Properties

Label 755.2.f.d.603.1
Level $755$
Weight $2$
Character 755.603
Analytic conductor $6.029$
Analytic rank $0$
Dimension $28$
CM discriminant -151
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [755,2,Mod(452,755)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(755, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("755.452"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 755 = 5 \cdot 151 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 755.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.02870535261\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

Embedding invariants

Embedding label 603.1
Character \(\chi\) \(=\) 755.603
Dual form 755.2.f.d.452.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.93553 + 1.93553i) q^{2} -5.49259i q^{4} +(0.577204 - 2.16029i) q^{5} +(6.76003 + 6.76003i) q^{8} +3.00000i q^{9} +(3.06411 + 5.29851i) q^{10} -4.14607 q^{11} -15.1834 q^{16} +(4.92652 - 4.92652i) q^{17} +(-5.80660 - 5.80660i) q^{18} +7.85139i q^{19} +(-11.8656 - 3.17034i) q^{20} +(8.02486 - 8.02486i) q^{22} +(-4.33367 - 2.49385i) q^{25} -1.08956i q^{29} +10.1567 q^{31} +(15.8679 - 15.8679i) q^{32} +19.0709i q^{34} +16.4778 q^{36} +(6.20472 - 6.20472i) q^{37} +(-15.1966 - 15.1966i) q^{38} +(18.5055 - 10.7017i) q^{40} +(8.27063 + 8.27063i) q^{43} +22.7726i q^{44} +(6.48086 + 1.73161i) q^{45} +(7.83491 - 7.83491i) q^{47} -7.00000i q^{49} +(13.2149 - 3.56104i) q^{50} +(-2.39313 + 8.95669i) q^{55} +(2.10889 + 2.10889i) q^{58} -13.2065i q^{59} +(-19.6586 + 19.6586i) q^{62} +31.0589i q^{64} +(-27.0594 - 27.0594i) q^{68} +(-20.2801 + 20.2801i) q^{72} +24.0189i q^{74} +43.1245 q^{76} +(-8.76390 + 32.8004i) q^{80} -9.00000 q^{81} +(-7.79909 - 13.4863i) q^{85} -32.0162 q^{86} +(-28.0275 - 28.0275i) q^{88} +(-15.8955 + 9.19233i) q^{90} +30.3295i q^{94} +(16.9612 + 4.53185i) q^{95} +(2.79799 - 2.79799i) q^{97} +(13.5487 + 13.5487i) q^{98} -12.4382i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 112 q^{16} + 168 q^{36} - 14 q^{38} + 126 q^{58} - 154 q^{68} - 252 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/755\mathbb{Z}\right)^\times\).

\(n\) \(6\) \(152\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.93553 + 1.93553i −1.36863 + 1.36863i −0.506233 + 0.862397i \(0.668962\pi\)
−0.862397 + 0.506233i \(0.831038\pi\)
\(3\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(4\) 5.49259i 2.74629i
\(5\) 0.577204 2.16029i 0.258133 0.966109i
\(6\) 0 0
\(7\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(8\) 6.76003 + 6.76003i 2.39003 + 2.39003i
\(9\) 3.00000i 1.00000i
\(10\) 3.06411 + 5.29851i 0.968957 + 1.67554i
\(11\) −4.14607 −1.25009 −0.625043 0.780590i \(-0.714919\pi\)
−0.625043 + 0.780590i \(0.714919\pi\)
\(12\) 0 0
\(13\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −15.1834 −3.79584
\(17\) 4.92652 4.92652i 1.19486 1.19486i 0.219171 0.975686i \(-0.429665\pi\)
0.975686 0.219171i \(-0.0703352\pi\)
\(18\) −5.80660 5.80660i −1.36863 1.36863i
\(19\) 7.85139i 1.80123i 0.434615 + 0.900616i \(0.356884\pi\)
−0.434615 + 0.900616i \(0.643116\pi\)
\(20\) −11.8656 3.17034i −2.65322 0.708911i
\(21\) 0 0
\(22\) 8.02486 8.02486i 1.71091 1.71091i
\(23\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(24\) 0 0
\(25\) −4.33367 2.49385i −0.866734 0.498770i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.08956i 0.202327i −0.994870 0.101163i \(-0.967744\pi\)
0.994870 0.101163i \(-0.0322565\pi\)
\(30\) 0 0
\(31\) 10.1567 1.82419 0.912094 0.409980i \(-0.134464\pi\)
0.912094 + 0.409980i \(0.134464\pi\)
\(32\) 15.8679 15.8679i 2.80507 2.80507i
\(33\) 0 0
\(34\) 19.0709i 3.27063i
\(35\) 0 0
\(36\) 16.4778 2.74629
\(37\) 6.20472 6.20472i 1.02005 1.02005i 0.0202554 0.999795i \(-0.493552\pi\)
0.999795 0.0202554i \(-0.00644794\pi\)
\(38\) −15.1966 15.1966i −2.46522 2.46522i
\(39\) 0 0
\(40\) 18.5055 10.7017i 2.92598 1.69208i
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 8.27063 + 8.27063i 1.26126 + 1.26126i 0.950483 + 0.310776i \(0.100589\pi\)
0.310776 + 0.950483i \(0.399411\pi\)
\(44\) 22.7726i 3.43311i
\(45\) 6.48086 + 1.73161i 0.966109 + 0.258133i
\(46\) 0 0
\(47\) 7.83491 7.83491i 1.14284 1.14284i 0.154910 0.987929i \(-0.450491\pi\)
0.987929 0.154910i \(-0.0495087\pi\)
\(48\) 0 0
\(49\) 7.00000i 1.00000i
\(50\) 13.2149 3.56104i 1.86887 0.503606i
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(54\) 0 0
\(55\) −2.39313 + 8.95669i −0.322689 + 1.20772i
\(56\) 0 0
\(57\) 0 0
\(58\) 2.10889 + 2.10889i 0.276910 + 0.276910i
\(59\) 13.2065i 1.71934i −0.510851 0.859669i \(-0.670669\pi\)
0.510851 0.859669i \(-0.329331\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) −19.6586 + 19.6586i −2.49664 + 2.49664i
\(63\) 0 0
\(64\) 31.0589i 3.88236i
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(68\) −27.0594 27.0594i −3.28143 3.28143i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) −20.2801 + 20.2801i −2.39003 + 2.39003i
\(73\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(74\) 24.0189i 2.79214i
\(75\) 0 0
\(76\) 43.1245 4.94671
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) −8.76390 + 32.8004i −0.979834 + 3.66720i
\(81\) −9.00000 −1.00000
\(82\) 0 0
\(83\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(84\) 0 0
\(85\) −7.79909 13.4863i −0.845930 1.46280i
\(86\) −32.0162 −3.45239
\(87\) 0 0
\(88\) −28.0275 28.0275i −2.98775 2.98775i
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) −15.8955 + 9.19233i −1.67554 + 0.968957i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 30.3295i 3.12825i
\(95\) 16.9612 + 4.53185i 1.74019 + 0.464958i
\(96\) 0 0
\(97\) 2.79799 2.79799i 0.284093 0.284093i −0.550646 0.834739i \(-0.685619\pi\)
0.834739 + 0.550646i \(0.185619\pi\)
\(98\) 13.5487 + 13.5487i 1.36863 + 1.36863i
\(99\) 12.4382i 1.25009i
\(100\) −13.6977 + 23.8031i −1.36977 + 2.38031i
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 10.9003 + 10.9003i 1.07404 + 1.07404i 0.997030 + 0.0770128i \(0.0245382\pi\)
0.0770128 + 0.997030i \(0.475462\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) −12.7040 21.9680i −1.21128 2.09456i
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −5.98452 −0.555649
\(117\) 0 0
\(118\) 25.5616 + 25.5616i 2.35314 + 2.35314i
\(119\) 0 0
\(120\) 0 0
\(121\) 6.18987 0.562716
\(122\) 0 0
\(123\) 0 0
\(124\) 55.7863i 5.00976i
\(125\) −7.88884 + 7.92251i −0.705600 + 0.708611i
\(126\) 0 0
\(127\) 13.6933 13.6933i 1.21509 1.21509i 0.245754 0.969332i \(-0.420964\pi\)
0.969332 0.245754i \(-0.0790356\pi\)
\(128\) −28.3798 28.3798i −2.50845 2.50845i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 66.6069 5.71149
\(137\) 2.85381 2.85381i 0.243818 0.243818i −0.574610 0.818427i \(-0.694846\pi\)
0.818427 + 0.574610i \(0.194846\pi\)
\(138\) 0 0
\(139\) 23.3027i 1.97651i 0.152816 + 0.988255i \(0.451166\pi\)
−0.152816 + 0.988255i \(0.548834\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 45.5501i 3.79584i
\(145\) −2.35377 0.628900i −0.195470 0.0522273i
\(146\) 0 0
\(147\) 0 0
\(148\) −34.0800 34.0800i −2.80136 2.80136i
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 12.2882 1.00000
\(152\) −53.0756 + 53.0756i −4.30500 + 4.30500i
\(153\) 14.7796 + 14.7796i 1.19486 + 1.19486i
\(154\) 0 0
\(155\) 5.86246 21.9413i 0.470884 1.76237i
\(156\) 0 0
\(157\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −25.1201 43.4381i −1.98592 3.43409i
\(161\) 0 0
\(162\) 17.4198 17.4198i 1.36863 1.36863i
\(163\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −8.28821 + 8.28821i −0.641361 + 0.641361i −0.950890 0.309529i \(-0.899829\pi\)
0.309529 + 0.950890i \(0.399829\pi\)
\(168\) 0 0
\(169\) 13.0000i 1.00000i
\(170\) 41.1986 + 11.0078i 3.15979 + 0.844260i
\(171\) −23.5542 −1.80123
\(172\) 45.4272 45.4272i 3.46379 3.46379i
\(173\) 18.4678 + 18.4678i 1.40408 + 1.40408i 0.786534 + 0.617547i \(0.211873\pi\)
0.617547 + 0.786534i \(0.288127\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 62.9512 4.74513
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 9.51103 35.5967i 0.708911 2.65322i
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −9.82259 16.9854i −0.722171 1.24879i
\(186\) 0 0
\(187\) −20.4257 + 20.4257i −1.49367 + 1.49367i
\(188\) −43.0339 43.0339i −3.13857 3.13857i
\(189\) 0 0
\(190\) −41.6006 + 24.0575i −3.01803 + 1.74532i
\(191\) −21.1236 −1.52845 −0.764224 0.644951i \(-0.776878\pi\)
−0.764224 + 0.644951i \(0.776878\pi\)
\(192\) 0 0
\(193\) −19.4712 19.4712i −1.40157 1.40157i −0.795123 0.606448i \(-0.792594\pi\)
−0.606448 0.795123i \(-0.707406\pi\)
\(194\) 10.8312i 0.777636i
\(195\) 0 0
\(196\) −38.4481 −2.74629
\(197\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(198\) 24.0746 + 24.0746i 1.71091 + 1.71091i
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) −12.4372 46.1542i −0.879445 3.26360i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) −42.1960 −2.93993
\(207\) 0 0
\(208\) 0 0
\(209\) 32.5524i 2.25170i
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 22.6408 13.0931i 1.54409 0.892941i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 49.1954 + 13.1445i 3.31676 + 0.886199i
\(221\) 0 0
\(222\) 0 0
\(223\) −12.4325 12.4325i −0.832542 0.832542i 0.155322 0.987864i \(-0.450359\pi\)
−0.987864 + 0.155322i \(0.950359\pi\)
\(224\) 0 0
\(225\) 7.48155 13.0010i 0.498770 0.866734i
\(226\) 0 0
\(227\) −1.50910 + 1.50910i −0.100163 + 0.100163i −0.755412 0.655250i \(-0.772563\pi\)
0.655250 + 0.755412i \(0.272563\pi\)
\(228\) 0 0
\(229\) 22.1698i 1.46502i 0.680755 + 0.732512i \(0.261652\pi\)
−0.680755 + 0.732512i \(0.738348\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 7.36548 7.36548i 0.483567 0.483567i
\(233\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(234\) 0 0
\(235\) −12.4033 21.4480i −0.809102 1.39911i
\(236\) −72.5379 −4.72181
\(237\) 0 0
\(238\) 0 0
\(239\) 11.9189i 0.770969i −0.922714 0.385484i \(-0.874034\pi\)
0.922714 0.385484i \(-0.125966\pi\)
\(240\) 0 0
\(241\) 18.9041 1.21772 0.608859 0.793278i \(-0.291627\pi\)
0.608859 + 0.793278i \(0.291627\pi\)
\(242\) −11.9807 + 11.9807i −0.770150 + 0.770150i
\(243\) 0 0
\(244\) 0 0
\(245\) −15.1220 4.04043i −0.966109 0.258133i
\(246\) 0 0
\(247\) 0 0
\(248\) 68.6593 + 68.6593i 4.35987 + 4.35987i
\(249\) 0 0
\(250\) −0.0651568 30.6034i −0.00412088 1.93553i
\(251\) 24.5764 1.55125 0.775625 0.631194i \(-0.217435\pi\)
0.775625 + 0.631194i \(0.217435\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 53.0078i 3.32601i
\(255\) 0 0
\(256\) 47.7425 2.98391
\(257\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 3.26869 0.202327
\(262\) 0 0
\(263\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 4.93371i 0.300814i 0.988624 + 0.150407i \(0.0480583\pi\)
−0.988624 + 0.150407i \(0.951942\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) −74.8012 + 74.8012i −4.53549 + 4.53549i
\(273\) 0 0
\(274\) 11.0473i 0.667392i
\(275\) 17.9677 + 10.3397i 1.08349 + 0.623506i
\(276\) 0 0
\(277\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(278\) −45.1032 45.1032i −2.70511 2.70511i
\(279\) 30.4700i 1.82419i
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 47.6036 + 47.6036i 2.80507 + 2.80507i
\(289\) 31.5413i 1.85537i
\(290\) 5.77306 3.33854i 0.339006 0.196046i
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(294\) 0 0
\(295\) −28.5298 7.62284i −1.66107 0.443819i
\(296\) 83.8882 4.87590
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) −23.7842 + 23.7842i −1.36863 + 1.36863i
\(303\) 0 0
\(304\) 119.210i 6.83719i
\(305\) 0 0
\(306\) −57.2127 −3.27063
\(307\) −22.2855 + 22.2855i −1.27190 + 1.27190i −0.326815 + 0.945088i \(0.605975\pi\)
−0.945088 + 0.326815i \(0.894025\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 31.1211 + 53.8151i 1.76756 + 3.05649i
\(311\) −3.58624 −0.203357 −0.101679 0.994817i \(-0.532421\pi\)
−0.101679 + 0.994817i \(0.532421\pi\)
\(312\) 0 0
\(313\) −3.64043 3.64043i −0.205769 0.205769i 0.596697 0.802466i \(-0.296479\pi\)
−0.802466 + 0.596697i \(0.796479\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(318\) 0 0
\(319\) 4.51740i 0.252926i
\(320\) 67.0961 + 17.9273i 3.75079 + 1.00217i
\(321\) 0 0
\(322\) 0 0
\(323\) 38.6801 + 38.6801i 2.15222 + 2.15222i
\(324\) 49.4333i 2.74629i
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 2.05147 0.112759 0.0563795 0.998409i \(-0.482044\pi\)
0.0563795 + 0.998409i \(0.482044\pi\)
\(332\) 0 0
\(333\) 18.6142 + 18.6142i 1.02005 + 1.02005i
\(334\) 32.0842i 1.75557i
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(338\) −25.1620 25.1620i −1.36863 1.36863i
\(339\) 0 0
\(340\) −74.0748 + 42.8372i −4.01727 + 2.32317i
\(341\) −42.1102 −2.28039
\(342\) 45.5899 45.5899i 2.46522 2.46522i
\(343\) 0 0
\(344\) 111.819i 6.02890i
\(345\) 0 0
\(346\) −71.4901 −3.84333
\(347\) 1.71179 1.71179i 0.0918939 0.0918939i −0.659665 0.751559i \(-0.729302\pi\)
0.751559 + 0.659665i \(0.229302\pi\)
\(348\) 0 0
\(349\) 31.9364i 1.70952i −0.519024 0.854759i \(-0.673705\pi\)
0.519024 0.854759i \(-0.326295\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −65.7893 + 65.7893i −3.50658 + 3.50658i
\(353\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 32.1050 + 55.5165i 1.69208 + 2.92598i
\(361\) −42.6443 −2.24444
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 51.8877 + 13.8638i 2.69751 + 0.720745i
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(374\) 79.0693i 4.08858i
\(375\) 0 0
\(376\) 105.928 5.46284
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 24.8916 93.1612i 1.27691 4.77907i
\(381\) 0 0
\(382\) 40.8854 40.8854i 2.09188 2.09188i
\(383\) −19.1043 19.1043i −0.976183 0.976183i 0.0235404 0.999723i \(-0.492506\pi\)
−0.999723 + 0.0235404i \(0.992506\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 75.3746 3.83646
\(387\) −24.8119 + 24.8119i −1.26126 + 1.26126i
\(388\) −15.3682 15.3682i −0.780203 0.780203i
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 47.3202 47.3202i 2.39003 2.39003i
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) −68.3179 −3.43311
\(397\) 12.8718 12.8718i 0.646018 0.646018i −0.306010 0.952028i \(-0.598994\pi\)
0.952028 + 0.306010i \(0.0989941\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 65.7997 + 37.8651i 3.28999 + 1.89325i
\(401\) −37.8726 −1.89127 −0.945634 0.325234i \(-0.894557\pi\)
−0.945634 + 0.325234i \(0.894557\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −5.19484 + 19.4426i −0.258133 + 0.966109i
\(406\) 0 0
\(407\) −25.7252 + 25.7252i −1.27515 + 1.27515i
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 59.8711 59.8711i 2.94964 2.94964i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 63.0063 + 63.0063i 3.08174 + 3.08174i
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 23.5047 + 23.5047i 1.14284 + 1.14284i
\(424\) 0 0
\(425\) −33.6359 + 9.06391i −1.63158 + 0.439664i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) −18.4799 + 69.1641i −0.891179 + 3.33539i
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 39.8596i 1.90240i 0.308582 + 0.951198i \(0.400145\pi\)
−0.308582 + 0.951198i \(0.599855\pi\)
\(440\) −76.7251 + 44.3699i −3.65773 + 2.11525i
\(441\) 21.0000 1.00000
\(442\) 0 0
\(443\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 48.1271 2.27888
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 10.6831 + 39.6447i 0.503606 + 1.86887i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 5.84184i 0.274171i
\(455\) 0 0
\(456\) 0 0
\(457\) 30.2287 30.2287i 1.41404 1.41404i 0.695927 0.718112i \(-0.254994\pi\)
0.718112 0.695927i \(-0.245006\pi\)
\(458\) −42.9105 42.9105i −2.00507 2.00507i
\(459\) 0 0
\(460\) 0 0
\(461\) 15.3522 0.715022 0.357511 0.933909i \(-0.383625\pi\)
0.357511 + 0.933909i \(0.383625\pi\)
\(462\) 0 0
\(463\) −7.27359 7.27359i −0.338032 0.338032i 0.517594 0.855626i \(-0.326828\pi\)
−0.855626 + 0.517594i \(0.826828\pi\)
\(464\) 16.5432i 0.768000i
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 65.5203 + 17.5063i 3.02223 + 0.807505i
\(471\) 0 0
\(472\) 89.2763 89.2763i 4.10927 4.10927i
\(473\) −34.2906 34.2906i −1.57668 1.57668i
\(474\) 0 0
\(475\) 19.5802 34.0253i 0.898401 1.56119i
\(476\) 0 0
\(477\) 0 0
\(478\) 23.0694 + 23.0694i 1.05517 + 1.05517i
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −36.5895 + 36.5895i −1.66661 + 1.66661i
\(483\) 0 0
\(484\) 33.9984i 1.54538i
\(485\) −4.42945 7.65947i −0.201131 0.347799i
\(486\) 0 0
\(487\) −2.41411 + 2.41411i −0.109394 + 0.109394i −0.759685 0.650291i \(-0.774647\pi\)
0.650291 + 0.759685i \(0.274647\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 37.0895 21.4488i 1.67554 0.968957i
\(491\) 21.7007 0.979340 0.489670 0.871908i \(-0.337117\pi\)
0.489670 + 0.871908i \(0.337117\pi\)
\(492\) 0 0
\(493\) −5.36776 5.36776i −0.241752 0.241752i
\(494\) 0 0
\(495\) −26.8701 7.17938i −1.20772 0.322689i
\(496\) −154.212 −6.92433
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 43.5151 + 43.3302i 1.94605 + 1.93778i
\(501\) 0 0
\(502\) −47.5685 + 47.5685i −2.12309 + 2.12309i
\(503\) 9.41835 + 9.41835i 0.419943 + 0.419943i 0.885184 0.465241i \(-0.154032\pi\)
−0.465241 + 0.885184i \(0.654032\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) −75.2118 75.2118i −3.33699 3.33699i
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −35.6477 + 35.6477i −1.57542 + 1.57542i
\(513\) 0 0
\(514\) 0 0
\(515\) 29.8396 17.2561i 1.31489 0.760396i
\(516\) 0 0
\(517\) −32.4840 + 32.4840i −1.42865 + 1.42865i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −45.5158 −1.99409 −0.997043 0.0768521i \(-0.975513\pi\)
−0.997043 + 0.0768521i \(0.975513\pi\)
\(522\) −6.32666 + 6.32666i −0.276910 + 0.276910i
\(523\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 50.0370 50.0370i 2.17965 2.17965i
\(528\) 0 0
\(529\) 23.0000i 1.00000i
\(530\) 0 0
\(531\) 39.6195 1.71934
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) −9.54937 9.54937i −0.411702 0.411702i
\(539\) 29.0225i 1.25009i
\(540\) 0 0
\(541\) −46.3986 −1.99483 −0.997417 0.0718303i \(-0.977116\pi\)
−0.997417 + 0.0718303i \(0.977116\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 156.347i 6.70332i
\(545\) 0 0
\(546\) 0 0
\(547\) −2.23892 + 2.23892i −0.0957295 + 0.0957295i −0.753350 0.657620i \(-0.771563\pi\)
0.657620 + 0.753350i \(0.271563\pi\)
\(548\) −15.6748 15.6748i −0.669595 0.669595i
\(549\) 0 0
\(550\) −54.7899 + 14.7643i −2.33625 + 0.629551i
\(551\) 8.55458 0.364437
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 127.992 5.42808
\(557\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(558\) −58.9757 58.9757i −2.49664 2.49664i
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −5.32803 5.32803i −0.224550 0.224550i 0.585862 0.810411i \(-0.300756\pi\)
−0.810411 + 0.585862i \(0.800756\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 46.8448i 1.96384i −0.189308 0.981918i \(-0.560624\pi\)
0.189308 0.981918i \(-0.439376\pi\)
\(570\) 0 0
\(571\) −1.38743 −0.0580620 −0.0290310 0.999579i \(-0.509242\pi\)
−0.0290310 + 0.999579i \(0.509242\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −93.1767 −3.88236
\(577\) −21.7695 + 21.7695i −0.906274 + 0.906274i −0.995969 0.0896949i \(-0.971411\pi\)
0.0896949 + 0.995969i \(0.471411\pi\)
\(578\) 61.0492 + 61.0492i 2.53931 + 2.53931i
\(579\) 0 0
\(580\) −3.45429 + 12.9283i −0.143432 + 0.536818i
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(588\) 0 0
\(589\) 79.7438i 3.28579i
\(590\) 69.9747 40.4662i 2.88081 1.66597i
\(591\) 0 0
\(592\) −94.2086 + 94.2086i −3.87195 + 3.87195i
\(593\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −48.0158 −1.95861 −0.979304 0.202397i \(-0.935127\pi\)
−0.979304 + 0.202397i \(0.935127\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 67.4941i 2.74629i
\(605\) 3.57282 13.3719i 0.145256 0.543645i
\(606\) 0 0
\(607\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(608\) 124.585 + 124.585i 5.05258 + 5.05258i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 81.1781 81.1781i 3.28143 3.28143i
\(613\) 21.5764 + 21.5764i 0.871463 + 0.871463i 0.992632 0.121169i \(-0.0386643\pi\)
−0.121169 + 0.992632i \(0.538664\pi\)
\(614\) 86.2689i 3.48153i
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) −120.514 32.2001i −4.83998 1.29319i
\(621\) 0 0
\(622\) 6.94129 6.94129i 0.278320 0.278320i
\(623\) 0 0
\(624\) 0 0
\(625\) 12.5614 + 21.6151i 0.502456 + 0.864603i
\(626\) 14.0923 0.563244
\(627\) 0 0
\(628\) 0 0
\(629\) 61.1354i 2.43763i
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −21.6777 37.4854i −0.860252 1.48756i
\(636\) 0 0
\(637\) 0 0
\(638\) −8.74359 8.74359i −0.346162 0.346162i
\(639\) 0 0
\(640\) −77.6895 + 44.9276i −3.07095 + 1.77592i
\(641\) 38.3956 1.51653 0.758267 0.651944i \(-0.226046\pi\)
0.758267 + 0.651944i \(0.226046\pi\)
\(642\) 0 0
\(643\) −25.6405 25.6405i −1.01116 1.01116i −0.999937 0.0112267i \(-0.996426\pi\)
−0.0112267 0.999937i \(-0.503574\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −149.733 −5.89117
\(647\) 13.9185 13.9185i 0.547195 0.547195i −0.378434 0.925628i \(-0.623537\pi\)
0.925628 + 0.378434i \(0.123537\pi\)
\(648\) −60.8403 60.8403i −2.39003 2.39003i
\(649\) 54.7550i 2.14932i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 31.5764 + 31.5764i 1.23568 + 1.23568i 0.961749 + 0.273931i \(0.0883240\pi\)
0.273931 + 0.961749i \(0.411676\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 42.0140i 1.63663i 0.574767 + 0.818317i \(0.305093\pi\)
−0.574767 + 0.818317i \(0.694907\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) −3.97069 + 3.97069i −0.154325 + 0.154325i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) −72.0567 −2.79214
\(667\) 0 0
\(668\) 45.5237 + 45.5237i 1.76137 + 1.76137i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 3.18652 + 3.18652i 0.122831 + 0.122831i 0.765850 0.643019i \(-0.222318\pi\)
−0.643019 + 0.765850i \(0.722318\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 71.4037 2.74629
\(677\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 38.4458 143.890i 1.47433 5.51793i
\(681\) 0 0
\(682\) 81.5057 81.5057i 3.12101 3.12101i
\(683\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(684\) 129.373i 4.94671i
\(685\) −4.51782 7.81228i −0.172617 0.298492i
\(686\) 0 0
\(687\) 0 0
\(688\) −125.576 125.576i −4.78754 4.78754i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 101.436 101.436i 3.85602 3.85602i
\(693\) 0 0
\(694\) 6.62647i 0.251538i
\(695\) 50.3405 + 13.4504i 1.90952 + 0.510203i
\(696\) 0 0
\(697\) 0 0
\(698\) 61.8141 + 61.8141i 2.33970 + 2.33970i
\(699\) 0 0
\(700\) 0 0
\(701\) −34.8546 −1.31644 −0.658219 0.752826i \(-0.728690\pi\)
−0.658219 + 0.752826i \(0.728690\pi\)
\(702\) 0 0
\(703\) 48.7157 + 48.7157i 1.83735 + 1.83735i
\(704\) 128.772i 4.85329i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 23.0070i 0.864046i 0.901863 + 0.432023i \(0.142200\pi\)
−0.901863 + 0.432023i \(0.857800\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) −98.4012 26.2917i −3.66720 0.979834i
\(721\) 0 0
\(722\) 82.5396 82.5396i 3.07180 3.07180i
\(723\) 0 0
\(724\) 0 0
\(725\) −2.71721 + 4.72181i −0.100915 + 0.175364i
\(726\) 0 0
\(727\) 11.7118 11.7118i 0.434366 0.434366i −0.455744 0.890111i \(-0.650627\pi\)
0.890111 + 0.455744i \(0.150627\pi\)
\(728\) 0 0
\(729\) 27.0000i 1.00000i
\(730\) 0 0
\(731\) 81.4909 3.01405
\(732\) 0 0
\(733\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) −93.2937 + 53.9514i −3.42954 + 1.98329i
\(741\) 0 0
\(742\) 0 0
\(743\) −35.7192 35.7192i −1.31041 1.31041i −0.921110 0.389301i \(-0.872716\pi\)
−0.389301 0.921110i \(-0.627284\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 112.190 + 112.190i 4.10207 + 4.10207i
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) −118.960 + 118.960i −4.33803 + 4.33803i
\(753\) 0 0
\(754\) 0 0
\(755\) 7.09280 26.5460i 0.258133 0.966109i
\(756\) 0 0
\(757\) −15.1963 + 15.1963i −0.552318 + 0.552318i −0.927109 0.374791i \(-0.877714\pi\)
0.374791 + 0.927109i \(0.377714\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 84.0231 + 145.294i 3.04784 + 5.27037i
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 116.023i 4.19757i
\(765\) 40.4589 23.3973i 1.46280 0.845930i
\(766\) 73.9540 2.67206
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −106.948 + 106.948i −3.84913 + 3.84913i
\(773\) 11.5764 + 11.5764i 0.416375 + 0.416375i 0.883952 0.467578i \(-0.154873\pi\)
−0.467578 + 0.883952i \(0.654873\pi\)
\(774\) 96.0486i 3.45239i
\(775\) −44.0156 25.3292i −1.58109 0.909851i
\(776\) 37.8290 1.35798
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 106.284i 3.79584i
\(785\) 0 0
\(786\) 0 0
\(787\) −17.1266 + 17.1266i −0.610499 + 0.610499i −0.943076 0.332577i \(-0.892082\pi\)
0.332577 + 0.943076i \(0.392082\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 84.0826 84.0826i 2.98775 2.98775i
\(793\) 0 0
\(794\) 49.8277i 1.76832i
\(795\) 0 0
\(796\) 0 0
\(797\) 16.9412 16.9412i 0.600089 0.600089i −0.340247 0.940336i \(-0.610511\pi\)
0.940336 + 0.340247i \(0.110511\pi\)
\(798\) 0 0
\(799\) 77.1977i 2.73106i
\(800\) −108.338 + 29.1940i −3.83033 + 1.03216i
\(801\) 0 0
\(802\) 73.3037 73.3037i 2.58844 2.58844i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) −27.5770 47.6866i −0.968957 1.67554i
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 99.5840i 3.49042i
\(815\) 0 0
\(816\) 0 0
\(817\) −64.9359 + 64.9359i −2.27182 + 2.27182i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 33.3827 + 33.3827i 1.16365 + 1.16365i 0.983671 + 0.179976i \(0.0576019\pi\)
0.179976 + 0.983671i \(0.442398\pi\)
\(824\) 147.373i 5.13399i
\(825\) 0 0
\(826\) 0 0
\(827\) −38.2882 + 38.2882i −1.33141 + 1.33141i −0.427303 + 0.904109i \(0.640536\pi\)
−0.904109 + 0.427303i \(0.859464\pi\)
\(828\) 0 0
\(829\) 49.1528i 1.70715i −0.520972 0.853574i \(-0.674430\pi\)
0.520972 0.853574i \(-0.325570\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −34.4857 34.4857i −1.19486 1.19486i
\(834\) 0 0
\(835\) 13.1209 + 22.6889i 0.454068 + 0.785181i
\(836\) −178.797 −6.18382
\(837\) 0 0
\(838\) 0 0
\(839\) 36.4883i 1.25971i 0.776711 + 0.629857i \(0.216887\pi\)
−0.776711 + 0.629857i \(0.783113\pi\)
\(840\) 0 0
\(841\) 27.8129 0.959064
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 28.0837 + 7.50365i 0.966109 + 0.258133i
\(846\) −90.9884 −3.12825
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 47.5600 82.6471i 1.63130 2.83477i
\(851\) 0 0
\(852\) 0 0
\(853\) 7.97982 + 7.97982i 0.273224 + 0.273224i 0.830397 0.557173i \(-0.188114\pi\)
−0.557173 + 0.830397i \(0.688114\pi\)
\(854\) 0 0
\(855\) −13.5956 + 50.8837i −0.464958 + 1.74019i
\(856\) 0 0
\(857\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) −71.9150 124.356i −2.45228 4.24052i
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(864\) 0 0
\(865\) 50.5554 29.2360i 1.71894 0.994055i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 8.39397 + 8.39397i 0.284093 + 0.284093i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(878\) −77.1497 77.1497i −2.60367 2.60367i
\(879\) 0 0
\(880\) 36.3357 135.993i 1.22488 4.58431i
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) −40.6462 + 40.6462i −1.36863 + 1.36863i
\(883\) 41.9916 + 41.9916i 1.41313 + 1.41313i 0.734224 + 0.678907i \(0.237546\pi\)
0.678907 + 0.734224i \(0.262454\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 37.3146 1.25009
\(892\) −68.2866 + 68.2866i −2.28641 + 2.28641i
\(893\) 61.5149 + 61.5149i 2.05852 + 2.05852i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 11.0663i 0.369082i
\(900\) −71.4092 41.0931i −2.38031 1.36977i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −20.8123 + 20.8123i −0.691061 + 0.691061i −0.962465 0.271404i \(-0.912512\pi\)
0.271404 + 0.962465i \(0.412512\pi\)
\(908\) 8.28888 + 8.28888i 0.275076 + 0.275076i
\(909\) 0 0
\(910\) 0 0
\(911\) 5.08270 0.168397 0.0841986 0.996449i \(-0.473167\pi\)
0.0841986 + 0.996449i \(0.473167\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 117.017i 3.87059i
\(915\) 0 0
\(916\) 121.770 4.02339
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −29.7147 + 29.7147i −0.978601 + 0.978601i
\(923\) 0 0
\(924\) 0 0
\(925\) −42.3629 + 11.4156i −1.39288 + 0.375342i
\(926\) 28.1566 0.925282
\(927\) −32.7010 + 32.7010i −1.07404 + 1.07404i
\(928\) −17.2890 17.2890i −0.567541 0.567541i
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) 54.9597 1.80123
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 32.3356 + 55.9151i 1.05749 + 1.82862i
\(936\) 0 0
\(937\) 37.2537 37.2537i 1.21703 1.21703i 0.248358 0.968668i \(-0.420109\pi\)
0.968668 0.248358i \(-0.0798910\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −117.805 + 68.1262i −3.84237 + 2.22203i
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 200.519i 6.52634i
\(945\) 0 0
\(946\) 132.741 4.31579
\(947\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 27.9591 + 103.755i 0.907112 + 3.36627i
\(951\) 0 0
\(952\) 0 0
\(953\) −39.7336 39.7336i −1.28710 1.28710i −0.936542 0.350555i \(-0.885993\pi\)
−0.350555 0.936542i \(-0.614007\pi\)
\(954\) 0 0
\(955\) −12.1926 + 45.6330i −0.394544 + 1.47665i
\(956\) −65.4656 −2.11731
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 72.1576 2.32766
\(962\) 0 0
\(963\) 0 0
\(964\) 103.832i 3.34421i
\(965\) −53.3023 + 30.8246i −1.71586 + 0.992278i
\(966\) 0 0
\(967\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(968\) 41.8437 + 41.8437i 1.34491 + 1.34491i
\(969\) 0 0
\(970\) 23.3985 + 6.25182i 0.751281 + 0.200734i
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 9.34519i 0.299439i
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −22.1924 + 83.0590i −0.708911 + 2.65322i
\(981\) 0 0
\(982\) −42.0025 + 42.0025i −1.34035 + 1.34035i
\(983\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 20.7790 0.661737
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 65.9039 38.1120i 2.09456 1.21128i
\(991\) 16.7653 0.532568 0.266284 0.963895i \(-0.414204\pi\)
0.266284 + 0.963895i \(0.414204\pi\)
\(992\) 161.164 161.164i 5.11698 5.11698i
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 10.0854 10.0854i 0.319409 0.319409i −0.529131 0.848540i \(-0.677482\pi\)
0.848540 + 0.529131i \(0.177482\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 755.2.f.d.603.1 yes 28
5.2 odd 4 inner 755.2.f.d.452.1 28
151.150 odd 2 CM 755.2.f.d.603.1 yes 28
755.452 even 4 inner 755.2.f.d.452.1 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
755.2.f.d.452.1 28 5.2 odd 4 inner
755.2.f.d.452.1 28 755.452 even 4 inner
755.2.f.d.603.1 yes 28 1.1 even 1 trivial
755.2.f.d.603.1 yes 28 151.150 odd 2 CM