L(s) = 1 | + (−0.812 − 0.812i)2-s − 0.678i·4-s + (−1.45 − 1.69i)5-s + (−2.17 + 2.17i)8-s − 3i·9-s + (−0.193 + 2.56i)10-s + 5.97·11-s + 2.18·16-s + (−4.13 − 4.13i)17-s + (−2.43 + 2.43i)18-s − 7.85i·19-s + (−1.15 + 0.988i)20-s + (−4.85 − 4.85i)22-s + (−0.752 + 4.94i)25-s + 9.05i·29-s + ⋯ |
L(s) = 1 | + (−0.574 − 0.574i)2-s − 0.339i·4-s + (−0.651 − 0.758i)5-s + (−0.769 + 0.769i)8-s − i·9-s + (−0.0613 + 0.810i)10-s + 1.80·11-s + 0.545·16-s + (−1.00 − 1.00i)17-s + (−0.574 + 0.574i)18-s − 1.80i·19-s + (−0.257 + 0.220i)20-s + (−1.03 − 1.03i)22-s + (−0.150 + 0.988i)25-s + 1.68i·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 755 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.953 - 0.302i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 755 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.953 - 0.302i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.104753 + 0.676316i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.104753 + 0.676316i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (1.45 + 1.69i)T \) |
| 151 | \( 1 - 12.2T \) |
good | 2 | \( 1 + (0.812 + 0.812i)T + 2iT^{2} \) |
| 3 | \( 1 + 3iT^{2} \) |
| 7 | \( 1 - 7iT^{2} \) |
| 11 | \( 1 - 5.97T + 11T^{2} \) |
| 13 | \( 1 + 13iT^{2} \) |
| 17 | \( 1 + (4.13 + 4.13i)T + 17iT^{2} \) |
| 19 | \( 1 + 7.85iT - 19T^{2} \) |
| 23 | \( 1 + 23iT^{2} \) |
| 29 | \( 1 - 9.05iT - 29T^{2} \) |
| 31 | \( 1 + 7.16T + 31T^{2} \) |
| 37 | \( 1 + (7.18 + 7.18i)T + 37iT^{2} \) |
| 41 | \( 1 - 41T^{2} \) |
| 43 | \( 1 + (5.63 - 5.63i)T - 43iT^{2} \) |
| 47 | \( 1 + (-9.34 - 9.34i)T + 47iT^{2} \) |
| 53 | \( 1 + 53iT^{2} \) |
| 59 | \( 1 + 15.3iT - 59T^{2} \) |
| 61 | \( 1 - 61T^{2} \) |
| 67 | \( 1 - 67iT^{2} \) |
| 71 | \( 1 - 71T^{2} \) |
| 73 | \( 1 + 73iT^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 + 83iT^{2} \) |
| 89 | \( 1 + 89T^{2} \) |
| 97 | \( 1 + (8.92 + 8.92i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.456017261193764749280088491939, −9.069284123380376034148127870623, −8.836939559692111859928685491440, −7.16726949370704804095328199081, −6.54234134166452177932139497946, −5.24905627188714366085155586128, −4.29257104358163151961688679885, −3.16203782927367905311226056123, −1.52593456090209033830592456730, −0.43949426597181407238469611549,
1.98151785942284182315947121237, 3.67511355143679677279243546292, 4.06604054018839442659888761715, 5.88578341142018485415089853034, 6.69695479013271167755721547970, 7.36730391435726491946696266064, 8.289504544909974767954602590203, 8.743544229079496181258249888556, 9.960013947845864516866287062209, 10.64624939656253600941359234309