Properties

Label 755.2.f.d.603.6
Level $755$
Weight $2$
Character 755.603
Analytic conductor $6.029$
Analytic rank $0$
Dimension $28$
CM discriminant -151
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [755,2,Mod(452,755)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(755, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("755.452"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 755 = 5 \cdot 151 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 755.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.02870535261\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

Embedding invariants

Embedding label 603.6
Character \(\chi\) \(=\) 755.603
Dual form 755.2.f.d.452.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.503691 + 0.503691i) q^{2} +1.49259i q^{4} +(-0.577204 - 2.16029i) q^{5} +(-1.75919 - 1.75919i) q^{8} +3.00000i q^{9} +(1.37885 + 0.797385i) q^{10} -4.14607 q^{11} -1.21300 q^{16} +(3.11919 - 3.11919i) q^{17} +(-1.51107 - 1.51107i) q^{18} -7.85139i q^{19} +(3.22442 - 0.861529i) q^{20} +(2.08834 - 2.08834i) q^{22} +(-4.33367 + 2.49385i) q^{25} -1.08956i q^{29} -10.1567 q^{31} +(4.12936 - 4.12936i) q^{32} +3.14222i q^{34} -4.47777 q^{36} +(-5.95831 + 5.95831i) q^{37} +(3.95468 + 3.95468i) q^{38} +(-2.78494 + 4.81576i) q^{40} +(-4.19484 - 4.19484i) q^{43} -6.18838i q^{44} +(6.48086 - 1.73161i) q^{45} +(5.71089 - 5.71089i) q^{47} -7.00000i q^{49} +(0.926702 - 3.43896i) q^{50} +(2.39313 + 8.95669i) q^{55} +(0.548804 + 0.548804i) q^{58} -13.2065i q^{59} +(5.11582 - 5.11582i) q^{62} +1.73383i q^{64} +(4.65568 + 4.65568i) q^{68} +(5.27756 - 5.27756i) q^{72} -6.00230i q^{74} +11.7189 q^{76} +(0.700151 + 2.62044i) q^{80} -9.00000 q^{81} +(-8.53876 - 4.93794i) q^{85} +4.22581 q^{86} +(7.29371 + 7.29371i) q^{88} +(-2.39215 + 4.13655i) q^{90} +5.75305i q^{94} +(-16.9612 + 4.53185i) q^{95} +(-13.6445 + 13.6445i) q^{97} +(3.52584 + 3.52584i) q^{98} -12.4382i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 112 q^{16} + 168 q^{36} - 14 q^{38} + 126 q^{58} - 154 q^{68} - 252 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/755\mathbb{Z}\right)^\times\).

\(n\) \(6\) \(152\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.503691 + 0.503691i −0.356164 + 0.356164i −0.862397 0.506233i \(-0.831038\pi\)
0.506233 + 0.862397i \(0.331038\pi\)
\(3\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(4\) 1.49259i 0.746295i
\(5\) −0.577204 2.16029i −0.258133 0.966109i
\(6\) 0 0
\(7\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(8\) −1.75919 1.75919i −0.621967 0.621967i
\(9\) 3.00000i 1.00000i
\(10\) 1.37885 + 0.797385i 0.436031 + 0.252155i
\(11\) −4.14607 −1.25009 −0.625043 0.780590i \(-0.714919\pi\)
−0.625043 + 0.780590i \(0.714919\pi\)
\(12\) 0 0
\(13\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −1.21300 −0.303251
\(17\) 3.11919 3.11919i 0.756516 0.756516i −0.219171 0.975686i \(-0.570335\pi\)
0.975686 + 0.219171i \(0.0703352\pi\)
\(18\) −1.51107 1.51107i −0.356164 0.356164i
\(19\) 7.85139i 1.80123i −0.434615 0.900616i \(-0.643116\pi\)
0.434615 0.900616i \(-0.356884\pi\)
\(20\) 3.22442 0.861529i 0.721002 0.192644i
\(21\) 0 0
\(22\) 2.08834 2.08834i 0.445235 0.445235i
\(23\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(24\) 0 0
\(25\) −4.33367 + 2.49385i −0.866734 + 0.498770i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.08956i 0.202327i −0.994870 0.101163i \(-0.967744\pi\)
0.994870 0.101163i \(-0.0322565\pi\)
\(30\) 0 0
\(31\) −10.1567 −1.82419 −0.912094 0.409980i \(-0.865536\pi\)
−0.912094 + 0.409980i \(0.865536\pi\)
\(32\) 4.12936 4.12936i 0.729974 0.729974i
\(33\) 0 0
\(34\) 3.14222i 0.538887i
\(35\) 0 0
\(36\) −4.47777 −0.746295
\(37\) −5.95831 + 5.95831i −0.979539 + 0.979539i −0.999795 0.0202554i \(-0.993552\pi\)
0.0202554 + 0.999795i \(0.493552\pi\)
\(38\) 3.95468 + 3.95468i 0.641533 + 0.641533i
\(39\) 0 0
\(40\) −2.78494 + 4.81576i −0.440337 + 0.761438i
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) −4.19484 4.19484i −0.639707 0.639707i 0.310776 0.950483i \(-0.399411\pi\)
−0.950483 + 0.310776i \(0.899411\pi\)
\(44\) 6.18838i 0.932933i
\(45\) 6.48086 1.73161i 0.966109 0.258133i
\(46\) 0 0
\(47\) 5.71089 5.71089i 0.833019 0.833019i −0.154910 0.987929i \(-0.549509\pi\)
0.987929 + 0.154910i \(0.0495087\pi\)
\(48\) 0 0
\(49\) 7.00000i 1.00000i
\(50\) 0.926702 3.43896i 0.131055 0.486343i
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(54\) 0 0
\(55\) 2.39313 + 8.95669i 0.322689 + 1.20772i
\(56\) 0 0
\(57\) 0 0
\(58\) 0.548804 + 0.548804i 0.0720614 + 0.0720614i
\(59\) 13.2065i 1.71934i −0.510851 0.859669i \(-0.670669\pi\)
0.510851 0.859669i \(-0.329331\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 5.11582 5.11582i 0.649710 0.649710i
\(63\) 0 0
\(64\) 1.73383i 0.216729i
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(68\) 4.65568 + 4.65568i 0.564584 + 0.564584i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 5.27756 5.27756i 0.621967 0.621967i
\(73\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(74\) 6.00230i 0.697753i
\(75\) 0 0
\(76\) 11.7189 1.34425
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0.700151 + 2.62044i 0.0782792 + 0.292974i
\(81\) −9.00000 −1.00000
\(82\) 0 0
\(83\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(84\) 0 0
\(85\) −8.53876 4.93794i −0.926159 0.535595i
\(86\) 4.22581 0.455681
\(87\) 0 0
\(88\) 7.29371 + 7.29371i 0.777512 + 0.777512i
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) −2.39215 + 4.13655i −0.252155 + 0.436031i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 5.75305i 0.593382i
\(95\) −16.9612 + 4.53185i −1.74019 + 0.464958i
\(96\) 0 0
\(97\) −13.6445 + 13.6445i −1.38538 + 1.38538i −0.550646 + 0.834739i \(0.685619\pi\)
−0.834739 + 0.550646i \(0.814381\pi\)
\(98\) 3.52584 + 3.52584i 0.356164 + 0.356164i
\(99\) 12.4382i 1.25009i
\(100\) −3.72230 6.46839i −0.372230 0.646839i
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 9.33716 + 9.33716i 0.920017 + 0.920017i 0.997030 0.0770128i \(-0.0245382\pi\)
−0.0770128 + 0.997030i \(0.524538\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) −5.71681 3.30601i −0.545076 0.315216i
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 1.62627 0.150995
\(117\) 0 0
\(118\) 6.65200 + 6.65200i 0.612366 + 0.612366i
\(119\) 0 0
\(120\) 0 0
\(121\) 6.18987 0.562716
\(122\) 0 0
\(123\) 0 0
\(124\) 15.1597i 1.36138i
\(125\) 7.88884 + 7.92251i 0.705600 + 0.708611i
\(126\) 0 0
\(127\) 8.15431 8.15431i 0.723578 0.723578i −0.245754 0.969332i \(-0.579036\pi\)
0.969332 + 0.245754i \(0.0790356\pi\)
\(128\) 7.38539 + 7.38539i 0.652783 + 0.652783i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) −10.9745 −0.941055
\(137\) −16.3051 + 16.3051i −1.39304 + 1.39304i −0.574610 + 0.818427i \(0.694846\pi\)
−0.818427 + 0.574610i \(0.805154\pi\)
\(138\) 0 0
\(139\) 23.3027i 1.97651i 0.152816 + 0.988255i \(0.451166\pi\)
−0.152816 + 0.988255i \(0.548834\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 3.63901i 0.303251i
\(145\) −2.35377 + 0.628900i −0.195470 + 0.0522273i
\(146\) 0 0
\(147\) 0 0
\(148\) −8.89331 8.89331i −0.731025 0.731025i
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) −12.2882 −1.00000
\(152\) −13.8121 + 13.8121i −1.12031 + 1.12031i
\(153\) 9.35758 + 9.35758i 0.756516 + 0.756516i
\(154\) 0 0
\(155\) 5.86246 + 21.9413i 0.470884 + 1.76237i
\(156\) 0 0
\(157\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −11.3041 6.53711i −0.893665 0.516804i
\(161\) 0 0
\(162\) 4.53322 4.53322i 0.356164 0.356164i
\(163\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 16.2882 16.2882i 1.26042 1.26042i 0.309529 0.950890i \(-0.399829\pi\)
0.950890 0.309529i \(-0.100171\pi\)
\(168\) 0 0
\(169\) 13.0000i 1.00000i
\(170\) 6.78810 1.81370i 0.520623 0.139105i
\(171\) 23.5542 1.80123
\(172\) 6.26117 6.26117i 0.477410 0.477410i
\(173\) −2.22268 2.22268i −0.168987 0.168987i 0.617547 0.786534i \(-0.288127\pi\)
−0.786534 + 0.617547i \(0.788127\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 5.02920 0.379090
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 2.58459 + 9.67326i 0.192644 + 0.721002i
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 16.3108 + 9.43249i 1.19919 + 0.693490i
\(186\) 0 0
\(187\) −12.9324 + 12.9324i −0.945710 + 0.945710i
\(188\) 8.52401 + 8.52401i 0.621678 + 0.621678i
\(189\) 0 0
\(190\) 6.26058 10.8259i 0.454190 0.785393i
\(191\) −21.1236 −1.52845 −0.764224 0.644951i \(-0.776878\pi\)
−0.764224 + 0.644951i \(0.776878\pi\)
\(192\) 0 0
\(193\) −2.62117 2.62117i −0.188676 0.188676i 0.606448 0.795123i \(-0.292594\pi\)
−0.795123 + 0.606448i \(0.792594\pi\)
\(194\) 13.7452i 0.986848i
\(195\) 0 0
\(196\) 10.4481 0.746295
\(197\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(198\) 6.26502 + 6.26502i 0.445235 + 0.445235i
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 12.0109 + 3.23659i 0.849298 + 0.228861i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) −9.40609 −0.655353
\(207\) 0 0
\(208\) 0 0
\(209\) 32.5524i 2.25170i
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −6.64077 + 11.4833i −0.452897 + 0.783156i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) −13.3687 + 3.57196i −0.901315 + 0.240821i
\(221\) 0 0
\(222\) 0 0
\(223\) 17.0714 + 17.0714i 1.14319 + 1.14319i 0.987864 + 0.155322i \(0.0496415\pi\)
0.155322 + 0.987864i \(0.450359\pi\)
\(224\) 0 0
\(225\) −7.48155 13.0010i −0.498770 0.866734i
\(226\) 0 0
\(227\) 21.2538 21.2538i 1.41066 1.41066i 0.655250 0.755412i \(-0.272563\pi\)
0.755412 0.655250i \(-0.227437\pi\)
\(228\) 0 0
\(229\) 22.1698i 1.46502i −0.680755 0.732512i \(-0.738348\pi\)
0.680755 0.732512i \(-0.261652\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −1.91675 + 1.91675i −0.125841 + 0.125841i
\(233\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(234\) 0 0
\(235\) −15.6335 9.04081i −1.01982 0.589757i
\(236\) 19.7119 1.28313
\(237\) 0 0
\(238\) 0 0
\(239\) 11.9189i 0.770969i 0.922714 + 0.385484i \(0.125966\pi\)
−0.922714 + 0.385484i \(0.874034\pi\)
\(240\) 0 0
\(241\) −18.9041 −1.21772 −0.608859 0.793278i \(-0.708373\pi\)
−0.608859 + 0.793278i \(0.708373\pi\)
\(242\) −3.11779 + 3.11779i −0.200419 + 0.200419i
\(243\) 0 0
\(244\) 0 0
\(245\) −15.1220 + 4.04043i −0.966109 + 0.258133i
\(246\) 0 0
\(247\) 0 0
\(248\) 17.8675 + 17.8675i 1.13458 + 1.13458i
\(249\) 0 0
\(250\) −7.96404 0.0169560i −0.503690 0.00107239i
\(251\) −24.5764 −1.55125 −0.775625 0.631194i \(-0.782565\pi\)
−0.775625 + 0.631194i \(0.782565\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 8.21451i 0.515424i
\(255\) 0 0
\(256\) −10.9076 −0.681724
\(257\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 3.26869 0.202327
\(262\) 0 0
\(263\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 4.93371i 0.300814i −0.988624 0.150407i \(-0.951942\pi\)
0.988624 0.150407i \(-0.0480583\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) −3.78359 + 3.78359i −0.229414 + 0.229414i
\(273\) 0 0
\(274\) 16.4255i 0.992299i
\(275\) 17.9677 10.3397i 1.08349 0.623506i
\(276\) 0 0
\(277\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(278\) −11.7374 11.7374i −0.703961 0.703961i
\(279\) 30.4700i 1.82419i
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 12.3881 + 12.3881i 0.729974 + 0.729974i
\(289\) 2.45874i 0.144631i
\(290\) 0.868801 1.50234i 0.0510178 0.0882207i
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(294\) 0 0
\(295\) −28.5298 + 7.62284i −1.66107 + 0.443819i
\(296\) 20.9636 1.21848
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 6.18946 6.18946i 0.356164 0.356164i
\(303\) 0 0
\(304\) 9.52376i 0.546225i
\(305\) 0 0
\(306\) −9.42667 −0.538887
\(307\) 10.8330 10.8330i 0.618273 0.618273i −0.326815 0.945088i \(-0.605975\pi\)
0.945088 + 0.326815i \(0.105975\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −14.0045 8.09876i −0.795402 0.459979i
\(311\) −3.58624 −0.203357 −0.101679 0.994817i \(-0.532421\pi\)
−0.101679 + 0.994817i \(0.532421\pi\)
\(312\) 0 0
\(313\) 24.7537 + 24.7537i 1.39916 + 1.39916i 0.802466 + 0.596697i \(0.203521\pi\)
0.596697 + 0.802466i \(0.296479\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(318\) 0 0
\(319\) 4.51740i 0.252926i
\(320\) 3.74558 1.00078i 0.209384 0.0559451i
\(321\) 0 0
\(322\) 0 0
\(323\) −24.4900 24.4900i −1.36266 1.36266i
\(324\) 13.4333i 0.746295i
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −2.05147 −0.112759 −0.0563795 0.998409i \(-0.517956\pi\)
−0.0563795 + 0.998409i \(0.517956\pi\)
\(332\) 0 0
\(333\) −17.8749 17.8749i −0.979539 0.979539i
\(334\) 16.4085i 0.897831i
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(338\) −6.54799 6.54799i −0.356164 0.356164i
\(339\) 0 0
\(340\) 7.37032 12.7449i 0.399712 0.691187i
\(341\) 42.1102 2.28039
\(342\) −11.8640 + 11.8640i −0.641533 + 0.641533i
\(343\) 0 0
\(344\) 14.7590i 0.795753i
\(345\) 0 0
\(346\) 2.23909 0.120374
\(347\) 26.2882 26.2882i 1.41122 1.41122i 0.659665 0.751559i \(-0.270698\pi\)
0.751559 0.659665i \(-0.229302\pi\)
\(348\) 0 0
\(349\) 31.9364i 1.70952i −0.519024 0.854759i \(-0.673705\pi\)
0.519024 0.854759i \(-0.326295\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −17.1206 + 17.1206i −0.912530 + 0.912530i
\(353\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) −14.4473 8.35482i −0.761438 0.440337i
\(361\) −42.6443 −2.24444
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) −12.9667 + 3.46455i −0.674105 + 0.180113i
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(374\) 13.0279i 0.673655i
\(375\) 0 0
\(376\) −20.0931 −1.03622
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) −6.76420 25.3162i −0.346996 1.29869i
\(381\) 0 0
\(382\) 10.6398 10.6398i 0.544378 0.544378i
\(383\) −20.0257 20.0257i −1.02326 1.02326i −0.999723 0.0235404i \(-0.992506\pi\)
−0.0235404 0.999723i \(-0.507494\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 2.64052 0.134399
\(387\) 12.5845 12.5845i 0.639707 0.639707i
\(388\) −20.3656 20.3656i −1.03391 1.03391i
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −12.3143 + 12.3143i −0.621967 + 0.621967i
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 18.5651 0.932933
\(397\) 25.0662 25.0662i 1.25804 1.25804i 0.306010 0.952028i \(-0.401006\pi\)
0.952028 0.306010i \(-0.0989941\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 5.25676 3.02505i 0.262838 0.151253i
\(401\) 37.8726 1.89127 0.945634 0.325234i \(-0.105443\pi\)
0.945634 + 0.325234i \(0.105443\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 5.19484 + 19.4426i 0.258133 + 0.966109i
\(406\) 0 0
\(407\) 24.7035 24.7035i 1.22451 1.22451i
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −13.9365 + 13.9365i −0.686604 + 0.686604i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) −16.3964 16.3964i −0.801972 0.801972i
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 17.1327 + 17.1327i 0.833019 + 0.833019i
\(424\) 0 0
\(425\) −5.73875 + 21.2964i −0.278370 + 1.03303i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) −2.43915 9.12895i −0.117626 0.440237i
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 39.8596i 1.90240i −0.308582 0.951198i \(-0.599855\pi\)
0.308582 0.951198i \(-0.400145\pi\)
\(440\) 11.5465 19.9665i 0.550460 0.951864i
\(441\) 21.0000 1.00000
\(442\) 0 0
\(443\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −17.1974 −0.814323
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 10.3169 + 2.78010i 0.486343 + 0.131055i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 21.4107i 1.00485i
\(455\) 0 0
\(456\) 0 0
\(457\) −0.474264 + 0.474264i −0.0221851 + 0.0221851i −0.718112 0.695927i \(-0.754994\pi\)
0.695927 + 0.718112i \(0.254994\pi\)
\(458\) 11.1668 + 11.1668i 0.521788 + 0.521788i
\(459\) 0 0
\(460\) 0 0
\(461\) 15.3522 0.715022 0.357511 0.933909i \(-0.383625\pi\)
0.357511 + 0.933909i \(0.383625\pi\)
\(462\) 0 0
\(463\) −29.5482 29.5482i −1.37322 1.37322i −0.855626 0.517594i \(-0.826828\pi\)
−0.517594 0.855626i \(-0.673172\pi\)
\(464\) 1.32164i 0.0613558i
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 12.4282 3.32068i 0.573272 0.153172i
\(471\) 0 0
\(472\) −23.2327 + 23.2327i −1.06937 + 1.06937i
\(473\) 17.3921 + 17.3921i 0.799688 + 0.799688i
\(474\) 0 0
\(475\) 19.5802 + 34.0253i 0.898401 + 1.56119i
\(476\) 0 0
\(477\) 0 0
\(478\) −6.00344 6.00344i −0.274591 0.274591i
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 9.52182 9.52182i 0.433707 0.433707i
\(483\) 0 0
\(484\) 9.23894i 0.419952i
\(485\) 37.3516 + 21.6003i 1.69605 + 0.980819i
\(486\) 0 0
\(487\) 31.1155 31.1155i 1.40998 1.40998i 0.650291 0.759685i \(-0.274647\pi\)
0.759685 0.650291i \(-0.225353\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 5.58169 9.65195i 0.252155 0.436031i
\(491\) −21.7007 −0.979340 −0.489670 0.871908i \(-0.662883\pi\)
−0.489670 + 0.871908i \(0.662883\pi\)
\(492\) 0 0
\(493\) −3.39856 3.39856i −0.153063 0.153063i
\(494\) 0 0
\(495\) −26.8701 + 7.17938i −1.20772 + 0.322689i
\(496\) 12.3201 0.553187
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) −11.8251 + 11.7748i −0.528833 + 0.526585i
\(501\) 0 0
\(502\) 12.3789 12.3789i 0.552499 0.552499i
\(503\) −30.2869 30.2869i −1.35042 1.35042i −0.885184 0.465241i \(-0.845968\pi\)
−0.465241 0.885184i \(-0.654032\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 12.1710 + 12.1710i 0.540002 + 0.540002i
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −9.27673 + 9.27673i −0.409977 + 0.409977i
\(513\) 0 0
\(514\) 0 0
\(515\) 14.7815 25.5604i 0.651350 1.12632i
\(516\) 0 0
\(517\) −23.6777 + 23.6777i −1.04135 + 1.04135i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −45.5158 −1.99409 −0.997043 0.0768521i \(-0.975513\pi\)
−0.997043 + 0.0768521i \(0.975513\pi\)
\(522\) −1.64641 + 1.64641i −0.0720614 + 0.0720614i
\(523\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −31.6806 + 31.6806i −1.38003 + 1.38003i
\(528\) 0 0
\(529\) 23.0000i 1.00000i
\(530\) 0 0
\(531\) 39.6195 1.71934
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 2.48507 + 2.48507i 0.107139 + 0.107139i
\(539\) 29.0225i 1.25009i
\(540\) 0 0
\(541\) 46.3986 1.99483 0.997417 0.0718303i \(-0.0228840\pi\)
0.997417 + 0.0718303i \(0.0228840\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 25.7605i 1.10447i
\(545\) 0 0
\(546\) 0 0
\(547\) −32.9998 + 32.9998i −1.41097 + 1.41097i −0.657620 + 0.753350i \(0.728437\pi\)
−0.753350 + 0.657620i \(0.771563\pi\)
\(548\) −24.3368 24.3368i −1.03962 1.03962i
\(549\) 0 0
\(550\) −3.84217 + 14.2582i −0.163831 + 0.607971i
\(551\) −8.55458 −0.364437
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) −34.7814 −1.47506
\(557\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(558\) 15.3475 + 15.3475i 0.649710 + 0.649710i
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −33.1302 33.1302i −1.39627 1.39627i −0.810411 0.585862i \(-0.800756\pi\)
−0.585862 0.810411i \(-0.699244\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 46.8448i 1.96384i 0.189308 + 0.981918i \(0.439376\pi\)
−0.189308 + 0.981918i \(0.560624\pi\)
\(570\) 0 0
\(571\) 1.38743 0.0580620 0.0290310 0.999579i \(-0.490758\pi\)
0.0290310 + 0.999579i \(0.490758\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −5.20150 −0.216729
\(577\) 26.0785 26.0785i 1.08566 1.08566i 0.0896949 0.995969i \(-0.471411\pi\)
0.995969 0.0896949i \(-0.0285892\pi\)
\(578\) 1.23844 + 1.23844i 0.0515125 + 0.0515125i
\(579\) 0 0
\(580\) −0.938690 3.51321i −0.0389770 0.145878i
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(588\) 0 0
\(589\) 79.7438i 3.28579i
\(590\) 10.5307 18.2098i 0.433540 0.749685i
\(591\) 0 0
\(592\) 7.22745 7.22745i 0.297046 0.297046i
\(593\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −48.0158 −1.95861 −0.979304 0.202397i \(-0.935127\pi\)
−0.979304 + 0.202397i \(0.935127\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 18.3413i 0.746295i
\(605\) −3.57282 13.3719i −0.145256 0.543645i
\(606\) 0 0
\(607\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(608\) −32.4212 32.4212i −1.31485 1.31485i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) −13.9670 + 13.9670i −0.564584 + 0.564584i
\(613\) −27.5764 27.5764i −1.11380 1.11380i −0.992632 0.121169i \(-0.961336\pi\)
−0.121169 0.992632i \(-0.538664\pi\)
\(614\) 10.9130i 0.440413i
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) −32.7493 + 8.75025i −1.31524 + 0.351418i
\(621\) 0 0
\(622\) 1.80636 1.80636i 0.0724284 0.0724284i
\(623\) 0 0
\(624\) 0 0
\(625\) 12.5614 21.6151i 0.502456 0.864603i
\(626\) −24.9365 −0.996663
\(627\) 0 0
\(628\) 0 0
\(629\) 37.1702i 1.48207i
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −22.3223 12.9089i −0.885835 0.512276i
\(636\) 0 0
\(637\) 0 0
\(638\) −2.27538 2.27538i −0.0900830 0.0900830i
\(639\) 0 0
\(640\) 11.6917 20.2174i 0.462154 0.799164i
\(641\) 38.3956 1.51653 0.758267 0.651944i \(-0.226046\pi\)
0.758267 + 0.651944i \(0.226046\pi\)
\(642\) 0 0
\(643\) 25.0712 + 25.0712i 0.988710 + 0.988710i 0.999937 0.0112267i \(-0.00357365\pi\)
−0.0112267 + 0.999937i \(0.503574\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 24.6708 0.970660
\(647\) −33.1704 + 33.1704i −1.30406 + 1.30406i −0.378434 + 0.925628i \(0.623537\pi\)
−0.925628 + 0.378434i \(0.876463\pi\)
\(648\) 15.8327 + 15.8327i 0.621967 + 0.621967i
\(649\) 54.7550i 2.14932i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −17.5764 17.5764i −0.687818 0.687818i 0.273931 0.961749i \(-0.411676\pi\)
−0.961749 + 0.273931i \(0.911676\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 42.0140i 1.63663i −0.574767 0.818317i \(-0.694907\pi\)
0.574767 0.818317i \(-0.305093\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 1.03331 1.03331i 0.0401607 0.0401607i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 18.0069 0.697753
\(667\) 0 0
\(668\) 24.3116 + 24.3116i 0.940644 + 0.940644i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 36.5492 + 36.5492i 1.40887 + 1.40887i 0.765850 + 0.643019i \(0.222318\pi\)
0.643019 + 0.765850i \(0.277682\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −19.4037 −0.746295
\(677\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 6.33452 + 23.7080i 0.242918 + 0.909162i
\(681\) 0 0
\(682\) −21.2105 + 21.2105i −0.812193 + 0.812193i
\(683\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(684\) 35.1567i 1.34425i
\(685\) 44.6350 + 25.8123i 1.70542 + 0.986237i
\(686\) 0 0
\(687\) 0 0
\(688\) 5.08835 + 5.08835i 0.193992 + 0.193992i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 3.31755 3.31755i 0.126114 0.126114i
\(693\) 0 0
\(694\) 26.4823i 1.00525i
\(695\) 50.3405 13.4504i 1.90952 0.510203i
\(696\) 0 0
\(697\) 0 0
\(698\) 16.0861 + 16.0861i 0.608869 + 0.608869i
\(699\) 0 0
\(700\) 0 0
\(701\) 34.8546 1.31644 0.658219 0.752826i \(-0.271310\pi\)
0.658219 + 0.752826i \(0.271310\pi\)
\(702\) 0 0
\(703\) 46.7810 + 46.7810i 1.76438 + 1.76438i
\(704\) 7.18859i 0.270930i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 23.0070i 0.864046i −0.901863 0.432023i \(-0.857800\pi\)
0.901863 0.432023i \(-0.142200\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) −7.86131 + 2.10045i −0.292974 + 0.0782792i
\(721\) 0 0
\(722\) 21.4796 21.4796i 0.799387 0.799387i
\(723\) 0 0
\(724\) 0 0
\(725\) 2.71721 + 4.72181i 0.100915 + 0.175364i
\(726\) 0 0
\(727\) 36.2882 36.2882i 1.34586 1.34586i 0.455744 0.890111i \(-0.349373\pi\)
0.890111 0.455744i \(-0.150627\pi\)
\(728\) 0 0
\(729\) 27.0000i 1.00000i
\(730\) 0 0
\(731\) −26.1690 −0.967896
\(732\) 0 0
\(733\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) −14.0788 + 24.3453i −0.517548 + 0.894952i
\(741\) 0 0
\(742\) 0 0
\(743\) 14.4961 + 14.4961i 0.531809 + 0.531809i 0.921110 0.389301i \(-0.127284\pi\)
−0.389301 + 0.921110i \(0.627284\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) −19.3027 19.3027i −0.705778 0.705778i
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) −6.92733 + 6.92733i −0.252614 + 0.252614i
\(753\) 0 0
\(754\) 0 0
\(755\) 7.09280 + 26.5460i 0.258133 + 0.966109i
\(756\) 0 0
\(757\) 35.8200 35.8200i 1.30190 1.30190i 0.374791 0.927109i \(-0.377714\pi\)
0.927109 0.374791i \(-0.122286\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 37.8104 + 21.8656i 1.37153 + 0.793150i
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 31.5288i 1.14067i
\(765\) 14.8138 25.6163i 0.535595 0.926159i
\(766\) 20.1735 0.728898
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 3.91233 3.91233i 0.140808 0.140808i
\(773\) −37.5764 37.5764i −1.35153 1.35153i −0.883952 0.467578i \(-0.845127\pi\)
−0.467578 0.883952i \(-0.654873\pi\)
\(774\) 12.6774i 0.455681i
\(775\) 44.0156 25.3292i 1.58109 0.909851i
\(776\) 48.0063 1.72333
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 8.49103i 0.303251i
\(785\) 0 0
\(786\) 0 0
\(787\) −35.7866 + 35.7866i −1.27565 + 1.27565i −0.332577 + 0.943076i \(0.607918\pi\)
−0.943076 + 0.332577i \(0.892082\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) −21.8811 + 21.8811i −0.777512 + 0.777512i
\(793\) 0 0
\(794\) 25.2513i 0.896135i
\(795\) 0 0
\(796\) 0 0
\(797\) 36.1524 36.1524i 1.28058 1.28058i 0.340247 0.940336i \(-0.389489\pi\)
0.940336 0.340247i \(-0.110511\pi\)
\(798\) 0 0
\(799\) 35.6267i 1.26038i
\(800\) −7.59727 + 28.1933i −0.268604 + 0.996782i
\(801\) 0 0
\(802\) −19.0761 + 19.0761i −0.673601 + 0.673601i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) −12.4097 7.17646i −0.436031 0.252155i
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 24.8859i 0.872251i
\(815\) 0 0
\(816\) 0 0
\(817\) −32.9353 + 32.9353i −1.15226 + 1.15226i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) −23.0564 23.0564i −0.803696 0.803696i 0.179976 0.983671i \(-0.442398\pi\)
−0.983671 + 0.179976i \(0.942398\pi\)
\(824\) 32.8516i 1.14444i
\(825\) 0 0
\(826\) 0 0
\(827\) −13.7118 + 13.7118i −0.476806 + 0.476806i −0.904109 0.427303i \(-0.859464\pi\)
0.427303 + 0.904109i \(0.359464\pi\)
\(828\) 0 0
\(829\) 49.1528i 1.70715i 0.520972 + 0.853574i \(0.325570\pi\)
−0.520972 + 0.853574i \(0.674430\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −21.8344 21.8344i −0.756516 0.756516i
\(834\) 0 0
\(835\) −44.5888 25.7856i −1.54306 0.892346i
\(836\) −48.5874 −1.68043
\(837\) 0 0
\(838\) 0 0
\(839\) 36.4883i 1.25971i −0.776711 0.629857i \(-0.783113\pi\)
0.776711 0.629857i \(-0.216887\pi\)
\(840\) 0 0
\(841\) 27.8129 0.959064
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 28.0837 7.50365i 0.966109 0.258133i
\(846\) −17.2592 −0.593382
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) −7.83624 13.6174i −0.268781 0.467072i
\(851\) 0 0
\(852\) 0 0
\(853\) 40.5256 + 40.5256i 1.38757 + 1.38757i 0.830397 + 0.557173i \(0.188114\pi\)
0.557173 + 0.830397i \(0.311886\pi\)
\(854\) 0 0
\(855\) −13.5956 50.8837i −0.464958 1.74019i
\(856\) 0 0
\(857\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) −17.1399 9.91195i −0.584465 0.337995i
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(864\) 0 0
\(865\) −3.51868 + 6.08456i −0.119639 + 0.206881i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −40.9334 40.9334i −1.38538 1.38538i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(878\) 20.0769 + 20.0769i 0.677564 + 0.677564i
\(879\) 0 0
\(880\) −2.90287 10.8645i −0.0978558 0.366242i
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) −10.5775 + 10.5775i −0.356164 + 0.356164i
\(883\) 1.64376 + 1.64376i 0.0553168 + 0.0553168i 0.734224 0.678907i \(-0.237546\pi\)
−0.678907 + 0.734224i \(0.737546\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 37.3146 1.25009
\(892\) −25.4806 + 25.4806i −0.853154 + 0.853154i
\(893\) −44.8384 44.8384i −1.50046 1.50046i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 11.0663i 0.369082i
\(900\) 19.4052 11.1669i 0.646839 0.372230i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −37.1598 + 37.1598i −1.23387 + 1.23387i −0.271404 + 0.962465i \(0.587488\pi\)
−0.962465 + 0.271404i \(0.912512\pi\)
\(908\) 31.7232 + 31.7232i 1.05277 + 1.05277i
\(909\) 0 0
\(910\) 0 0
\(911\) −5.08270 −0.168397 −0.0841986 0.996449i \(-0.526833\pi\)
−0.0841986 + 0.996449i \(0.526833\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0.477765i 0.0158031i
\(915\) 0 0
\(916\) 33.0904 1.09334
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −7.73276 + 7.73276i −0.254665 + 0.254665i
\(923\) 0 0
\(924\) 0 0
\(925\) 10.9622 40.6805i 0.360435 1.33757i
\(926\) 29.7663 0.978182
\(927\) −28.0115 + 28.0115i −0.920017 + 0.920017i
\(928\) −4.49919 4.49919i −0.147693 0.147693i
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) −54.9597 −1.80123
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 35.4023 + 20.4730i 1.15778 + 0.669540i
\(936\) 0 0
\(937\) −22.0490 + 22.0490i −0.720310 + 0.720310i −0.968668 0.248358i \(-0.920109\pi\)
0.248358 + 0.968668i \(0.420109\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 13.4942 23.3344i 0.440133 0.761084i
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 16.0195i 0.521391i
\(945\) 0 0
\(946\) −17.5205 −0.569640
\(947\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −27.0007 7.27589i −0.876017 0.236061i
\(951\) 0 0
\(952\) 0 0
\(953\) 18.0898 + 18.0898i 0.585987 + 0.585987i 0.936542 0.350555i \(-0.114007\pi\)
−0.350555 + 0.936542i \(0.614007\pi\)
\(954\) 0 0
\(955\) 12.1926 + 45.6330i 0.394544 + 1.47665i
\(956\) −17.7900 −0.575370
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 72.1576 2.32766
\(962\) 0 0
\(963\) 0 0
\(964\) 28.2160i 0.908777i
\(965\) −4.14952 + 7.17542i −0.133578 + 0.230985i
\(966\) 0 0
\(967\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(968\) −10.8891 10.8891i −0.349991 0.349991i
\(969\) 0 0
\(970\) −29.6936 + 7.93378i −0.953403 + 0.254738i
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 31.3452i 1.00436i
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −6.03070 22.5709i −0.192644 0.721002i
\(981\) 0 0
\(982\) 10.9305 10.9305i 0.348805 0.348805i
\(983\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 3.42365 0.109031
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 9.91803 17.1504i 0.315216 0.545076i
\(991\) 16.7653 0.532568 0.266284 0.963895i \(-0.414204\pi\)
0.266284 + 0.963895i \(0.414204\pi\)
\(992\) −41.9404 + 41.9404i −1.33161 + 1.33161i
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −43.5004 + 43.5004i −1.37767 + 1.37767i −0.529131 + 0.848540i \(0.677482\pi\)
−0.848540 + 0.529131i \(0.822518\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 755.2.f.d.603.6 yes 28
5.2 odd 4 inner 755.2.f.d.452.6 28
151.150 odd 2 CM 755.2.f.d.603.6 yes 28
755.452 even 4 inner 755.2.f.d.452.6 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
755.2.f.d.452.6 28 5.2 odd 4 inner
755.2.f.d.452.6 28 755.452 even 4 inner
755.2.f.d.603.6 yes 28 1.1 even 1 trivial
755.2.f.d.603.6 yes 28 151.150 odd 2 CM