Newspace parameters
Level: | \( N \) | \(=\) | \( 755 = 5 \cdot 151 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 755.f (of order \(4\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(6.02870535261\) |
Analytic rank: | \(0\) |
Dimension: | \(28\) |
Relative dimension: | \(14\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{U}(1)[D_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
452.1 | −1.93553 | − | 1.93553i | 0 | 5.49259i | 0.577204 | + | 2.16029i | 0 | 0 | 6.76003 | − | 6.76003i | − | 3.00000i | 3.06411 | − | 5.29851i | |||||||||
452.2 | −1.82731 | − | 1.82731i | 0 | 4.67811i | 1.45736 | − | 1.69591i | 0 | 0 | 4.89374 | − | 4.89374i | − | 3.00000i | −5.76199 | + | 0.435914i | |||||||||
452.3 | −1.77492 | − | 1.77492i | 0 | 4.30072i | −2.04886 | + | 0.895640i | 0 | 0 | 4.08360 | − | 4.08360i | − | 3.00000i | 5.22627 | + | 2.04688i | |||||||||
452.4 | −1.60059 | − | 1.60059i | 0 | 3.12376i | 0.417270 | − | 2.19679i | 0 | 0 | 1.79868 | − | 1.79868i | − | 3.00000i | −4.18403 | + | 2.84828i | |||||||||
452.5 | −0.812984 | − | 0.812984i | 0 | − | 0.678113i | −1.45736 | − | 1.69591i | 0 | 0 | −2.17726 | + | 2.17726i | − | 3.00000i | −0.193942 | + | 2.56356i | ||||||||
452.6 | −0.503691 | − | 0.503691i | 0 | − | 1.49259i | −0.577204 | + | 2.16029i | 0 | 0 | −1.75919 | + | 1.75919i | − | 3.00000i | 1.37885 | − | 0.797385i | ||||||||
452.7 | −0.385987 | − | 0.385987i | 0 | − | 1.70203i | 2.23456 | + | 0.0820234i | 0 | 0 | −1.42893 | + | 1.42893i | − | 3.00000i | −0.830852 | − | 0.894172i | ||||||||
452.8 | −0.0603659 | − | 0.0603659i | 0 | − | 1.99271i | −1.32910 | + | 1.79819i | 0 | 0 | −0.241024 | + | 0.241024i | − | 3.00000i | 0.188782 | − | 0.0283173i | ||||||||
452.9 | 0.921760 | + | 0.921760i | 0 | − | 0.300717i | 2.04886 | + | 0.895640i | 0 | 0 | 2.12071 | − | 2.12071i | − | 3.00000i | 1.06299 | + | 2.71412i | ||||||||
452.10 | 1.19922 | + | 1.19922i | 0 | 0.876236i | −0.417270 | − | 2.19679i | 0 | 0 | 1.34764 | − | 1.34764i | − | 3.00000i | 2.13403 | − | 3.13482i | |||||||||
452.11 | 1.29361 | + | 1.29361i | 0 | 1.34684i | −1.97768 | − | 1.04344i | 0 | 0 | 0.844932 | − | 0.844932i | − | 3.00000i | −1.20854 | − | 3.90815i | |||||||||
452.12 | 1.52531 | + | 1.52531i | 0 | 2.65316i | 1.97768 | − | 1.04344i | 0 | 0 | −0.996273 | + | 0.996273i | − | 3.00000i | 4.60816 | + | 1.42501i | |||||||||
452.13 | 1.96240 | + | 1.96240i | 0 | 5.70203i | −2.23456 | + | 0.0820234i | 0 | 0 | −7.26486 | + | 7.26486i | − | 3.00000i | −4.54607 | − | 4.22414i | |||||||||
452.14 | 1.99909 | + | 1.99909i | 0 | 5.99271i | 1.32910 | + | 1.79819i | 0 | 0 | −7.98179 | + | 7.98179i | − | 3.00000i | −0.937760 | + | 6.25173i | |||||||||
603.1 | −1.93553 | + | 1.93553i | 0 | − | 5.49259i | 0.577204 | − | 2.16029i | 0 | 0 | 6.76003 | + | 6.76003i | 3.00000i | 3.06411 | + | 5.29851i | |||||||||
603.2 | −1.82731 | + | 1.82731i | 0 | − | 4.67811i | 1.45736 | + | 1.69591i | 0 | 0 | 4.89374 | + | 4.89374i | 3.00000i | −5.76199 | − | 0.435914i | |||||||||
603.3 | −1.77492 | + | 1.77492i | 0 | − | 4.30072i | −2.04886 | − | 0.895640i | 0 | 0 | 4.08360 | + | 4.08360i | 3.00000i | 5.22627 | − | 2.04688i | |||||||||
603.4 | −1.60059 | + | 1.60059i | 0 | − | 3.12376i | 0.417270 | + | 2.19679i | 0 | 0 | 1.79868 | + | 1.79868i | 3.00000i | −4.18403 | − | 2.84828i | |||||||||
603.5 | −0.812984 | + | 0.812984i | 0 | 0.678113i | −1.45736 | + | 1.69591i | 0 | 0 | −2.17726 | − | 2.17726i | 3.00000i | −0.193942 | − | 2.56356i | ||||||||||
603.6 | −0.503691 | + | 0.503691i | 0 | 1.49259i | −0.577204 | − | 2.16029i | 0 | 0 | −1.75919 | − | 1.75919i | 3.00000i | 1.37885 | + | 0.797385i | ||||||||||
See all 28 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
151.b | odd | 2 | 1 | CM by \(\Q(\sqrt{-151}) \) |
5.c | odd | 4 | 1 | inner |
755.f | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 755.2.f.d | ✓ | 28 |
5.c | odd | 4 | 1 | inner | 755.2.f.d | ✓ | 28 |
151.b | odd | 2 | 1 | CM | 755.2.f.d | ✓ | 28 |
755.f | even | 4 | 1 | inner | 755.2.f.d | ✓ | 28 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
755.2.f.d | ✓ | 28 | 1.a | even | 1 | 1 | trivial |
755.2.f.d | ✓ | 28 | 5.c | odd | 4 | 1 | inner |
755.2.f.d | ✓ | 28 | 151.b | odd | 2 | 1 | CM |
755.2.f.d | ✓ | 28 | 755.f | even | 4 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(755, [\chi])\):
\( T_{2}^{28} + 168 T_{2}^{24} - 38 T_{2}^{21} + 10192 T_{2}^{20} - 532 T_{2}^{19} - 1064 T_{2}^{17} + \cdots + 11025 \)
|
\( T_{3} \)
|