Properties

Label 755.2.f.d.603.3
Level $755$
Weight $2$
Character 755.603
Analytic conductor $6.029$
Analytic rank $0$
Dimension $28$
CM discriminant -151
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [755,2,Mod(452,755)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(755, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("755.452"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 755 = 5 \cdot 151 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 755.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.02870535261\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

Embedding invariants

Embedding label 603.3
Character \(\chi\) \(=\) 755.603
Dual form 755.2.f.d.452.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.77492 + 1.77492i) q^{2} -4.30072i q^{4} +(-2.04886 - 0.895640i) q^{5} +(4.08360 + 4.08360i) q^{8} +3.00000i q^{9} +(5.22627 - 2.04688i) q^{10} +1.48889 q^{11} -5.89474 q^{16} +(-4.94783 + 4.94783i) q^{17} +(-5.32477 - 5.32477i) q^{18} -1.94680i q^{19} +(-3.85189 + 8.81157i) q^{20} +(-2.64267 + 2.64267i) q^{22} +(3.39566 + 3.67008i) q^{25} -10.2040i q^{29} -2.76324 q^{31} +(2.29551 - 2.29551i) q^{32} -17.5641i q^{34} +12.9022 q^{36} +(8.06038 - 8.06038i) q^{37} +(3.45542 + 3.45542i) q^{38} +(-4.70929 - 12.0242i) q^{40} +(-9.08168 - 9.08168i) q^{43} -6.40331i q^{44} +(2.68692 - 6.14658i) q^{45} +(-8.90926 + 8.90926i) q^{47} -7.00000i q^{49} +(-12.5412 - 0.487084i) q^{50} +(-3.05053 - 1.33351i) q^{55} +(18.1113 + 18.1113i) q^{58} -14.3698i q^{59} +(4.90454 - 4.90454i) q^{62} -3.64075i q^{64} +(21.2792 + 21.2792i) q^{68} +(-12.2508 + 12.2508i) q^{72} +28.6131i q^{74} -8.37262 q^{76} +(12.0775 + 5.27956i) q^{80} -9.00000 q^{81} +(14.5689 - 5.70594i) q^{85} +32.2386 q^{86} +(6.08004 + 6.08004i) q^{88} +(6.14064 + 15.6788i) q^{90} -31.6265i q^{94} +(-1.74363 + 3.98871i) q^{95} +(0.308339 - 0.308339i) q^{97} +(12.4245 + 12.4245i) q^{98} +4.46668i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 112 q^{16} + 168 q^{36} - 14 q^{38} + 126 q^{58} - 154 q^{68} - 252 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/755\mathbb{Z}\right)^\times\).

\(n\) \(6\) \(152\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.77492 + 1.77492i −1.25506 + 1.25506i −0.301639 + 0.953422i \(0.597534\pi\)
−0.953422 + 0.301639i \(0.902466\pi\)
\(3\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(4\) 4.30072i 2.15036i
\(5\) −2.04886 0.895640i −0.916278 0.400542i
\(6\) 0 0
\(7\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(8\) 4.08360 + 4.08360i 1.44377 + 1.44377i
\(9\) 3.00000i 1.00000i
\(10\) 5.22627 2.04688i 1.65269 0.647280i
\(11\) 1.48889 0.448918 0.224459 0.974484i \(-0.427939\pi\)
0.224459 + 0.974484i \(0.427939\pi\)
\(12\) 0 0
\(13\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −5.89474 −1.47368
\(17\) −4.94783 + 4.94783i −1.20003 + 1.20003i −0.225868 + 0.974158i \(0.572522\pi\)
−0.974158 + 0.225868i \(0.927478\pi\)
\(18\) −5.32477 5.32477i −1.25506 1.25506i
\(19\) 1.94680i 0.446626i −0.974747 0.223313i \(-0.928313\pi\)
0.974747 0.223313i \(-0.0716871\pi\)
\(20\) −3.85189 + 8.81157i −0.861310 + 1.97033i
\(21\) 0 0
\(22\) −2.64267 + 2.64267i −0.563420 + 0.563420i
\(23\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(24\) 0 0
\(25\) 3.39566 + 3.67008i 0.679132 + 0.734017i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 10.2040i 1.89483i −0.320006 0.947415i \(-0.603685\pi\)
0.320006 0.947415i \(-0.396315\pi\)
\(30\) 0 0
\(31\) −2.76324 −0.496292 −0.248146 0.968723i \(-0.579821\pi\)
−0.248146 + 0.968723i \(0.579821\pi\)
\(32\) 2.29551 2.29551i 0.405793 0.405793i
\(33\) 0 0
\(34\) 17.5641i 3.01221i
\(35\) 0 0
\(36\) 12.9022 2.15036
\(37\) 8.06038 8.06038i 1.32512 1.32512i 0.415545 0.909573i \(-0.363591\pi\)
0.909573 0.415545i \(-0.136409\pi\)
\(38\) 3.45542 + 3.45542i 0.560543 + 0.560543i
\(39\) 0 0
\(40\) −4.70929 12.0242i −0.744604 1.90119i
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) −9.08168 9.08168i −1.38494 1.38494i −0.835591 0.549352i \(-0.814875\pi\)
−0.549352 0.835591i \(-0.685125\pi\)
\(44\) 6.40331i 0.965335i
\(45\) 2.68692 6.14658i 0.400542 0.916278i
\(46\) 0 0
\(47\) −8.90926 + 8.90926i −1.29955 + 1.29955i −0.370861 + 0.928689i \(0.620937\pi\)
−0.928689 + 0.370861i \(0.879063\pi\)
\(48\) 0 0
\(49\) 7.00000i 1.00000i
\(50\) −12.5412 0.487084i −1.77359 0.0688840i
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(54\) 0 0
\(55\) −3.05053 1.33351i −0.411334 0.179811i
\(56\) 0 0
\(57\) 0 0
\(58\) 18.1113 + 18.1113i 2.37813 + 2.37813i
\(59\) 14.3698i 1.87079i −0.353607 0.935394i \(-0.615045\pi\)
0.353607 0.935394i \(-0.384955\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 4.90454 4.90454i 0.622877 0.622877i
\(63\) 0 0
\(64\) 3.64075i 0.455094i
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(68\) 21.2792 + 21.2792i 2.58049 + 2.58049i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) −12.2508 + 12.2508i −1.44377 + 1.44377i
\(73\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(74\) 28.6131i 3.32621i
\(75\) 0 0
\(76\) −8.37262 −0.960405
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 12.0775 + 5.27956i 1.35030 + 0.590273i
\(81\) −9.00000 −1.00000
\(82\) 0 0
\(83\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(84\) 0 0
\(85\) 14.5689 5.70594i 1.58022 0.618896i
\(86\) 32.2386 3.47638
\(87\) 0 0
\(88\) 6.08004 + 6.08004i 0.648135 + 0.648135i
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 6.14064 + 15.6788i 0.647280 + 1.65269i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 31.6265i 3.26203i
\(95\) −1.74363 + 3.98871i −0.178892 + 0.409233i
\(96\) 0 0
\(97\) 0.308339 0.308339i 0.0313070 0.0313070i −0.691280 0.722587i \(-0.742953\pi\)
0.722587 + 0.691280i \(0.242953\pi\)
\(98\) 12.4245 + 12.4245i 1.25506 + 1.25506i
\(99\) 4.46668i 0.448918i
\(100\) 15.7840 14.6038i 1.57840 1.46038i
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) −3.68300 3.68300i −0.362897 0.362897i 0.501981 0.864878i \(-0.332605\pi\)
−0.864878 + 0.501981i \(0.832605\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 7.78135 3.04758i 0.741923 0.290576i
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −43.8844 −4.07457
\(117\) 0 0
\(118\) 25.5053 + 25.5053i 2.34795 + 2.34795i
\(119\) 0 0
\(120\) 0 0
\(121\) −8.78320 −0.798473
\(122\) 0 0
\(123\) 0 0
\(124\) 11.8839i 1.06721i
\(125\) −3.67016 10.5608i −0.328269 0.944584i
\(126\) 0 0
\(127\) 15.7900 15.7900i 1.40114 1.40114i 0.604629 0.796507i \(-0.293321\pi\)
0.796507 0.604629i \(-0.206679\pi\)
\(128\) 11.0531 + 11.0531i 0.976964 + 0.976964i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) −40.4100 −3.46513
\(137\) −12.3973 + 12.3973i −1.05917 + 1.05917i −0.0610332 + 0.998136i \(0.519440\pi\)
−0.998136 + 0.0610332i \(0.980560\pi\)
\(138\) 0 0
\(139\) 1.67233i 0.141845i −0.997482 0.0709224i \(-0.977406\pi\)
0.997482 0.0709224i \(-0.0225943\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 17.6842i 1.47368i
\(145\) −9.13909 + 20.9065i −0.758960 + 1.73619i
\(146\) 0 0
\(147\) 0 0
\(148\) −34.6654 34.6654i −2.84948 2.84948i
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) −12.2882 −1.00000
\(152\) 7.94994 7.94994i 0.644825 0.644825i
\(153\) −14.8435 14.8435i −1.20003 1.20003i
\(154\) 0 0
\(155\) 5.66148 + 2.47486i 0.454741 + 0.198786i
\(156\) 0 0
\(157\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −6.75913 + 2.64723i −0.534356 + 0.209282i
\(161\) 0 0
\(162\) 15.9743 15.9743i 1.25506 1.25506i
\(163\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 16.2882 16.2882i 1.26042 1.26042i 0.309529 0.950890i \(-0.399829\pi\)
0.950890 0.309529i \(-0.100171\pi\)
\(168\) 0 0
\(169\) 13.0000i 1.00000i
\(170\) −15.7311 + 35.9863i −1.20652 + 2.76003i
\(171\) 5.84039 0.446626
\(172\) −39.0577 + 39.0577i −2.97812 + 2.97812i
\(173\) −17.5102 17.5102i −1.33127 1.33127i −0.904231 0.427043i \(-0.859555\pi\)
−0.427043 0.904231i \(-0.640445\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −8.77663 −0.661563
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) −26.4347 11.5557i −1.97033 0.861310i
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −23.7338 + 9.29539i −1.74494 + 0.683411i
\(186\) 0 0
\(187\) −7.36679 + 7.36679i −0.538713 + 0.538713i
\(188\) 38.3162 + 38.3162i 2.79450 + 2.79450i
\(189\) 0 0
\(190\) −3.98486 10.1745i −0.289092 0.738134i
\(191\) 22.0803 1.59767 0.798836 0.601548i \(-0.205449\pi\)
0.798836 + 0.601548i \(0.205449\pi\)
\(192\) 0 0
\(193\) −16.8575 16.8575i −1.21343 1.21343i −0.969891 0.243539i \(-0.921692\pi\)
−0.243539 0.969891i \(-0.578308\pi\)
\(194\) 1.09456i 0.0785845i
\(195\) 0 0
\(196\) −30.1050 −2.15036
\(197\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(198\) −7.92802 7.92802i −0.563420 0.563420i
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) −1.12064 + 28.8537i −0.0792413 + 2.04026i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 13.0741 0.910916
\(207\) 0 0
\(208\) 0 0
\(209\) 2.89857i 0.200498i
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 10.4732 + 26.7410i 0.714265 + 1.82372i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) −5.73506 + 13.1195i −0.386658 + 0.884515i
\(221\) 0 0
\(222\) 0 0
\(223\) −9.98654 9.98654i −0.668748 0.668748i 0.288678 0.957426i \(-0.406784\pi\)
−0.957426 + 0.288678i \(0.906784\pi\)
\(224\) 0 0
\(225\) −11.0102 + 10.1870i −0.734017 + 0.679132i
\(226\) 0 0
\(227\) −19.8038 + 19.8038i −1.31442 + 1.31442i −0.396301 + 0.918121i \(0.629706\pi\)
−0.918121 + 0.396301i \(0.870294\pi\)
\(228\) 0 0
\(229\) 25.0201i 1.65337i 0.562664 + 0.826686i \(0.309777\pi\)
−0.562664 + 0.826686i \(0.690223\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 41.6690 41.6690i 2.73570 2.73570i
\(233\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(234\) 0 0
\(235\) 26.2333 10.2743i 1.71127 0.670224i
\(236\) −61.8004 −4.02287
\(237\) 0 0
\(238\) 0 0
\(239\) 23.1171i 1.49532i −0.664081 0.747660i \(-0.731177\pi\)
0.664081 0.747660i \(-0.268823\pi\)
\(240\) 0 0
\(241\) 27.7185 1.78551 0.892754 0.450545i \(-0.148770\pi\)
0.892754 + 0.450545i \(0.148770\pi\)
\(242\) 15.5895 15.5895i 1.00213 1.00213i
\(243\) 0 0
\(244\) 0 0
\(245\) −6.26948 + 14.3420i −0.400542 + 0.916278i
\(246\) 0 0
\(247\) 0 0
\(248\) −11.2839 11.2839i −0.716532 0.716532i
\(249\) 0 0
\(250\) 25.2588 + 12.2303i 1.59751 + 0.773514i
\(251\) −24.5764 −1.55125 −0.775625 0.631194i \(-0.782565\pi\)
−0.775625 + 0.631194i \(0.782565\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 56.0521i 3.51702i
\(255\) 0 0
\(256\) −31.9553 −1.99720
\(257\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 30.6119 1.89483
\(262\) 0 0
\(263\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 18.5157i 1.12892i 0.825461 + 0.564460i \(0.190915\pi\)
−0.825461 + 0.564460i \(0.809085\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 29.1662 29.1662i 1.76846 1.76846i
\(273\) 0 0
\(274\) 44.0084i 2.65864i
\(275\) 5.05577 + 5.46436i 0.304874 + 0.329513i
\(276\) 0 0
\(277\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(278\) 2.96825 + 2.96825i 0.178024 + 0.178024i
\(279\) 8.28971i 0.496292i
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 6.88653 + 6.88653i 0.405793 + 0.405793i
\(289\) 31.9621i 1.88013i
\(290\) −20.8863 53.3287i −1.22649 3.13157i
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(294\) 0 0
\(295\) −12.8702 + 29.4417i −0.749330 + 1.71416i
\(296\) 65.8307 3.82633
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 21.8106 21.8106i 1.25506 1.25506i
\(303\) 0 0
\(304\) 11.4758i 0.658185i
\(305\) 0 0
\(306\) 52.6922 3.01221
\(307\) −0.0908747 + 0.0908747i −0.00518650 + 0.00518650i −0.709695 0.704509i \(-0.751167\pi\)
0.704509 + 0.709695i \(0.251167\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −14.4414 + 5.65601i −0.820217 + 0.321240i
\(311\) 25.1966 1.42877 0.714384 0.699754i \(-0.246707\pi\)
0.714384 + 0.699754i \(0.246707\pi\)
\(312\) 0 0
\(313\) 12.5875 + 12.5875i 0.711488 + 0.711488i 0.966846 0.255359i \(-0.0821936\pi\)
−0.255359 + 0.966846i \(0.582194\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(318\) 0 0
\(319\) 15.1926i 0.850624i
\(320\) −3.26080 + 7.45939i −0.182284 + 0.416992i
\(321\) 0 0
\(322\) 0 0
\(323\) 9.63242 + 9.63242i 0.535962 + 0.535962i
\(324\) 38.7065i 2.15036i
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −13.9142 −0.764795 −0.382397 0.923998i \(-0.624901\pi\)
−0.382397 + 0.923998i \(0.624901\pi\)
\(332\) 0 0
\(333\) 24.1811 + 24.1811i 1.32512 + 1.32512i
\(334\) 57.8207i 3.16381i
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(338\) −23.0740 23.0740i −1.25506 1.25506i
\(339\) 0 0
\(340\) −24.5397 62.6567i −1.33085 3.39804i
\(341\) −4.11416 −0.222794
\(342\) −10.3662 + 10.3662i −0.560543 + 0.560543i
\(343\) 0 0
\(344\) 74.1719i 3.99908i
\(345\) 0 0
\(346\) 62.1585 3.34166
\(347\) 26.2882 26.2882i 1.41122 1.41122i 0.659665 0.751559i \(-0.270698\pi\)
0.751559 0.659665i \(-0.229302\pi\)
\(348\) 0 0
\(349\) 37.1878i 1.99062i 0.0967585 + 0.995308i \(0.469153\pi\)
−0.0967585 + 0.995308i \(0.530847\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 3.41777 3.41777i 0.182168 0.182168i
\(353\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 36.0725 14.1279i 1.90119 0.744604i
\(361\) 15.2100 0.800526
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 25.6271 58.6243i 1.33229 3.04773i
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(374\) 26.1510i 1.35224i
\(375\) 0 0
\(376\) −72.7637 −3.75250
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 17.1543 + 7.49885i 0.879998 + 0.384683i
\(381\) 0 0
\(382\) −39.1908 + 39.1908i −2.00518 + 2.00518i
\(383\) 2.45053 + 2.45053i 0.125216 + 0.125216i 0.766938 0.641722i \(-0.221780\pi\)
−0.641722 + 0.766938i \(0.721780\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 59.8416 3.04586
\(387\) 27.2450 27.2450i 1.38494 1.38494i
\(388\) −1.32608 1.32608i −0.0673214 0.0673214i
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 28.5852 28.5852i 1.44377 1.44377i
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 19.2099 0.965335
\(397\) −18.1269 + 18.1269i −0.909761 + 0.909761i −0.996253 0.0864916i \(-0.972434\pi\)
0.0864916 + 0.996253i \(0.472434\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −20.0165 21.6342i −1.00083 1.08171i
\(401\) −21.1265 −1.05501 −0.527503 0.849553i \(-0.676871\pi\)
−0.527503 + 0.849553i \(0.676871\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 18.4397 + 8.06076i 0.916278 + 0.400542i
\(406\) 0 0
\(407\) 12.0010 12.0010i 0.594869 0.594869i
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −15.8396 + 15.8396i −0.780359 + 0.780359i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 5.14474 + 5.14474i 0.251638 + 0.251638i
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) −26.7278 26.7278i −1.29955 1.29955i
\(424\) 0 0
\(425\) −34.9601 1.35781i −1.69581 0.0658634i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) −66.0524 28.8742i −3.18533 1.39244i
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 41.5228i 1.98178i 0.134686 + 0.990888i \(0.456997\pi\)
−0.134686 + 0.990888i \(0.543003\pi\)
\(440\) −7.01163 17.9027i −0.334266 0.853477i
\(441\) 21.0000 1.00000
\(442\) 0 0
\(443\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 35.4507 1.67864
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 1.46125 37.6235i 0.0688840 1.77359i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 70.3004i 3.29936i
\(455\) 0 0
\(456\) 0 0
\(457\) −23.9295 + 23.9295i −1.11937 + 1.11937i −0.127539 + 0.991834i \(0.540708\pi\)
−0.991834 + 0.127539i \(0.959292\pi\)
\(458\) −44.4087 44.4087i −2.07508 2.07508i
\(459\) 0 0
\(460\) 0 0
\(461\) −31.2322 −1.45463 −0.727314 0.686305i \(-0.759232\pi\)
−0.727314 + 0.686305i \(0.759232\pi\)
\(462\) 0 0
\(463\) 29.7779 + 29.7779i 1.38390 + 1.38390i 0.837578 + 0.546317i \(0.183971\pi\)
0.546317 + 0.837578i \(0.316029\pi\)
\(464\) 60.1497i 2.79238i
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −28.3260 + 64.7984i −1.30658 + 2.98893i
\(471\) 0 0
\(472\) 58.6805 58.6805i 2.70099 2.70099i
\(473\) −13.5216 13.5216i −0.621726 0.621726i
\(474\) 0 0
\(475\) 7.14490 6.61065i 0.327831 0.303318i
\(476\) 0 0
\(477\) 0 0
\(478\) 41.0311 + 41.0311i 1.87672 + 1.87672i
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −49.1983 + 49.1983i −2.24092 + 2.24092i
\(483\) 0 0
\(484\) 37.7741i 1.71700i
\(485\) −0.907903 + 0.355582i −0.0412257 + 0.0161462i
\(486\) 0 0
\(487\) −9.27743 + 9.27743i −0.420400 + 0.420400i −0.885342 0.464941i \(-0.846075\pi\)
0.464941 + 0.885342i \(0.346075\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) −14.3282 36.5839i −0.647280 1.65269i
\(491\) −43.7404 −1.97398 −0.986989 0.160786i \(-0.948597\pi\)
−0.986989 + 0.160786i \(0.948597\pi\)
\(492\) 0 0
\(493\) 50.4876 + 50.4876i 2.27385 + 2.27385i
\(494\) 0 0
\(495\) 4.00054 9.15160i 0.179811 0.411334i
\(496\) 16.2885 0.731377
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) −45.4189 + 15.7843i −2.03120 + 0.705896i
\(501\) 0 0
\(502\) 43.6213 43.6213i 1.94691 1.94691i
\(503\) −11.5200 11.5200i −0.513651 0.513651i 0.401992 0.915643i \(-0.368318\pi\)
−0.915643 + 0.401992i \(0.868318\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) −67.9083 67.9083i −3.01295 3.01295i
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 34.6121 34.6121i 1.52965 1.52965i
\(513\) 0 0
\(514\) 0 0
\(515\) 4.24732 + 10.8446i 0.187159 + 0.477870i
\(516\) 0 0
\(517\) −13.2649 + 13.2649i −0.583391 + 0.583391i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 13.5486 0.593576 0.296788 0.954943i \(-0.404085\pi\)
0.296788 + 0.954943i \(0.404085\pi\)
\(522\) −54.3339 + 54.3339i −2.37813 + 2.37813i
\(523\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 13.6720 13.6720i 0.595563 0.595563i
\(528\) 0 0
\(529\) 23.0000i 1.00000i
\(530\) 0 0
\(531\) 43.1094 1.87079
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) −32.8639 32.8639i −1.41686 1.41686i
\(539\) 10.4222i 0.448918i
\(540\) 0 0
\(541\) 31.5415 1.35608 0.678038 0.735026i \(-0.262830\pi\)
0.678038 + 0.735026i \(0.262830\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 22.7156i 0.973924i
\(545\) 0 0
\(546\) 0 0
\(547\) 9.52594 9.52594i 0.407300 0.407300i −0.473496 0.880796i \(-0.657008\pi\)
0.880796 + 0.473496i \(0.157008\pi\)
\(548\) 53.3171 + 53.3171i 2.27759 + 2.27759i
\(549\) 0 0
\(550\) −18.6724 0.725215i −0.796196 0.0309233i
\(551\) −19.8651 −0.846280
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) −7.19220 −0.305017
\(557\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(558\) 14.7136 + 14.7136i 0.622877 + 0.622877i
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 2.17773 + 2.17773i 0.0917802 + 0.0917802i 0.751506 0.659726i \(-0.229328\pi\)
−0.659726 + 0.751506i \(0.729328\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 46.1243i 1.93363i −0.255478 0.966815i \(-0.582233\pi\)
0.255478 0.966815i \(-0.417767\pi\)
\(570\) 0 0
\(571\) 38.2140 1.59920 0.799602 0.600530i \(-0.205044\pi\)
0.799602 + 0.600530i \(0.205044\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 10.9222 0.455094
\(577\) −27.0267 + 27.0267i −1.12514 + 1.12514i −0.134178 + 0.990957i \(0.542839\pi\)
−0.990957 + 0.134178i \(0.957161\pi\)
\(578\) 56.7304 + 56.7304i 2.35967 + 2.35967i
\(579\) 0 0
\(580\) 89.9130 + 39.3046i 3.73344 + 1.63204i
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(588\) 0 0
\(589\) 5.37945i 0.221657i
\(590\) −29.4132 75.1004i −1.21092 3.09184i
\(591\) 0 0
\(592\) −47.5138 + 47.5138i −1.95280 + 1.95280i
\(593\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −37.6960 −1.53765 −0.768826 0.639458i \(-0.779159\pi\)
−0.768826 + 0.639458i \(0.779159\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 52.8481i 2.15036i
\(605\) 17.9955 + 7.86658i 0.731623 + 0.319822i
\(606\) 0 0
\(607\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(608\) −4.46889 4.46889i −0.181237 0.181237i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) −63.8377 + 63.8377i −2.58049 + 2.58049i
\(613\) −27.5764 27.5764i −1.11380 1.11380i −0.992632 0.121169i \(-0.961336\pi\)
−0.121169 0.992632i \(-0.538664\pi\)
\(614\) 0.322592i 0.0130187i
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 10.6437 24.3484i 0.427461 0.977857i
\(621\) 0 0
\(622\) −44.7221 + 44.7221i −1.79319 + 1.79319i
\(623\) 0 0
\(624\) 0 0
\(625\) −1.93902 + 24.9247i −0.0775606 + 0.996988i
\(626\) −44.6837 −1.78592
\(627\) 0 0
\(628\) 0 0
\(629\) 79.7628i 3.18035i
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −46.4937 + 18.2094i −1.84505 + 0.722616i
\(636\) 0 0
\(637\) 0 0
\(638\) 26.9658 + 26.9658i 1.06759 + 1.06759i
\(639\) 0 0
\(640\) −12.7466 32.5458i −0.503855 1.28649i
\(641\) −1.87040 −0.0738763 −0.0369381 0.999318i \(-0.511760\pi\)
−0.0369381 + 0.999318i \(0.511760\pi\)
\(642\) 0 0
\(643\) −30.5765 30.5765i −1.20582 1.20582i −0.972368 0.233452i \(-0.924998\pi\)
−0.233452 0.972368i \(-0.575002\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −34.1937 −1.34533
\(647\) 35.9245 35.9245i 1.41234 1.41234i 0.669766 0.742572i \(-0.266394\pi\)
0.742572 0.669766i \(-0.233606\pi\)
\(648\) −36.7524 36.7524i −1.44377 1.44377i
\(649\) 21.3951i 0.839831i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −17.5764 17.5764i −0.687818 0.687818i 0.273931 0.961749i \(-0.411676\pi\)
−0.961749 + 0.273931i \(0.911676\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 49.2669i 1.91917i −0.281425 0.959583i \(-0.590807\pi\)
0.281425 0.959583i \(-0.409193\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 24.6967 24.6967i 0.959865 0.959865i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) −85.8394 −3.32621
\(667\) 0 0
\(668\) −70.0510 70.0510i −2.71035 2.71035i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −31.5471 31.5471i −1.21605 1.21605i −0.969003 0.247050i \(-0.920539\pi\)
−0.247050 0.969003i \(-0.579461\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 55.9093 2.15036
\(677\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 82.7944 + 36.1928i 3.17502 + 1.38793i
\(681\) 0 0
\(682\) 7.30233 7.30233i 0.279621 0.279621i
\(683\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(684\) 25.1179i 0.960405i
\(685\) 36.5037 14.2968i 1.39474 0.546251i
\(686\) 0 0
\(687\) 0 0
\(688\) 53.5341 + 53.5341i 2.04097 + 2.04097i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) −75.3063 + 75.3063i −2.86272 + 2.86272i
\(693\) 0 0
\(694\) 93.3192i 3.54235i
\(695\) −1.49780 + 3.42636i −0.0568148 + 0.129969i
\(696\) 0 0
\(697\) 0 0
\(698\) −66.0055 66.0055i −2.49835 2.49835i
\(699\) 0 0
\(700\) 0 0
\(701\) −9.43566 −0.356380 −0.178190 0.983996i \(-0.557024\pi\)
−0.178190 + 0.983996i \(0.557024\pi\)
\(702\) 0 0
\(703\) −15.6919 15.6919i −0.591831 0.591831i
\(704\) 5.42069i 0.204300i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0.109919i 0.00412809i −0.999998 0.00206405i \(-0.999343\pi\)
0.999998 0.00206405i \(-0.000657007\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) −15.8387 + 36.2325i −0.590273 + 1.35030i
\(721\) 0 0
\(722\) −26.9966 + 26.9966i −1.00471 + 1.00471i
\(723\) 0 0
\(724\) 0 0
\(725\) 37.4494 34.6492i 1.39084 1.28684i
\(726\) 0 0
\(727\) 36.2882 36.2882i 1.34586 1.34586i 0.455744 0.890111i \(-0.349373\pi\)
0.890111 0.455744i \(-0.150627\pi\)
\(728\) 0 0
\(729\) 27.0000i 1.00000i
\(730\) 0 0
\(731\) 89.8693 3.32394
\(732\) 0 0
\(733\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 39.9768 + 102.072i 1.46958 + 3.75225i
\(741\) 0 0
\(742\) 0 0
\(743\) −28.5585 28.5585i −1.04771 1.04771i −0.998803 0.0489065i \(-0.984426\pi\)
−0.0489065 0.998803i \(-0.515574\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 31.6825 + 31.6825i 1.15843 + 1.15843i
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 52.5177 52.5177i 1.91512 1.91512i
\(753\) 0 0
\(754\) 0 0
\(755\) 25.1768 + 11.0058i 0.916278 + 0.400542i
\(756\) 0 0
\(757\) 10.4525 10.4525i 0.379902 0.379902i −0.491164 0.871067i \(-0.663429\pi\)
0.871067 + 0.491164i \(0.163429\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) −23.4086 + 9.16803i −0.849119 + 0.332559i
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 94.9610i 3.43557i
\(765\) 17.1178 + 43.7067i 0.618896 + 1.58022i
\(766\) −8.69900 −0.314308
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −72.4994 + 72.4994i −2.60931 + 2.60931i
\(773\) −37.5764 37.5764i −1.35153 1.35153i −0.883952 0.467578i \(-0.845127\pi\)
−0.467578 0.883952i \(-0.654873\pi\)
\(774\) 96.7158i 3.47638i
\(775\) −9.38300 10.1413i −0.337047 0.364286i
\(776\) 2.51826 0.0904004
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 41.2631i 1.47368i
\(785\) 0 0
\(786\) 0 0
\(787\) 39.6736 39.6736i 1.41421 1.41421i 0.705382 0.708827i \(-0.250775\pi\)
0.708827 0.705382i \(-0.249225\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) −18.2401 + 18.2401i −0.648135 + 0.648135i
\(793\) 0 0
\(794\) 64.3476i 2.28361i
\(795\) 0 0
\(796\) 0 0
\(797\) 8.47182 8.47182i 0.300087 0.300087i −0.540961 0.841048i \(-0.681939\pi\)
0.841048 + 0.540961i \(0.181939\pi\)
\(798\) 0 0
\(799\) 88.1631i 3.11899i
\(800\) 16.2195 + 0.629945i 0.573445 + 0.0222719i
\(801\) 0 0
\(802\) 37.4979 37.4979i 1.32410 1.32410i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) −47.0364 + 18.4219i −1.65269 + 0.647280i
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 42.6019i 1.49320i
\(815\) 0 0
\(816\) 0 0
\(817\) −17.6802 + 17.6802i −0.618551 + 0.618551i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 37.6762 + 37.6762i 1.31331 + 1.31331i 0.918960 + 0.394351i \(0.129030\pi\)
0.394351 + 0.918960i \(0.370970\pi\)
\(824\) 30.0798i 1.04788i
\(825\) 0 0
\(826\) 0 0
\(827\) −13.7118 + 13.7118i −0.476806 + 0.476806i −0.904109 0.427303i \(-0.859464\pi\)
0.427303 + 0.904109i \(0.359464\pi\)
\(828\) 0 0
\(829\) 49.1528i 1.70715i 0.520972 + 0.853574i \(0.325570\pi\)
−0.520972 + 0.853574i \(0.674430\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 34.6348 + 34.6348i 1.20003 + 1.20003i
\(834\) 0 0
\(835\) −47.9606 + 18.7839i −1.65975 + 0.650043i
\(836\) −12.4659 −0.431143
\(837\) 0 0
\(838\) 0 0
\(839\) 51.9869i 1.79479i 0.441231 + 0.897394i \(0.354542\pi\)
−0.441231 + 0.897394i \(0.645458\pi\)
\(840\) 0 0
\(841\) −75.1211 −2.59038
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 11.6433 26.6352i 0.400542 0.916278i
\(846\) 94.8796 3.26203
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 64.4616 59.6416i 2.21101 2.04569i
\(851\) 0 0
\(852\) 0 0
\(853\) 19.0284 + 19.0284i 0.651520 + 0.651520i 0.953359 0.301839i \(-0.0976004\pi\)
−0.301839 + 0.953359i \(0.597600\pi\)
\(854\) 0 0
\(855\) −11.9661 5.23088i −0.409233 0.178892i
\(856\) 0 0
\(857\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 115.006 45.0422i 3.92166 1.53593i
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(864\) 0 0
\(865\) 20.1931 + 51.5587i 0.686586 + 1.75305i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0.925016 + 0.925016i 0.0313070 + 0.0313070i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(878\) −73.6999 73.6999i −2.48725 2.48725i
\(879\) 0 0
\(880\) 17.9821 + 7.86070i 0.606176 + 0.264984i
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) −37.2734 + 37.2734i −1.25506 + 1.25506i
\(883\) −19.7005 19.7005i −0.662973 0.662973i 0.293106 0.956080i \(-0.405311\pi\)
−0.956080 + 0.293106i \(0.905311\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −13.4000 −0.448918
\(892\) −42.9493 + 42.9493i −1.43805 + 1.43805i
\(893\) 17.3445 + 17.3445i 0.580412 + 0.580412i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 28.1960i 0.940389i
\(900\) 43.8113 + 47.3520i 1.46038 + 1.57840i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −12.0217 + 12.0217i −0.399173 + 0.399173i −0.877941 0.478768i \(-0.841083\pi\)
0.478768 + 0.877941i \(0.341083\pi\)
\(908\) 85.1704 + 85.1704i 2.82648 + 2.82648i
\(909\) 0 0
\(910\) 0 0
\(911\) 59.7741 1.98040 0.990202 0.139643i \(-0.0445955\pi\)
0.990202 + 0.139643i \(0.0445955\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 84.9460i 2.80976i
\(915\) 0 0
\(916\) 107.604 3.55534
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 55.4348 55.4348i 1.82565 1.82565i
\(923\) 0 0
\(924\) 0 0
\(925\) 56.9525 + 2.21197i 1.87259 + 0.0727291i
\(926\) −105.707 −3.47375
\(927\) 11.0490 11.0490i 0.362897 0.362897i
\(928\) −23.4233 23.4233i −0.768909 0.768909i
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) −13.6276 −0.446626
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 21.6915 8.49554i 0.709389 0.277834i
\(936\) 0 0
\(937\) 41.2261 41.2261i 1.34680 1.34680i 0.457680 0.889117i \(-0.348680\pi\)
0.889117 0.457680i \(-0.151320\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −44.1870 112.822i −1.44122 3.67985i
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 84.7062i 2.75695i
\(945\) 0 0
\(946\) 47.9998 1.56061
\(947\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −0.948252 + 24.4151i −0.0307654 + 0.792130i
\(951\) 0 0
\(952\) 0 0
\(953\) 34.7120 + 34.7120i 1.12443 + 1.12443i 0.991067 + 0.133366i \(0.0425786\pi\)
0.133366 + 0.991067i \(0.457421\pi\)
\(954\) 0 0
\(955\) −45.2394 19.7760i −1.46391 0.639936i
\(956\) −99.4201 −3.21548
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −23.3645 −0.753695
\(962\) 0 0
\(963\) 0 0
\(964\) 119.210i 3.83948i
\(965\) 19.4404 + 49.6369i 0.625809 + 1.59787i
\(966\) 0 0
\(967\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(968\) −35.8671 35.8671i −1.15281 1.15281i
\(969\) 0 0
\(970\) 0.980328 2.24259i 0.0314764 0.0720053i
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 32.9335i 1.05526i
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 61.6810 + 26.9633i 1.97033 + 0.861310i
\(981\) 0 0
\(982\) 77.6360 77.6360i 2.47746 2.47746i
\(983\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −179.223 −5.70763
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 9.14275 + 23.3441i 0.290576 + 0.741923i
\(991\) −62.8962 −1.99796 −0.998982 0.0451210i \(-0.985633\pi\)
−0.998982 + 0.0451210i \(0.985633\pi\)
\(992\) −6.34304 + 6.34304i −0.201392 + 0.201392i
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 34.8166 34.8166i 1.10265 1.10265i 0.108563 0.994090i \(-0.465375\pi\)
0.994090 0.108563i \(-0.0346249\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 755.2.f.d.603.3 yes 28
5.2 odd 4 inner 755.2.f.d.452.3 28
151.150 odd 2 CM 755.2.f.d.603.3 yes 28
755.452 even 4 inner 755.2.f.d.452.3 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
755.2.f.d.452.3 28 5.2 odd 4 inner
755.2.f.d.452.3 28 755.452 even 4 inner
755.2.f.d.603.3 yes 28 1.1 even 1 trivial
755.2.f.d.603.3 yes 28 151.150 odd 2 CM