Properties

Label 750.3.f.b.307.4
Level $750$
Weight $3$
Character 750.307
Analytic conductor $20.436$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [750,3,Mod(193,750)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(750, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("750.193"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 750 = 2 \cdot 3 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 750.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-16,0,0,0,0,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.4360198270\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: 16.0.6879707136000000000000.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 21x^{12} + 86x^{8} + 36x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{8}\cdot 5^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 307.4
Root \(-0.575212 + 0.575212i\) of defining polynomial
Character \(\chi\) \(=\) 750.307
Dual form 750.3.f.b.193.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.00000i) q^{2} +(-1.22474 + 1.22474i) q^{3} +2.00000i q^{4} +2.44949 q^{6} +(6.47296 + 6.47296i) q^{7} +(2.00000 - 2.00000i) q^{8} -3.00000i q^{9} +0.239358 q^{11} +(-2.44949 - 2.44949i) q^{12} +(3.35623 - 3.35623i) q^{13} -12.9459i q^{14} -4.00000 q^{16} +(14.3569 + 14.3569i) q^{17} +(-3.00000 + 3.00000i) q^{18} +2.54707i q^{19} -15.8554 q^{21} +(-0.239358 - 0.239358i) q^{22} +(26.7643 - 26.7643i) q^{23} +4.89898i q^{24} -6.71247 q^{26} +(3.67423 + 3.67423i) q^{27} +(-12.9459 + 12.9459i) q^{28} -19.8004i q^{29} -33.8737 q^{31} +(4.00000 + 4.00000i) q^{32} +(-0.293153 + 0.293153i) q^{33} -28.7138i q^{34} +6.00000 q^{36} +(25.5735 + 25.5735i) q^{37} +(2.54707 - 2.54707i) q^{38} +8.22106i q^{39} -31.3205 q^{41} +(15.8554 + 15.8554i) q^{42} +(-52.7173 + 52.7173i) q^{43} +0.478717i q^{44} -53.5286 q^{46} +(19.7087 + 19.7087i) q^{47} +(4.89898 - 4.89898i) q^{48} +34.7983i q^{49} -35.1671 q^{51} +(6.71247 + 6.71247i) q^{52} +(32.6096 - 32.6096i) q^{53} -7.34847i q^{54} +25.8918 q^{56} +(-3.11952 - 3.11952i) q^{57} +(-19.8004 + 19.8004i) q^{58} +42.2264i q^{59} +47.6073 q^{61} +(33.8737 + 33.8737i) q^{62} +(19.4189 - 19.4189i) q^{63} -8.00000i q^{64} +0.586306 q^{66} +(86.4226 + 86.4226i) q^{67} +(-28.7138 + 28.7138i) q^{68} +65.5589i q^{69} +128.144 q^{71} +(-6.00000 - 6.00000i) q^{72} +(21.2313 - 21.2313i) q^{73} -51.1470i q^{74} -5.09415 q^{76} +(1.54936 + 1.54936i) q^{77} +(8.22106 - 8.22106i) q^{78} +53.3620i q^{79} -9.00000 q^{81} +(31.3205 + 31.3205i) q^{82} +(-81.9475 + 81.9475i) q^{83} -31.7109i q^{84} +105.435 q^{86} +(24.2505 + 24.2505i) q^{87} +(0.478717 - 0.478717i) q^{88} +1.92704i q^{89} +43.4495 q^{91} +(53.5286 + 53.5286i) q^{92} +(41.4866 - 41.4866i) q^{93} -39.4174i q^{94} -9.79796 q^{96} +(-37.1612 - 37.1612i) q^{97} +(34.7983 - 34.7983i) q^{98} -0.718075i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{2} + 24 q^{7} + 32 q^{8} - 24 q^{11} - 48 q^{13} - 64 q^{16} - 16 q^{17} - 48 q^{18} - 48 q^{21} + 24 q^{22} + 104 q^{23} + 96 q^{26} - 48 q^{28} + 200 q^{31} + 64 q^{32} - 48 q^{33} + 96 q^{36}+ \cdots - 224 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/750\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(251\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 1.00000i −0.500000 0.500000i
\(3\) −1.22474 + 1.22474i −0.408248 + 0.408248i
\(4\) 2.00000i 0.500000i
\(5\) 0 0
\(6\) 2.44949 0.408248
\(7\) 6.47296 + 6.47296i 0.924708 + 0.924708i 0.997358 0.0726496i \(-0.0231455\pi\)
−0.0726496 + 0.997358i \(0.523145\pi\)
\(8\) 2.00000 2.00000i 0.250000 0.250000i
\(9\) 3.00000i 0.333333i
\(10\) 0 0
\(11\) 0.239358 0.0217599 0.0108799 0.999941i \(-0.496537\pi\)
0.0108799 + 0.999941i \(0.496537\pi\)
\(12\) −2.44949 2.44949i −0.204124 0.204124i
\(13\) 3.35623 3.35623i 0.258172 0.258172i −0.566138 0.824310i \(-0.691563\pi\)
0.824310 + 0.566138i \(0.191563\pi\)
\(14\) 12.9459i 0.924708i
\(15\) 0 0
\(16\) −4.00000 −0.250000
\(17\) 14.3569 + 14.3569i 0.844524 + 0.844524i 0.989443 0.144919i \(-0.0462923\pi\)
−0.144919 + 0.989443i \(0.546292\pi\)
\(18\) −3.00000 + 3.00000i −0.166667 + 0.166667i
\(19\) 2.54707i 0.134057i 0.997751 + 0.0670283i \(0.0213518\pi\)
−0.997751 + 0.0670283i \(0.978648\pi\)
\(20\) 0 0
\(21\) −15.8554 −0.755021
\(22\) −0.239358 0.239358i −0.0108799 0.0108799i
\(23\) 26.7643 26.7643i 1.16367 1.16367i 0.179999 0.983667i \(-0.442391\pi\)
0.983667 0.179999i \(-0.0576095\pi\)
\(24\) 4.89898i 0.204124i
\(25\) 0 0
\(26\) −6.71247 −0.258172
\(27\) 3.67423 + 3.67423i 0.136083 + 0.136083i
\(28\) −12.9459 + 12.9459i −0.462354 + 0.462354i
\(29\) 19.8004i 0.682774i −0.939923 0.341387i \(-0.889103\pi\)
0.939923 0.341387i \(-0.110897\pi\)
\(30\) 0 0
\(31\) −33.8737 −1.09270 −0.546349 0.837557i \(-0.683983\pi\)
−0.546349 + 0.837557i \(0.683983\pi\)
\(32\) 4.00000 + 4.00000i 0.125000 + 0.125000i
\(33\) −0.293153 + 0.293153i −0.00888342 + 0.00888342i
\(34\) 28.7138i 0.844524i
\(35\) 0 0
\(36\) 6.00000 0.166667
\(37\) 25.5735 + 25.5735i 0.691176 + 0.691176i 0.962491 0.271315i \(-0.0874585\pi\)
−0.271315 + 0.962491i \(0.587458\pi\)
\(38\) 2.54707 2.54707i 0.0670283 0.0670283i
\(39\) 8.22106i 0.210796i
\(40\) 0 0
\(41\) −31.3205 −0.763915 −0.381958 0.924180i \(-0.624750\pi\)
−0.381958 + 0.924180i \(0.624750\pi\)
\(42\) 15.8554 + 15.8554i 0.377510 + 0.377510i
\(43\) −52.7173 + 52.7173i −1.22598 + 1.22598i −0.260514 + 0.965470i \(0.583892\pi\)
−0.965470 + 0.260514i \(0.916108\pi\)
\(44\) 0.478717i 0.0108799i
\(45\) 0 0
\(46\) −53.5286 −1.16367
\(47\) 19.7087 + 19.7087i 0.419334 + 0.419334i 0.884974 0.465640i \(-0.154176\pi\)
−0.465640 + 0.884974i \(0.654176\pi\)
\(48\) 4.89898 4.89898i 0.102062 0.102062i
\(49\) 34.7983i 0.710170i
\(50\) 0 0
\(51\) −35.1671 −0.689551
\(52\) 6.71247 + 6.71247i 0.129086 + 0.129086i
\(53\) 32.6096 32.6096i 0.615276 0.615276i −0.329040 0.944316i \(-0.606725\pi\)
0.944316 + 0.329040i \(0.106725\pi\)
\(54\) 7.34847i 0.136083i
\(55\) 0 0
\(56\) 25.8918 0.462354
\(57\) −3.11952 3.11952i −0.0547283 0.0547283i
\(58\) −19.8004 + 19.8004i −0.341387 + 0.341387i
\(59\) 42.2264i 0.715702i 0.933779 + 0.357851i \(0.116491\pi\)
−0.933779 + 0.357851i \(0.883509\pi\)
\(60\) 0 0
\(61\) 47.6073 0.780448 0.390224 0.920720i \(-0.372398\pi\)
0.390224 + 0.920720i \(0.372398\pi\)
\(62\) 33.8737 + 33.8737i 0.546349 + 0.546349i
\(63\) 19.4189 19.4189i 0.308236 0.308236i
\(64\) 8.00000i 0.125000i
\(65\) 0 0
\(66\) 0.586306 0.00888342
\(67\) 86.4226 + 86.4226i 1.28989 + 1.28989i 0.934852 + 0.355038i \(0.115532\pi\)
0.355038 + 0.934852i \(0.384468\pi\)
\(68\) −28.7138 + 28.7138i −0.422262 + 0.422262i
\(69\) 65.5589i 0.950129i
\(70\) 0 0
\(71\) 128.144 1.80485 0.902425 0.430847i \(-0.141785\pi\)
0.902425 + 0.430847i \(0.141785\pi\)
\(72\) −6.00000 6.00000i −0.0833333 0.0833333i
\(73\) 21.2313 21.2313i 0.290840 0.290840i −0.546572 0.837412i \(-0.684067\pi\)
0.837412 + 0.546572i \(0.184067\pi\)
\(74\) 51.1470i 0.691176i
\(75\) 0 0
\(76\) −5.09415 −0.0670283
\(77\) 1.54936 + 1.54936i 0.0201215 + 0.0201215i
\(78\) 8.22106 8.22106i 0.105398 0.105398i
\(79\) 53.3620i 0.675469i 0.941241 + 0.337734i \(0.109661\pi\)
−0.941241 + 0.337734i \(0.890339\pi\)
\(80\) 0 0
\(81\) −9.00000 −0.111111
\(82\) 31.3205 + 31.3205i 0.381958 + 0.381958i
\(83\) −81.9475 + 81.9475i −0.987319 + 0.987319i −0.999921 0.0126012i \(-0.995989\pi\)
0.0126012 + 0.999921i \(0.495989\pi\)
\(84\) 31.7109i 0.377510i
\(85\) 0 0
\(86\) 105.435 1.22598
\(87\) 24.2505 + 24.2505i 0.278741 + 0.278741i
\(88\) 0.478717 0.478717i 0.00543996 0.00543996i
\(89\) 1.92704i 0.0216522i 0.999941 + 0.0108261i \(0.00344612\pi\)
−0.999941 + 0.0108261i \(0.996554\pi\)
\(90\) 0 0
\(91\) 43.4495 0.477467
\(92\) 53.5286 + 53.5286i 0.581833 + 0.581833i
\(93\) 41.4866 41.4866i 0.446092 0.446092i
\(94\) 39.4174i 0.419334i
\(95\) 0 0
\(96\) −9.79796 −0.102062
\(97\) −37.1612 37.1612i −0.383105 0.383105i 0.489114 0.872220i \(-0.337320\pi\)
−0.872220 + 0.489114i \(0.837320\pi\)
\(98\) 34.7983 34.7983i 0.355085 0.355085i
\(99\) 0.718075i 0.00725329i
\(100\) 0 0
\(101\) −15.1796 −0.150293 −0.0751467 0.997172i \(-0.523943\pi\)
−0.0751467 + 0.997172i \(0.523943\pi\)
\(102\) 35.1671 + 35.1671i 0.344776 + 0.344776i
\(103\) −25.7548 + 25.7548i −0.250047 + 0.250047i −0.820990 0.570943i \(-0.806578\pi\)
0.570943 + 0.820990i \(0.306578\pi\)
\(104\) 13.4249i 0.129086i
\(105\) 0 0
\(106\) −65.2192 −0.615276
\(107\) 111.016 + 111.016i 1.03753 + 1.03753i 0.999268 + 0.0382659i \(0.0121834\pi\)
0.0382659 + 0.999268i \(0.487817\pi\)
\(108\) −7.34847 + 7.34847i −0.0680414 + 0.0680414i
\(109\) 162.040i 1.48661i 0.668955 + 0.743303i \(0.266742\pi\)
−0.668955 + 0.743303i \(0.733258\pi\)
\(110\) 0 0
\(111\) −62.6420 −0.564343
\(112\) −25.8918 25.8918i −0.231177 0.231177i
\(113\) 25.6159 25.6159i 0.226689 0.226689i −0.584619 0.811308i \(-0.698756\pi\)
0.811308 + 0.584619i \(0.198756\pi\)
\(114\) 6.23903i 0.0547283i
\(115\) 0 0
\(116\) 39.6009 0.341387
\(117\) −10.0687 10.0687i −0.0860573 0.0860573i
\(118\) 42.2264 42.2264i 0.357851 0.357851i
\(119\) 185.863i 1.56188i
\(120\) 0 0
\(121\) −120.943 −0.999527
\(122\) −47.6073 47.6073i −0.390224 0.390224i
\(123\) 38.3596 38.3596i 0.311867 0.311867i
\(124\) 67.7473i 0.546349i
\(125\) 0 0
\(126\) −38.8377 −0.308236
\(127\) −1.67000 1.67000i −0.0131496 0.0131496i 0.700501 0.713651i \(-0.252960\pi\)
−0.713651 + 0.700501i \(0.752960\pi\)
\(128\) −8.00000 + 8.00000i −0.0625000 + 0.0625000i
\(129\) 129.131i 1.00101i
\(130\) 0 0
\(131\) 190.408 1.45349 0.726747 0.686905i \(-0.241031\pi\)
0.726747 + 0.686905i \(0.241031\pi\)
\(132\) −0.586306 0.586306i −0.00444171 0.00444171i
\(133\) −16.4871 + 16.4871i −0.123963 + 0.123963i
\(134\) 172.845i 1.28989i
\(135\) 0 0
\(136\) 57.4276 0.422262
\(137\) −26.0666 26.0666i −0.190267 0.190267i 0.605545 0.795811i \(-0.292955\pi\)
−0.795811 + 0.605545i \(0.792955\pi\)
\(138\) 65.5589 65.5589i 0.475065 0.475065i
\(139\) 172.480i 1.24086i −0.784261 0.620431i \(-0.786958\pi\)
0.784261 0.620431i \(-0.213042\pi\)
\(140\) 0 0
\(141\) −48.2762 −0.342385
\(142\) −128.144 128.144i −0.902425 0.902425i
\(143\) 0.803343 0.803343i 0.00561778 0.00561778i
\(144\) 12.0000i 0.0833333i
\(145\) 0 0
\(146\) −42.4627 −0.290840
\(147\) −42.6191 42.6191i −0.289926 0.289926i
\(148\) −51.1470 + 51.1470i −0.345588 + 0.345588i
\(149\) 35.7067i 0.239642i −0.992795 0.119821i \(-0.961768\pi\)
0.992795 0.119821i \(-0.0382321\pi\)
\(150\) 0 0
\(151\) −22.3612 −0.148087 −0.0740436 0.997255i \(-0.523590\pi\)
−0.0740436 + 0.997255i \(0.523590\pi\)
\(152\) 5.09415 + 5.09415i 0.0335141 + 0.0335141i
\(153\) 43.0707 43.0707i 0.281508 0.281508i
\(154\) 3.09871i 0.0201215i
\(155\) 0 0
\(156\) −16.4421 −0.105398
\(157\) 215.726 + 215.726i 1.37405 + 1.37405i 0.854347 + 0.519703i \(0.173957\pi\)
0.519703 + 0.854347i \(0.326043\pi\)
\(158\) 53.3620 53.3620i 0.337734 0.337734i
\(159\) 79.8769i 0.502371i
\(160\) 0 0
\(161\) 346.488 2.15210
\(162\) 9.00000 + 9.00000i 0.0555556 + 0.0555556i
\(163\) −95.7668 + 95.7668i −0.587527 + 0.587527i −0.936961 0.349434i \(-0.886374\pi\)
0.349434 + 0.936961i \(0.386374\pi\)
\(164\) 62.6410i 0.381958i
\(165\) 0 0
\(166\) 163.895 0.987319
\(167\) −181.637 181.637i −1.08765 1.08765i −0.995770 0.0918786i \(-0.970713\pi\)
−0.0918786 0.995770i \(-0.529287\pi\)
\(168\) −31.7109 + 31.7109i −0.188755 + 0.188755i
\(169\) 146.471i 0.866695i
\(170\) 0 0
\(171\) 7.64122 0.0446855
\(172\) −105.435 105.435i −0.612992 0.612992i
\(173\) 36.4688 36.4688i 0.210802 0.210802i −0.593806 0.804608i \(-0.702375\pi\)
0.804608 + 0.593806i \(0.202375\pi\)
\(174\) 48.5010i 0.278741i
\(175\) 0 0
\(176\) −0.957434 −0.00543996
\(177\) −51.7166 51.7166i −0.292184 0.292184i
\(178\) 1.92704 1.92704i 0.0108261 0.0108261i
\(179\) 243.428i 1.35993i 0.733244 + 0.679966i \(0.238005\pi\)
−0.733244 + 0.679966i \(0.761995\pi\)
\(180\) 0 0
\(181\) −315.333 −1.74217 −0.871085 0.491132i \(-0.836583\pi\)
−0.871085 + 0.491132i \(0.836583\pi\)
\(182\) −43.4495 43.4495i −0.238734 0.238734i
\(183\) −58.3068 + 58.3068i −0.318616 + 0.318616i
\(184\) 107.057i 0.581833i
\(185\) 0 0
\(186\) −82.9732 −0.446092
\(187\) 3.43645 + 3.43645i 0.0183767 + 0.0183767i
\(188\) −39.4174 + 39.4174i −0.209667 + 0.209667i
\(189\) 47.5663i 0.251674i
\(190\) 0 0
\(191\) 316.969 1.65952 0.829761 0.558118i \(-0.188476\pi\)
0.829761 + 0.558118i \(0.188476\pi\)
\(192\) 9.79796 + 9.79796i 0.0510310 + 0.0510310i
\(193\) −128.174 + 128.174i −0.664115 + 0.664115i −0.956347 0.292232i \(-0.905602\pi\)
0.292232 + 0.956347i \(0.405602\pi\)
\(194\) 74.3224i 0.383105i
\(195\) 0 0
\(196\) −69.5966 −0.355085
\(197\) −168.051 168.051i −0.853052 0.853052i 0.137456 0.990508i \(-0.456107\pi\)
−0.990508 + 0.137456i \(0.956107\pi\)
\(198\) −0.718075 + 0.718075i −0.00362664 + 0.00362664i
\(199\) 289.119i 1.45286i −0.687240 0.726430i \(-0.741178\pi\)
0.687240 0.726430i \(-0.258822\pi\)
\(200\) 0 0
\(201\) −211.691 −1.05319
\(202\) 15.1796 + 15.1796i 0.0751467 + 0.0751467i
\(203\) 128.167 128.167i 0.631367 0.631367i
\(204\) 70.3342i 0.344776i
\(205\) 0 0
\(206\) 51.5096 0.250047
\(207\) −80.2929 80.2929i −0.387889 0.387889i
\(208\) −13.4249 + 13.4249i −0.0645430 + 0.0645430i
\(209\) 0.609664i 0.00291705i
\(210\) 0 0
\(211\) −39.5665 −0.187519 −0.0937596 0.995595i \(-0.529888\pi\)
−0.0937596 + 0.995595i \(0.529888\pi\)
\(212\) 65.2192 + 65.2192i 0.307638 + 0.307638i
\(213\) −156.944 + 156.944i −0.736827 + 0.736827i
\(214\) 222.032i 1.03753i
\(215\) 0 0
\(216\) 14.6969 0.0680414
\(217\) −219.263 219.263i −1.01043 1.01043i
\(218\) 162.040 162.040i 0.743303 0.743303i
\(219\) 52.0059i 0.237470i
\(220\) 0 0
\(221\) 96.3703 0.436065
\(222\) 62.6420 + 62.6420i 0.282171 + 0.282171i
\(223\) 77.9564 77.9564i 0.349580 0.349580i −0.510373 0.859953i \(-0.670493\pi\)
0.859953 + 0.510373i \(0.170493\pi\)
\(224\) 51.7836i 0.231177i
\(225\) 0 0
\(226\) −51.2318 −0.226689
\(227\) −11.0098 11.0098i −0.0485015 0.0485015i 0.682440 0.730942i \(-0.260919\pi\)
−0.730942 + 0.682440i \(0.760919\pi\)
\(228\) 6.23903 6.23903i 0.0273642 0.0273642i
\(229\) 170.347i 0.743874i 0.928258 + 0.371937i \(0.121306\pi\)
−0.928258 + 0.371937i \(0.878694\pi\)
\(230\) 0 0
\(231\) −3.79513 −0.0164291
\(232\) −39.6009 39.6009i −0.170694 0.170694i
\(233\) −180.554 + 180.554i −0.774912 + 0.774912i −0.978961 0.204049i \(-0.934590\pi\)
0.204049 + 0.978961i \(0.434590\pi\)
\(234\) 20.1374i 0.0860573i
\(235\) 0 0
\(236\) −84.4529 −0.357851
\(237\) −65.3549 65.3549i −0.275759 0.275759i
\(238\) 185.863 185.863i 0.780938 0.780938i
\(239\) 251.741i 1.05331i −0.850079 0.526655i \(-0.823446\pi\)
0.850079 0.526655i \(-0.176554\pi\)
\(240\) 0 0
\(241\) −68.7572 −0.285299 −0.142650 0.989773i \(-0.545562\pi\)
−0.142650 + 0.989773i \(0.545562\pi\)
\(242\) 120.943 + 120.943i 0.499763 + 0.499763i
\(243\) 11.0227 11.0227i 0.0453609 0.0453609i
\(244\) 95.2146i 0.390224i
\(245\) 0 0
\(246\) −76.7193 −0.311867
\(247\) 8.54858 + 8.54858i 0.0346096 + 0.0346096i
\(248\) −67.7473 + 67.7473i −0.273175 + 0.273175i
\(249\) 200.730i 0.806143i
\(250\) 0 0
\(251\) −256.264 −1.02097 −0.510486 0.859886i \(-0.670535\pi\)
−0.510486 + 0.859886i \(0.670535\pi\)
\(252\) 38.8377 + 38.8377i 0.154118 + 0.154118i
\(253\) 6.40626 6.40626i 0.0253212 0.0253212i
\(254\) 3.33999i 0.0131496i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) −269.228 269.228i −1.04758 1.04758i −0.998810 0.0487685i \(-0.984470\pi\)
−0.0487685 0.998810i \(-0.515530\pi\)
\(258\) −129.131 + 129.131i −0.500506 + 0.500506i
\(259\) 331.072i 1.27827i
\(260\) 0 0
\(261\) −59.4013 −0.227591
\(262\) −190.408 190.408i −0.726747 0.726747i
\(263\) 204.354 204.354i 0.777011 0.777011i −0.202310 0.979321i \(-0.564845\pi\)
0.979321 + 0.202310i \(0.0648450\pi\)
\(264\) 1.17261i 0.00444171i
\(265\) 0 0
\(266\) 32.9742 0.123963
\(267\) −2.36014 2.36014i −0.00883947 0.00883947i
\(268\) −172.845 + 172.845i −0.644945 + 0.644945i
\(269\) 150.789i 0.560554i 0.959919 + 0.280277i \(0.0904263\pi\)
−0.959919 + 0.280277i \(0.909574\pi\)
\(270\) 0 0
\(271\) −376.326 −1.38866 −0.694328 0.719658i \(-0.744298\pi\)
−0.694328 + 0.719658i \(0.744298\pi\)
\(272\) −57.4276 57.4276i −0.211131 0.211131i
\(273\) −53.2146 + 53.2146i −0.194925 + 0.194925i
\(274\) 52.1331i 0.190267i
\(275\) 0 0
\(276\) −131.118 −0.475065
\(277\) −319.711 319.711i −1.15419 1.15419i −0.985704 0.168486i \(-0.946112\pi\)
−0.168486 0.985704i \(-0.553888\pi\)
\(278\) −172.480 + 172.480i −0.620431 + 0.620431i
\(279\) 101.621i 0.364233i
\(280\) 0 0
\(281\) −180.776 −0.643330 −0.321665 0.946854i \(-0.604242\pi\)
−0.321665 + 0.946854i \(0.604242\pi\)
\(282\) 48.2762 + 48.2762i 0.171192 + 0.171192i
\(283\) 252.068 252.068i 0.890699 0.890699i −0.103890 0.994589i \(-0.533129\pi\)
0.994589 + 0.103890i \(0.0331290\pi\)
\(284\) 256.289i 0.902425i
\(285\) 0 0
\(286\) −1.60669 −0.00561778
\(287\) −202.736 202.736i −0.706398 0.706398i
\(288\) 12.0000 12.0000i 0.0416667 0.0416667i
\(289\) 123.242i 0.426442i
\(290\) 0 0
\(291\) 91.0260 0.312804
\(292\) 42.4627 + 42.4627i 0.145420 + 0.145420i
\(293\) −160.974 + 160.974i −0.549400 + 0.549400i −0.926267 0.376867i \(-0.877001\pi\)
0.376867 + 0.926267i \(0.377001\pi\)
\(294\) 85.2381i 0.289926i
\(295\) 0 0
\(296\) 102.294 0.345588
\(297\) 0.879459 + 0.879459i 0.00296114 + 0.00296114i
\(298\) −35.7067 + 35.7067i −0.119821 + 0.119821i
\(299\) 179.655i 0.600852i
\(300\) 0 0
\(301\) −682.474 −2.26735
\(302\) 22.3612 + 22.3612i 0.0740436 + 0.0740436i
\(303\) 18.5912 18.5912i 0.0613570 0.0613570i
\(304\) 10.1883i 0.0335141i
\(305\) 0 0
\(306\) −86.1415 −0.281508
\(307\) 265.191 + 265.191i 0.863816 + 0.863816i 0.991779 0.127963i \(-0.0408440\pi\)
−0.127963 + 0.991779i \(0.540844\pi\)
\(308\) −3.09871 + 3.09871i −0.0100608 + 0.0100608i
\(309\) 63.0861i 0.204162i
\(310\) 0 0
\(311\) 495.139 1.59209 0.796044 0.605239i \(-0.206922\pi\)
0.796044 + 0.605239i \(0.206922\pi\)
\(312\) 16.4421 + 16.4421i 0.0526991 + 0.0526991i
\(313\) 74.8634 74.8634i 0.239180 0.239180i −0.577330 0.816511i \(-0.695906\pi\)
0.816511 + 0.577330i \(0.195906\pi\)
\(314\) 431.452i 1.37405i
\(315\) 0 0
\(316\) −106.724 −0.337734
\(317\) 27.5097 + 27.5097i 0.0867814 + 0.0867814i 0.749165 0.662384i \(-0.230455\pi\)
−0.662384 + 0.749165i \(0.730455\pi\)
\(318\) 79.8769 79.8769i 0.251185 0.251185i
\(319\) 4.73940i 0.0148571i
\(320\) 0 0
\(321\) −271.933 −0.847143
\(322\) −346.488 346.488i −1.07605 1.07605i
\(323\) −36.5681 + 36.5681i −0.113214 + 0.113214i
\(324\) 18.0000i 0.0555556i
\(325\) 0 0
\(326\) 191.534 0.587527
\(327\) −198.458 198.458i −0.606904 0.606904i
\(328\) −62.6410 + 62.6410i −0.190979 + 0.190979i
\(329\) 255.147i 0.775523i
\(330\) 0 0
\(331\) 609.530 1.84148 0.920741 0.390175i \(-0.127586\pi\)
0.920741 + 0.390175i \(0.127586\pi\)
\(332\) −163.895 163.895i −0.493660 0.493660i
\(333\) 76.7205 76.7205i 0.230392 0.230392i
\(334\) 363.275i 1.08765i
\(335\) 0 0
\(336\) 63.4218 0.188755
\(337\) 329.028 + 329.028i 0.976344 + 0.976344i 0.999727 0.0233824i \(-0.00744353\pi\)
−0.0233824 + 0.999727i \(0.507444\pi\)
\(338\) 146.471 146.471i 0.433347 0.433347i
\(339\) 62.7459i 0.185091i
\(340\) 0 0
\(341\) −8.10794 −0.0237770
\(342\) −7.64122 7.64122i −0.0223428 0.0223428i
\(343\) 91.9269 91.9269i 0.268008 0.268008i
\(344\) 210.869i 0.612992i
\(345\) 0 0
\(346\) −72.9376 −0.210802
\(347\) 163.107 + 163.107i 0.470050 + 0.470050i 0.901931 0.431881i \(-0.142150\pi\)
−0.431881 + 0.901931i \(0.642150\pi\)
\(348\) −48.5010 + 48.5010i −0.139371 + 0.139371i
\(349\) 388.612i 1.11350i −0.830679 0.556751i \(-0.812048\pi\)
0.830679 0.556751i \(-0.187952\pi\)
\(350\) 0 0
\(351\) 24.6632 0.0702655
\(352\) 0.957434 + 0.957434i 0.00271998 + 0.00271998i
\(353\) 42.4982 42.4982i 0.120392 0.120392i −0.644344 0.764736i \(-0.722870\pi\)
0.764736 + 0.644344i \(0.222870\pi\)
\(354\) 103.433i 0.292184i
\(355\) 0 0
\(356\) −3.85409 −0.0108261
\(357\) −227.635 227.635i −0.637633 0.637633i
\(358\) 243.428 243.428i 0.679966 0.679966i
\(359\) 186.546i 0.519626i 0.965659 + 0.259813i \(0.0836609\pi\)
−0.965659 + 0.259813i \(0.916339\pi\)
\(360\) 0 0
\(361\) 354.512 0.982029
\(362\) 315.333 + 315.333i 0.871085 + 0.871085i
\(363\) 148.124 148.124i 0.408055 0.408055i
\(364\) 86.8990i 0.238734i
\(365\) 0 0
\(366\) 116.614 0.318616
\(367\) −70.5464 70.5464i −0.192224 0.192224i 0.604432 0.796657i \(-0.293400\pi\)
−0.796657 + 0.604432i \(0.793400\pi\)
\(368\) −107.057 + 107.057i −0.290916 + 0.290916i
\(369\) 93.9615i 0.254638i
\(370\) 0 0
\(371\) 422.161 1.13790
\(372\) 82.9732 + 82.9732i 0.223046 + 0.223046i
\(373\) 401.472 401.472i 1.07633 1.07633i 0.0794977 0.996835i \(-0.474668\pi\)
0.996835 0.0794977i \(-0.0253316\pi\)
\(374\) 6.87289i 0.0183767i
\(375\) 0 0
\(376\) 78.8348 0.209667
\(377\) −66.4550 66.4550i −0.176273 0.176273i
\(378\) 47.5663 47.5663i 0.125837 0.125837i
\(379\) 160.204i 0.422702i −0.977410 0.211351i \(-0.932214\pi\)
0.977410 0.211351i \(-0.0677863\pi\)
\(380\) 0 0
\(381\) 4.09064 0.0107366
\(382\) −316.969 316.969i −0.829761 0.829761i
\(383\) −143.952 + 143.952i −0.375855 + 0.375855i −0.869604 0.493749i \(-0.835626\pi\)
0.493749 + 0.869604i \(0.335626\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) 0 0
\(386\) 256.348 0.664115
\(387\) 158.152 + 158.152i 0.408661 + 0.408661i
\(388\) 74.3224 74.3224i 0.191553 0.191553i
\(389\) 627.721i 1.61368i −0.590771 0.806839i \(-0.701176\pi\)
0.590771 0.806839i \(-0.298824\pi\)
\(390\) 0 0
\(391\) 768.506 1.96549
\(392\) 69.5966 + 69.5966i 0.177542 + 0.177542i
\(393\) −233.201 + 233.201i −0.593386 + 0.593386i
\(394\) 336.102i 0.853052i
\(395\) 0 0
\(396\) 1.43615 0.00362664
\(397\) 339.239 + 339.239i 0.854506 + 0.854506i 0.990684 0.136178i \(-0.0434819\pi\)
−0.136178 + 0.990684i \(0.543482\pi\)
\(398\) −289.119 + 289.119i −0.726430 + 0.726430i
\(399\) 40.3850i 0.101215i
\(400\) 0 0
\(401\) −639.454 −1.59465 −0.797324 0.603552i \(-0.793752\pi\)
−0.797324 + 0.603552i \(0.793752\pi\)
\(402\) 211.691 + 211.691i 0.526595 + 0.526595i
\(403\) −113.688 + 113.688i −0.282104 + 0.282104i
\(404\) 30.3593i 0.0751467i
\(405\) 0 0
\(406\) −256.335 −0.631367
\(407\) 6.12123 + 6.12123i 0.0150399 + 0.0150399i
\(408\) −70.3342 + 70.3342i −0.172388 + 0.172388i
\(409\) 648.066i 1.58451i −0.610188 0.792257i \(-0.708906\pi\)
0.610188 0.792257i \(-0.291094\pi\)
\(410\) 0 0
\(411\) 63.8498 0.155352
\(412\) −51.5096 51.5096i −0.125023 0.125023i
\(413\) −273.330 + 273.330i −0.661816 + 0.661816i
\(414\) 160.586i 0.387889i
\(415\) 0 0
\(416\) 26.8499 0.0645430
\(417\) 211.244 + 211.244i 0.506580 + 0.506580i
\(418\) 0.609664 0.609664i 0.00145853 0.00145853i
\(419\) 674.046i 1.60870i −0.594155 0.804351i \(-0.702513\pi\)
0.594155 0.804351i \(-0.297487\pi\)
\(420\) 0 0
\(421\) −251.907 −0.598354 −0.299177 0.954198i \(-0.596712\pi\)
−0.299177 + 0.954198i \(0.596712\pi\)
\(422\) 39.5665 + 39.5665i 0.0937596 + 0.0937596i
\(423\) 59.1261 59.1261i 0.139778 0.139778i
\(424\) 130.438i 0.307638i
\(425\) 0 0
\(426\) 313.888 0.736827
\(427\) 308.160 + 308.160i 0.721686 + 0.721686i
\(428\) −222.032 + 222.032i −0.518767 + 0.518767i
\(429\) 1.96778i 0.00458690i
\(430\) 0 0
\(431\) 73.5149 0.170568 0.0852841 0.996357i \(-0.472820\pi\)
0.0852841 + 0.996357i \(0.472820\pi\)
\(432\) −14.6969 14.6969i −0.0340207 0.0340207i
\(433\) 542.146 542.146i 1.25207 1.25207i 0.297277 0.954791i \(-0.403921\pi\)
0.954791 0.297277i \(-0.0960786\pi\)
\(434\) 438.525i 1.01043i
\(435\) 0 0
\(436\) −324.080 −0.743303
\(437\) 68.1707 + 68.1707i 0.155997 + 0.155997i
\(438\) 52.0059 52.0059i 0.118735 0.118735i
\(439\) 347.787i 0.792226i −0.918202 0.396113i \(-0.870359\pi\)
0.918202 0.396113i \(-0.129641\pi\)
\(440\) 0 0
\(441\) 104.395 0.236723
\(442\) −96.3703 96.3703i −0.218032 0.218032i
\(443\) −303.258 + 303.258i −0.684556 + 0.684556i −0.961023 0.276467i \(-0.910836\pi\)
0.276467 + 0.961023i \(0.410836\pi\)
\(444\) 125.284i 0.282171i
\(445\) 0 0
\(446\) −155.913 −0.349580
\(447\) 43.7316 + 43.7316i 0.0978336 + 0.0978336i
\(448\) 51.7836 51.7836i 0.115588 0.115588i
\(449\) 139.114i 0.309830i −0.987928 0.154915i \(-0.950490\pi\)
0.987928 0.154915i \(-0.0495104\pi\)
\(450\) 0 0
\(451\) −7.49683 −0.0166227
\(452\) 51.2318 + 51.2318i 0.113345 + 0.113345i
\(453\) 27.3867 27.3867i 0.0604563 0.0604563i
\(454\) 22.0197i 0.0485015i
\(455\) 0 0
\(456\) −12.4781 −0.0273642
\(457\) 547.409 + 547.409i 1.19783 + 1.19783i 0.974814 + 0.223018i \(0.0715910\pi\)
0.223018 + 0.974814i \(0.428409\pi\)
\(458\) 170.347 170.347i 0.371937 0.371937i
\(459\) 105.501i 0.229850i
\(460\) 0 0
\(461\) 349.358 0.757826 0.378913 0.925432i \(-0.376298\pi\)
0.378913 + 0.925432i \(0.376298\pi\)
\(462\) 3.79513 + 3.79513i 0.00821457 + 0.00821457i
\(463\) −455.977 + 455.977i −0.984831 + 0.984831i −0.999887 0.0150559i \(-0.995207\pi\)
0.0150559 + 0.999887i \(0.495207\pi\)
\(464\) 79.2018i 0.170694i
\(465\) 0 0
\(466\) 361.109 0.774912
\(467\) 57.4519 + 57.4519i 0.123023 + 0.123023i 0.765938 0.642915i \(-0.222275\pi\)
−0.642915 + 0.765938i \(0.722275\pi\)
\(468\) 20.1374 20.1374i 0.0430287 0.0430287i
\(469\) 1118.82i 2.38554i
\(470\) 0 0
\(471\) −528.418 −1.12191
\(472\) 84.4529 + 84.4529i 0.178926 + 0.178926i
\(473\) −12.6183 + 12.6183i −0.0266772 + 0.0266772i
\(474\) 130.710i 0.275759i
\(475\) 0 0
\(476\) −371.727 −0.780938
\(477\) −97.8289 97.8289i −0.205092 0.205092i
\(478\) −251.741 + 251.741i −0.526655 + 0.526655i
\(479\) 21.8319i 0.0455780i 0.999740 + 0.0227890i \(0.00725459\pi\)
−0.999740 + 0.0227890i \(0.992745\pi\)
\(480\) 0 0
\(481\) 171.661 0.356884
\(482\) 68.7572 + 68.7572i 0.142650 + 0.142650i
\(483\) −424.360 + 424.360i −0.878592 + 0.878592i
\(484\) 241.885i 0.499763i
\(485\) 0 0
\(486\) −22.0454 −0.0453609
\(487\) 81.7201 + 81.7201i 0.167803 + 0.167803i 0.786013 0.618210i \(-0.212142\pi\)
−0.618210 + 0.786013i \(0.712142\pi\)
\(488\) 95.2146 95.2146i 0.195112 0.195112i
\(489\) 234.580i 0.479713i
\(490\) 0 0
\(491\) −29.1488 −0.0593663 −0.0296831 0.999559i \(-0.509450\pi\)
−0.0296831 + 0.999559i \(0.509450\pi\)
\(492\) 76.7193 + 76.7193i 0.155934 + 0.155934i
\(493\) 284.273 284.273i 0.576619 0.576619i
\(494\) 17.0972i 0.0346096i
\(495\) 0 0
\(496\) 135.495 0.273175
\(497\) 829.473 + 829.473i 1.66896 + 1.66896i
\(498\) −200.730 + 200.730i −0.403071 + 0.403071i
\(499\) 379.995i 0.761513i −0.924675 0.380756i \(-0.875664\pi\)
0.924675 0.380756i \(-0.124336\pi\)
\(500\) 0 0
\(501\) 444.919 0.888062
\(502\) 256.264 + 256.264i 0.510486 + 0.510486i
\(503\) 456.906 456.906i 0.908363 0.908363i −0.0877775 0.996140i \(-0.527976\pi\)
0.996140 + 0.0877775i \(0.0279764\pi\)
\(504\) 77.6755i 0.154118i
\(505\) 0 0
\(506\) −12.8125 −0.0253212
\(507\) −179.390 179.390i −0.353827 0.353827i
\(508\) 3.33999 3.33999i 0.00657479 0.00657479i
\(509\) 448.672i 0.881477i −0.897635 0.440739i \(-0.854717\pi\)
0.897635 0.440739i \(-0.145283\pi\)
\(510\) 0 0
\(511\) 274.859 0.537885
\(512\) −16.0000 16.0000i −0.0312500 0.0312500i
\(513\) −9.35855 + 9.35855i −0.0182428 + 0.0182428i
\(514\) 538.455i 1.04758i
\(515\) 0 0
\(516\) 258.261 0.500506
\(517\) 4.71744 + 4.71744i 0.00912465 + 0.00912465i
\(518\) 331.072 331.072i 0.639136 0.639136i
\(519\) 89.3300i 0.172119i
\(520\) 0 0
\(521\) −743.950 −1.42793 −0.713964 0.700183i \(-0.753102\pi\)
−0.713964 + 0.700183i \(0.753102\pi\)
\(522\) 59.4013 + 59.4013i 0.113796 + 0.113796i
\(523\) −339.868 + 339.868i −0.649844 + 0.649844i −0.952955 0.303111i \(-0.901975\pi\)
0.303111 + 0.952955i \(0.401975\pi\)
\(524\) 380.815i 0.726747i
\(525\) 0 0
\(526\) −408.708 −0.777011
\(527\) −486.321 486.321i −0.922810 0.922810i
\(528\) 1.17261 1.17261i 0.00222086 0.00222086i
\(529\) 903.657i 1.70824i
\(530\) 0 0
\(531\) 126.679 0.238567
\(532\) −32.9742 32.9742i −0.0619816 0.0619816i
\(533\) −105.119 + 105.119i −0.197221 + 0.197221i
\(534\) 4.72028i 0.00883947i
\(535\) 0 0
\(536\) 345.691 0.644945
\(537\) −298.137 298.137i −0.555190 0.555190i
\(538\) 150.789 150.789i 0.280277 0.280277i
\(539\) 8.32927i 0.0154532i
\(540\) 0 0
\(541\) −242.473 −0.448195 −0.224097 0.974567i \(-0.571943\pi\)
−0.224097 + 0.974567i \(0.571943\pi\)
\(542\) 376.326 + 376.326i 0.694328 + 0.694328i
\(543\) 386.202 386.202i 0.711238 0.711238i
\(544\) 114.855i 0.211131i
\(545\) 0 0
\(546\) 106.429 0.194925
\(547\) 215.569 + 215.569i 0.394094 + 0.394094i 0.876144 0.482050i \(-0.160108\pi\)
−0.482050 + 0.876144i \(0.660108\pi\)
\(548\) 52.1331 52.1331i 0.0951334 0.0951334i
\(549\) 142.822i 0.260149i
\(550\) 0 0
\(551\) 50.4332 0.0915303
\(552\) 131.118 + 131.118i 0.237532 + 0.237532i
\(553\) −345.410 + 345.410i −0.624611 + 0.624611i
\(554\) 639.421i 1.15419i
\(555\) 0 0
\(556\) 344.960 0.620431
\(557\) −115.397 115.397i −0.207177 0.207177i 0.595890 0.803066i \(-0.296800\pi\)
−0.803066 + 0.595890i \(0.796800\pi\)
\(558\) 101.621 101.621i 0.182116 0.182116i
\(559\) 353.863i 0.633029i
\(560\) 0 0
\(561\) −8.41754 −0.0150045
\(562\) 180.776 + 180.776i 0.321665 + 0.321665i
\(563\) −84.8034 + 84.8034i −0.150628 + 0.150628i −0.778398 0.627771i \(-0.783968\pi\)
0.627771 + 0.778398i \(0.283968\pi\)
\(564\) 96.5525i 0.171192i
\(565\) 0 0
\(566\) −504.135 −0.890699
\(567\) −58.2566 58.2566i −0.102745 0.102745i
\(568\) 256.289 256.289i 0.451212 0.451212i
\(569\) 85.6878i 0.150594i −0.997161 0.0752969i \(-0.976010\pi\)
0.997161 0.0752969i \(-0.0239904\pi\)
\(570\) 0 0
\(571\) 811.448 1.42110 0.710549 0.703647i \(-0.248446\pi\)
0.710549 + 0.703647i \(0.248446\pi\)
\(572\) 1.60669 + 1.60669i 0.00280889 + 0.00280889i
\(573\) −388.206 + 388.206i −0.677497 + 0.677497i
\(574\) 405.473i 0.706398i
\(575\) 0 0
\(576\) −24.0000 −0.0416667
\(577\) 402.333 + 402.333i 0.697284 + 0.697284i 0.963824 0.266540i \(-0.0858803\pi\)
−0.266540 + 0.963824i \(0.585880\pi\)
\(578\) 123.242 123.242i 0.213221 0.213221i
\(579\) 313.961i 0.542248i
\(580\) 0 0
\(581\) −1060.89 −1.82596
\(582\) −91.0260 91.0260i −0.156402 0.156402i
\(583\) 7.80539 7.80539i 0.0133883 0.0133883i
\(584\) 84.9254i 0.145420i
\(585\) 0 0
\(586\) 321.948 0.549400
\(587\) −196.739 196.739i −0.335160 0.335160i 0.519382 0.854542i \(-0.326162\pi\)
−0.854542 + 0.519382i \(0.826162\pi\)
\(588\) 85.2381 85.2381i 0.144963 0.144963i
\(589\) 86.2787i 0.146483i
\(590\) 0 0
\(591\) 411.640 0.696514
\(592\) −102.294 102.294i −0.172794 0.172794i
\(593\) 701.567 701.567i 1.18308 1.18308i 0.204139 0.978942i \(-0.434561\pi\)
0.978942 0.204139i \(-0.0654394\pi\)
\(594\) 1.75892i 0.00296114i
\(595\) 0 0
\(596\) 71.4134 0.119821
\(597\) 354.097 + 354.097i 0.593128 + 0.593128i
\(598\) −179.655 + 179.655i −0.300426 + 0.300426i
\(599\) 61.8419i 0.103242i 0.998667 + 0.0516210i \(0.0164388\pi\)
−0.998667 + 0.0516210i \(0.983561\pi\)
\(600\) 0 0
\(601\) 35.2542 0.0586593 0.0293296 0.999570i \(-0.490663\pi\)
0.0293296 + 0.999570i \(0.490663\pi\)
\(602\) 682.474 + 682.474i 1.13368 + 1.13368i
\(603\) 259.268 259.268i 0.429963 0.429963i
\(604\) 44.7223i 0.0740436i
\(605\) 0 0
\(606\) −37.1823 −0.0613570
\(607\) 357.609 + 357.609i 0.589142 + 0.589142i 0.937399 0.348257i \(-0.113226\pi\)
−0.348257 + 0.937399i \(0.613226\pi\)
\(608\) −10.1883 + 10.1883i −0.0167571 + 0.0167571i
\(609\) 313.945i 0.515509i
\(610\) 0 0
\(611\) 132.294 0.216520
\(612\) 86.1415 + 86.1415i 0.140754 + 0.140754i
\(613\) −617.374 + 617.374i −1.00714 + 1.00714i −0.00716146 + 0.999974i \(0.502280\pi\)
−0.999974 + 0.00716146i \(0.997720\pi\)
\(614\) 530.383i 0.863816i
\(615\) 0 0
\(616\) 6.19743 0.0100608
\(617\) −245.403 245.403i −0.397736 0.397736i 0.479698 0.877434i \(-0.340746\pi\)
−0.877434 + 0.479698i \(0.840746\pi\)
\(618\) −63.0861 + 63.0861i −0.102081 + 0.102081i
\(619\) 361.343i 0.583753i 0.956456 + 0.291877i \(0.0942797\pi\)
−0.956456 + 0.291877i \(0.905720\pi\)
\(620\) 0 0
\(621\) 196.677 0.316710
\(622\) −495.139 495.139i −0.796044 0.796044i
\(623\) −12.4737 + 12.4737i −0.0200219 + 0.0200219i
\(624\) 32.8843i 0.0526991i
\(625\) 0 0
\(626\) −149.727 −0.239180
\(627\) −0.746682 0.746682i −0.00119088 0.00119088i
\(628\) −431.452 + 431.452i −0.687025 + 0.687025i
\(629\) 734.313i 1.16743i
\(630\) 0 0
\(631\) 89.5750 0.141957 0.0709786 0.997478i \(-0.477388\pi\)
0.0709786 + 0.997478i \(0.477388\pi\)
\(632\) 106.724 + 106.724i 0.168867 + 0.168867i
\(633\) 48.4589 48.4589i 0.0765544 0.0765544i
\(634\) 55.0194i 0.0867814i
\(635\) 0 0
\(636\) −159.754 −0.251185
\(637\) 116.791 + 116.791i 0.183346 + 0.183346i
\(638\) −4.73940 + 4.73940i −0.00742853 + 0.00742853i
\(639\) 384.433i 0.601617i
\(640\) 0 0
\(641\) −873.858 −1.36327 −0.681636 0.731691i \(-0.738731\pi\)
−0.681636 + 0.731691i \(0.738731\pi\)
\(642\) 271.933 + 271.933i 0.423571 + 0.423571i
\(643\) −427.278 + 427.278i −0.664507 + 0.664507i −0.956439 0.291932i \(-0.905702\pi\)
0.291932 + 0.956439i \(0.405702\pi\)
\(644\) 692.977i 1.07605i
\(645\) 0 0
\(646\) 73.1362 0.113214
\(647\) 786.700 + 786.700i 1.21592 + 1.21592i 0.969048 + 0.246872i \(0.0794027\pi\)
0.246872 + 0.969048i \(0.420597\pi\)
\(648\) −18.0000 + 18.0000i −0.0277778 + 0.0277778i
\(649\) 10.1073i 0.0155736i
\(650\) 0 0
\(651\) 537.082 0.825010
\(652\) −191.534 191.534i −0.293763 0.293763i
\(653\) 618.390 618.390i 0.946999 0.946999i −0.0516653 0.998664i \(-0.516453\pi\)
0.998664 + 0.0516653i \(0.0164529\pi\)
\(654\) 396.915i 0.606904i
\(655\) 0 0
\(656\) 125.282 0.190979
\(657\) −63.6940 63.6940i −0.0969468 0.0969468i
\(658\) 255.147 255.147i 0.387761 0.387761i
\(659\) 336.577i 0.510739i 0.966844 + 0.255370i \(0.0821971\pi\)
−0.966844 + 0.255370i \(0.917803\pi\)
\(660\) 0 0
\(661\) −623.611 −0.943435 −0.471718 0.881750i \(-0.656366\pi\)
−0.471718 + 0.881750i \(0.656366\pi\)
\(662\) −609.530 609.530i −0.920741 0.920741i
\(663\) −118.029 + 118.029i −0.178023 + 0.178023i
\(664\) 327.790i 0.493660i
\(665\) 0 0
\(666\) −153.441 −0.230392
\(667\) −529.945 529.945i −0.794521 0.794521i
\(668\) 363.275 363.275i 0.543824 0.543824i
\(669\) 190.953i 0.285431i
\(670\) 0 0
\(671\) 11.3952 0.0169824
\(672\) −63.4218 63.4218i −0.0943776 0.0943776i
\(673\) 521.943 521.943i 0.775547 0.775547i −0.203523 0.979070i \(-0.565239\pi\)
0.979070 + 0.203523i \(0.0652393\pi\)
\(674\) 658.056i 0.976344i
\(675\) 0 0
\(676\) −292.943 −0.433347
\(677\) 151.473 + 151.473i 0.223741 + 0.223741i 0.810072 0.586331i \(-0.199428\pi\)
−0.586331 + 0.810072i \(0.699428\pi\)
\(678\) 62.7459 62.7459i 0.0925456 0.0925456i
\(679\) 481.086i 0.708521i
\(680\) 0 0
\(681\) 26.9685 0.0396013
\(682\) 8.10794 + 8.10794i 0.0118885 + 0.0118885i
\(683\) 141.089 141.089i 0.206572 0.206572i −0.596237 0.802809i \(-0.703338\pi\)
0.802809 + 0.596237i \(0.203338\pi\)
\(684\) 15.2824i 0.0223428i
\(685\) 0 0
\(686\) −183.854 −0.268008
\(687\) −208.632 208.632i −0.303685 0.303685i
\(688\) 210.869 210.869i 0.306496 0.306496i
\(689\) 218.891i 0.317694i
\(690\) 0 0
\(691\) −270.741 −0.391811 −0.195905 0.980623i \(-0.562765\pi\)
−0.195905 + 0.980623i \(0.562765\pi\)
\(692\) 72.9376 + 72.9376i 0.105401 + 0.105401i
\(693\) 4.64807 4.64807i 0.00670717 0.00670717i
\(694\) 326.215i 0.470050i
\(695\) 0 0
\(696\) 97.0020 0.139371
\(697\) −449.666 449.666i −0.645145 0.645145i
\(698\) −388.612 + 388.612i −0.556751 + 0.556751i
\(699\) 442.266i 0.632713i
\(700\) 0 0
\(701\) −954.067 −1.36101 −0.680504 0.732744i \(-0.738239\pi\)
−0.680504 + 0.732744i \(0.738239\pi\)
\(702\) −24.6632 24.6632i −0.0351327 0.0351327i
\(703\) −65.1376 + 65.1376i −0.0926566 + 0.0926566i
\(704\) 1.91487i 0.00271998i
\(705\) 0 0
\(706\) −84.9965 −0.120392
\(707\) −98.2571 98.2571i −0.138977 0.138977i
\(708\) 103.433 103.433i 0.146092 0.146092i
\(709\) 298.144i 0.420513i −0.977646 0.210257i \(-0.932570\pi\)
0.977646 0.210257i \(-0.0674300\pi\)
\(710\) 0 0
\(711\) 160.086 0.225156
\(712\) 3.85409 + 3.85409i 0.00541305 + 0.00541305i
\(713\) −906.605 + 906.605i −1.27154 + 1.27154i
\(714\) 455.270i 0.637633i
\(715\) 0 0
\(716\) −486.855 −0.679966
\(717\) 308.318 + 308.318i 0.430012 + 0.430012i
\(718\) 186.546 186.546i 0.259813 0.259813i
\(719\) 248.694i 0.345889i 0.984932 + 0.172944i \(0.0553281\pi\)
−0.984932 + 0.172944i \(0.944672\pi\)
\(720\) 0 0
\(721\) −333.419 −0.462440
\(722\) −354.512 354.512i −0.491014 0.491014i
\(723\) 84.2100 84.2100i 0.116473 0.116473i
\(724\) 630.665i 0.871085i
\(725\) 0 0
\(726\) −296.248 −0.408055
\(727\) 423.236 + 423.236i 0.582168 + 0.582168i 0.935499 0.353331i \(-0.114951\pi\)
−0.353331 + 0.935499i \(0.614951\pi\)
\(728\) 86.8990 86.8990i 0.119367 0.119367i
\(729\) 27.0000i 0.0370370i
\(730\) 0 0
\(731\) −1513.72 −2.07075
\(732\) −116.614 116.614i −0.159308 0.159308i
\(733\) 502.822 502.822i 0.685978 0.685978i −0.275362 0.961340i \(-0.588798\pi\)
0.961340 + 0.275362i \(0.0887979\pi\)
\(734\) 141.093i 0.192224i
\(735\) 0 0
\(736\) 214.115 0.290916
\(737\) 20.6860 + 20.6860i 0.0280678 + 0.0280678i
\(738\) 93.9615 93.9615i 0.127319 0.127319i
\(739\) 508.067i 0.687505i 0.939060 + 0.343753i \(0.111698\pi\)
−0.939060 + 0.343753i \(0.888302\pi\)
\(740\) 0 0
\(741\) −20.9397 −0.0282586
\(742\) −422.161 422.161i −0.568950 0.568950i
\(743\) −100.424 + 100.424i −0.135160 + 0.135160i −0.771450 0.636290i \(-0.780468\pi\)
0.636290 + 0.771450i \(0.280468\pi\)
\(744\) 165.946i 0.223046i
\(745\) 0 0
\(746\) −802.944 −1.07633
\(747\) 245.843 + 245.843i 0.329106 + 0.329106i
\(748\) −6.87289 + 6.87289i −0.00918836 + 0.00918836i
\(749\) 1437.20i 1.91883i
\(750\) 0 0
\(751\) 519.697 0.692006 0.346003 0.938233i \(-0.387539\pi\)
0.346003 + 0.938233i \(0.387539\pi\)
\(752\) −78.8348 78.8348i −0.104833 0.104833i
\(753\) 313.858 313.858i 0.416810 0.416810i
\(754\) 132.910i 0.176273i
\(755\) 0 0
\(756\) −95.1326 −0.125837
\(757\) 585.300 + 585.300i 0.773183 + 0.773183i 0.978662 0.205478i \(-0.0658750\pi\)
−0.205478 + 0.978662i \(0.565875\pi\)
\(758\) −160.204 + 160.204i −0.211351 + 0.211351i
\(759\) 15.6921i 0.0206747i
\(760\) 0 0
\(761\) −895.742 −1.17706 −0.588529 0.808476i \(-0.700293\pi\)
−0.588529 + 0.808476i \(0.700293\pi\)
\(762\) −4.09064 4.09064i −0.00536829 0.00536829i
\(763\) −1048.88 + 1048.88i −1.37468 + 1.37468i
\(764\) 633.938i 0.829761i
\(765\) 0 0
\(766\) 287.905 0.375855
\(767\) 141.722 + 141.722i 0.184774 + 0.184774i
\(768\) −19.5959 + 19.5959i −0.0255155 + 0.0255155i
\(769\) 1173.00i 1.52536i −0.646776 0.762680i \(-0.723883\pi\)
0.646776 0.762680i \(-0.276117\pi\)
\(770\) 0 0
\(771\) 659.470 0.855344
\(772\) −256.348 256.348i −0.332058 0.332058i
\(773\) −246.952 + 246.952i −0.319472 + 0.319472i −0.848564 0.529092i \(-0.822532\pi\)
0.529092 + 0.848564i \(0.322532\pi\)
\(774\) 316.304i 0.408661i
\(775\) 0 0
\(776\) −148.645 −0.191553
\(777\) −405.479 405.479i −0.521852 0.521852i
\(778\) −627.721 + 627.721i −0.806839 + 0.806839i
\(779\) 79.7757i 0.102408i
\(780\) 0 0
\(781\) 30.6724 0.0392733
\(782\) −768.506 768.506i −0.982744 0.982744i
\(783\) 72.7515 72.7515i 0.0929138 0.0929138i
\(784\) 139.193i 0.177542i
\(785\) 0 0
\(786\) 466.402 0.593386
\(787\) −702.103 702.103i −0.892126 0.892126i 0.102597 0.994723i \(-0.467285\pi\)
−0.994723 + 0.102597i \(0.967285\pi\)
\(788\) 336.102 336.102i 0.426526 0.426526i
\(789\) 500.563i 0.634427i
\(790\) 0 0
\(791\) 331.621 0.419243
\(792\) −1.43615 1.43615i −0.00181332 0.00181332i
\(793\) 159.781 159.781i 0.201490 0.201490i
\(794\) 678.478i 0.854506i
\(795\) 0 0
\(796\) 578.239 0.726430
\(797\) −897.889 897.889i −1.12659 1.12659i −0.990728 0.135857i \(-0.956621\pi\)
−0.135857 0.990728i \(-0.543379\pi\)
\(798\) −40.3850 + 40.3850i −0.0506077 + 0.0506077i
\(799\) 565.912i 0.708275i
\(800\) 0 0
\(801\) 5.78113 0.00721740
\(802\) 639.454 + 639.454i 0.797324 + 0.797324i
\(803\) 5.08190 5.08190i 0.00632864 0.00632864i
\(804\) 423.383i 0.526595i
\(805\) 0 0
\(806\) 227.376 0.282104
\(807\) −184.678 184.678i −0.228845 0.228845i
\(808\) −30.3593 + 30.3593i −0.0375733 + 0.0375733i
\(809\) 1436.49i 1.77563i −0.460199 0.887816i \(-0.652222\pi\)
0.460199 0.887816i \(-0.347778\pi\)
\(810\) 0 0
\(811\) −353.032 −0.435304 −0.217652 0.976026i \(-0.569840\pi\)
−0.217652 + 0.976026i \(0.569840\pi\)
\(812\) 256.335 + 256.335i 0.315683 + 0.315683i
\(813\) 460.903 460.903i 0.566917 0.566917i
\(814\) 12.2425i 0.0150399i
\(815\) 0 0
\(816\) 140.668 0.172388
\(817\) −134.275 134.275i −0.164351 0.164351i
\(818\) −648.066 + 648.066i −0.792257 + 0.792257i
\(819\) 130.349i 0.159156i
\(820\) 0 0
\(821\) 838.078 1.02080 0.510401 0.859937i \(-0.329497\pi\)
0.510401 + 0.859937i \(0.329497\pi\)
\(822\) −63.8498 63.8498i −0.0776761 0.0776761i
\(823\) 915.637 915.637i 1.11256 1.11256i 0.119757 0.992803i \(-0.461789\pi\)
0.992803 0.119757i \(-0.0382115\pi\)
\(824\) 103.019i 0.125023i
\(825\) 0 0
\(826\) 546.660 0.661816
\(827\) −844.466 844.466i −1.02112 1.02112i −0.999772 0.0213480i \(-0.993204\pi\)
−0.0213480 0.999772i \(-0.506796\pi\)
\(828\) 160.586 160.586i 0.193944 0.193944i
\(829\) 892.513i 1.07661i 0.842749 + 0.538307i \(0.180936\pi\)
−0.842749 + 0.538307i \(0.819064\pi\)
\(830\) 0 0
\(831\) 783.128 0.942392
\(832\) −26.8499 26.8499i −0.0322715 0.0322715i
\(833\) −499.596 + 499.596i −0.599755 + 0.599755i
\(834\) 422.488i 0.506580i
\(835\) 0 0
\(836\) −1.21933 −0.00145853
\(837\) −124.460 124.460i −0.148697 0.148697i
\(838\) −674.046 + 674.046i −0.804351 + 0.804351i
\(839\) 886.642i 1.05678i −0.849001 0.528392i \(-0.822795\pi\)
0.849001 0.528392i \(-0.177205\pi\)
\(840\) 0 0
\(841\) 448.942 0.533820
\(842\) 251.907 + 251.907i 0.299177 + 0.299177i
\(843\) 221.404 221.404i 0.262638 0.262638i
\(844\) 79.1331i 0.0937596i
\(845\) 0 0
\(846\) −118.252 −0.139778
\(847\) −782.857 782.857i −0.924270 0.924270i
\(848\) −130.438 + 130.438i −0.153819 + 0.153819i
\(849\) 617.437i 0.727252i
\(850\) 0 0
\(851\) 1368.91 1.60859
\(852\) −313.888 313.888i −0.368413 0.368413i
\(853\) −380.542 + 380.542i −0.446122 + 0.446122i −0.894063 0.447941i \(-0.852157\pi\)
0.447941 + 0.894063i \(0.352157\pi\)
\(854\) 616.320i 0.721686i
\(855\) 0 0
\(856\) 444.064 0.518767
\(857\) −419.114 419.114i −0.489047 0.489047i 0.418958 0.908006i \(-0.362395\pi\)
−0.908006 + 0.418958i \(0.862395\pi\)
\(858\) 1.96778 1.96778i 0.00229345 0.00229345i
\(859\) 15.0082i 0.0174717i 0.999962 + 0.00873586i \(0.00278074\pi\)
−0.999962 + 0.00873586i \(0.997219\pi\)
\(860\) 0 0
\(861\) 496.601 0.576772
\(862\) −73.5149 73.5149i −0.0852841 0.0852841i
\(863\) 710.712 710.712i 0.823536 0.823536i −0.163077 0.986613i \(-0.552142\pi\)
0.986613 + 0.163077i \(0.0521419\pi\)
\(864\) 29.3939i 0.0340207i
\(865\) 0 0
\(866\) −1084.29 −1.25207
\(867\) −150.940 150.940i −0.174094 0.174094i
\(868\) 438.525 438.525i 0.505213 0.505213i
\(869\) 12.7727i 0.0146981i
\(870\) 0 0
\(871\) 580.109 0.666027
\(872\) 324.080 + 324.080i 0.371651 + 0.371651i
\(873\) −111.484 + 111.484i −0.127702 + 0.127702i
\(874\) 136.341i 0.155997i
\(875\) 0 0
\(876\) −104.012 −0.118735
\(877\) −1073.18 1073.18i −1.22369 1.22369i −0.966310 0.257381i \(-0.917140\pi\)
−0.257381 0.966310i \(-0.582860\pi\)
\(878\) −347.787 + 347.787i −0.396113 + 0.396113i
\(879\) 394.305i 0.448583i
\(880\) 0 0
\(881\) 326.112 0.370161 0.185081 0.982723i \(-0.440745\pi\)
0.185081 + 0.982723i \(0.440745\pi\)
\(882\) −104.395 104.395i −0.118362 0.118362i
\(883\) −800.626 + 800.626i −0.906711 + 0.906711i −0.996005 0.0892945i \(-0.971539\pi\)
0.0892945 + 0.996005i \(0.471539\pi\)
\(884\) 192.741i 0.218032i
\(885\) 0 0
\(886\) 606.517 0.684556
\(887\) −965.885 965.885i −1.08893 1.08893i −0.995638 0.0932965i \(-0.970260\pi\)
−0.0932965 0.995638i \(-0.529740\pi\)
\(888\) −125.284 + 125.284i −0.141086 + 0.141086i
\(889\) 21.6196i 0.0243190i
\(890\) 0 0
\(891\) −2.15423 −0.00241776
\(892\) 155.913 + 155.913i 0.174790 + 0.174790i
\(893\) −50.1995 + 50.1995i −0.0562144 + 0.0562144i
\(894\) 87.4632i 0.0978336i
\(895\) 0 0
\(896\) −103.567 −0.115588
\(897\) 220.031 + 220.031i 0.245297 + 0.245297i
\(898\) −139.114 + 139.114i −0.154915 + 0.154915i
\(899\) 670.713i 0.746066i
\(900\) 0 0
\(901\) 936.347 1.03923
\(902\) 7.49683 + 7.49683i 0.00831134 + 0.00831134i
\(903\) 835.856 835.856i 0.925643 0.925643i
\(904\) 102.464i 0.113345i
\(905\) 0 0
\(906\) −54.7734 −0.0604563
\(907\) −191.581 191.581i −0.211225 0.211225i 0.593563 0.804788i \(-0.297721\pi\)
−0.804788 + 0.593563i \(0.797721\pi\)
\(908\) 22.0197 22.0197i 0.0242507 0.0242507i
\(909\) 45.5389i 0.0500978i
\(910\) 0 0
\(911\) −1639.06 −1.79919 −0.899596 0.436723i \(-0.856139\pi\)
−0.899596 + 0.436723i \(0.856139\pi\)
\(912\) 12.4781 + 12.4781i 0.0136821 + 0.0136821i
\(913\) −19.6148 + 19.6148i −0.0214839 + 0.0214839i
\(914\) 1094.82i 1.19783i
\(915\) 0 0
\(916\) −340.694 −0.371937
\(917\) 1232.50 + 1232.50i 1.34406 + 1.34406i
\(918\) 105.501 105.501i 0.114925 0.114925i
\(919\) 1038.57i 1.13011i 0.825054 + 0.565053i \(0.191144\pi\)
−0.825054 + 0.565053i \(0.808856\pi\)
\(920\) 0 0
\(921\) −649.584 −0.705302
\(922\) −349.358 349.358i −0.378913 0.378913i
\(923\) 430.082 430.082i 0.465962 0.465962i
\(924\) 7.59027i 0.00821457i
\(925\) 0 0
\(926\) 911.953 0.984831
\(927\) 77.2644 + 77.2644i 0.0833489 + 0.0833489i
\(928\) 79.2018 79.2018i 0.0853468 0.0853468i
\(929\) 527.150i 0.567438i −0.958908 0.283719i \(-0.908432\pi\)
0.958908 0.283719i \(-0.0915682\pi\)
\(930\) 0 0
\(931\) −88.6339 −0.0952029
\(932\) −361.109 361.109i −0.387456 0.387456i
\(933\) −606.419 + 606.419i −0.649967 + 0.649967i
\(934\) 114.904i 0.123023i
\(935\) 0 0
\(936\) −40.2748 −0.0430287
\(937\) −157.661 157.661i −0.168262 0.168262i 0.617953 0.786215i \(-0.287962\pi\)
−0.786215 + 0.617953i \(0.787962\pi\)
\(938\) 1118.82 1118.82i 1.19277 1.19277i
\(939\) 183.377i 0.195290i
\(940\) 0 0
\(941\) 22.4138 0.0238191 0.0119095 0.999929i \(-0.496209\pi\)
0.0119095 + 0.999929i \(0.496209\pi\)
\(942\) 528.418 + 528.418i 0.560954 + 0.560954i
\(943\) −838.272 + 838.272i −0.888942 + 0.888942i
\(944\) 168.906i 0.178926i
\(945\) 0 0
\(946\) 25.2367 0.0266772
\(947\) 200.458 + 200.458i 0.211677 + 0.211677i 0.804979 0.593303i \(-0.202176\pi\)
−0.593303 + 0.804979i \(0.702176\pi\)
\(948\) 130.710 130.710i 0.137879 0.137879i
\(949\) 142.515i 0.150174i
\(950\) 0 0
\(951\) −67.3848 −0.0708567
\(952\) 371.727 + 371.727i 0.390469 + 0.390469i
\(953\) −47.5261 + 47.5261i −0.0498700 + 0.0498700i −0.731602 0.681732i \(-0.761227\pi\)
0.681732 + 0.731602i \(0.261227\pi\)
\(954\) 195.658i 0.205092i
\(955\) 0 0
\(956\) 503.482 0.526655
\(957\) 5.80456 + 5.80456i 0.00606537 + 0.00606537i
\(958\) 21.8319 21.8319i 0.0227890 0.0227890i
\(959\) 337.455i 0.351883i
\(960\) 0 0
\(961\) 186.424 0.193990
\(962\) −171.661 171.661i −0.178442 0.178442i
\(963\) 333.048 333.048i 0.345844 0.345844i
\(964\) 137.514i 0.142650i
\(965\) 0 0
\(966\) 848.720 0.878592
\(967\) −758.498 758.498i −0.784382 0.784382i 0.196185 0.980567i \(-0.437145\pi\)
−0.980567 + 0.196185i \(0.937145\pi\)
\(968\) −241.885 + 241.885i −0.249882 + 0.249882i
\(969\) 89.5732i 0.0924388i
\(970\) 0 0
\(971\) 453.787 0.467340 0.233670 0.972316i \(-0.424926\pi\)
0.233670 + 0.972316i \(0.424926\pi\)
\(972\) 22.0454 + 22.0454i 0.0226805 + 0.0226805i
\(973\) 1116.45 1116.45i 1.14743 1.14743i
\(974\) 163.440i 0.167803i
\(975\) 0 0
\(976\) −190.429 −0.195112
\(977\) −1272.97 1272.97i −1.30293 1.30293i −0.926405 0.376529i \(-0.877117\pi\)
−0.376529 0.926405i \(-0.622883\pi\)
\(978\) −234.580 + 234.580i −0.239857 + 0.239857i
\(979\) 0.461254i 0.000471149i
\(980\) 0 0
\(981\) 486.120 0.495535
\(982\) 29.1488 + 29.1488i 0.0296831 + 0.0296831i
\(983\) 463.989 463.989i 0.472013 0.472013i −0.430553 0.902565i \(-0.641681\pi\)
0.902565 + 0.430553i \(0.141681\pi\)
\(984\) 153.439i 0.155934i
\(985\) 0 0
\(986\) −568.546 −0.576619
\(987\) −312.490 312.490i −0.316606 0.316606i
\(988\) −17.0972 + 17.0972i −0.0173048 + 0.0173048i
\(989\) 2821.89i 2.85327i
\(990\) 0 0
\(991\) 386.294 0.389802 0.194901 0.980823i \(-0.437561\pi\)
0.194901 + 0.980823i \(0.437561\pi\)
\(992\) −135.495 135.495i −0.136587 0.136587i
\(993\) −746.519 + 746.519i −0.751781 + 0.751781i
\(994\) 1658.95i 1.66896i
\(995\) 0 0
\(996\) 401.459 0.403071
\(997\) 207.306 + 207.306i 0.207930 + 0.207930i 0.803387 0.595457i \(-0.203029\pi\)
−0.595457 + 0.803387i \(0.703029\pi\)
\(998\) −379.995 + 379.995i −0.380756 + 0.380756i
\(999\) 187.926i 0.188114i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 750.3.f.b.307.4 yes 16
5.2 odd 4 750.3.f.c.193.5 yes 16
5.3 odd 4 inner 750.3.f.b.193.4 16
5.4 even 2 750.3.f.c.307.5 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
750.3.f.b.193.4 16 5.3 odd 4 inner
750.3.f.b.307.4 yes 16 1.1 even 1 trivial
750.3.f.c.193.5 yes 16 5.2 odd 4
750.3.f.c.307.5 yes 16 5.4 even 2