Properties

Label 750.3.f.c.307.8
Level $750$
Weight $3$
Character 750.307
Analytic conductor $20.436$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [750,3,Mod(193,750)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("750.193"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(750, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 750 = 2 \cdot 3 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 750.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,16,0,0,0,0,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.4360198270\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: 16.0.6879707136000000000000.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 21x^{12} + 86x^{8} + 36x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{8}\cdot 5^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 307.8
Root \(0.575212 + 0.575212i\) of defining polynomial
Character \(\chi\) \(=\) 750.307
Dual form 750.3.f.c.193.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 + 1.00000i) q^{2} +(1.22474 - 1.22474i) q^{3} +2.00000i q^{4} +2.44949 q^{6} +(3.25953 + 3.25953i) q^{7} +(-2.00000 + 2.00000i) q^{8} -3.00000i q^{9} +10.3780 q^{11} +(2.44949 + 2.44949i) q^{12} +(3.45217 - 3.45217i) q^{13} +6.51907i q^{14} -4.00000 q^{16} +(3.95806 + 3.95806i) q^{17} +(3.00000 - 3.00000i) q^{18} +3.80019i q^{19} +7.98420 q^{21} +(10.3780 + 10.3780i) q^{22} +(7.19505 - 7.19505i) q^{23} +4.89898i q^{24} +6.90433 q^{26} +(-3.67423 - 3.67423i) q^{27} +(-6.51907 + 6.51907i) q^{28} +21.2791i q^{29} +22.4937 q^{31} +(-4.00000 - 4.00000i) q^{32} +(12.7104 - 12.7104i) q^{33} +7.91612i q^{34} +6.00000 q^{36} +(28.5269 + 28.5269i) q^{37} +(-3.80019 + 3.80019i) q^{38} -8.45604i q^{39} -26.1336 q^{41} +(7.98420 + 7.98420i) q^{42} +(-3.75315 + 3.75315i) q^{43} +20.7560i q^{44} +14.3901 q^{46} +(61.3876 + 61.3876i) q^{47} +(-4.89898 + 4.89898i) q^{48} -27.7509i q^{49} +9.69522 q^{51} +(6.90433 + 6.90433i) q^{52} +(-19.1975 + 19.1975i) q^{53} -7.34847i q^{54} -13.0381 q^{56} +(4.65427 + 4.65427i) q^{57} +(-21.2791 + 21.2791i) q^{58} -39.1066i q^{59} +82.6505 q^{61} +(22.4937 + 22.4937i) q^{62} +(9.77860 - 9.77860i) q^{63} -8.00000i q^{64} +25.4208 q^{66} +(43.8132 + 43.8132i) q^{67} +(-7.91612 + 7.91612i) q^{68} -17.6242i q^{69} -59.6858 q^{71} +(6.00000 + 6.00000i) q^{72} +(-66.8754 + 66.8754i) q^{73} +57.0539i q^{74} -7.60039 q^{76} +(33.8275 + 33.8275i) q^{77} +(8.45604 - 8.45604i) q^{78} -120.001i q^{79} -9.00000 q^{81} +(-26.1336 - 26.1336i) q^{82} +(88.5686 - 88.5686i) q^{83} +15.9684i q^{84} -7.50629 q^{86} +(26.0615 + 26.0615i) q^{87} +(-20.7560 + 20.7560i) q^{88} -88.3609i q^{89} +22.5049 q^{91} +(14.3901 + 14.3901i) q^{92} +(27.5490 - 27.5490i) q^{93} +122.775i q^{94} -9.79796 q^{96} +(71.9212 + 71.9212i) q^{97} +(27.7509 - 27.7509i) q^{98} -31.1340i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 16 q^{2} - 24 q^{7} - 32 q^{8} - 24 q^{11} + 48 q^{13} - 64 q^{16} + 16 q^{17} + 48 q^{18} - 48 q^{21} - 24 q^{22} - 104 q^{23} + 96 q^{26} + 48 q^{28} + 200 q^{31} - 64 q^{32} + 48 q^{33} + 96 q^{36}+ \cdots + 224 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/750\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(251\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 + 1.00000i 0.500000 + 0.500000i
\(3\) 1.22474 1.22474i 0.408248 0.408248i
\(4\) 2.00000i 0.500000i
\(5\) 0 0
\(6\) 2.44949 0.408248
\(7\) 3.25953 + 3.25953i 0.465648 + 0.465648i 0.900501 0.434853i \(-0.143200\pi\)
−0.434853 + 0.900501i \(0.643200\pi\)
\(8\) −2.00000 + 2.00000i −0.250000 + 0.250000i
\(9\) 3.00000i 0.333333i
\(10\) 0 0
\(11\) 10.3780 0.943455 0.471727 0.881744i \(-0.343631\pi\)
0.471727 + 0.881744i \(0.343631\pi\)
\(12\) 2.44949 + 2.44949i 0.204124 + 0.204124i
\(13\) 3.45217 3.45217i 0.265551 0.265551i −0.561753 0.827305i \(-0.689873\pi\)
0.827305 + 0.561753i \(0.189873\pi\)
\(14\) 6.51907i 0.465648i
\(15\) 0 0
\(16\) −4.00000 −0.250000
\(17\) 3.95806 + 3.95806i 0.232827 + 0.232827i 0.813872 0.581045i \(-0.197356\pi\)
−0.581045 + 0.813872i \(0.697356\pi\)
\(18\) 3.00000 3.00000i 0.166667 0.166667i
\(19\) 3.80019i 0.200010i 0.994987 + 0.100005i \(0.0318859\pi\)
−0.994987 + 0.100005i \(0.968114\pi\)
\(20\) 0 0
\(21\) 7.98420 0.380200
\(22\) 10.3780 + 10.3780i 0.471727 + 0.471727i
\(23\) 7.19505 7.19505i 0.312828 0.312828i −0.533176 0.846004i \(-0.679002\pi\)
0.846004 + 0.533176i \(0.179002\pi\)
\(24\) 4.89898i 0.204124i
\(25\) 0 0
\(26\) 6.90433 0.265551
\(27\) −3.67423 3.67423i −0.136083 0.136083i
\(28\) −6.51907 + 6.51907i −0.232824 + 0.232824i
\(29\) 21.2791i 0.733763i 0.930268 + 0.366882i \(0.119575\pi\)
−0.930268 + 0.366882i \(0.880425\pi\)
\(30\) 0 0
\(31\) 22.4937 0.725603 0.362802 0.931866i \(-0.381820\pi\)
0.362802 + 0.931866i \(0.381820\pi\)
\(32\) −4.00000 4.00000i −0.125000 0.125000i
\(33\) 12.7104 12.7104i 0.385164 0.385164i
\(34\) 7.91612i 0.232827i
\(35\) 0 0
\(36\) 6.00000 0.166667
\(37\) 28.5269 + 28.5269i 0.770998 + 0.770998i 0.978281 0.207283i \(-0.0664620\pi\)
−0.207283 + 0.978281i \(0.566462\pi\)
\(38\) −3.80019 + 3.80019i −0.100005 + 0.100005i
\(39\) 8.45604i 0.216822i
\(40\) 0 0
\(41\) −26.1336 −0.637404 −0.318702 0.947855i \(-0.603247\pi\)
−0.318702 + 0.947855i \(0.603247\pi\)
\(42\) 7.98420 + 7.98420i 0.190100 + 0.190100i
\(43\) −3.75315 + 3.75315i −0.0872825 + 0.0872825i −0.749400 0.662118i \(-0.769658\pi\)
0.662118 + 0.749400i \(0.269658\pi\)
\(44\) 20.7560i 0.471727i
\(45\) 0 0
\(46\) 14.3901 0.312828
\(47\) 61.3876 + 61.3876i 1.30612 + 1.30612i 0.924193 + 0.381925i \(0.124739\pi\)
0.381925 + 0.924193i \(0.375261\pi\)
\(48\) −4.89898 + 4.89898i −0.102062 + 0.102062i
\(49\) 27.7509i 0.566344i
\(50\) 0 0
\(51\) 9.69522 0.190102
\(52\) 6.90433 + 6.90433i 0.132776 + 0.132776i
\(53\) −19.1975 + 19.1975i −0.362217 + 0.362217i −0.864629 0.502412i \(-0.832446\pi\)
0.502412 + 0.864629i \(0.332446\pi\)
\(54\) 7.34847i 0.136083i
\(55\) 0 0
\(56\) −13.0381 −0.232824
\(57\) 4.65427 + 4.65427i 0.0816538 + 0.0816538i
\(58\) −21.2791 + 21.2791i −0.366882 + 0.366882i
\(59\) 39.1066i 0.662824i −0.943486 0.331412i \(-0.892475\pi\)
0.943486 0.331412i \(-0.107525\pi\)
\(60\) 0 0
\(61\) 82.6505 1.35493 0.677463 0.735557i \(-0.263079\pi\)
0.677463 + 0.735557i \(0.263079\pi\)
\(62\) 22.4937 + 22.4937i 0.362802 + 0.362802i
\(63\) 9.77860 9.77860i 0.155216 0.155216i
\(64\) 8.00000i 0.125000i
\(65\) 0 0
\(66\) 25.4208 0.385164
\(67\) 43.8132 + 43.8132i 0.653928 + 0.653928i 0.953936 0.300009i \(-0.0969896\pi\)
−0.300009 + 0.953936i \(0.596990\pi\)
\(68\) −7.91612 + 7.91612i −0.116413 + 0.116413i
\(69\) 17.6242i 0.255423i
\(70\) 0 0
\(71\) −59.6858 −0.840645 −0.420323 0.907375i \(-0.638083\pi\)
−0.420323 + 0.907375i \(0.638083\pi\)
\(72\) 6.00000 + 6.00000i 0.0833333 + 0.0833333i
\(73\) −66.8754 + 66.8754i −0.916101 + 0.916101i −0.996743 0.0806423i \(-0.974303\pi\)
0.0806423 + 0.996743i \(0.474303\pi\)
\(74\) 57.0539i 0.770998i
\(75\) 0 0
\(76\) −7.60039 −0.100005
\(77\) 33.8275 + 33.8275i 0.439318 + 0.439318i
\(78\) 8.45604 8.45604i 0.108411 0.108411i
\(79\) 120.001i 1.51901i −0.650504 0.759503i \(-0.725442\pi\)
0.650504 0.759503i \(-0.274558\pi\)
\(80\) 0 0
\(81\) −9.00000 −0.111111
\(82\) −26.1336 26.1336i −0.318702 0.318702i
\(83\) 88.5686 88.5686i 1.06709 1.06709i 0.0695105 0.997581i \(-0.477856\pi\)
0.997581 0.0695105i \(-0.0221437\pi\)
\(84\) 15.9684i 0.190100i
\(85\) 0 0
\(86\) −7.50629 −0.0872825
\(87\) 26.0615 + 26.0615i 0.299558 + 0.299558i
\(88\) −20.7560 + 20.7560i −0.235864 + 0.235864i
\(89\) 88.3609i 0.992819i −0.868089 0.496409i \(-0.834652\pi\)
0.868089 0.496409i \(-0.165348\pi\)
\(90\) 0 0
\(91\) 22.5049 0.247307
\(92\) 14.3901 + 14.3901i 0.156414 + 0.156414i
\(93\) 27.5490 27.5490i 0.296226 0.296226i
\(94\) 122.775i 1.30612i
\(95\) 0 0
\(96\) −9.79796 −0.102062
\(97\) 71.9212 + 71.9212i 0.741456 + 0.741456i 0.972858 0.231402i \(-0.0743314\pi\)
−0.231402 + 0.972858i \(0.574331\pi\)
\(98\) 27.7509 27.7509i 0.283172 0.283172i
\(99\) 31.1340i 0.314485i
\(100\) 0 0
\(101\) −157.358 −1.55800 −0.779000 0.627023i \(-0.784273\pi\)
−0.779000 + 0.627023i \(0.784273\pi\)
\(102\) 9.69522 + 9.69522i 0.0950512 + 0.0950512i
\(103\) −43.2518 + 43.2518i −0.419920 + 0.419920i −0.885176 0.465256i \(-0.845962\pi\)
0.465256 + 0.885176i \(0.345962\pi\)
\(104\) 13.8087i 0.132776i
\(105\) 0 0
\(106\) −38.3950 −0.362217
\(107\) −0.412082 0.412082i −0.00385123 0.00385123i 0.705179 0.709030i \(-0.250867\pi\)
−0.709030 + 0.705179i \(0.750867\pi\)
\(108\) 7.34847 7.34847i 0.0680414 0.0680414i
\(109\) 22.5380i 0.206771i −0.994641 0.103385i \(-0.967032\pi\)
0.994641 0.103385i \(-0.0329675\pi\)
\(110\) 0 0
\(111\) 69.8764 0.629517
\(112\) −13.0381 13.0381i −0.116412 0.116412i
\(113\) 29.7957 29.7957i 0.263679 0.263679i −0.562868 0.826547i \(-0.690302\pi\)
0.826547 + 0.562868i \(0.190302\pi\)
\(114\) 9.30854i 0.0816538i
\(115\) 0 0
\(116\) −42.5583 −0.366882
\(117\) −10.3565 10.3565i −0.0885171 0.0885171i
\(118\) 39.1066 39.1066i 0.331412 0.331412i
\(119\) 25.8029i 0.216831i
\(120\) 0 0
\(121\) −13.2970 −0.109893
\(122\) 82.6505 + 82.6505i 0.677463 + 0.677463i
\(123\) −32.0069 + 32.0069i −0.260219 + 0.260219i
\(124\) 44.9874i 0.362802i
\(125\) 0 0
\(126\) 19.5572 0.155216
\(127\) 101.603 + 101.603i 0.800021 + 0.800021i 0.983099 0.183077i \(-0.0586059\pi\)
−0.183077 + 0.983099i \(0.558606\pi\)
\(128\) 8.00000 8.00000i 0.0625000 0.0625000i
\(129\) 9.19330i 0.0712659i
\(130\) 0 0
\(131\) −230.730 −1.76130 −0.880648 0.473771i \(-0.842892\pi\)
−0.880648 + 0.473771i \(0.842892\pi\)
\(132\) 25.4208 + 25.4208i 0.192582 + 0.192582i
\(133\) −12.3869 + 12.3869i −0.0931343 + 0.0931343i
\(134\) 87.6263i 0.653928i
\(135\) 0 0
\(136\) −15.8322 −0.116413
\(137\) −107.410 107.410i −0.784012 0.784012i 0.196493 0.980505i \(-0.437045\pi\)
−0.980505 + 0.196493i \(0.937045\pi\)
\(138\) 17.6242 17.6242i 0.127712 0.127712i
\(139\) 25.1870i 0.181201i −0.995887 0.0906007i \(-0.971121\pi\)
0.995887 0.0906007i \(-0.0288787\pi\)
\(140\) 0 0
\(141\) 150.368 1.06644
\(142\) −59.6858 59.6858i −0.420323 0.420323i
\(143\) 35.8266 35.8266i 0.250536 0.250536i
\(144\) 12.0000i 0.0833333i
\(145\) 0 0
\(146\) −133.751 −0.916101
\(147\) −33.9877 33.9877i −0.231209 0.231209i
\(148\) −57.0539 + 57.0539i −0.385499 + 0.385499i
\(149\) 236.105i 1.58460i −0.610132 0.792300i \(-0.708884\pi\)
0.610132 0.792300i \(-0.291116\pi\)
\(150\) 0 0
\(151\) −228.749 −1.51489 −0.757447 0.652896i \(-0.773554\pi\)
−0.757447 + 0.652896i \(0.773554\pi\)
\(152\) −7.60039 7.60039i −0.0500025 0.0500025i
\(153\) 11.8742 11.8742i 0.0776090 0.0776090i
\(154\) 67.6549i 0.439318i
\(155\) 0 0
\(156\) 16.9121 0.108411
\(157\) −179.990 179.990i −1.14643 1.14643i −0.987249 0.159183i \(-0.949114\pi\)
−0.159183 0.987249i \(-0.550886\pi\)
\(158\) 120.001 120.001i 0.759503 0.759503i
\(159\) 47.0241i 0.295749i
\(160\) 0 0
\(161\) 46.9050 0.291335
\(162\) −9.00000 9.00000i −0.0555556 0.0555556i
\(163\) −116.681 + 116.681i −0.715831 + 0.715831i −0.967749 0.251917i \(-0.918939\pi\)
0.251917 + 0.967749i \(0.418939\pi\)
\(164\) 52.2671i 0.318702i
\(165\) 0 0
\(166\) 177.137 1.06709
\(167\) −111.143 111.143i −0.665528 0.665528i 0.291150 0.956677i \(-0.405962\pi\)
−0.956677 + 0.291150i \(0.905962\pi\)
\(168\) −15.9684 + 15.9684i −0.0950499 + 0.0950499i
\(169\) 145.165i 0.858965i
\(170\) 0 0
\(171\) 11.4006 0.0666701
\(172\) −7.50629 7.50629i −0.0436412 0.0436412i
\(173\) −130.368 + 130.368i −0.753572 + 0.753572i −0.975144 0.221572i \(-0.928881\pi\)
0.221572 + 0.975144i \(0.428881\pi\)
\(174\) 52.1230i 0.299558i
\(175\) 0 0
\(176\) −41.5120 −0.235864
\(177\) −47.8957 47.8957i −0.270597 0.270597i
\(178\) 88.3609 88.3609i 0.496409 0.496409i
\(179\) 125.012i 0.698389i 0.937050 + 0.349194i \(0.113545\pi\)
−0.937050 + 0.349194i \(0.886455\pi\)
\(180\) 0 0
\(181\) 261.923 1.44709 0.723544 0.690279i \(-0.242512\pi\)
0.723544 + 0.690279i \(0.242512\pi\)
\(182\) 22.5049 + 22.5049i 0.123653 + 0.123653i
\(183\) 101.226 101.226i 0.553146 0.553146i
\(184\) 28.7802i 0.156414i
\(185\) 0 0
\(186\) 55.0981 0.296226
\(187\) 41.0767 + 41.0767i 0.219662 + 0.219662i
\(188\) −122.775 + 122.775i −0.653059 + 0.653059i
\(189\) 23.9526i 0.126733i
\(190\) 0 0
\(191\) −207.160 −1.08460 −0.542302 0.840183i \(-0.682447\pi\)
−0.542302 + 0.840183i \(0.682447\pi\)
\(192\) −9.79796 9.79796i −0.0510310 0.0510310i
\(193\) 141.876 141.876i 0.735111 0.735111i −0.236516 0.971627i \(-0.576006\pi\)
0.971627 + 0.236516i \(0.0760057\pi\)
\(194\) 143.842i 0.741456i
\(195\) 0 0
\(196\) 55.5018 0.283172
\(197\) −104.952 104.952i −0.532749 0.532749i 0.388641 0.921389i \(-0.372945\pi\)
−0.921389 + 0.388641i \(0.872945\pi\)
\(198\) 31.1340 31.1340i 0.157242 0.157242i
\(199\) 259.207i 1.30255i −0.758842 0.651274i \(-0.774235\pi\)
0.758842 0.651274i \(-0.225765\pi\)
\(200\) 0 0
\(201\) 107.320 0.533930
\(202\) −157.358 157.358i −0.779000 0.779000i
\(203\) −69.3601 + 69.3601i −0.341675 + 0.341675i
\(204\) 19.3904i 0.0950512i
\(205\) 0 0
\(206\) −86.5035 −0.419920
\(207\) −21.5851 21.5851i −0.104276 0.104276i
\(208\) −13.8087 + 13.8087i −0.0663878 + 0.0663878i
\(209\) 39.4384i 0.188701i
\(210\) 0 0
\(211\) 174.522 0.827117 0.413559 0.910477i \(-0.364286\pi\)
0.413559 + 0.910477i \(0.364286\pi\)
\(212\) −38.3950 38.3950i −0.181108 0.181108i
\(213\) −73.0999 + 73.0999i −0.343192 + 0.343192i
\(214\) 0.824163i 0.00385123i
\(215\) 0 0
\(216\) 14.6969 0.0680414
\(217\) 73.3190 + 73.3190i 0.337875 + 0.337875i
\(218\) 22.5380 22.5380i 0.103385 0.103385i
\(219\) 163.811i 0.747993i
\(220\) 0 0
\(221\) 27.3277 0.123655
\(222\) 69.8764 + 69.8764i 0.314759 + 0.314759i
\(223\) −48.0152 + 48.0152i −0.215315 + 0.215315i −0.806521 0.591206i \(-0.798652\pi\)
0.591206 + 0.806521i \(0.298652\pi\)
\(224\) 26.0763i 0.116412i
\(225\) 0 0
\(226\) 59.5914 0.263679
\(227\) 15.9885 + 15.9885i 0.0704340 + 0.0704340i 0.741446 0.671012i \(-0.234140\pi\)
−0.671012 + 0.741446i \(0.734140\pi\)
\(228\) −9.30854 + 9.30854i −0.0408269 + 0.0408269i
\(229\) 66.5652i 0.290678i 0.989382 + 0.145339i \(0.0464273\pi\)
−0.989382 + 0.145339i \(0.953573\pi\)
\(230\) 0 0
\(231\) 82.8600 0.358701
\(232\) −42.5583 42.5583i −0.183441 0.183441i
\(233\) −68.7971 + 68.7971i −0.295267 + 0.295267i −0.839157 0.543890i \(-0.816951\pi\)
0.543890 + 0.839157i \(0.316951\pi\)
\(234\) 20.7130i 0.0885171i
\(235\) 0 0
\(236\) 78.2133 0.331412
\(237\) −146.971 146.971i −0.620131 0.620131i
\(238\) −25.8029 + 25.8029i −0.108415 + 0.108415i
\(239\) 396.575i 1.65931i −0.558278 0.829654i \(-0.688538\pi\)
0.558278 0.829654i \(-0.311462\pi\)
\(240\) 0 0
\(241\) 359.811 1.49299 0.746497 0.665389i \(-0.231734\pi\)
0.746497 + 0.665389i \(0.231734\pi\)
\(242\) −13.2970 13.2970i −0.0549464 0.0549464i
\(243\) −11.0227 + 11.0227i −0.0453609 + 0.0453609i
\(244\) 165.301i 0.677463i
\(245\) 0 0
\(246\) −64.0139 −0.260219
\(247\) 13.1189 + 13.1189i 0.0531130 + 0.0531130i
\(248\) −44.9874 + 44.9874i −0.181401 + 0.181401i
\(249\) 216.948i 0.871277i
\(250\) 0 0
\(251\) −433.572 −1.72738 −0.863689 0.504024i \(-0.831852\pi\)
−0.863689 + 0.504024i \(0.831852\pi\)
\(252\) 19.5572 + 19.5572i 0.0776080 + 0.0776080i
\(253\) 74.6702 74.6702i 0.295139 0.295139i
\(254\) 203.205i 0.800021i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) −215.029 215.029i −0.836689 0.836689i 0.151733 0.988422i \(-0.451515\pi\)
−0.988422 + 0.151733i \(0.951515\pi\)
\(258\) −9.19330 + 9.19330i −0.0356329 + 0.0356329i
\(259\) 185.969i 0.718027i
\(260\) 0 0
\(261\) 63.8374 0.244588
\(262\) −230.730 230.730i −0.880648 0.880648i
\(263\) 26.3760 26.3760i 0.100289 0.100289i −0.655182 0.755471i \(-0.727408\pi\)
0.755471 + 0.655182i \(0.227408\pi\)
\(264\) 50.8416i 0.192582i
\(265\) 0 0
\(266\) −24.7737 −0.0931343
\(267\) −108.220 108.220i −0.405317 0.405317i
\(268\) −87.6263 + 87.6263i −0.326964 + 0.326964i
\(269\) 24.2923i 0.0903059i −0.998980 0.0451530i \(-0.985622\pi\)
0.998980 0.0451530i \(-0.0143775\pi\)
\(270\) 0 0
\(271\) 5.91723 0.0218348 0.0109174 0.999940i \(-0.496525\pi\)
0.0109174 + 0.999940i \(0.496525\pi\)
\(272\) −15.8322 15.8322i −0.0582067 0.0582067i
\(273\) 27.5628 27.5628i 0.100963 0.100963i
\(274\) 214.819i 0.784012i
\(275\) 0 0
\(276\) 35.2484 0.127712
\(277\) 22.3759 + 22.3759i 0.0807792 + 0.0807792i 0.746342 0.665563i \(-0.231808\pi\)
−0.665563 + 0.746342i \(0.731808\pi\)
\(278\) 25.1870 25.1870i 0.0906007 0.0906007i
\(279\) 67.4811i 0.241868i
\(280\) 0 0
\(281\) 26.5064 0.0943288 0.0471644 0.998887i \(-0.484982\pi\)
0.0471644 + 0.998887i \(0.484982\pi\)
\(282\) 150.368 + 150.368i 0.533221 + 0.533221i
\(283\) −85.0173 + 85.0173i −0.300414 + 0.300414i −0.841176 0.540762i \(-0.818136\pi\)
0.540762 + 0.841176i \(0.318136\pi\)
\(284\) 119.372i 0.420323i
\(285\) 0 0
\(286\) 71.6532 0.250536
\(287\) −85.1832 85.1832i −0.296806 0.296806i
\(288\) −12.0000 + 12.0000i −0.0416667 + 0.0416667i
\(289\) 257.668i 0.891583i
\(290\) 0 0
\(291\) 176.170 0.605396
\(292\) −133.751 133.751i −0.458050 0.458050i
\(293\) 103.562 103.562i 0.353454 0.353454i −0.507939 0.861393i \(-0.669592\pi\)
0.861393 + 0.507939i \(0.169592\pi\)
\(294\) 67.9755i 0.231209i
\(295\) 0 0
\(296\) −114.108 −0.385499
\(297\) −38.1312 38.1312i −0.128388 0.128388i
\(298\) 236.105 236.105i 0.792300 0.792300i
\(299\) 49.6770i 0.166144i
\(300\) 0 0
\(301\) −24.4670 −0.0812858
\(302\) −228.749 228.749i −0.757447 0.757447i
\(303\) −192.724 + 192.724i −0.636051 + 0.636051i
\(304\) 15.2008i 0.0500025i
\(305\) 0 0
\(306\) 23.7483 0.0776090
\(307\) −292.105 292.105i −0.951482 0.951482i 0.0473939 0.998876i \(-0.484908\pi\)
−0.998876 + 0.0473939i \(0.984908\pi\)
\(308\) −67.6549 + 67.6549i −0.219659 + 0.219659i
\(309\) 105.945i 0.342863i
\(310\) 0 0
\(311\) 88.6420 0.285023 0.142511 0.989793i \(-0.454482\pi\)
0.142511 + 0.989793i \(0.454482\pi\)
\(312\) 16.9121 + 16.9121i 0.0542054 + 0.0542054i
\(313\) 308.953 308.953i 0.987070 0.987070i −0.0128476 0.999917i \(-0.504090\pi\)
0.999917 + 0.0128476i \(0.00408965\pi\)
\(314\) 359.980i 1.14643i
\(315\) 0 0
\(316\) 240.003 0.759503
\(317\) 63.0305 + 63.0305i 0.198835 + 0.198835i 0.799500 0.600666i \(-0.205098\pi\)
−0.600666 + 0.799500i \(0.705098\pi\)
\(318\) −47.0241 + 47.0241i −0.147874 + 0.147874i
\(319\) 220.835i 0.692272i
\(320\) 0 0
\(321\) −1.00939 −0.00314452
\(322\) 46.9050 + 46.9050i 0.145668 + 0.145668i
\(323\) −15.0414 + 15.0414i −0.0465678 + 0.0465678i
\(324\) 18.0000i 0.0555556i
\(325\) 0 0
\(326\) −233.361 −0.715831
\(327\) −27.6033 27.6033i −0.0844139 0.0844139i
\(328\) 52.2671 52.2671i 0.159351 0.159351i
\(329\) 400.190i 1.21638i
\(330\) 0 0
\(331\) −228.413 −0.690071 −0.345035 0.938590i \(-0.612133\pi\)
−0.345035 + 0.938590i \(0.612133\pi\)
\(332\) 177.137 + 177.137i 0.533546 + 0.533546i
\(333\) 85.5808 85.5808i 0.256999 0.256999i
\(334\) 222.286i 0.665528i
\(335\) 0 0
\(336\) −31.9368 −0.0950499
\(337\) −26.8074 26.8074i −0.0795473 0.0795473i 0.666214 0.745761i \(-0.267914\pi\)
−0.745761 + 0.666214i \(0.767914\pi\)
\(338\) −145.165 + 145.165i −0.429483 + 0.429483i
\(339\) 72.9842i 0.215293i
\(340\) 0 0
\(341\) 233.440 0.684574
\(342\) 11.4006 + 11.4006i 0.0333350 + 0.0333350i
\(343\) 250.172 250.172i 0.729365 0.729365i
\(344\) 15.0126i 0.0436412i
\(345\) 0 0
\(346\) −260.736 −0.753572
\(347\) −345.508 345.508i −0.995700 0.995700i 0.00429061 0.999991i \(-0.498634\pi\)
−0.999991 + 0.00429061i \(0.998634\pi\)
\(348\) −52.1230 + 52.1230i −0.149779 + 0.149779i
\(349\) 195.192i 0.559289i −0.960104 0.279644i \(-0.909783\pi\)
0.960104 0.279644i \(-0.0902165\pi\)
\(350\) 0 0
\(351\) −25.3681 −0.0722739
\(352\) −41.5120 41.5120i −0.117932 0.117932i
\(353\) −49.4995 + 49.4995i −0.140225 + 0.140225i −0.773735 0.633510i \(-0.781614\pi\)
0.633510 + 0.773735i \(0.281614\pi\)
\(354\) 95.7913i 0.270597i
\(355\) 0 0
\(356\) 176.722 0.496409
\(357\) 31.6019 + 31.6019i 0.0885208 + 0.0885208i
\(358\) −125.012 + 125.012i −0.349194 + 0.349194i
\(359\) 452.011i 1.25908i 0.776966 + 0.629542i \(0.216757\pi\)
−0.776966 + 0.629542i \(0.783243\pi\)
\(360\) 0 0
\(361\) 346.559 0.959996
\(362\) 261.923 + 261.923i 0.723544 + 0.723544i
\(363\) −16.2855 + 16.2855i −0.0448635 + 0.0448635i
\(364\) 45.0098i 0.123653i
\(365\) 0 0
\(366\) 202.451 0.553146
\(367\) 476.321 + 476.321i 1.29788 + 1.29788i 0.929793 + 0.368084i \(0.119986\pi\)
0.368084 + 0.929793i \(0.380014\pi\)
\(368\) −28.7802 + 28.7802i −0.0782070 + 0.0782070i
\(369\) 78.4007i 0.212468i
\(370\) 0 0
\(371\) −125.150 −0.337331
\(372\) 55.0981 + 55.0981i 0.148113 + 0.148113i
\(373\) 170.014 170.014i 0.455802 0.455802i −0.441473 0.897275i \(-0.645544\pi\)
0.897275 + 0.441473i \(0.145544\pi\)
\(374\) 82.1535i 0.219662i
\(375\) 0 0
\(376\) −245.550 −0.653059
\(377\) 73.4591 + 73.4591i 0.194852 + 0.194852i
\(378\) 23.9526 23.9526i 0.0633666 0.0633666i
\(379\) 124.175i 0.327638i −0.986490 0.163819i \(-0.947619\pi\)
0.986490 0.163819i \(-0.0523814\pi\)
\(380\) 0 0
\(381\) 248.875 0.653215
\(382\) −207.160 207.160i −0.542302 0.542302i
\(383\) 136.998 136.998i 0.357697 0.357697i −0.505267 0.862963i \(-0.668606\pi\)
0.862963 + 0.505267i \(0.168606\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) 0 0
\(386\) 283.753 0.735111
\(387\) 11.2594 + 11.2594i 0.0290942 + 0.0290942i
\(388\) −143.842 + 143.842i −0.370728 + 0.370728i
\(389\) 72.9663i 0.187574i −0.995592 0.0937871i \(-0.970103\pi\)
0.995592 0.0937871i \(-0.0298973\pi\)
\(390\) 0 0
\(391\) 56.9568 0.145670
\(392\) 55.5018 + 55.5018i 0.141586 + 0.141586i
\(393\) −282.585 + 282.585i −0.719046 + 0.719046i
\(394\) 209.903i 0.532749i
\(395\) 0 0
\(396\) 62.2680 0.157242
\(397\) 178.254 + 178.254i 0.449002 + 0.449002i 0.895023 0.446020i \(-0.147159\pi\)
−0.446020 + 0.895023i \(0.647159\pi\)
\(398\) 259.207 259.207i 0.651274 0.651274i
\(399\) 30.3415i 0.0760438i
\(400\) 0 0
\(401\) −604.681 −1.50793 −0.753967 0.656912i \(-0.771862\pi\)
−0.753967 + 0.656912i \(0.771862\pi\)
\(402\) 107.320 + 107.320i 0.266965 + 0.266965i
\(403\) 77.6520 77.6520i 0.192685 0.192685i
\(404\) 314.716i 0.779000i
\(405\) 0 0
\(406\) −138.720 −0.341675
\(407\) 296.053 + 296.053i 0.727402 + 0.727402i
\(408\) −19.3904 + 19.3904i −0.0475256 + 0.0475256i
\(409\) 596.739i 1.45902i 0.683970 + 0.729510i \(0.260252\pi\)
−0.683970 + 0.729510i \(0.739748\pi\)
\(410\) 0 0
\(411\) −263.099 −0.640143
\(412\) −86.5035 86.5035i −0.209960 0.209960i
\(413\) 127.469 127.469i 0.308643 0.308643i
\(414\) 43.1703i 0.104276i
\(415\) 0 0
\(416\) −27.6173 −0.0663878
\(417\) −30.8476 30.8476i −0.0739752 0.0739752i
\(418\) −39.4384 + 39.4384i −0.0943503 + 0.0943503i
\(419\) 475.207i 1.13415i 0.823668 + 0.567073i \(0.191924\pi\)
−0.823668 + 0.567073i \(0.808076\pi\)
\(420\) 0 0
\(421\) −512.865 −1.21821 −0.609103 0.793091i \(-0.708471\pi\)
−0.609103 + 0.793091i \(0.708471\pi\)
\(422\) 174.522 + 174.522i 0.413559 + 0.413559i
\(423\) 184.163 184.163i 0.435373 0.435373i
\(424\) 76.7900i 0.181108i
\(425\) 0 0
\(426\) −146.200 −0.343192
\(427\) 269.402 + 269.402i 0.630918 + 0.630918i
\(428\) 0.824163 0.824163i 0.00192561 0.00192561i
\(429\) 87.7569i 0.204561i
\(430\) 0 0
\(431\) −614.993 −1.42690 −0.713449 0.700707i \(-0.752868\pi\)
−0.713449 + 0.700707i \(0.752868\pi\)
\(432\) 14.6969 + 14.6969i 0.0340207 + 0.0340207i
\(433\) −318.276 + 318.276i −0.735049 + 0.735049i −0.971615 0.236566i \(-0.923978\pi\)
0.236566 + 0.971615i \(0.423978\pi\)
\(434\) 146.638i 0.337875i
\(435\) 0 0
\(436\) 45.0761 0.103385
\(437\) 27.3426 + 27.3426i 0.0625688 + 0.0625688i
\(438\) −163.811 + 163.811i −0.373997 + 0.373997i
\(439\) 22.3789i 0.0509771i 0.999675 + 0.0254885i \(0.00811413\pi\)
−0.999675 + 0.0254885i \(0.991886\pi\)
\(440\) 0 0
\(441\) −83.2526 −0.188781
\(442\) 27.3277 + 27.3277i 0.0618275 + 0.0618275i
\(443\) −284.497 + 284.497i −0.642206 + 0.642206i −0.951097 0.308891i \(-0.900042\pi\)
0.308891 + 0.951097i \(0.400042\pi\)
\(444\) 139.753i 0.314759i
\(445\) 0 0
\(446\) −96.0305 −0.215315
\(447\) −289.169 289.169i −0.646910 0.646910i
\(448\) 26.0763 26.0763i 0.0582060 0.0582060i
\(449\) 389.187i 0.866786i 0.901205 + 0.433393i \(0.142684\pi\)
−0.901205 + 0.433393i \(0.857316\pi\)
\(450\) 0 0
\(451\) −271.214 −0.601362
\(452\) 59.5914 + 59.5914i 0.131839 + 0.131839i
\(453\) −280.159 + 280.159i −0.618453 + 0.618453i
\(454\) 31.9770i 0.0704340i
\(455\) 0 0
\(456\) −18.6171 −0.0408269
\(457\) 283.679 + 283.679i 0.620741 + 0.620741i 0.945721 0.324980i \(-0.105358\pi\)
−0.324980 + 0.945721i \(0.605358\pi\)
\(458\) −66.5652 + 66.5652i −0.145339 + 0.145339i
\(459\) 29.0857i 0.0633675i
\(460\) 0 0
\(461\) 871.374 1.89018 0.945091 0.326806i \(-0.105973\pi\)
0.945091 + 0.326806i \(0.105973\pi\)
\(462\) 82.8600 + 82.8600i 0.179351 + 0.179351i
\(463\) 240.388 240.388i 0.519196 0.519196i −0.398132 0.917328i \(-0.630342\pi\)
0.917328 + 0.398132i \(0.130342\pi\)
\(464\) 85.1165i 0.183441i
\(465\) 0 0
\(466\) −137.594 −0.295267
\(467\) 54.7139 + 54.7139i 0.117160 + 0.117160i 0.763256 0.646096i \(-0.223599\pi\)
−0.646096 + 0.763256i \(0.723599\pi\)
\(468\) 20.7130 20.7130i 0.0442585 0.0442585i
\(469\) 285.621i 0.609000i
\(470\) 0 0
\(471\) −440.883 −0.936058
\(472\) 78.2133 + 78.2133i 0.165706 + 0.165706i
\(473\) −38.9502 + 38.9502i −0.0823471 + 0.0823471i
\(474\) 293.942i 0.620131i
\(475\) 0 0
\(476\) −51.6057 −0.108415
\(477\) 57.5925 + 57.5925i 0.120739 + 0.120739i
\(478\) 396.575 396.575i 0.829654 0.829654i
\(479\) 125.855i 0.262746i 0.991333 + 0.131373i \(0.0419386\pi\)
−0.991333 + 0.131373i \(0.958061\pi\)
\(480\) 0 0
\(481\) 196.959 0.409479
\(482\) 359.811 + 359.811i 0.746497 + 0.746497i
\(483\) 57.4466 57.4466i 0.118937 0.118937i
\(484\) 26.5941i 0.0549464i
\(485\) 0 0
\(486\) −22.0454 −0.0453609
\(487\) 333.136 + 333.136i 0.684058 + 0.684058i 0.960912 0.276854i \(-0.0892920\pi\)
−0.276854 + 0.960912i \(0.589292\pi\)
\(488\) −165.301 + 165.301i −0.338731 + 0.338731i
\(489\) 285.808i 0.584474i
\(490\) 0 0
\(491\) −89.4786 −0.182237 −0.0911187 0.995840i \(-0.529044\pi\)
−0.0911187 + 0.995840i \(0.529044\pi\)
\(492\) −64.0139 64.0139i −0.130109 0.130109i
\(493\) −84.2240 + 84.2240i −0.170840 + 0.170840i
\(494\) 26.2378i 0.0531130i
\(495\) 0 0
\(496\) −89.9748 −0.181401
\(497\) −194.548 194.548i −0.391444 0.391444i
\(498\) 216.948 216.948i 0.435638 0.435638i
\(499\) 122.886i 0.246264i −0.992390 0.123132i \(-0.960706\pi\)
0.992390 0.123132i \(-0.0392938\pi\)
\(500\) 0 0
\(501\) −272.244 −0.543401
\(502\) −433.572 433.572i −0.863689 0.863689i
\(503\) −213.403 + 213.403i −0.424261 + 0.424261i −0.886668 0.462407i \(-0.846986\pi\)
0.462407 + 0.886668i \(0.346986\pi\)
\(504\) 39.1144i 0.0776080i
\(505\) 0 0
\(506\) 149.340 0.295139
\(507\) 177.790 + 177.790i 0.350671 + 0.350671i
\(508\) −203.205 + 203.205i −0.400011 + 0.400011i
\(509\) 147.919i 0.290608i −0.989387 0.145304i \(-0.953584\pi\)
0.989387 0.145304i \(-0.0464160\pi\)
\(510\) 0 0
\(511\) −435.965 −0.853161
\(512\) 16.0000 + 16.0000i 0.0312500 + 0.0312500i
\(513\) 13.9628 13.9628i 0.0272179 0.0272179i
\(514\) 430.058i 0.836689i
\(515\) 0 0
\(516\) −18.3866 −0.0356329
\(517\) 637.080 + 637.080i 1.23226 + 1.23226i
\(518\) −185.969 + 185.969i −0.359014 + 0.359014i
\(519\) 319.335i 0.615289i
\(520\) 0 0
\(521\) 663.440 1.27340 0.636698 0.771113i \(-0.280300\pi\)
0.636698 + 0.771113i \(0.280300\pi\)
\(522\) 63.8374 + 63.8374i 0.122294 + 0.122294i
\(523\) −486.528 + 486.528i −0.930264 + 0.930264i −0.997722 0.0674581i \(-0.978511\pi\)
0.0674581 + 0.997722i \(0.478511\pi\)
\(524\) 461.460i 0.880648i
\(525\) 0 0
\(526\) 52.7521 0.100289
\(527\) 89.0314 + 89.0314i 0.168940 + 0.168940i
\(528\) −50.8416 + 50.8416i −0.0962910 + 0.0962910i
\(529\) 425.463i 0.804277i
\(530\) 0 0
\(531\) −117.320 −0.220941
\(532\) −24.7737 24.7737i −0.0465671 0.0465671i
\(533\) −90.2173 + 90.2173i −0.169263 + 0.169263i
\(534\) 216.439i 0.405317i
\(535\) 0 0
\(536\) −175.253 −0.326964
\(537\) 153.107 + 153.107i 0.285116 + 0.285116i
\(538\) 24.2923 24.2923i 0.0451530 0.0451530i
\(539\) 287.999i 0.534320i
\(540\) 0 0
\(541\) 572.097 1.05748 0.528741 0.848783i \(-0.322664\pi\)
0.528741 + 0.848783i \(0.322664\pi\)
\(542\) 5.91723 + 5.91723i 0.0109174 + 0.0109174i
\(543\) 320.789 320.789i 0.590771 0.590771i
\(544\) 31.6645i 0.0582067i
\(545\) 0 0
\(546\) 55.1255 0.100963
\(547\) 82.4854 + 82.4854i 0.150796 + 0.150796i 0.778473 0.627678i \(-0.215994\pi\)
−0.627678 + 0.778473i \(0.715994\pi\)
\(548\) 214.819 214.819i 0.392006 0.392006i
\(549\) 247.951i 0.451642i
\(550\) 0 0
\(551\) −80.8648 −0.146760
\(552\) 35.2484 + 35.2484i 0.0638558 + 0.0638558i
\(553\) 391.149 391.149i 0.707321 0.707321i
\(554\) 44.7517i 0.0807792i
\(555\) 0 0
\(556\) 50.3740 0.0906007
\(557\) 451.347 + 451.347i 0.810318 + 0.810318i 0.984681 0.174364i \(-0.0557869\pi\)
−0.174364 + 0.984681i \(0.555787\pi\)
\(558\) 67.4811 67.4811i 0.120934 0.120934i
\(559\) 25.9130i 0.0463559i
\(560\) 0 0
\(561\) 100.617 0.179353
\(562\) 26.5064 + 26.5064i 0.0471644 + 0.0471644i
\(563\) 41.9310 41.9310i 0.0744778 0.0744778i −0.668887 0.743364i \(-0.733229\pi\)
0.743364 + 0.668887i \(0.233229\pi\)
\(564\) 300.736i 0.533221i
\(565\) 0 0
\(566\) −170.035 −0.300414
\(567\) −29.3358 29.3358i −0.0517386 0.0517386i
\(568\) 119.372 119.372i 0.210161 0.210161i
\(569\) 97.7105i 0.171723i −0.996307 0.0858616i \(-0.972636\pi\)
0.996307 0.0858616i \(-0.0273643\pi\)
\(570\) 0 0
\(571\) −452.840 −0.793065 −0.396532 0.918021i \(-0.629787\pi\)
−0.396532 + 0.918021i \(0.629787\pi\)
\(572\) 71.6532 + 71.6532i 0.125268 + 0.125268i
\(573\) −253.718 + 253.718i −0.442788 + 0.442788i
\(574\) 170.366i 0.296806i
\(575\) 0 0
\(576\) −24.0000 −0.0416667
\(577\) 577.336 + 577.336i 1.00058 + 1.00058i 1.00000 0.000582984i \(0.000185570\pi\)
0.000582984 1.00000i \(0.499814\pi\)
\(578\) 257.668 257.668i 0.445792 0.445792i
\(579\) 347.525i 0.600216i
\(580\) 0 0
\(581\) 577.385 0.993778
\(582\) 176.170 + 176.170i 0.302698 + 0.302698i
\(583\) −199.232 + 199.232i −0.341735 + 0.341735i
\(584\) 267.501i 0.458050i
\(585\) 0 0
\(586\) 207.124 0.353454
\(587\) 286.660 + 286.660i 0.488347 + 0.488347i 0.907784 0.419437i \(-0.137773\pi\)
−0.419437 + 0.907784i \(0.637773\pi\)
\(588\) 67.9755 67.9755i 0.115605 0.115605i
\(589\) 85.4804i 0.145128i
\(590\) 0 0
\(591\) −257.078 −0.434988
\(592\) −114.108 114.108i −0.192750 0.192750i
\(593\) −158.533 + 158.533i −0.267341 + 0.267341i −0.828028 0.560687i \(-0.810537\pi\)
0.560687 + 0.828028i \(0.310537\pi\)
\(594\) 76.2624i 0.128388i
\(595\) 0 0
\(596\) 472.211 0.792300
\(597\) −317.463 317.463i −0.531763 0.531763i
\(598\) 49.6770 49.6770i 0.0830719 0.0830719i
\(599\) 434.969i 0.726159i 0.931758 + 0.363080i \(0.118275\pi\)
−0.931758 + 0.363080i \(0.881725\pi\)
\(600\) 0 0
\(601\) 649.549 1.08078 0.540390 0.841415i \(-0.318277\pi\)
0.540390 + 0.841415i \(0.318277\pi\)
\(602\) −24.4670 24.4670i −0.0406429 0.0406429i
\(603\) 131.440 131.440i 0.217976 0.217976i
\(604\) 457.498i 0.757447i
\(605\) 0 0
\(606\) −385.447 −0.636051
\(607\) −189.146 189.146i −0.311607 0.311607i 0.533925 0.845532i \(-0.320717\pi\)
−0.845532 + 0.533925i \(0.820717\pi\)
\(608\) 15.2008 15.2008i 0.0250013 0.0250013i
\(609\) 169.897i 0.278977i
\(610\) 0 0
\(611\) 423.840 0.693683
\(612\) 23.7483 + 23.7483i 0.0388045 + 0.0388045i
\(613\) 715.958 715.958i 1.16796 1.16796i 0.185269 0.982688i \(-0.440684\pi\)
0.982688 0.185269i \(-0.0593157\pi\)
\(614\) 584.210i 0.951482i
\(615\) 0 0
\(616\) −135.310 −0.219659
\(617\) −487.963 487.963i −0.790864 0.790864i 0.190771 0.981635i \(-0.438901\pi\)
−0.981635 + 0.190771i \(0.938901\pi\)
\(618\) −105.945 + 105.945i −0.171432 + 0.171432i
\(619\) 742.728i 1.19988i 0.800044 + 0.599941i \(0.204809\pi\)
−0.800044 + 0.599941i \(0.795191\pi\)
\(620\) 0 0
\(621\) −52.8726 −0.0851410
\(622\) 88.6420 + 88.6420i 0.142511 + 0.142511i
\(623\) 288.015 288.015i 0.462304 0.462304i
\(624\) 33.8242i 0.0542054i
\(625\) 0 0
\(626\) 617.906 0.987070
\(627\) 48.3020 + 48.3020i 0.0770367 + 0.0770367i
\(628\) 359.980 359.980i 0.573216 0.573216i
\(629\) 225.823i 0.359018i
\(630\) 0 0
\(631\) −335.875 −0.532289 −0.266145 0.963933i \(-0.585750\pi\)
−0.266145 + 0.963933i \(0.585750\pi\)
\(632\) 240.003 + 240.003i 0.379751 + 0.379751i
\(633\) 213.745 213.745i 0.337669 0.337669i
\(634\) 126.061i 0.198835i
\(635\) 0 0
\(636\) −94.0481 −0.147874
\(637\) −95.8006 95.8006i −0.150393 0.150393i
\(638\) −220.835 + 220.835i −0.346136 + 0.346136i
\(639\) 179.057i 0.280215i
\(640\) 0 0
\(641\) 589.403 0.919506 0.459753 0.888047i \(-0.347938\pi\)
0.459753 + 0.888047i \(0.347938\pi\)
\(642\) −1.00939 1.00939i −0.00157226 0.00157226i
\(643\) −403.195 + 403.195i −0.627053 + 0.627053i −0.947325 0.320273i \(-0.896225\pi\)
0.320273 + 0.947325i \(0.396225\pi\)
\(644\) 93.8100i 0.145668i
\(645\) 0 0
\(646\) −30.0828 −0.0465678
\(647\) −394.144 394.144i −0.609188 0.609188i 0.333546 0.942734i \(-0.391755\pi\)
−0.942734 + 0.333546i \(0.891755\pi\)
\(648\) 18.0000 18.0000i 0.0277778 0.0277778i
\(649\) 405.849i 0.625345i
\(650\) 0 0
\(651\) 179.594 0.275874
\(652\) −233.361 233.361i −0.357916 0.357916i
\(653\) −480.918 + 480.918i −0.736474 + 0.736474i −0.971894 0.235420i \(-0.924354\pi\)
0.235420 + 0.971894i \(0.424354\pi\)
\(654\) 55.2067i 0.0844139i
\(655\) 0 0
\(656\) 104.534 0.159351
\(657\) 200.626 + 200.626i 0.305367 + 0.305367i
\(658\) −400.190 + 400.190i −0.608191 + 0.608191i
\(659\) 951.208i 1.44341i −0.692200 0.721706i \(-0.743358\pi\)
0.692200 0.721706i \(-0.256642\pi\)
\(660\) 0 0
\(661\) 14.7771 0.0223557 0.0111778 0.999938i \(-0.496442\pi\)
0.0111778 + 0.999938i \(0.496442\pi\)
\(662\) −228.413 228.413i −0.345035 0.345035i
\(663\) 33.4695 33.4695i 0.0504819 0.0504819i
\(664\) 354.274i 0.533546i
\(665\) 0 0
\(666\) 171.162 0.256999
\(667\) 153.104 + 153.104i 0.229542 + 0.229542i
\(668\) 222.286 222.286i 0.332764 0.332764i
\(669\) 117.613i 0.175804i
\(670\) 0 0
\(671\) 857.747 1.27831
\(672\) −31.9368 31.9368i −0.0475250 0.0475250i
\(673\) −785.103 + 785.103i −1.16657 + 1.16657i −0.183565 + 0.983008i \(0.558764\pi\)
−0.983008 + 0.183565i \(0.941236\pi\)
\(674\) 53.6149i 0.0795473i
\(675\) 0 0
\(676\) −290.330 −0.429483
\(677\) 876.553 + 876.553i 1.29476 + 1.29476i 0.931807 + 0.362954i \(0.118232\pi\)
0.362954 + 0.931807i \(0.381768\pi\)
\(678\) 72.9842 72.9842i 0.107646 0.107646i
\(679\) 468.859i 0.690514i
\(680\) 0 0
\(681\) 39.1637 0.0575091
\(682\) 233.440 + 233.440i 0.342287 + 0.342287i
\(683\) 494.646 494.646i 0.724225 0.724225i −0.245238 0.969463i \(-0.578866\pi\)
0.969463 + 0.245238i \(0.0788661\pi\)
\(684\) 22.8012i 0.0333350i
\(685\) 0 0
\(686\) 500.344 0.729365
\(687\) 81.5254 + 81.5254i 0.118669 + 0.118669i
\(688\) 15.0126 15.0126i 0.0218206 0.0218206i
\(689\) 132.546i 0.192374i
\(690\) 0 0
\(691\) −1053.96 −1.52527 −0.762635 0.646829i \(-0.776095\pi\)
−0.762635 + 0.646829i \(0.776095\pi\)
\(692\) −260.736 260.736i −0.376786 0.376786i
\(693\) 101.482 101.482i 0.146439 0.146439i
\(694\) 691.016i 0.995700i
\(695\) 0 0
\(696\) −104.246 −0.149779
\(697\) −103.438 103.438i −0.148405 0.148405i
\(698\) 195.192 195.192i 0.279644 0.279644i
\(699\) 168.518i 0.241084i
\(700\) 0 0
\(701\) 773.811 1.10387 0.551933 0.833888i \(-0.313890\pi\)
0.551933 + 0.833888i \(0.313890\pi\)
\(702\) −25.3681 25.3681i −0.0361369 0.0361369i
\(703\) −108.408 + 108.408i −0.154208 + 0.154208i
\(704\) 83.0240i 0.117932i
\(705\) 0 0
\(706\) −98.9990 −0.140225
\(707\) −512.914 512.914i −0.725480 0.725480i
\(708\) 95.7913 95.7913i 0.135298 0.135298i
\(709\) 1127.93i 1.59088i −0.606033 0.795439i \(-0.707240\pi\)
0.606033 0.795439i \(-0.292760\pi\)
\(710\) 0 0
\(711\) −360.004 −0.506335
\(712\) 176.722 + 176.722i 0.248205 + 0.248205i
\(713\) 161.843 161.843i 0.226989 0.226989i
\(714\) 63.2038i 0.0885208i
\(715\) 0 0
\(716\) −250.023 −0.349194
\(717\) −485.703 485.703i −0.677410 0.677410i
\(718\) −452.011 + 452.011i −0.629542 + 0.629542i
\(719\) 370.533i 0.515345i −0.966232 0.257673i \(-0.917044\pi\)
0.966232 0.257673i \(-0.0829556\pi\)
\(720\) 0 0
\(721\) −281.961 −0.391070
\(722\) 346.559 + 346.559i 0.479998 + 0.479998i
\(723\) 440.677 440.677i 0.609512 0.609512i
\(724\) 523.846i 0.723544i
\(725\) 0 0
\(726\) −32.5709 −0.0448635
\(727\) −814.509 814.509i −1.12037 1.12037i −0.991686 0.128685i \(-0.958924\pi\)
−0.128685 0.991686i \(-0.541076\pi\)
\(728\) −45.0098 + 45.0098i −0.0618267 + 0.0618267i
\(729\) 27.0000i 0.0370370i
\(730\) 0 0
\(731\) −29.7104 −0.0406434
\(732\) 202.451 + 202.451i 0.276573 + 0.276573i
\(733\) −419.033 + 419.033i −0.571669 + 0.571669i −0.932595 0.360926i \(-0.882461\pi\)
0.360926 + 0.932595i \(0.382461\pi\)
\(734\) 952.641i 1.29788i
\(735\) 0 0
\(736\) −57.5604 −0.0782070
\(737\) 454.693 + 454.693i 0.616952 + 0.616952i
\(738\) −78.4007 + 78.4007i −0.106234 + 0.106234i
\(739\) 695.444i 0.941062i −0.882384 0.470531i \(-0.844062\pi\)
0.882384 0.470531i \(-0.155938\pi\)
\(740\) 0 0
\(741\) 32.1346 0.0433665
\(742\) −125.150 125.150i −0.168665 0.168665i
\(743\) 378.997 378.997i 0.510090 0.510090i −0.404464 0.914554i \(-0.632542\pi\)
0.914554 + 0.404464i \(0.132542\pi\)
\(744\) 110.196i 0.148113i
\(745\) 0 0
\(746\) 340.028 0.455802
\(747\) −265.706 265.706i −0.355697 0.355697i
\(748\) −82.1535 + 82.1535i −0.109831 + 0.109831i
\(749\) 2.68639i 0.00358663i
\(750\) 0 0
\(751\) −262.131 −0.349042 −0.174521 0.984653i \(-0.555838\pi\)
−0.174521 + 0.984653i \(0.555838\pi\)
\(752\) −245.550 245.550i −0.326530 0.326530i
\(753\) −531.015 + 531.015i −0.705200 + 0.705200i
\(754\) 146.918i 0.194852i
\(755\) 0 0
\(756\) 47.9052 0.0633666
\(757\) −682.177 682.177i −0.901159 0.901159i 0.0943779 0.995536i \(-0.469914\pi\)
−0.995536 + 0.0943779i \(0.969914\pi\)
\(758\) 124.175 124.175i 0.163819 0.163819i
\(759\) 182.904i 0.240980i
\(760\) 0 0
\(761\) 984.696 1.29395 0.646975 0.762511i \(-0.276034\pi\)
0.646975 + 0.762511i \(0.276034\pi\)
\(762\) 248.875 + 248.875i 0.326607 + 0.326607i
\(763\) 73.4635 73.4635i 0.0962824 0.0962824i
\(764\) 414.319i 0.542302i
\(765\) 0 0
\(766\) 273.996 0.357697
\(767\) −135.003 135.003i −0.176014 0.176014i
\(768\) 19.5959 19.5959i 0.0255155 0.0255155i
\(769\) 675.108i 0.877904i 0.898511 + 0.438952i \(0.144650\pi\)
−0.898511 + 0.438952i \(0.855350\pi\)
\(770\) 0 0
\(771\) −526.711 −0.683153
\(772\) 283.753 + 283.753i 0.367556 + 0.367556i
\(773\) 520.462 520.462i 0.673302 0.673302i −0.285174 0.958476i \(-0.592051\pi\)
0.958476 + 0.285174i \(0.0920514\pi\)
\(774\) 22.5189i 0.0290942i
\(775\) 0 0
\(776\) −287.685 −0.370728
\(777\) 227.765 + 227.765i 0.293133 + 0.293133i
\(778\) 72.9663 72.9663i 0.0937871 0.0937871i
\(779\) 99.3126i 0.127487i
\(780\) 0 0
\(781\) −619.420 −0.793111
\(782\) 56.9568 + 56.9568i 0.0728348 + 0.0728348i
\(783\) 78.1845 78.1845i 0.0998525 0.0998525i
\(784\) 111.004i 0.141586i
\(785\) 0 0
\(786\) −565.170 −0.719046
\(787\) 184.553 + 184.553i 0.234502 + 0.234502i 0.814569 0.580067i \(-0.196974\pi\)
−0.580067 + 0.814569i \(0.696974\pi\)
\(788\) 209.903 209.903i 0.266374 0.266374i
\(789\) 64.6079i 0.0818858i
\(790\) 0 0
\(791\) 194.240 0.245563
\(792\) 62.2680 + 62.2680i 0.0786212 + 0.0786212i
\(793\) 285.323 285.323i 0.359802 0.359802i
\(794\) 356.508i 0.449002i
\(795\) 0 0
\(796\) 518.414 0.651274
\(797\) −768.507 768.507i −0.964249 0.964249i 0.0351335 0.999383i \(-0.488814\pi\)
−0.999383 + 0.0351335i \(0.988814\pi\)
\(798\) −30.3415 + 30.3415i −0.0380219 + 0.0380219i
\(799\) 485.951i 0.608199i
\(800\) 0 0
\(801\) −265.083 −0.330940
\(802\) −604.681 604.681i −0.753967 0.753967i
\(803\) −694.033 + 694.033i −0.864300 + 0.864300i
\(804\) 214.640i 0.266965i
\(805\) 0 0
\(806\) 155.304 0.192685
\(807\) −29.7519 29.7519i −0.0368672 0.0368672i
\(808\) 314.716 314.716i 0.389500 0.389500i
\(809\) 202.308i 0.250072i −0.992152 0.125036i \(-0.960095\pi\)
0.992152 0.125036i \(-0.0399046\pi\)
\(810\) 0 0
\(811\) −497.459 −0.613389 −0.306695 0.951808i \(-0.599223\pi\)
−0.306695 + 0.951808i \(0.599223\pi\)
\(812\) −138.720 138.720i −0.170838 0.170838i
\(813\) 7.24709 7.24709i 0.00891401 0.00891401i
\(814\) 592.105i 0.727402i
\(815\) 0 0
\(816\) −38.7809 −0.0475256
\(817\) −14.2627 14.2627i −0.0174574 0.0174574i
\(818\) −596.739 + 596.739i −0.729510 + 0.729510i
\(819\) 67.5147i 0.0824355i
\(820\) 0 0
\(821\) 450.382 0.548578 0.274289 0.961647i \(-0.411558\pi\)
0.274289 + 0.961647i \(0.411558\pi\)
\(822\) −263.099 263.099i −0.320072 0.320072i
\(823\) −1059.14 + 1059.14i −1.28693 + 1.28693i −0.350289 + 0.936642i \(0.613917\pi\)
−0.936642 + 0.350289i \(0.886083\pi\)
\(824\) 173.007i 0.209960i
\(825\) 0 0
\(826\) 254.939 0.308643
\(827\) −204.105 204.105i −0.246802 0.246802i 0.572855 0.819657i \(-0.305836\pi\)
−0.819657 + 0.572855i \(0.805836\pi\)
\(828\) 43.1703 43.1703i 0.0521380 0.0521380i
\(829\) 1220.16i 1.47185i −0.677065 0.735923i \(-0.736748\pi\)
0.677065 0.735923i \(-0.263252\pi\)
\(830\) 0 0
\(831\) 54.8094 0.0659560
\(832\) −27.6173 27.6173i −0.0331939 0.0331939i
\(833\) 109.840 109.840i 0.131860 0.131860i
\(834\) 61.6953i 0.0739752i
\(835\) 0 0
\(836\) −78.8769 −0.0943503
\(837\) −82.6471 82.6471i −0.0987421 0.0987421i
\(838\) −475.207 + 475.207i −0.567073 + 0.567073i
\(839\) 926.065i 1.10377i 0.833919 + 0.551886i \(0.186092\pi\)
−0.833919 + 0.551886i \(0.813908\pi\)
\(840\) 0 0
\(841\) 388.199 0.461592
\(842\) −512.865 512.865i −0.609103 0.609103i
\(843\) 32.4636 32.4636i 0.0385096 0.0385096i
\(844\) 349.044i 0.413559i
\(845\) 0 0
\(846\) 368.325 0.435373
\(847\) −43.3421 43.3421i −0.0511713 0.0511713i
\(848\) 76.7900 76.7900i 0.0905542 0.0905542i
\(849\) 208.249i 0.245287i
\(850\) 0 0
\(851\) 410.505 0.482380
\(852\) −146.200 146.200i −0.171596 0.171596i
\(853\) 546.901 546.901i 0.641150 0.641150i −0.309689 0.950838i \(-0.600225\pi\)
0.950838 + 0.309689i \(0.100225\pi\)
\(854\) 538.804i 0.630918i
\(855\) 0 0
\(856\) 1.64833 0.00192561
\(857\) −134.506 134.506i −0.156949 0.156949i 0.624264 0.781213i \(-0.285399\pi\)
−0.781213 + 0.624264i \(0.785399\pi\)
\(858\) 87.7569 87.7569i 0.102281 0.102281i
\(859\) 1268.50i 1.47672i 0.674409 + 0.738358i \(0.264398\pi\)
−0.674409 + 0.738358i \(0.735602\pi\)
\(860\) 0 0
\(861\) −208.655 −0.242341
\(862\) −614.993 614.993i −0.713449 0.713449i
\(863\) 1002.77 1002.77i 1.16195 1.16195i 0.177907 0.984047i \(-0.443067\pi\)
0.984047 0.177907i \(-0.0569325\pi\)
\(864\) 29.3939i 0.0340207i
\(865\) 0 0
\(866\) −636.552 −0.735049
\(867\) −315.577 315.577i −0.363987 0.363987i
\(868\) −146.638 + 146.638i −0.168938 + 0.168938i
\(869\) 1245.38i 1.43311i
\(870\) 0 0
\(871\) 302.501 0.347303
\(872\) 45.0761 + 45.0761i 0.0516927 + 0.0516927i
\(873\) 215.764 215.764i 0.247152 0.247152i
\(874\) 54.6851i 0.0625688i
\(875\) 0 0
\(876\) −327.621 −0.373997
\(877\) −392.449 392.449i −0.447490 0.447490i 0.447029 0.894519i \(-0.352482\pi\)
−0.894519 + 0.447029i \(0.852482\pi\)
\(878\) −22.3789 + 22.3789i −0.0254885 + 0.0254885i
\(879\) 253.674i 0.288594i
\(880\) 0 0
\(881\) 189.075 0.214614 0.107307 0.994226i \(-0.465777\pi\)
0.107307 + 0.994226i \(0.465777\pi\)
\(882\) −83.2526 83.2526i −0.0943907 0.0943907i
\(883\) −947.776 + 947.776i −1.07336 + 1.07336i −0.0762723 + 0.997087i \(0.524302\pi\)
−0.997087 + 0.0762723i \(0.975698\pi\)
\(884\) 54.6555i 0.0618275i
\(885\) 0 0
\(886\) −568.995 −0.642206
\(887\) −515.610 515.610i −0.581296 0.581296i 0.353963 0.935259i \(-0.384834\pi\)
−0.935259 + 0.353963i \(0.884834\pi\)
\(888\) −139.753 + 139.753i −0.157379 + 0.157379i
\(889\) 662.355i 0.745056i
\(890\) 0 0
\(891\) −93.4020 −0.104828
\(892\) −96.0305 96.0305i −0.107657 0.107657i
\(893\) −233.285 + 233.285i −0.261237 + 0.261237i
\(894\) 578.337i 0.646910i
\(895\) 0 0
\(896\) 52.1525 0.0582060
\(897\) −60.8416 60.8416i −0.0678279 0.0678279i
\(898\) −389.187 + 389.187i −0.433393 + 0.433393i
\(899\) 478.646i 0.532421i
\(900\) 0 0
\(901\) −151.970 −0.168668
\(902\) −271.214 271.214i −0.300681 0.300681i
\(903\) −29.9659 + 29.9659i −0.0331848 + 0.0331848i
\(904\) 119.183i 0.131839i
\(905\) 0 0
\(906\) −560.319 −0.618453
\(907\) −1246.18 1246.18i −1.37396 1.37396i −0.854492 0.519464i \(-0.826132\pi\)
−0.519464 0.854492i \(-0.673868\pi\)
\(908\) −31.9770 + 31.9770i −0.0352170 + 0.0352170i
\(909\) 472.074i 0.519334i
\(910\) 0 0
\(911\) −1120.86 −1.23036 −0.615180 0.788387i \(-0.710917\pi\)
−0.615180 + 0.788387i \(0.710917\pi\)
\(912\) −18.6171 18.6171i −0.0204135 0.0204135i
\(913\) 919.165 919.165i 1.00675 1.00675i
\(914\) 567.357i 0.620741i
\(915\) 0 0
\(916\) −133.130 −0.145339
\(917\) −752.072 752.072i −0.820143 0.820143i
\(918\) 29.0857 29.0857i 0.0316837 0.0316837i
\(919\) 1550.71i 1.68738i −0.536827 0.843692i \(-0.680377\pi\)
0.536827 0.843692i \(-0.319623\pi\)
\(920\) 0 0
\(921\) −715.508 −0.776882
\(922\) 871.374 + 871.374i 0.945091 + 0.945091i
\(923\) −206.045 + 206.045i −0.223234 + 0.223234i
\(924\) 165.720i 0.179351i
\(925\) 0 0
\(926\) 480.775 0.519196
\(927\) 129.755 + 129.755i 0.139973 + 0.139973i
\(928\) 85.1165 85.1165i 0.0917204 0.0917204i
\(929\) 956.772i 1.02989i 0.857222 + 0.514947i \(0.172188\pi\)
−0.857222 + 0.514947i \(0.827812\pi\)
\(930\) 0 0
\(931\) 105.459 0.113275
\(932\) −137.594 137.594i −0.147633 0.147633i
\(933\) 108.564 108.564i 0.116360 0.116360i
\(934\) 109.428i 0.117160i
\(935\) 0 0
\(936\) 41.4260 0.0442585
\(937\) −489.671 489.671i −0.522595 0.522595i 0.395760 0.918354i \(-0.370481\pi\)
−0.918354 + 0.395760i \(0.870481\pi\)
\(938\) −285.621 + 285.621i −0.304500 + 0.304500i
\(939\) 756.777i 0.805939i
\(940\) 0 0
\(941\) −175.441 −0.186441 −0.0932207 0.995645i \(-0.529716\pi\)
−0.0932207 + 0.995645i \(0.529716\pi\)
\(942\) −440.883 440.883i −0.468029 0.468029i
\(943\) −188.032 + 188.032i −0.199398 + 0.199398i
\(944\) 156.427i 0.165706i
\(945\) 0 0
\(946\) −77.9004 −0.0823471
\(947\) 62.2446 + 62.2446i 0.0657282 + 0.0657282i 0.739207 0.673479i \(-0.235201\pi\)
−0.673479 + 0.739207i \(0.735201\pi\)
\(948\) 293.942 293.942i 0.310066 0.310066i
\(949\) 461.730i 0.486543i
\(950\) 0 0
\(951\) 154.393 0.162348
\(952\) −51.6057 51.6057i −0.0542077 0.0542077i
\(953\) −296.351 + 296.351i −0.310966 + 0.310966i −0.845284 0.534318i \(-0.820569\pi\)
0.534318 + 0.845284i \(0.320569\pi\)
\(954\) 115.185i 0.120739i
\(955\) 0 0
\(956\) 793.149 0.829654
\(957\) 270.466 + 270.466i 0.282619 + 0.282619i
\(958\) −125.855 + 125.855i −0.131373 + 0.131373i
\(959\) 700.211i 0.730147i
\(960\) 0 0
\(961\) −455.034 −0.473500
\(962\) 196.959 + 196.959i 0.204740 + 0.204740i
\(963\) −1.23624 + 1.23624i −0.00128374 + 0.00128374i
\(964\) 719.623i 0.746497i
\(965\) 0 0
\(966\) 114.893 0.118937
\(967\) 926.473 + 926.473i 0.958090 + 0.958090i 0.999156 0.0410668i \(-0.0130756\pi\)
−0.0410668 + 0.999156i \(0.513076\pi\)
\(968\) 26.5941 26.5941i 0.0274732 0.0274732i
\(969\) 36.8437i 0.0380224i
\(970\) 0 0
\(971\) 130.623 0.134524 0.0672622 0.997735i \(-0.478574\pi\)
0.0672622 + 0.997735i \(0.478574\pi\)
\(972\) −22.0454 22.0454i −0.0226805 0.0226805i
\(973\) 82.0979 82.0979i 0.0843760 0.0843760i
\(974\) 666.272i 0.684058i
\(975\) 0 0
\(976\) −330.602 −0.338731
\(977\) −9.53233 9.53233i −0.00975673 0.00975673i 0.702212 0.711968i \(-0.252196\pi\)
−0.711968 + 0.702212i \(0.752196\pi\)
\(978\) −285.808 + 285.808i −0.292237 + 0.292237i
\(979\) 917.009i 0.936680i
\(980\) 0 0
\(981\) −67.6141 −0.0689237
\(982\) −89.4786 89.4786i −0.0911187 0.0911187i
\(983\) 959.887 959.887i 0.976487 0.976487i −0.0232424 0.999730i \(-0.507399\pi\)
0.999730 + 0.0232424i \(0.00739897\pi\)
\(984\) 128.028i 0.130109i
\(985\) 0 0
\(986\) −168.448 −0.170840
\(987\) 490.130 + 490.130i 0.496586 + 0.496586i
\(988\) −26.2378 + 26.2378i −0.0265565 + 0.0265565i
\(989\) 54.0081i 0.0546088i
\(990\) 0 0
\(991\) −768.037 −0.775012 −0.387506 0.921867i \(-0.626663\pi\)
−0.387506 + 0.921867i \(0.626663\pi\)
\(992\) −89.9748 89.9748i −0.0907004 0.0907004i
\(993\) −279.748 + 279.748i −0.281720 + 0.281720i
\(994\) 389.096i 0.391444i
\(995\) 0 0
\(996\) 433.896 0.435638
\(997\) 977.735 + 977.735i 0.980677 + 0.980677i 0.999817 0.0191398i \(-0.00609278\pi\)
−0.0191398 + 0.999817i \(0.506093\pi\)
\(998\) 122.886 122.886i 0.123132 0.123132i
\(999\) 209.629i 0.209839i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 750.3.f.c.307.8 yes 16
5.2 odd 4 750.3.f.b.193.1 16
5.3 odd 4 inner 750.3.f.c.193.8 yes 16
5.4 even 2 750.3.f.b.307.1 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
750.3.f.b.193.1 16 5.2 odd 4
750.3.f.b.307.1 yes 16 5.4 even 2
750.3.f.c.193.8 yes 16 5.3 odd 4 inner
750.3.f.c.307.8 yes 16 1.1 even 1 trivial