + 1.94010i 0.0680423 + 0.0680423i
\(814\) 2.72578i 0.0955385i
\(815\) 50.1898 0.463674i 1.75807 0.0162418i
\(816\) 24.6307i 0.862245i
\(817\) 16.4251 16.4251i 0.574642 0.574642i
\(818\) 39.3722 39.3722i 1.37662 1.37662i
\(819\) 16.8084i 0.587332i
\(820\) 0.142003 + 0.139403i 0.00495895 + 0.00486817i
\(821\) 7.56295i 0.263949i −0.991253 0.131974i \(-0.957868\pi\)
0.991253 0.131974i \(-0.0421316\pi\)
\(822\) −21.9467 21.9467i −0.765479 0.765479i
\(823\) 1.53884 + 1.53884i 0.0536407 + 0.0536407i 0.733418 0.679778i \(-0.237924\pi\)
−0.679778 + 0.733418i \(0.737924\pi\)
\(824\) 32.6289i 1.13668i
\(825\) 29.8232 + 28.7410i 1.03831 + 1.00063i
\(826\) 28.5993i 0.995097i
\(827\) −14.0520 + 14.0520i −0.488637 + 0.488637i −0.907876 0.419239i \(-0.862297\pi\)
0.419239 + 0.907876i \(0.362297\pi\)
\(828\) −0.151867 + 0.151867i −0.00527775 + 0.00527775i
\(829\) 43.9734i 1.52726i 0.645654 + 0.763630i \(0.276585\pi\)
−0.645654 + 0.763630i \(0.723415\pi\)
\(830\) −9.85865 + 10.0425i −0.342199 + 0.348581i
\(831\) 9.49970 0.329541
\(832\) 25.6778 + 25.6778i 0.890217 + 0.890217i
\(833\) 3.44718 + 3.44718i 0.119438 + 0.119438i
\(834\) 29.6987 1.02838
\(835\) −35.7846 + 0.330593i −1.23838 + 0.0114407i
\(836\) −1.99308 −0.0689321
\(837\) −13.3347 13.3347i −0.460915 0.460915i
\(838\) −23.4582 + 23.4582i −0.810351 + 0.810351i
\(839\) 15.4171i 0.532256i −0.963938 0.266128i \(-0.914256\pi\)
0.963938 0.266128i \(-0.0857444\pi\)
\(840\) 0.277224 + 30.0078i 0.00956515 + 1.03537i
\(841\) 23.8673 0.823009
\(842\) −10.2777 10.2777i −0.354192 0.354192i
\(843\) 11.9151 + 11.9151i 0.410376 + 0.410376i
\(844\) −2.63459 −0.0906864
\(845\) −15.6703 + 15.9625i −0.539073 + 0.549127i
\(846\) −1.78245 −0.0612820
\(847\) −6.70307 6.70307i −0.230320 0.230320i
\(848\) 14.6406 14.6406i 0.502760 0.502760i
\(849\) 40.6532i 1.39521i
\(850\) 20.0137 0.369822i 0.686466 0.0126848i
\(851\) 0.693322i 0.0237668i
\(852\) −0.834859 + 0.834859i −0.0286018 + 0.0286018i
\(853\) −25.8981 25.8981i −0.886734 0.886734i 0.107474 0.994208i \(-0.465724\pi\)
−0.994208 + 0.107474i \(0.965724\pi\)
\(854\) 30.9713i 1.05982i
\(855\) −12.7954 12.5611i −0.437592 0.429581i
\(856\) 22.3143i 0.762688i
\(857\) 18.9810 + 18.9810i 0.648377 + 0.648377i 0.952601 0.304223i \(-0.0983970\pi\)
−0.304223 + 0.952601i \(0.598397\pi\)
\(858\) 40.6901 + 40.6901i 1.38914 + 1.38914i
\(859\) 4.47754 0.152772 0.0763859 0.997078i \(-0.475662\pi\)
0.0763859 + 0.997078i \(0.475662\pi\)
\(860\) 0.970358 0.00896456i 0.0330889 0.000305689i
\(861\) 4.43150i 0.151025i
\(862\) 6.41199 + 6.41199i 0.218393 + 0.218393i
\(863\) −23.2449 + 23.2449i −0.791266 + 0.791266i −0.981700 0.190434i \(-0.939011\pi\)
0.190434 + 0.981700i \(0.439011\pi\)
\(864\) 1.72830 0.0587980
\(865\) −0.231142 25.0197i −0.00785906 0.850694i
\(866\) 10.5538i 0.358634i
\(867\) −14.0890 14.0890i −0.478487 0.478487i
\(868\) −0.954844 + 0.954844i −0.0324095 + 0.0324095i
\(869\) −29.8992 −1.01426
\(870\) −11.1461 10.9421i −0.377890 0.370971i
\(871\) 50.3529 1.70614
\(872\) −37.6155 37.6155i −1.27382 1.27382i
\(873\) 3.54752 + 3.54752i 0.120065 + 0.120065i
\(874\) −10.8719 −0.367747
\(875\) −25.5740 + 0.708952i −0.864561 + 0.0239670i
\(876\) −1.53185 −0.0517566
\(877\) 18.7993 + 18.7993i 0.634809 + 0.634809i 0.949270 0.314461i \(-0.101824\pi\)
−0.314461 + 0.949270i \(0.601824\pi\)
\(878\) 27.0112 + 27.0112i 0.911584 + 0.911584i
\(879\) 0.397044i 0.0133920i
\(880\) 25.9928 + 25.5169i 0.876217 + 0.860175i
\(881\) 27.1596i 0.915032i 0.889202 + 0.457516i \(0.151261\pi\)
−0.889202 + 0.457516i \(0.848739\pi\)
\(882\) 2.76641 2.76641i 0.0931499 0.0931499i
\(883\) −6.66095 6.66095i −0.224159 0.224159i 0.586088 0.810247i \(-0.300667\pi\)
−0.810247 + 0.586088i \(0.800667\pi\)
\(884\) 1.29682 0.0436167
\(885\) 0.379441 + 41.0721i 0.0127548 + 1.38063i
\(886\) 6.65675i 0.223638i
\(887\) −33.1187 33.1187i −1.11202 1.11202i −0.992877 0.119141i \(-0.961986\pi\)
−0.119141 0.992877i \(-0.538014\pi\)
\(888\) 2.00561 2.00561i 0.0673039 0.0673039i
\(889\) −26.6963 −0.895367
\(890\) 29.7285 0.274644i 0.996503 0.00920610i
\(891\) −43.7739 −1.46648
\(892\) 0.631621 0.631621i 0.0211482 0.0211482i
\(893\) −2.97504 2.97504i −0.0995559 0.0995559i
\(894\) 26.2343i 0.877407i
\(895\) 41.0532 + 40.3016i 1.37226 + 1.34713i
\(896\) 27.6243i 0.922863i
\(897\) 10.3498 + 10.3498i 0.345571 + 0.345571i
\(898\) −2.11045 + 2.11045i −0.0704268 + 0.0704268i
\(899\) 13.6671i 0.455824i
\(900\) −0.0138392 0.748937i −0.000461305 0.0249646i
\(901\) 13.6715i 0.455462i
\(902\) −3.62568 3.62568i −0.120722 0.120722i
\(903\) −15.2809 15.2809i −0.508517 0.508517i
\(904\) −57.6601 −1.91775
\(905\) −29.2333 + 29.7785i −0.971748 + 0.989870i
\(906\) 20.5079 31.8571i 0.681329 1.05838i
\(907\) −25.9678 + 25.9678i −0.862246 + 0.862246i −0.991599 0.129352i \(-0.958710\pi\)
0.129352 + 0.991599i \(0.458710\pi\)
\(908\) 0.169135 + 0.169135i 0.00561295 + 0.00561295i
\(909\) −2.26852 −0.0752420
\(910\) −35.5435 + 0.328365i −1.17825 + 0.0108852i
\(911\) −21.8858 −0.725108 −0.362554 0.931963i \(-0.618095\pi\)
−0.362554 + 0.931963i \(0.618095\pi\)
\(912\) −32.9916 32.9916i −1.09246 1.09246i
\(913\) 11.9563 11.9563i 0.395697 0.395697i
\(914\) 43.8396i 1.45008i
\(915\) −0.410912 44.4786i −0.0135843 1.47042i
\(916\) −1.62623 −0.0537322
\(917\) −25.5285 + 25.5285i −0.843024 + 0.843024i
\(918\) −8.84937 + 8.84937i −0.292073 + 0.292073i
\(919\) 30.4412 1.00416 0.502082 0.864820i \(-0.332568\pi\)
0.502082 + 0.864820i \(0.332568\pi\)
\(920\) 6.30246 + 6.18708i 0.207786 + 0.203982i
\(921\) 53.4305i 1.76059i
\(922\) 21.7017 21.7017i 0.714707 0.714707i
\(923\) 19.2290 + 19.2290i 0.632931 + 0.632931i
\(924\) 1.85424i 0.0610000i
\(925\) 1.74116 + 1.67798i 0.0572489 + 0.0551716i
\(926\) −18.4859 −0.607483
\(927\) −12.8253 + 12.8253i −0.421240 + 0.421240i
\(928\) −0.885694 0.885694i −0.0290743 0.0290743i
\(929\) 26.7133 0.876435 0.438218 0.898869i \(-0.355610\pi\)
0.438218 + 0.898869i \(0.355610\pi\)
\(930\) −29.1359 + 29.6793i −0.955405 + 0.973222i
\(931\) 9.23467 0.302654
\(932\) 0.616417 + 0.616417i 0.0201914 + 0.0201914i
\(933\) −13.4868 + 13.4868i −0.441539 + 0.441539i
\(934\) −4.14105 −0.135499
\(935\) −24.0500 + 0.222184i −0.786520 + 0.00726619i
\(936\) 20.2372i 0.661473i
\(937\) 18.5312 18.5312i 0.605387 0.605387i −0.336350 0.941737i \(-0.609193\pi\)
0.941737 + 0.336350i \(0.109193\pi\)
\(938\) 24.6041 + 24.6041i 0.803352 + 0.803352i
\(939\) −28.1094 −0.917314
\(940\) −0.00162373 0.175758i −5.29602e−5 0.00573261i
\(941\) 3.66320i 0.119417i −0.998216 0.0597084i \(-0.980983\pi\)
0.998216 0.0597084i \(-0.0190171\pi\)
\(942\) 32.0051 32.0051i 1.04278 1.04278i
\(943\) −0.922218 0.922218i −0.0300315 0.0300315i
\(944\) 36.1216i 1.17566i
\(945\) 11.2054 11.4144i 0.364511 0.371309i
\(946\) −25.0045 −0.812965
\(947\) 38.9964 + 38.9964i 1.26721 + 1.26721i 0.947522 + 0.319691i \(0.103579\pi\)
0.319691 + 0.947522i \(0.396421\pi\)
\(948\) 1.13135 + 1.13135i 0.0367446 + 0.0367446i
\(949\) 35.2827i 1.14532i
\(950\) 26.3121 27.3028i 0.853678 0.885821i
\(951\) −2.16274 −0.0701315
\(952\) −12.3220 12.3220i −0.399357 0.399357i
\(953\) 41.4646 + 41.4646i 1.34317 + 1.34317i 0.892885 + 0.450284i \(0.148677\pi\)
0.450284 + 0.892885i \(0.351323\pi\)
\(954\) 10.9715 0.355217
\(955\) −7.67002 7.52960i −0.248196 0.243652i
\(956\) 2.64316 0.0854860
\(957\) 13.2703 + 13.2703i 0.428968 + 0.428968i
\(958\) 32.2071 32.2071i 1.04056 1.04056i
\(959\) −23.0351 −0.743843
\(960\) 0.332935 + 36.0381i 0.0107454 + 1.16313i
\(961\) 5.39202 0.173936
\(962\) 2.37560 + 2.37560i 0.0765923 + 0.0765923i
\(963\) 8.77102 8.77102i 0.282642 0.282642i
\(964\) 2.52920i 0.0814601i
\(965\) −0.115108 12.4597i −0.00370545 0.401092i
\(966\) 10.1145i 0.325430i
\(967\) 5.53167 + 5.53167i 0.177887 + 0.177887i 0.790434 0.612547i \(-0.209855\pi\)
−0.612547 + 0.790434i \(0.709855\pi\)
\(968\) −8.07045 8.07045i −0.259394 0.259394i
\(969\) 30.8077 0.989687
\(970\) −7.43239 + 7.57100i −0.238640 + 0.243090i
\(971\) 25.9263i 0.832014i 0.909361 + 0.416007i \(0.136571\pi\)
−0.909361 + 0.416007i \(0.863429\pi\)
\(972\) 1.00767 + 1.00767i 0.0323210 + 0.0323210i
\(973\) 15.5858 15.5858i 0.499657 0.499657i
\(974\) 26.4195i 0.846537i
\(975\) −51.0405 + 0.943146i −1.63460 + 0.0302048i
\(976\) 39.1174i 1.25212i
\(977\) 21.7619 + 21.7619i 0.696223 + 0.696223i 0.963594 0.267370i \(-0.0861547\pi\)
−0.267370 + 0.963594i \(0.586155\pi\)
\(978\) 48.9372 + 48.9372i 1.56484 + 1.56484i
\(979\) −35.7210 −1.14165
\(980\) 0.275302 + 0.270261i 0.00879419 + 0.00863318i
\(981\) 29.5708i 0.944123i
\(982\) 18.8566 18.8566i 0.601739 0.601739i
\(983\) 21.5710 21.5710i 0.688007 0.688007i −0.273784 0.961791i \(-0.588275\pi\)
0.961791 + 0.273784i \(0.0882754\pi\)
\(984\) 5.33550i 0.170090i
\(985\) 0.0457101 + 4.94783i 0.00145645 + 0.157651i
\(986\) 9.06998 0.288847
\(987\) −2.76780 + 2.76780i −0.0880999 + 0.0880999i
\(988\) 1.73703 1.73703i 0.0552622 0.0552622i
\(989\) −6.36007 −0.202239
\(990\) 0.178306 + 19.3005i 0.00566693 + 0.613410i
\(991\) −27.0109 −0.858031 −0.429015 0.903297i \(-0.641139\pi\)
−0.429015 + 0.903297i \(0.641139\pi\)
\(992\) −2.35837 + 2.35837i −0.0748784 + 0.0748784i
\(993\) −29.7574 + 29.7574i −0.944323 + 0.944323i
\(994\) 18.7919i 0.596042i
\(995\) −13.4614 13.2149i −0.426754 0.418941i
\(996\) −0.904829 −0.0286706
\(997\) 31.3919 31.3919i 0.994190 0.994190i −0.00579293 0.999983i \(-0.501844\pi\)
0.999983 + 0.00579293i \(0.00184396\pi\)
\(998\) 29.6663 29.6663i 0.939071 0.939071i
\(999\) −1.51182 −0.0478319
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 755.2.f.e.603.17 yes 108
5.2 odd 4 inner 755.2.f.e.452.18 yes 108
151.150 odd 2 inner 755.2.f.e.603.18 yes 108
755.452 even 4 inner 755.2.f.e.452.17 108
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
755.2.f.e.452.17 108 755.452 even 4 inner
755.2.f.e.452.18 yes 108 5.2 odd 4 inner
755.2.f.e.603.17 yes 108 1.1 even 1 trivial
755.2.f.e.603.18 yes 108 151.150 odd 2 inner