Properties

Label 755.2.f.d.603.10
Level $755$
Weight $2$
Character 755.603
Analytic conductor $6.029$
Analytic rank $0$
Dimension $28$
CM discriminant -151
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [755,2,Mod(452,755)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(755, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("755.452"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 755 = 5 \cdot 151 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 755.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.02870535261\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

Embedding invariants

Embedding label 603.10
Character \(\chi\) \(=\) 755.603
Dual form 755.2.f.d.452.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.19922 - 1.19922i) q^{2} -0.876236i q^{4} +(-0.417270 + 2.19679i) q^{5} +(1.34764 + 1.34764i) q^{8} +3.00000i q^{9} +(2.13403 + 3.13482i) q^{10} -4.12544 q^{11} +4.98468 q^{16} +(-5.49709 + 5.49709i) q^{17} +(3.59765 + 3.59765i) q^{18} -1.93299i q^{19} +(1.92491 + 0.365627i) q^{20} +(-4.94730 + 4.94730i) q^{22} +(-4.65177 - 1.83331i) q^{25} +7.69805i q^{29} +11.1317 q^{31} +(3.28244 - 3.28244i) q^{32} +13.1844i q^{34} +2.62871 q^{36} +(7.37501 - 7.37501i) q^{37} +(-2.31807 - 2.31807i) q^{38} +(-3.52280 + 2.39814i) q^{40} +(0.190925 + 0.190925i) q^{43} +3.61486i q^{44} +(-6.59037 - 1.25181i) q^{45} +(9.68626 - 9.68626i) q^{47} -7.00000i q^{49} +(-7.77701 + 3.37994i) q^{50} +(1.72142 - 9.06273i) q^{55} +(9.23162 + 9.23162i) q^{58} +8.49359i q^{59} +(13.3493 - 13.3493i) q^{62} +2.09667i q^{64} +(4.81675 + 4.81675i) q^{68} +(-4.04291 + 4.04291i) q^{72} -17.6884i q^{74} -1.69375 q^{76} +(-2.07996 + 10.9503i) q^{80} -9.00000 q^{81} +(-9.78218 - 14.3697i) q^{85} +0.457920 q^{86} +(-5.55959 - 5.55959i) q^{88} +(-9.40446 + 6.40208i) q^{90} -23.2318i q^{94} +(4.24637 + 0.806578i) q^{95} +(-6.31962 + 6.31962i) q^{97} +(-8.39451 - 8.39451i) q^{98} -12.3763i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 112 q^{16} + 168 q^{36} - 14 q^{38} + 126 q^{58} - 154 q^{68} - 252 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/755\mathbb{Z}\right)^\times\).

\(n\) \(6\) \(152\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.19922 1.19922i 0.847973 0.847973i −0.141907 0.989880i \(-0.545323\pi\)
0.989880 + 0.141907i \(0.0453233\pi\)
\(3\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(4\) 0.876236i 0.438118i
\(5\) −0.417270 + 2.19679i −0.186609 + 0.982434i
\(6\) 0 0
\(7\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(8\) 1.34764 + 1.34764i 0.476461 + 0.476461i
\(9\) 3.00000i 1.00000i
\(10\) 2.13403 + 3.13482i 0.674839 + 0.991318i
\(11\) −4.12544 −1.24387 −0.621934 0.783070i \(-0.713653\pi\)
−0.621934 + 0.783070i \(0.713653\pi\)
\(12\) 0 0
\(13\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 4.98468 1.24617
\(17\) −5.49709 + 5.49709i −1.33324 + 1.33324i −0.430787 + 0.902454i \(0.641764\pi\)
−0.902454 + 0.430787i \(0.858236\pi\)
\(18\) 3.59765 + 3.59765i 0.847973 + 0.847973i
\(19\) 1.93299i 0.443458i −0.975108 0.221729i \(-0.928830\pi\)
0.975108 0.221729i \(-0.0711700\pi\)
\(20\) 1.92491 + 0.365627i 0.430422 + 0.0817567i
\(21\) 0 0
\(22\) −4.94730 + 4.94730i −1.05477 + 1.05477i
\(23\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(24\) 0 0
\(25\) −4.65177 1.83331i −0.930354 0.366662i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 7.69805i 1.42949i 0.699384 + 0.714746i \(0.253458\pi\)
−0.699384 + 0.714746i \(0.746542\pi\)
\(30\) 0 0
\(31\) 11.1317 1.99930 0.999652 0.0263632i \(-0.00839265\pi\)
0.999652 + 0.0263632i \(0.00839265\pi\)
\(32\) 3.28244 3.28244i 0.580258 0.580258i
\(33\) 0 0
\(34\) 13.1844i 2.26110i
\(35\) 0 0
\(36\) 2.62871 0.438118
\(37\) 7.37501 7.37501i 1.21244 1.21244i 0.242223 0.970221i \(-0.422123\pi\)
0.970221 0.242223i \(-0.0778765\pi\)
\(38\) −2.31807 2.31807i −0.376040 0.376040i
\(39\) 0 0
\(40\) −3.52280 + 2.39814i −0.557004 + 0.379180i
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 0.190925 + 0.190925i 0.0291158 + 0.0291158i 0.721515 0.692399i \(-0.243446\pi\)
−0.692399 + 0.721515i \(0.743446\pi\)
\(44\) 3.61486i 0.544961i
\(45\) −6.59037 1.25181i −0.982434 0.186609i
\(46\) 0 0
\(47\) 9.68626 9.68626i 1.41289 1.41289i 0.675809 0.737077i \(-0.263794\pi\)
0.737077 0.675809i \(-0.236206\pi\)
\(48\) 0 0
\(49\) 7.00000i 1.00000i
\(50\) −7.77701 + 3.37994i −1.09984 + 0.477996i
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(54\) 0 0
\(55\) 1.72142 9.06273i 0.232117 1.22202i
\(56\) 0 0
\(57\) 0 0
\(58\) 9.23162 + 9.23162i 1.21217 + 1.21217i
\(59\) 8.49359i 1.10577i 0.833257 + 0.552886i \(0.186473\pi\)
−0.833257 + 0.552886i \(0.813527\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 13.3493 13.3493i 1.69536 1.69536i
\(63\) 0 0
\(64\) 2.09667i 0.262083i
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(68\) 4.81675 + 4.81675i 0.584116 + 0.584116i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) −4.04291 + 4.04291i −0.476461 + 0.476461i
\(73\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(74\) 17.6884i 2.05624i
\(75\) 0 0
\(76\) −1.69375 −0.194287
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) −2.07996 + 10.9503i −0.232546 + 1.22428i
\(81\) −9.00000 −1.00000
\(82\) 0 0
\(83\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(84\) 0 0
\(85\) −9.78218 14.3697i −1.06103 1.55862i
\(86\) 0.457920 0.0493788
\(87\) 0 0
\(88\) −5.55959 5.55959i −0.592655 0.592655i
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) −9.40446 + 6.40208i −0.991318 + 0.674839i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 23.2318i 2.39618i
\(95\) 4.24637 + 0.806578i 0.435668 + 0.0827532i
\(96\) 0 0
\(97\) −6.31962 + 6.31962i −0.641661 + 0.641661i −0.950964 0.309303i \(-0.899904\pi\)
0.309303 + 0.950964i \(0.399904\pi\)
\(98\) −8.39451 8.39451i −0.847973 0.847973i
\(99\) 12.3763i 1.24387i
\(100\) −1.60641 + 4.07605i −0.160641 + 0.407605i
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 8.54934 + 8.54934i 0.842391 + 0.842391i 0.989169 0.146778i \(-0.0468903\pi\)
−0.146778 + 0.989169i \(0.546890\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) −8.80381 12.9325i −0.839410 1.23307i
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 6.74531 0.626286
\(117\) 0 0
\(118\) 10.1856 + 10.1856i 0.937665 + 0.937665i
\(119\) 0 0
\(120\) 0 0
\(121\) 6.01928 0.547208
\(122\) 0 0
\(123\) 0 0
\(124\) 9.75396i 0.875931i
\(125\) 5.96844 9.45398i 0.533834 0.845590i
\(126\) 0 0
\(127\) −1.40547 + 1.40547i −0.124715 + 0.124715i −0.766709 0.641994i \(-0.778107\pi\)
0.641994 + 0.766709i \(0.278107\pi\)
\(128\) 9.07923 + 9.07923i 0.802498 + 0.802498i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) −14.8162 −1.27047
\(137\) 13.4521 13.4521i 1.14929 1.14929i 0.162603 0.986692i \(-0.448011\pi\)
0.986692 0.162603i \(-0.0519890\pi\)
\(138\) 0 0
\(139\) 11.7118i 0.993380i 0.867928 + 0.496690i \(0.165451\pi\)
−0.867928 + 0.496690i \(0.834549\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 14.9540i 1.24617i
\(145\) −16.9110 3.21217i −1.40438 0.266756i
\(146\) 0 0
\(147\) 0 0
\(148\) −6.46224 6.46224i −0.531193 0.531193i
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) −12.2882 −1.00000
\(152\) 2.60496 2.60496i 0.211290 0.211290i
\(153\) −16.4913 16.4913i −1.33324 1.33324i
\(154\) 0 0
\(155\) −4.64491 + 24.4539i −0.373088 + 1.96419i
\(156\) 0 0
\(157\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 5.84116 + 8.58049i 0.461784 + 0.678347i
\(161\) 0 0
\(162\) −10.7929 + 10.7929i −0.847973 + 0.847973i
\(163\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 16.2882 16.2882i 1.26042 1.26042i 0.309529 0.950890i \(-0.399829\pi\)
0.950890 0.309529i \(-0.100171\pi\)
\(168\) 0 0
\(169\) 13.0000i 1.00000i
\(170\) −28.9633 5.50145i −2.22139 0.421942i
\(171\) 5.79896 0.443458
\(172\) 0.167295 0.167295i 0.0127561 0.0127561i
\(173\) 13.0529 + 13.0529i 0.992393 + 0.992393i 0.999971 0.00757841i \(-0.00241231\pi\)
−0.00757841 + 0.999971i \(0.502412\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −20.5640 −1.55007
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) −1.09688 + 5.77472i −0.0817567 + 0.430422i
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 13.1240 + 19.2787i 0.964893 + 1.41740i
\(186\) 0 0
\(187\) 22.6779 22.6779i 1.65838 1.65838i
\(188\) −8.48744 8.48744i −0.619011 0.619011i
\(189\) 0 0
\(190\) 6.05957 4.12505i 0.439608 0.299263i
\(191\) −27.1079 −1.96146 −0.980729 0.195374i \(-0.937408\pi\)
−0.980729 + 0.195374i \(0.937408\pi\)
\(192\) 0 0
\(193\) −6.08667 6.08667i −0.438128 0.438128i 0.453254 0.891382i \(-0.350263\pi\)
−0.891382 + 0.453254i \(0.850263\pi\)
\(194\) 15.1572i 1.08822i
\(195\) 0 0
\(196\) −6.13365 −0.438118
\(197\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(198\) −14.8419 14.8419i −1.05477 1.05477i
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) −3.79826 8.73953i −0.268577 0.617978i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 20.5050 1.42865
\(207\) 0 0
\(208\) 0 0
\(209\) 7.97443i 0.551603i
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −0.499089 + 0.339755i −0.0340376 + 0.0231711i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) −7.94109 1.50837i −0.535388 0.101695i
\(221\) 0 0
\(222\) 0 0
\(223\) 8.32205 + 8.32205i 0.557286 + 0.557286i 0.928534 0.371248i \(-0.121070\pi\)
−0.371248 + 0.928534i \(0.621070\pi\)
\(224\) 0 0
\(225\) 5.49993 13.9553i 0.366662 0.930354i
\(226\) 0 0
\(227\) −6.20067 + 6.20067i −0.411553 + 0.411553i −0.882279 0.470726i \(-0.843992\pi\)
0.470726 + 0.882279i \(0.343992\pi\)
\(228\) 0 0
\(229\) 29.9310i 1.97790i −0.148257 0.988949i \(-0.547366\pi\)
0.148257 0.988949i \(-0.452634\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −10.3742 + 10.3742i −0.681098 + 0.681098i
\(233\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(234\) 0 0
\(235\) 17.2369 + 25.3205i 1.12441 + 1.65172i
\(236\) 7.44239 0.484458
\(237\) 0 0
\(238\) 0 0
\(239\) 30.4665i 1.97072i −0.170496 0.985358i \(-0.554537\pi\)
0.170496 0.985358i \(-0.445463\pi\)
\(240\) 0 0
\(241\) 28.2190 1.81775 0.908873 0.417073i \(-0.136944\pi\)
0.908873 + 0.417073i \(0.136944\pi\)
\(242\) 7.21842 7.21842i 0.464017 0.464017i
\(243\) 0 0
\(244\) 0 0
\(245\) 15.3775 + 2.92089i 0.982434 + 0.186609i
\(246\) 0 0
\(247\) 0 0
\(248\) 15.0014 + 15.0014i 0.952591 + 0.952591i
\(249\) 0 0
\(250\) −4.17991 18.4948i −0.264361 1.16971i
\(251\) −24.5764 −1.55125 −0.775625 0.631194i \(-0.782565\pi\)
−0.775625 + 0.631194i \(0.782565\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 3.37091i 0.211510i
\(255\) 0 0
\(256\) 17.5826 1.09891
\(257\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −23.0942 −1.42949
\(262\) 0 0
\(263\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 32.7141i 1.99461i 0.0733538 + 0.997306i \(0.476630\pi\)
−0.0733538 + 0.997306i \(0.523370\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) −27.4013 + 27.4013i −1.66144 + 1.66144i
\(273\) 0 0
\(274\) 32.2641i 1.94914i
\(275\) 19.1906 + 7.56321i 1.15724 + 0.456079i
\(276\) 0 0
\(277\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(278\) 14.0449 + 14.0449i 0.842360 + 0.842360i
\(279\) 33.3950i 1.99930i
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 9.84731 + 9.84731i 0.580258 + 0.580258i
\(289\) 43.4360i 2.55506i
\(290\) −24.1320 + 16.4279i −1.41708 + 0.964677i
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(294\) 0 0
\(295\) −18.6586 3.54412i −1.08635 0.206347i
\(296\) 19.8776 1.15536
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) −14.7362 + 14.7362i −0.847973 + 0.847973i
\(303\) 0 0
\(304\) 9.63533i 0.552624i
\(305\) 0 0
\(306\) −39.5532 −2.26110
\(307\) 19.3162 19.3162i 1.10244 1.10244i 0.108319 0.994116i \(-0.465453\pi\)
0.994116 0.108319i \(-0.0345469\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 23.7553 + 34.8958i 1.34921 + 1.98195i
\(311\) 18.4550 1.04649 0.523244 0.852183i \(-0.324722\pi\)
0.523244 + 0.852183i \(0.324722\pi\)
\(312\) 0 0
\(313\) −23.8819 23.8819i −1.34988 1.34988i −0.885783 0.464100i \(-0.846378\pi\)
−0.464100 0.885783i \(-0.653622\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(318\) 0 0
\(319\) 31.7579i 1.77810i
\(320\) −4.60593 0.874876i −0.257479 0.0489070i
\(321\) 0 0
\(322\) 0 0
\(323\) 10.6258 + 10.6258i 0.591236 + 0.591236i
\(324\) 7.88612i 0.438118i
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −34.9616 −1.92166 −0.960832 0.277133i \(-0.910616\pi\)
−0.960832 + 0.277133i \(0.910616\pi\)
\(332\) 0 0
\(333\) 22.1250 + 22.1250i 1.21244 + 1.21244i
\(334\) 39.0661i 2.13760i
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(338\) 15.5898 + 15.5898i 0.847973 + 0.847973i
\(339\) 0 0
\(340\) −12.5913 + 8.57150i −0.682857 + 0.464855i
\(341\) −45.9230 −2.48687
\(342\) 6.95421 6.95421i 0.376040 0.376040i
\(343\) 0 0
\(344\) 0.514594i 0.0277451i
\(345\) 0 0
\(346\) 31.3065 1.68305
\(347\) 26.2882 26.2882i 1.41122 1.41122i 0.659665 0.751559i \(-0.270698\pi\)
0.751559 0.659665i \(-0.229302\pi\)
\(348\) 0 0
\(349\) 26.0127i 1.39243i 0.717835 + 0.696213i \(0.245133\pi\)
−0.717835 + 0.696213i \(0.754867\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −13.5415 + 13.5415i −0.721765 + 0.721765i
\(353\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) −7.19443 10.5684i −0.379180 0.557004i
\(361\) 15.2636 0.803345
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 38.8578 + 7.38086i 2.02012 + 0.383713i
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(374\) 54.3915i 2.81252i
\(375\) 0 0
\(376\) 26.1071 1.34637
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0.706753 3.72082i 0.0362556 0.190874i
\(381\) 0 0
\(382\) −32.5082 + 32.5082i −1.66326 + 1.66326i
\(383\) 26.3315 + 26.3315i 1.34548 + 1.34548i 0.890505 + 0.454973i \(0.150351\pi\)
0.454973 + 0.890505i \(0.349649\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −14.5985 −0.743042
\(387\) −0.572775 + 0.572775i −0.0291158 + 0.0291158i
\(388\) 5.53748 + 5.53748i 0.281123 + 0.281123i
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 9.43345 9.43345i 0.476461 0.476461i
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) −10.8446 −0.544961
\(397\) 25.6921 25.6921i 1.28945 1.28945i 0.354332 0.935120i \(-0.384708\pi\)
0.935120 0.354332i \(-0.115292\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −23.1876 9.13847i −1.15938 0.456923i
\(401\) 33.7970 1.68774 0.843871 0.536546i \(-0.180271\pi\)
0.843871 + 0.536546i \(0.180271\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 3.75543 19.7711i 0.186609 0.982434i
\(406\) 0 0
\(407\) −30.4252 + 30.4252i −1.50812 + 1.50812i
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 7.49124 7.49124i 0.369067 0.369067i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 9.56306 + 9.56306i 0.467745 + 0.467745i
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 29.0588 + 29.0588i 1.41289 + 1.41289i
\(424\) 0 0
\(425\) 35.6491 15.4933i 1.72923 0.751537i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) −0.191076 + 1.00595i −0.00921452 + 0.0485114i
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 21.4764i 1.02501i 0.858683 + 0.512507i \(0.171283\pi\)
−0.858683 + 0.512507i \(0.828717\pi\)
\(440\) 14.5331 9.89341i 0.692839 0.471650i
\(441\) 21.0000 1.00000
\(442\) 0 0
\(443\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 19.9599 0.945127
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) −10.1398 23.3310i −0.477996 1.09984i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 14.8719i 0.697972i
\(455\) 0 0
\(456\) 0 0
\(457\) −12.6885 + 12.6885i −0.593541 + 0.593541i −0.938586 0.345045i \(-0.887864\pi\)
0.345045 + 0.938586i \(0.387864\pi\)
\(458\) −35.8937 35.8937i −1.67720 1.67720i
\(459\) 0 0
\(460\) 0 0
\(461\) −42.5144 −1.98010 −0.990048 0.140733i \(-0.955054\pi\)
−0.990048 + 0.140733i \(0.955054\pi\)
\(462\) 0 0
\(463\) 13.6663 + 13.6663i 0.635128 + 0.635128i 0.949350 0.314222i \(-0.101744\pi\)
−0.314222 + 0.949350i \(0.601744\pi\)
\(464\) 38.3723i 1.78139i
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 51.0354 + 9.69394i 2.35409 + 0.447148i
\(471\) 0 0
\(472\) −11.4463 + 11.4463i −0.526857 + 0.526857i
\(473\) −0.787650 0.787650i −0.0362162 0.0362162i
\(474\) 0 0
\(475\) −3.54377 + 8.99182i −0.162599 + 0.412573i
\(476\) 0 0
\(477\) 0 0
\(478\) −36.5359 36.5359i −1.67112 1.67112i
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 33.8407 33.8407i 1.54140 1.54140i
\(483\) 0 0
\(484\) 5.27431i 0.239741i
\(485\) −11.2459 16.5199i −0.510650 0.750129i
\(486\) 0 0
\(487\) 21.2876 21.2876i 0.964633 0.964633i −0.0347623 0.999396i \(-0.511067\pi\)
0.999396 + 0.0347623i \(0.0110674\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 21.9437 14.9382i 0.991318 0.674839i
\(491\) 2.78626 0.125742 0.0628710 0.998022i \(-0.479974\pi\)
0.0628710 + 0.998022i \(0.479974\pi\)
\(492\) 0 0
\(493\) −42.3169 42.3169i −1.90586 1.90586i
\(494\) 0 0
\(495\) 27.1882 + 5.16427i 1.22202 + 0.232117i
\(496\) 55.4878 2.49147
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) −8.28391 5.22976i −0.370468 0.233882i
\(501\) 0 0
\(502\) −29.4724 + 29.4724i −1.31542 + 1.31542i
\(503\) 31.3740 + 31.3740i 1.39890 + 1.39890i 0.803235 + 0.595663i \(0.203111\pi\)
0.595663 + 0.803235i \(0.296889\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 1.23152 + 1.23152i 0.0546398 + 0.0546398i
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 2.92684 2.92684i 0.129349 0.129349i
\(513\) 0 0
\(514\) 0 0
\(515\) −22.3485 + 15.2137i −0.984792 + 0.670396i
\(516\) 0 0
\(517\) −39.9601 + 39.9601i −1.75744 + 1.75744i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −31.1216 −1.36346 −0.681731 0.731603i \(-0.738773\pi\)
−0.681731 + 0.731603i \(0.738773\pi\)
\(522\) −27.6949 + 27.6949i −1.21217 + 1.21217i
\(523\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −61.1917 + 61.1917i −2.66555 + 2.66555i
\(528\) 0 0
\(529\) 23.0000i 1.00000i
\(530\) 0 0
\(531\) −25.4808 −1.10577
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 39.2312 + 39.2312i 1.69138 + 1.69138i
\(539\) 28.8781i 1.24387i
\(540\) 0 0
\(541\) −40.3539 −1.73495 −0.867476 0.497480i \(-0.834259\pi\)
−0.867476 + 0.497480i \(0.834259\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 36.0877i 1.54725i
\(545\) 0 0
\(546\) 0 0
\(547\) −22.3255 + 22.3255i −0.954570 + 0.954570i −0.999012 0.0444423i \(-0.985849\pi\)
0.0444423 + 0.999012i \(0.485849\pi\)
\(548\) −11.7873 11.7873i −0.503527 0.503527i
\(549\) 0 0
\(550\) 32.0836 13.9438i 1.36805 0.594564i
\(551\) 14.8802 0.633920
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 10.2623 0.435218
\(557\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(558\) 40.0478 + 40.0478i 1.69536 + 1.69536i
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −16.4907 16.4907i −0.695002 0.695002i 0.268326 0.963328i \(-0.413529\pi\)
−0.963328 + 0.268326i \(0.913529\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 19.2289i 0.806117i −0.915174 0.403059i \(-0.867947\pi\)
0.915174 0.403059i \(-0.132053\pi\)
\(570\) 0 0
\(571\) 19.4771 0.815090 0.407545 0.913185i \(-0.366385\pi\)
0.407545 + 0.913185i \(0.366385\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −6.29000 −0.262083
\(577\) 33.2798 33.2798i 1.38545 1.38545i 0.550850 0.834604i \(-0.314303\pi\)
0.834604 0.550850i \(-0.185697\pi\)
\(578\) −52.0891 52.0891i −2.16662 2.16662i
\(579\) 0 0
\(580\) −2.81462 + 14.8180i −0.116871 + 0.615285i
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(588\) 0 0
\(589\) 21.5174i 0.886607i
\(590\) −26.6259 + 18.1256i −1.09617 + 0.746217i
\(591\) 0 0
\(592\) 36.7621 36.7621i 1.51091 1.51091i
\(593\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 38.9551 1.58901 0.794505 0.607257i \(-0.207730\pi\)
0.794505 + 0.607257i \(0.207730\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 10.7674i 0.438118i
\(605\) −2.51167 + 13.2231i −0.102114 + 0.537595i
\(606\) 0 0
\(607\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(608\) −6.34491 6.34491i −0.257320 0.257320i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) −14.4502 + 14.4502i −0.584116 + 0.584116i
\(613\) −27.5764 27.5764i −1.11380 1.11380i −0.992632 0.121169i \(-0.961336\pi\)
−0.121169 0.992632i \(-0.538664\pi\)
\(614\) 46.3286i 1.86967i
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 21.4274 + 4.07003i 0.860545 + 0.163457i
\(621\) 0 0
\(622\) 22.1316 22.1316i 0.887394 0.887394i
\(623\) 0 0
\(624\) 0 0
\(625\) 18.2780 + 17.0563i 0.731118 + 0.682251i
\(626\) −57.2790 −2.28933
\(627\) 0 0
\(628\) 0 0
\(629\) 81.0822i 3.23296i
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −2.50105 3.67397i −0.0992513 0.145797i
\(636\) 0 0
\(637\) 0 0
\(638\) −38.0845 38.0845i −1.50778 1.50778i
\(639\) 0 0
\(640\) −23.7336 + 16.1567i −0.938155 + 0.638648i
\(641\) −48.9165 −1.93209 −0.966043 0.258381i \(-0.916811\pi\)
−0.966043 + 0.258381i \(0.916811\pi\)
\(642\) 0 0
\(643\) 35.6782 + 35.6782i 1.40701 + 1.40701i 0.774782 + 0.632228i \(0.217859\pi\)
0.632228 + 0.774782i \(0.282141\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 25.4853 1.00270
\(647\) 20.9507 20.9507i 0.823656 0.823656i −0.162974 0.986630i \(-0.552109\pi\)
0.986630 + 0.162974i \(0.0521087\pi\)
\(648\) −12.1287 12.1287i −0.476461 0.476461i
\(649\) 35.0398i 1.37543i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −17.5764 17.5764i −0.687818 0.687818i 0.273931 0.961749i \(-0.411676\pi\)
−0.961749 + 0.273931i \(0.911676\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 25.0496i 0.975793i 0.872902 + 0.487896i \(0.162236\pi\)
−0.872902 + 0.487896i \(0.837764\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) −41.9265 + 41.9265i −1.62952 + 1.62952i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 53.0653 2.05624
\(667\) 0 0
\(668\) −14.2723 14.2723i −0.552212 0.552212i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −5.02634 5.02634i −0.193751 0.193751i 0.603564 0.797315i \(-0.293747\pi\)
−0.797315 + 0.603564i \(0.793747\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 11.3911 0.438118
\(677\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 6.18234 32.5480i 0.237082 1.24816i
\(681\) 0 0
\(682\) −55.0716 + 55.0716i −2.10880 + 2.10880i
\(683\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(684\) 5.08126i 0.194287i
\(685\) 23.9384 + 35.1647i 0.914638 + 1.34358i
\(686\) 0 0
\(687\) 0 0
\(688\) 0.951700 + 0.951700i 0.0362832 + 0.0362832i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 11.4374 11.4374i 0.434785 0.434785i
\(693\) 0 0
\(694\) 63.0504i 2.39336i
\(695\) −25.7283 4.88698i −0.975931 0.185374i
\(696\) 0 0
\(697\) 0 0
\(698\) 31.1948 + 31.1948i 1.18074 + 1.18074i
\(699\) 0 0
\(700\) 0 0
\(701\) −48.6993 −1.83935 −0.919674 0.392682i \(-0.871547\pi\)
−0.919674 + 0.392682i \(0.871547\pi\)
\(702\) 0 0
\(703\) −14.2558 14.2558i −0.537668 0.537668i
\(704\) 8.64967i 0.325997i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 41.7042i 1.56623i −0.621875 0.783117i \(-0.713629\pi\)
0.621875 0.783117i \(-0.286371\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) −32.8509 6.23988i −1.22428 0.232546i
\(721\) 0 0
\(722\) 18.3043 18.3043i 0.681215 0.681215i
\(723\) 0 0
\(724\) 0 0
\(725\) 14.1129 35.8096i 0.524140 1.32993i
\(726\) 0 0
\(727\) 36.2882 36.2882i 1.34586 1.34586i 0.455744 0.890111i \(-0.349373\pi\)
0.890111 0.455744i \(-0.150627\pi\)
\(728\) 0 0
\(729\) 27.0000i 1.00000i
\(730\) 0 0
\(731\) −2.09906 −0.0776367
\(732\) 0 0
\(733\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 16.8927 11.4997i 0.620988 0.422737i
\(741\) 0 0
\(742\) 0 0
\(743\) −38.0494 38.0494i −1.39590 1.39590i −0.811389 0.584507i \(-0.801288\pi\)
−0.584507 0.811389i \(-0.698712\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) −19.8712 19.8712i −0.726564 0.726564i
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 48.2829 48.2829i 1.76070 1.76070i
\(753\) 0 0
\(754\) 0 0
\(755\) 5.12750 26.9946i 0.186609 0.982434i
\(756\) 0 0
\(757\) −38.8661 + 38.8661i −1.41261 + 1.41261i −0.672681 + 0.739933i \(0.734857\pi\)
−0.739933 + 0.672681i \(0.765143\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 4.63558 + 6.80953i 0.168150 + 0.247008i
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 23.7529i 0.859350i
\(765\) 43.1092 29.3465i 1.55862 1.06103i
\(766\) 63.1543 2.28186
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −5.33336 + 5.33336i −0.191952 + 0.191952i
\(773\) −37.5764 37.5764i −1.35153 1.35153i −0.883952 0.467578i \(-0.845127\pi\)
−0.467578 0.883952i \(-0.654873\pi\)
\(774\) 1.37376i 0.0493788i
\(775\) −51.7819 20.4078i −1.86006 0.733069i
\(776\) −17.0331 −0.611453
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 34.8928i 1.24617i
\(785\) 0 0
\(786\) 0 0
\(787\) 24.6605 24.6605i 0.879052 0.879052i −0.114385 0.993437i \(-0.536490\pi\)
0.993437 + 0.114385i \(0.0364897\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 16.6788 16.6788i 0.592655 0.592655i
\(793\) 0 0
\(794\) 61.6208i 2.18684i
\(795\) 0 0
\(796\) 0 0
\(797\) 9.29545 9.29545i 0.329262 0.329262i −0.523044 0.852306i \(-0.675204\pi\)
0.852306 + 0.523044i \(0.175204\pi\)
\(798\) 0 0
\(799\) 106.492i 3.76743i
\(800\) −21.2869 + 9.25142i −0.752605 + 0.327087i
\(801\) 0 0
\(802\) 40.5299 40.5299i 1.43116 1.43116i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) −19.2062 28.2134i −0.674839 0.991318i
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 72.9727i 2.55769i
\(815\) 0 0
\(816\) 0 0
\(817\) 0.369056 0.369056i 0.0129116 0.0129116i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) −40.4750 40.4750i −1.41087 1.41087i −0.754019 0.656852i \(-0.771888\pi\)
−0.656852 0.754019i \(-0.728112\pi\)
\(824\) 23.0428i 0.802733i
\(825\) 0 0
\(826\) 0 0
\(827\) −13.7118 + 13.7118i −0.476806 + 0.476806i −0.904109 0.427303i \(-0.859464\pi\)
0.427303 + 0.904109i \(0.359464\pi\)
\(828\) 0 0
\(829\) 49.1528i 1.70715i 0.520972 + 0.853574i \(0.325570\pi\)
−0.520972 + 0.853574i \(0.674430\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 38.4796 + 38.4796i 1.33324 + 1.33324i
\(834\) 0 0
\(835\) 28.9852 + 42.5783i 1.00307 + 1.47348i
\(836\) 6.98748 0.241667
\(837\) 0 0
\(838\) 0 0
\(839\) 57.9291i 1.99993i −0.00817087 0.999967i \(-0.502601\pi\)
0.00817087 0.999967i \(-0.497399\pi\)
\(840\) 0 0
\(841\) −30.2600 −1.04345
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −28.5583 5.42451i −0.982434 0.186609i
\(846\) 69.6955 2.39618
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 24.1711 61.3308i 0.829061 2.10363i
\(851\) 0 0
\(852\) 0 0
\(853\) −39.9746 39.9746i −1.36870 1.36870i −0.862291 0.506413i \(-0.830971\pi\)
−0.506413 0.862291i \(-0.669029\pi\)
\(854\) 0 0
\(855\) −2.41973 + 12.7391i −0.0827532 + 0.435668i
\(856\) 0 0
\(857\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0.297705 + 0.437320i 0.0101517 + 0.0149125i
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(864\) 0 0
\(865\) −34.1210 + 23.2279i −1.16015 + 0.789771i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −18.9589 18.9589i −0.641661 0.641661i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(878\) 25.7549 + 25.7549i 0.869185 + 0.869185i
\(879\) 0 0
\(880\) 8.58075 45.1748i 0.289257 1.52284i
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 25.1835 25.1835i 0.847973 0.847973i
\(883\) −41.3046 41.3046i −1.39001 1.39001i −0.825266 0.564744i \(-0.808975\pi\)
−0.564744 0.825266i \(-0.691025\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 37.1290 1.24387
\(892\) 7.29208 7.29208i 0.244157 0.244157i
\(893\) −18.7234 18.7234i −0.626555 0.626555i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 85.6921i 2.85799i
\(900\) −12.2281 4.81923i −0.407605 0.160641i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −6.89702 + 6.89702i −0.229012 + 0.229012i −0.812280 0.583268i \(-0.801774\pi\)
0.583268 + 0.812280i \(0.301774\pi\)
\(908\) 5.43325 + 5.43325i 0.180309 + 0.180309i
\(909\) 0 0
\(910\) 0 0
\(911\) −50.1971 −1.66310 −0.831552 0.555447i \(-0.812547\pi\)
−0.831552 + 0.555447i \(0.812547\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 30.4324i 1.00661i
\(915\) 0 0
\(916\) −26.2266 −0.866552
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −50.9840 + 50.9840i −1.67907 + 1.67907i
\(923\) 0 0
\(924\) 0 0
\(925\) −47.8275 + 20.7862i −1.57256 + 0.683445i
\(926\) 32.7777 1.07714
\(927\) −25.6480 + 25.6480i −0.842391 + 0.842391i
\(928\) 25.2684 + 25.2684i 0.829475 + 0.829475i
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) −13.5309 −0.443458
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 40.3558 + 59.2815i 1.31978 + 1.93871i
\(936\) 0 0
\(937\) −42.8735 + 42.8735i −1.40062 + 1.40062i −0.602486 + 0.798129i \(0.705823\pi\)
−0.798129 + 0.602486i \(0.794177\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 22.1867 15.1036i 0.723650 0.492624i
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 42.3379i 1.37798i
\(945\) 0 0
\(946\) −1.88912 −0.0614207
\(947\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 6.53339 + 15.0329i 0.211971 + 0.487731i
\(951\) 0 0
\(952\) 0 0
\(953\) −19.7862 19.7862i −0.640936 0.640936i 0.309849 0.950786i \(-0.399721\pi\)
−0.950786 + 0.309849i \(0.899721\pi\)
\(954\) 0 0
\(955\) 11.3113 59.5503i 0.366025 1.92700i
\(956\) −26.6959 −0.863406
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 92.9138 2.99722
\(962\) 0 0
\(963\) 0 0
\(964\) 24.7265i 0.796387i
\(965\) 15.9109 10.8313i 0.512190 0.348673i
\(966\) 0 0
\(967\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(968\) 8.11180 + 8.11180i 0.260723 + 0.260723i
\(969\) 0 0
\(970\) −33.2971 6.32464i −1.06911 0.203072i
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 51.0568i 1.63597i
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 2.55939 13.4743i 0.0817567 0.430422i
\(981\) 0 0
\(982\) 3.34132 3.34132i 0.106626 0.106626i
\(983\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −101.494 −3.23223
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 38.7976 26.4114i 1.23307 0.839410i
\(991\) 57.9001 1.83926 0.919629 0.392789i \(-0.128490\pi\)
0.919629 + 0.392789i \(0.128490\pi\)
\(992\) 36.5390 36.5390i 1.16011 1.16011i
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −0.152825 + 0.152825i −0.00484001 + 0.00484001i −0.709523 0.704683i \(-0.751089\pi\)
0.704683 + 0.709523i \(0.251089\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 755.2.f.d.603.10 yes 28
5.2 odd 4 inner 755.2.f.d.452.10 28
151.150 odd 2 CM 755.2.f.d.603.10 yes 28
755.452 even 4 inner 755.2.f.d.452.10 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
755.2.f.d.452.10 28 5.2 odd 4 inner
755.2.f.d.452.10 28 755.452 even 4 inner
755.2.f.d.603.10 yes 28 1.1 even 1 trivial
755.2.f.d.603.10 yes 28 151.150 odd 2 CM