Properties

Label 750.3.f.b.193.8
Level $750$
Weight $3$
Character 750.193
Analytic conductor $20.436$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [750,3,Mod(193,750)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(750, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("750.193"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 750 = 2 \cdot 3 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 750.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-16,0,0,0,0,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.4360198270\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: 16.0.6879707136000000000000.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 21x^{12} + 86x^{8} + 36x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{8}\cdot 5^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 193.8
Root \(1.40647 + 1.40647i\) of defining polynomial
Character \(\chi\) \(=\) 750.193
Dual form 750.3.f.b.307.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 1.00000i) q^{2} +(1.22474 + 1.22474i) q^{3} -2.00000i q^{4} -2.44949 q^{6} +(4.02347 - 4.02347i) q^{7} +(2.00000 + 2.00000i) q^{8} +3.00000i q^{9} -0.880368 q^{11} +(2.44949 - 2.44949i) q^{12} +(-16.1259 - 16.1259i) q^{13} +8.04693i q^{14} -4.00000 q^{16} +(-23.0372 + 23.0372i) q^{17} +(-3.00000 - 3.00000i) q^{18} +21.7203i q^{19} +9.85544 q^{21} +(0.880368 - 0.880368i) q^{22} +(17.6357 + 17.6357i) q^{23} +4.89898i q^{24} +32.2518 q^{26} +(-3.67423 + 3.67423i) q^{27} +(-8.04693 - 8.04693i) q^{28} +18.3656i q^{29} +43.1540 q^{31} +(4.00000 - 4.00000i) q^{32} +(-1.07823 - 1.07823i) q^{33} -46.0744i q^{34} +6.00000 q^{36} +(-49.8860 + 49.8860i) q^{37} +(-21.7203 - 21.7203i) q^{38} -39.5002i q^{39} +42.0242 q^{41} +(-9.85544 + 9.85544i) q^{42} +(32.3173 + 32.3173i) q^{43} +1.76074i q^{44} -35.2713 q^{46} +(-11.4478 + 11.4478i) q^{47} +(-4.89898 - 4.89898i) q^{48} +16.6234i q^{49} -56.4294 q^{51} +(-32.2518 + 32.2518i) q^{52} +(28.3583 + 28.3583i) q^{53} -7.34847i q^{54} +16.0939 q^{56} +(-26.6018 + 26.6018i) q^{57} +(-18.3656 - 18.3656i) q^{58} +73.9494i q^{59} -20.3308 q^{61} +(-43.1540 + 43.1540i) q^{62} +(12.0704 + 12.0704i) q^{63} +8.00000i q^{64} +2.15645 q^{66} +(10.5235 - 10.5235i) q^{67} +(46.0744 + 46.0744i) q^{68} +43.1984i q^{69} +38.9877 q^{71} +(-6.00000 + 6.00000i) q^{72} +(-66.8385 - 66.8385i) q^{73} -99.7721i q^{74} +43.4405 q^{76} +(-3.54213 + 3.54213i) q^{77} +(39.5002 + 39.5002i) q^{78} +0.0459774i q^{79} -9.00000 q^{81} +(-42.0242 + 42.0242i) q^{82} +(-3.58119 - 3.58119i) q^{83} -19.7109i q^{84} -64.6347 q^{86} +(-22.4932 + 22.4932i) q^{87} +(-1.76074 - 1.76074i) q^{88} -63.8377i q^{89} -129.764 q^{91} +(35.2713 - 35.2713i) q^{92} +(52.8527 + 52.8527i) q^{93} -22.8957i q^{94} +9.79796 q^{96} +(-63.0888 + 63.0888i) q^{97} +(-16.6234 - 16.6234i) q^{98} -2.64110i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{2} + 24 q^{7} + 32 q^{8} - 24 q^{11} - 48 q^{13} - 64 q^{16} - 16 q^{17} - 48 q^{18} - 48 q^{21} + 24 q^{22} + 104 q^{23} + 96 q^{26} - 48 q^{28} + 200 q^{31} + 64 q^{32} - 48 q^{33} + 96 q^{36}+ \cdots - 224 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/750\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(251\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 + 1.00000i −0.500000 + 0.500000i
\(3\) 1.22474 + 1.22474i 0.408248 + 0.408248i
\(4\) 2.00000i 0.500000i
\(5\) 0 0
\(6\) −2.44949 −0.408248
\(7\) 4.02347 4.02347i 0.574781 0.574781i −0.358680 0.933461i \(-0.616773\pi\)
0.933461 + 0.358680i \(0.116773\pi\)
\(8\) 2.00000 + 2.00000i 0.250000 + 0.250000i
\(9\) 3.00000i 0.333333i
\(10\) 0 0
\(11\) −0.880368 −0.0800335 −0.0400167 0.999199i \(-0.512741\pi\)
−0.0400167 + 0.999199i \(0.512741\pi\)
\(12\) 2.44949 2.44949i 0.204124 0.204124i
\(13\) −16.1259 16.1259i −1.24045 1.24045i −0.959813 0.280641i \(-0.909453\pi\)
−0.280641 0.959813i \(-0.590547\pi\)
\(14\) 8.04693i 0.574781i
\(15\) 0 0
\(16\) −4.00000 −0.250000
\(17\) −23.0372 + 23.0372i −1.35513 + 1.35513i −0.475314 + 0.879816i \(0.657666\pi\)
−0.879816 + 0.475314i \(0.842334\pi\)
\(18\) −3.00000 3.00000i −0.166667 0.166667i
\(19\) 21.7203i 1.14317i 0.820542 + 0.571586i \(0.193672\pi\)
−0.820542 + 0.571586i \(0.806328\pi\)
\(20\) 0 0
\(21\) 9.85544 0.469307
\(22\) 0.880368 0.880368i 0.0400167 0.0400167i
\(23\) 17.6357 + 17.6357i 0.766768 + 0.766768i 0.977536 0.210768i \(-0.0675965\pi\)
−0.210768 + 0.977536i \(0.567597\pi\)
\(24\) 4.89898i 0.204124i
\(25\) 0 0
\(26\) 32.2518 1.24045
\(27\) −3.67423 + 3.67423i −0.136083 + 0.136083i
\(28\) −8.04693 8.04693i −0.287390 0.287390i
\(29\) 18.3656i 0.633296i 0.948543 + 0.316648i \(0.102557\pi\)
−0.948543 + 0.316648i \(0.897443\pi\)
\(30\) 0 0
\(31\) 43.1540 1.39207 0.696033 0.718010i \(-0.254947\pi\)
0.696033 + 0.718010i \(0.254947\pi\)
\(32\) 4.00000 4.00000i 0.125000 0.125000i
\(33\) −1.07823 1.07823i −0.0326735 0.0326735i
\(34\) 46.0744i 1.35513i
\(35\) 0 0
\(36\) 6.00000 0.166667
\(37\) −49.8860 + 49.8860i −1.34827 + 1.34827i −0.460732 + 0.887539i \(0.652413\pi\)
−0.887539 + 0.460732i \(0.847587\pi\)
\(38\) −21.7203 21.7203i −0.571586 0.571586i
\(39\) 39.5002i 1.01283i
\(40\) 0 0
\(41\) 42.0242 1.02498 0.512490 0.858693i \(-0.328723\pi\)
0.512490 + 0.858693i \(0.328723\pi\)
\(42\) −9.85544 + 9.85544i −0.234653 + 0.234653i
\(43\) 32.3173 + 32.3173i 0.751566 + 0.751566i 0.974771 0.223206i \(-0.0716521\pi\)
−0.223206 + 0.974771i \(0.571652\pi\)
\(44\) 1.76074i 0.0400167i
\(45\) 0 0
\(46\) −35.2713 −0.766768
\(47\) −11.4478 + 11.4478i −0.243571 + 0.243571i −0.818326 0.574755i \(-0.805097\pi\)
0.574755 + 0.818326i \(0.305097\pi\)
\(48\) −4.89898 4.89898i −0.102062 0.102062i
\(49\) 16.6234i 0.339254i
\(50\) 0 0
\(51\) −56.4294 −1.10646
\(52\) −32.2518 + 32.2518i −0.620227 + 0.620227i
\(53\) 28.3583 + 28.3583i 0.535062 + 0.535062i 0.922074 0.387013i \(-0.126493\pi\)
−0.387013 + 0.922074i \(0.626493\pi\)
\(54\) 7.34847i 0.136083i
\(55\) 0 0
\(56\) 16.0939 0.287390
\(57\) −26.6018 + 26.6018i −0.466698 + 0.466698i
\(58\) −18.3656 18.3656i −0.316648 0.316648i
\(59\) 73.9494i 1.25338i 0.779269 + 0.626689i \(0.215591\pi\)
−0.779269 + 0.626689i \(0.784409\pi\)
\(60\) 0 0
\(61\) −20.3308 −0.333291 −0.166646 0.986017i \(-0.553294\pi\)
−0.166646 + 0.986017i \(0.553294\pi\)
\(62\) −43.1540 + 43.1540i −0.696033 + 0.696033i
\(63\) 12.0704 + 12.0704i 0.191594 + 0.191594i
\(64\) 8.00000i 0.125000i
\(65\) 0 0
\(66\) 2.15645 0.0326735
\(67\) 10.5235 10.5235i 0.157067 0.157067i −0.624198 0.781266i \(-0.714574\pi\)
0.781266 + 0.624198i \(0.214574\pi\)
\(68\) 46.0744 + 46.0744i 0.677565 + 0.677565i
\(69\) 43.1984i 0.626063i
\(70\) 0 0
\(71\) 38.9877 0.549122 0.274561 0.961570i \(-0.411467\pi\)
0.274561 + 0.961570i \(0.411467\pi\)
\(72\) −6.00000 + 6.00000i −0.0833333 + 0.0833333i
\(73\) −66.8385 66.8385i −0.915596 0.915596i 0.0811094 0.996705i \(-0.474154\pi\)
−0.996705 + 0.0811094i \(0.974154\pi\)
\(74\) 99.7721i 1.34827i
\(75\) 0 0
\(76\) 43.4405 0.571586
\(77\) −3.54213 + 3.54213i −0.0460017 + 0.0460017i
\(78\) 39.5002 + 39.5002i 0.506413 + 0.506413i
\(79\) 0.0459774i 0.000581992i 1.00000 0.000290996i \(9.26270e-5\pi\)
−1.00000 0.000290996i \(0.999907\pi\)
\(80\) 0 0
\(81\) −9.00000 −0.111111
\(82\) −42.0242 + 42.0242i −0.512490 + 0.512490i
\(83\) −3.58119 3.58119i −0.0431469 0.0431469i 0.685204 0.728351i \(-0.259713\pi\)
−0.728351 + 0.685204i \(0.759713\pi\)
\(84\) 19.7109i 0.234653i
\(85\) 0 0
\(86\) −64.6347 −0.751566
\(87\) −22.4932 + 22.4932i −0.258542 + 0.258542i
\(88\) −1.76074 1.76074i −0.0200084 0.0200084i
\(89\) 63.8377i 0.717278i −0.933476 0.358639i \(-0.883241\pi\)
0.933476 0.358639i \(-0.116759\pi\)
\(90\) 0 0
\(91\) −129.764 −1.42598
\(92\) 35.2713 35.2713i 0.383384 0.383384i
\(93\) 52.8527 + 52.8527i 0.568309 + 0.568309i
\(94\) 22.8957i 0.243571i
\(95\) 0 0
\(96\) 9.79796 0.102062
\(97\) −63.0888 + 63.0888i −0.650400 + 0.650400i −0.953089 0.302689i \(-0.902116\pi\)
0.302689 + 0.953089i \(0.402116\pi\)
\(98\) −16.6234 16.6234i −0.169627 0.169627i
\(99\) 2.64110i 0.0266778i
\(100\) 0 0
\(101\) 84.2261 0.833922 0.416961 0.908924i \(-0.363095\pi\)
0.416961 + 0.908924i \(0.363095\pi\)
\(102\) 56.4294 56.4294i 0.553230 0.553230i
\(103\) −74.7312 74.7312i −0.725546 0.725546i 0.244183 0.969729i \(-0.421480\pi\)
−0.969729 + 0.244183i \(0.921480\pi\)
\(104\) 64.5036i 0.620227i
\(105\) 0 0
\(106\) −56.7166 −0.535062
\(107\) −131.877 + 131.877i −1.23249 + 1.23249i −0.269491 + 0.963003i \(0.586856\pi\)
−0.963003 + 0.269491i \(0.913144\pi\)
\(108\) 7.34847 + 7.34847i 0.0680414 + 0.0680414i
\(109\) 77.0255i 0.706656i −0.935500 0.353328i \(-0.885050\pi\)
0.935500 0.353328i \(-0.114950\pi\)
\(110\) 0 0
\(111\) −122.195 −1.10086
\(112\) −16.0939 + 16.0939i −0.143695 + 0.143695i
\(113\) −63.9083 63.9083i −0.565560 0.565560i 0.365321 0.930881i \(-0.380959\pi\)
−0.930881 + 0.365321i \(0.880959\pi\)
\(114\) 53.2035i 0.466698i
\(115\) 0 0
\(116\) 36.7312 0.316648
\(117\) 48.3777 48.3777i 0.413485 0.413485i
\(118\) −73.9494 73.9494i −0.626689 0.626689i
\(119\) 185.379i 1.55781i
\(120\) 0 0
\(121\) −120.225 −0.993595
\(122\) 20.3308 20.3308i 0.166646 0.166646i
\(123\) 51.4689 + 51.4689i 0.418446 + 0.418446i
\(124\) 86.3081i 0.696033i
\(125\) 0 0
\(126\) −24.1408 −0.191594
\(127\) 61.1374 61.1374i 0.481397 0.481397i −0.424181 0.905578i \(-0.639438\pi\)
0.905578 + 0.424181i \(0.139438\pi\)
\(128\) −8.00000 8.00000i −0.0625000 0.0625000i
\(129\) 79.1610i 0.613651i
\(130\) 0 0
\(131\) 135.535 1.03462 0.517308 0.855799i \(-0.326934\pi\)
0.517308 + 0.855799i \(0.326934\pi\)
\(132\) −2.15645 + 2.15645i −0.0163368 + 0.0163368i
\(133\) 87.3907 + 87.3907i 0.657073 + 0.657073i
\(134\) 21.0470i 0.157067i
\(135\) 0 0
\(136\) −92.1489 −0.677565
\(137\) −87.9906 + 87.9906i −0.642267 + 0.642267i −0.951112 0.308845i \(-0.900058\pi\)
0.308845 + 0.951112i \(0.400058\pi\)
\(138\) −43.1984 43.1984i −0.313032 0.313032i
\(139\) 108.094i 0.777653i 0.921311 + 0.388827i \(0.127120\pi\)
−0.921311 + 0.388827i \(0.872880\pi\)
\(140\) 0 0
\(141\) −28.0414 −0.198875
\(142\) −38.9877 + 38.9877i −0.274561 + 0.274561i
\(143\) 14.1967 + 14.1967i 0.0992778 + 0.0992778i
\(144\) 12.0000i 0.0833333i
\(145\) 0 0
\(146\) 133.677 0.915596
\(147\) −20.3595 + 20.3595i −0.138500 + 0.138500i
\(148\) 99.7721 + 99.7721i 0.674136 + 0.674136i
\(149\) 77.0332i 0.517001i 0.966011 + 0.258501i \(0.0832284\pi\)
−0.966011 + 0.258501i \(0.916772\pi\)
\(150\) 0 0
\(151\) 111.285 0.736986 0.368493 0.929630i \(-0.379874\pi\)
0.368493 + 0.929630i \(0.379874\pi\)
\(152\) −43.4405 + 43.4405i −0.285793 + 0.285793i
\(153\) −69.1116 69.1116i −0.451710 0.451710i
\(154\) 7.08426i 0.0460017i
\(155\) 0 0
\(156\) −79.0005 −0.506413
\(157\) 133.008 133.008i 0.847183 0.847183i −0.142597 0.989781i \(-0.545545\pi\)
0.989781 + 0.142597i \(0.0455454\pi\)
\(158\) −0.0459774 0.0459774i −0.000290996 0.000290996i
\(159\) 69.4633i 0.436876i
\(160\) 0 0
\(161\) 141.913 0.881447
\(162\) 9.00000 9.00000i 0.0555556 0.0555556i
\(163\) −164.580 164.580i −1.00969 1.00969i −0.999953 0.00974130i \(-0.996899\pi\)
−0.00974130 0.999953i \(-0.503101\pi\)
\(164\) 84.0484i 0.512490i
\(165\) 0 0
\(166\) 7.16239 0.0431469
\(167\) 138.034 138.034i 0.826551 0.826551i −0.160487 0.987038i \(-0.551306\pi\)
0.987038 + 0.160487i \(0.0513064\pi\)
\(168\) 19.7109 + 19.7109i 0.117327 + 0.117327i
\(169\) 351.089i 2.07745i
\(170\) 0 0
\(171\) −65.1608 −0.381057
\(172\) 64.6347 64.6347i 0.375783 0.375783i
\(173\) 44.2455 + 44.2455i 0.255754 + 0.255754i 0.823325 0.567571i \(-0.192117\pi\)
−0.567571 + 0.823325i \(0.692117\pi\)
\(174\) 44.9863i 0.258542i
\(175\) 0 0
\(176\) 3.52147 0.0200084
\(177\) −90.5691 + 90.5691i −0.511690 + 0.511690i
\(178\) 63.8377 + 63.8377i 0.358639 + 0.358639i
\(179\) 104.668i 0.584737i −0.956306 0.292369i \(-0.905557\pi\)
0.956306 0.292369i \(-0.0944434\pi\)
\(180\) 0 0
\(181\) −200.119 −1.10563 −0.552815 0.833304i \(-0.686446\pi\)
−0.552815 + 0.833304i \(0.686446\pi\)
\(182\) 129.764 129.764i 0.712989 0.712989i
\(183\) −24.9000 24.9000i −0.136066 0.136066i
\(184\) 70.5426i 0.383384i
\(185\) 0 0
\(186\) −105.705 −0.568309
\(187\) 20.2812 20.2812i 0.108456 0.108456i
\(188\) 22.8957 + 22.8957i 0.121786 + 0.121786i
\(189\) 29.5663i 0.156436i
\(190\) 0 0
\(191\) −327.224 −1.71321 −0.856607 0.515969i \(-0.827432\pi\)
−0.856607 + 0.515969i \(0.827432\pi\)
\(192\) −9.79796 + 9.79796i −0.0510310 + 0.0510310i
\(193\) −23.2601 23.2601i −0.120519 0.120519i 0.644275 0.764794i \(-0.277159\pi\)
−0.764794 + 0.644275i \(0.777159\pi\)
\(194\) 126.178i 0.650400i
\(195\) 0 0
\(196\) 33.2469 0.169627
\(197\) 164.292 164.292i 0.833969 0.833969i −0.154088 0.988057i \(-0.549244\pi\)
0.988057 + 0.154088i \(0.0492440\pi\)
\(198\) 2.64110 + 2.64110i 0.0133389 + 0.0133389i
\(199\) 53.3274i 0.267977i −0.990983 0.133988i \(-0.957222\pi\)
0.990983 0.133988i \(-0.0427785\pi\)
\(200\) 0 0
\(201\) 25.7772 0.128245
\(202\) −84.2261 + 84.2261i −0.416961 + 0.416961i
\(203\) 73.8933 + 73.8933i 0.364006 + 0.364006i
\(204\) 112.859i 0.553230i
\(205\) 0 0
\(206\) 149.462 0.725546
\(207\) −52.9070 + 52.9070i −0.255589 + 0.255589i
\(208\) 64.5036 + 64.5036i 0.310113 + 0.310113i
\(209\) 19.1218i 0.0914920i
\(210\) 0 0
\(211\) −399.659 −1.89412 −0.947059 0.321058i \(-0.895961\pi\)
−0.947059 + 0.321058i \(0.895961\pi\)
\(212\) 56.7166 56.7166i 0.267531 0.267531i
\(213\) 47.7500 + 47.7500i 0.224178 + 0.224178i
\(214\) 263.754i 1.23249i
\(215\) 0 0
\(216\) −14.6969 −0.0680414
\(217\) 173.629 173.629i 0.800133 0.800133i
\(218\) 77.0255 + 77.0255i 0.353328 + 0.353328i
\(219\) 163.720i 0.747581i
\(220\) 0 0
\(221\) 742.992 3.36195
\(222\) 122.195 122.195i 0.550429 0.550429i
\(223\) −18.2069 18.2069i −0.0816452 0.0816452i 0.665105 0.746750i \(-0.268387\pi\)
−0.746750 + 0.665105i \(0.768387\pi\)
\(224\) 32.1877i 0.143695i
\(225\) 0 0
\(226\) 127.817 0.565560
\(227\) 222.960 222.960i 0.982203 0.982203i −0.0176417 0.999844i \(-0.505616\pi\)
0.999844 + 0.0176417i \(0.00561580\pi\)
\(228\) 53.2035 + 53.2035i 0.233349 + 0.233349i
\(229\) 76.8571i 0.335621i 0.985819 + 0.167810i \(0.0536696\pi\)
−0.985819 + 0.167810i \(0.946330\pi\)
\(230\) 0 0
\(231\) −8.67641 −0.0375602
\(232\) −36.7312 + 36.7312i −0.158324 + 0.158324i
\(233\) −58.7236 58.7236i −0.252033 0.252033i 0.569771 0.821804i \(-0.307032\pi\)
−0.821804 + 0.569771i \(0.807032\pi\)
\(234\) 96.7554i 0.413485i
\(235\) 0 0
\(236\) 147.899 0.626689
\(237\) −0.0563106 + 0.0563106i −0.000237597 + 0.000237597i
\(238\) −185.379 185.379i −0.778903 0.778903i
\(239\) 146.681i 0.613729i −0.951753 0.306865i \(-0.900720\pi\)
0.951753 0.306865i \(-0.0992799\pi\)
\(240\) 0 0
\(241\) 191.834 0.795990 0.397995 0.917388i \(-0.369706\pi\)
0.397995 + 0.917388i \(0.369706\pi\)
\(242\) 120.225 120.225i 0.496797 0.496797i
\(243\) −11.0227 11.0227i −0.0453609 0.0453609i
\(244\) 40.6615i 0.166646i
\(245\) 0 0
\(246\) −102.938 −0.418446
\(247\) 350.259 350.259i 1.41805 1.41805i
\(248\) 86.3081 + 86.3081i 0.348017 + 0.348017i
\(249\) 8.77210i 0.0352293i
\(250\) 0 0
\(251\) 397.176 1.58237 0.791187 0.611574i \(-0.209463\pi\)
0.791187 + 0.611574i \(0.209463\pi\)
\(252\) 24.1408 24.1408i 0.0957968 0.0957968i
\(253\) −15.5259 15.5259i −0.0613671 0.0613671i
\(254\) 122.275i 0.481397i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) −222.079 + 222.079i −0.864120 + 0.864120i −0.991814 0.127693i \(-0.959243\pi\)
0.127693 + 0.991814i \(0.459243\pi\)
\(258\) −79.1610 79.1610i −0.306825 0.306825i
\(259\) 401.430i 1.54992i
\(260\) 0 0
\(261\) −55.0967 −0.211099
\(262\) −135.535 + 135.535i −0.517308 + 0.517308i
\(263\) 148.964 + 148.964i 0.566402 + 0.566402i 0.931118 0.364717i \(-0.118834\pi\)
−0.364717 + 0.931118i \(0.618834\pi\)
\(264\) 4.31290i 0.0163368i
\(265\) 0 0
\(266\) −174.781 −0.657073
\(267\) 78.1849 78.1849i 0.292827 0.292827i
\(268\) −21.0470 21.0470i −0.0785337 0.0785337i
\(269\) 399.749i 1.48606i 0.669261 + 0.743028i \(0.266611\pi\)
−0.669261 + 0.743028i \(0.733389\pi\)
\(270\) 0 0
\(271\) 146.491 0.540558 0.270279 0.962782i \(-0.412884\pi\)
0.270279 + 0.962782i \(0.412884\pi\)
\(272\) 92.1489 92.1489i 0.338783 0.338783i
\(273\) −158.928 158.928i −0.582153 0.582153i
\(274\) 175.981i 0.642267i
\(275\) 0 0
\(276\) 86.3967 0.313032
\(277\) 179.944 179.944i 0.649616 0.649616i −0.303284 0.952900i \(-0.598083\pi\)
0.952900 + 0.303284i \(0.0980831\pi\)
\(278\) −108.094 108.094i −0.388827 0.388827i
\(279\) 129.462i 0.464022i
\(280\) 0 0
\(281\) 286.333 1.01898 0.509489 0.860477i \(-0.329835\pi\)
0.509489 + 0.860477i \(0.329835\pi\)
\(282\) 28.0414 28.0414i 0.0994375 0.0994375i
\(283\) 222.713 + 222.713i 0.786972 + 0.786972i 0.980997 0.194025i \(-0.0621542\pi\)
−0.194025 + 0.980997i \(0.562154\pi\)
\(284\) 77.9754i 0.274561i
\(285\) 0 0
\(286\) −28.3935 −0.0992778
\(287\) 169.083 169.083i 0.589139 0.589139i
\(288\) 12.0000 + 12.0000i 0.0416667 + 0.0416667i
\(289\) 772.426i 2.67276i
\(290\) 0 0
\(291\) −154.535 −0.531050
\(292\) −133.677 + 133.677i −0.457798 + 0.457798i
\(293\) 100.223 + 100.223i 0.342059 + 0.342059i 0.857141 0.515082i \(-0.172238\pi\)
−0.515082 + 0.857141i \(0.672238\pi\)
\(294\) 40.7189i 0.138500i
\(295\) 0 0
\(296\) −199.544 −0.674136
\(297\) 3.23468 3.23468i 0.0108912 0.0108912i
\(298\) −77.0332 77.0332i −0.258501 0.258501i
\(299\) 568.782i 1.90228i
\(300\) 0 0
\(301\) 260.055 0.863971
\(302\) −111.285 + 111.285i −0.368493 + 0.368493i
\(303\) 103.156 + 103.156i 0.340447 + 0.340447i
\(304\) 86.8810i 0.285793i
\(305\) 0 0
\(306\) 138.223 0.451710
\(307\) 171.837 171.837i 0.559730 0.559730i −0.369501 0.929230i \(-0.620471\pi\)
0.929230 + 0.369501i \(0.120471\pi\)
\(308\) 7.08426 + 7.08426i 0.0230008 + 0.0230008i
\(309\) 183.053i 0.592406i
\(310\) 0 0
\(311\) −140.504 −0.451781 −0.225890 0.974153i \(-0.572529\pi\)
−0.225890 + 0.974153i \(0.572529\pi\)
\(312\) 79.0005 79.0005i 0.253207 0.253207i
\(313\) 391.527 + 391.527i 1.25089 + 1.25089i 0.955323 + 0.295563i \(0.0955071\pi\)
0.295563 + 0.955323i \(0.404493\pi\)
\(314\) 266.016i 0.847183i
\(315\) 0 0
\(316\) 0.0919548 0.000290996
\(317\) −193.032 + 193.032i −0.608934 + 0.608934i −0.942667 0.333734i \(-0.891691\pi\)
0.333734 + 0.942667i \(0.391691\pi\)
\(318\) −69.4633 69.4633i −0.218438 0.218438i
\(319\) 16.1685i 0.0506849i
\(320\) 0 0
\(321\) −323.031 −1.00633
\(322\) −141.913 + 141.913i −0.440724 + 0.440724i
\(323\) −500.374 500.374i −1.54915 1.54915i
\(324\) 18.0000i 0.0555556i
\(325\) 0 0
\(326\) 329.160 1.00969
\(327\) 94.3366 94.3366i 0.288491 0.288491i
\(328\) 84.0484 + 84.0484i 0.256245 + 0.256245i
\(329\) 92.1200i 0.280000i
\(330\) 0 0
\(331\) −339.875 −1.02681 −0.513406 0.858146i \(-0.671617\pi\)
−0.513406 + 0.858146i \(0.671617\pi\)
\(332\) −7.16239 + 7.16239i −0.0215735 + 0.0215735i
\(333\) −149.658 149.658i −0.449424 0.449424i
\(334\) 276.068i 0.826551i
\(335\) 0 0
\(336\) −39.4218 −0.117327
\(337\) 251.241 251.241i 0.745522 0.745522i −0.228113 0.973635i \(-0.573256\pi\)
0.973635 + 0.228113i \(0.0732555\pi\)
\(338\) −351.089 351.089i −1.03873 1.03873i
\(339\) 156.543i 0.461778i
\(340\) 0 0
\(341\) −37.9914 −0.111412
\(342\) 65.1608 65.1608i 0.190529 0.190529i
\(343\) 264.034 + 264.034i 0.769778 + 0.769778i
\(344\) 129.269i 0.375783i
\(345\) 0 0
\(346\) −88.4909 −0.255754
\(347\) −414.443 + 414.443i −1.19436 + 1.19436i −0.218531 + 0.975830i \(0.570127\pi\)
−0.975830 + 0.218531i \(0.929873\pi\)
\(348\) 44.9863 + 44.9863i 0.129271 + 0.129271i
\(349\) 311.540i 0.892665i −0.894867 0.446332i \(-0.852730\pi\)
0.894867 0.446332i \(-0.147270\pi\)
\(350\) 0 0
\(351\) 118.501 0.337609
\(352\) −3.52147 + 3.52147i −0.0100042 + 0.0100042i
\(353\) −241.357 241.357i −0.683732 0.683732i 0.277107 0.960839i \(-0.410624\pi\)
−0.960839 + 0.277107i \(0.910624\pi\)
\(354\) 181.138i 0.511690i
\(355\) 0 0
\(356\) −127.675 −0.358639
\(357\) −227.042 + 227.042i −0.635972 + 0.635972i
\(358\) 104.668 + 104.668i 0.292369 + 0.292369i
\(359\) 65.5040i 0.182462i 0.995830 + 0.0912312i \(0.0290802\pi\)
−0.995830 + 0.0912312i \(0.970920\pi\)
\(360\) 0 0
\(361\) −110.770 −0.306841
\(362\) 200.119 200.119i 0.552815 0.552815i
\(363\) −147.245 147.245i −0.405633 0.405633i
\(364\) 259.528i 0.712989i
\(365\) 0 0
\(366\) 49.8000 0.136066
\(367\) −177.298 + 177.298i −0.483102 + 0.483102i −0.906121 0.423019i \(-0.860970\pi\)
0.423019 + 0.906121i \(0.360970\pi\)
\(368\) −70.5426 70.5426i −0.191692 0.191692i
\(369\) 126.073i 0.341660i
\(370\) 0 0
\(371\) 228.197 0.615087
\(372\) 105.705 105.705i 0.284154 0.284154i
\(373\) 63.9535 + 63.9535i 0.171457 + 0.171457i 0.787619 0.616162i \(-0.211313\pi\)
−0.616162 + 0.787619i \(0.711313\pi\)
\(374\) 40.5625i 0.108456i
\(375\) 0 0
\(376\) −45.7914 −0.121786
\(377\) 296.162 296.162i 0.785574 0.785574i
\(378\) −29.5663 29.5663i −0.0782178 0.0782178i
\(379\) 344.443i 0.908820i 0.890793 + 0.454410i \(0.150150\pi\)
−0.890793 + 0.454410i \(0.849850\pi\)
\(380\) 0 0
\(381\) 149.755 0.393059
\(382\) 327.224 327.224i 0.856607 0.856607i
\(383\) −22.6888 22.6888i −0.0592396 0.0592396i 0.676866 0.736106i \(-0.263337\pi\)
−0.736106 + 0.676866i \(0.763337\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) 0 0
\(386\) 46.5203 0.120519
\(387\) −96.9520 + 96.9520i −0.250522 + 0.250522i
\(388\) 126.178 + 126.178i 0.325200 + 0.325200i
\(389\) 234.054i 0.601680i 0.953675 + 0.300840i \(0.0972671\pi\)
−0.953675 + 0.300840i \(0.902733\pi\)
\(390\) 0 0
\(391\) −812.553 −2.07814
\(392\) −33.2469 + 33.2469i −0.0848135 + 0.0848135i
\(393\) 165.996 + 165.996i 0.422381 + 0.422381i
\(394\) 328.584i 0.833969i
\(395\) 0 0
\(396\) −5.28221 −0.0133389
\(397\) −495.008 + 495.008i −1.24687 + 1.24687i −0.289779 + 0.957094i \(0.593582\pi\)
−0.957094 + 0.289779i \(0.906418\pi\)
\(398\) 53.3274 + 53.3274i 0.133988 + 0.133988i
\(399\) 214.063i 0.536498i
\(400\) 0 0
\(401\) −46.2845 −0.115423 −0.0577114 0.998333i \(-0.518380\pi\)
−0.0577114 + 0.998333i \(0.518380\pi\)
\(402\) −25.7772 + 25.7772i −0.0641225 + 0.0641225i
\(403\) −695.898 695.898i −1.72679 1.72679i
\(404\) 168.452i 0.416961i
\(405\) 0 0
\(406\) −147.787 −0.364006
\(407\) 43.9181 43.9181i 0.107907 0.107907i
\(408\) −112.859 112.859i −0.276615 0.276615i
\(409\) 239.436i 0.585419i −0.956201 0.292710i \(-0.905443\pi\)
0.956201 0.292710i \(-0.0945569\pi\)
\(410\) 0 0
\(411\) −215.532 −0.524409
\(412\) −149.462 + 149.462i −0.362773 + 0.362773i
\(413\) 297.533 + 297.533i 0.720418 + 0.720418i
\(414\) 105.814i 0.255589i
\(415\) 0 0
\(416\) −129.007 −0.310113
\(417\) −132.387 + 132.387i −0.317476 + 0.317476i
\(418\) 19.1218 + 19.1218i 0.0457460 + 0.0457460i
\(419\) 150.579i 0.359378i 0.983723 + 0.179689i \(0.0575091\pi\)
−0.983723 + 0.179689i \(0.942491\pi\)
\(420\) 0 0
\(421\) 485.057 1.15215 0.576077 0.817396i \(-0.304583\pi\)
0.576077 + 0.817396i \(0.304583\pi\)
\(422\) 399.659 399.659i 0.947059 0.947059i
\(423\) −34.3435 34.3435i −0.0811903 0.0811903i
\(424\) 113.433i 0.267531i
\(425\) 0 0
\(426\) −95.4999 −0.224178
\(427\) −81.8001 + 81.8001i −0.191569 + 0.191569i
\(428\) 263.754 + 263.754i 0.616247 + 0.616247i
\(429\) 34.7747i 0.0810600i
\(430\) 0 0
\(431\) −790.360 −1.83378 −0.916891 0.399138i \(-0.869310\pi\)
−0.916891 + 0.399138i \(0.869310\pi\)
\(432\) 14.6969 14.6969i 0.0340207 0.0340207i
\(433\) 552.690 + 552.690i 1.27642 + 1.27642i 0.942657 + 0.333763i \(0.108319\pi\)
0.333763 + 0.942657i \(0.391681\pi\)
\(434\) 347.258i 0.800133i
\(435\) 0 0
\(436\) −154.051 −0.353328
\(437\) −383.051 + 383.051i −0.876547 + 0.876547i
\(438\) 163.720 + 163.720i 0.373790 + 0.373790i
\(439\) 649.354i 1.47917i −0.673066 0.739583i \(-0.735023\pi\)
0.673066 0.739583i \(-0.264977\pi\)
\(440\) 0 0
\(441\) −49.8703 −0.113085
\(442\) −742.992 + 742.992i −1.68098 + 1.68098i
\(443\) −55.3639 55.3639i −0.124975 0.124975i 0.641853 0.766828i \(-0.278166\pi\)
−0.766828 + 0.641853i \(0.778166\pi\)
\(444\) 244.391i 0.550429i
\(445\) 0 0
\(446\) 36.4138 0.0816452
\(447\) −94.3460 + 94.3460i −0.211065 + 0.211065i
\(448\) 32.1877 + 32.1877i 0.0718476 + 0.0718476i
\(449\) 835.180i 1.86009i −0.367446 0.930045i \(-0.619768\pi\)
0.367446 0.930045i \(-0.380232\pi\)
\(450\) 0 0
\(451\) −36.9967 −0.0820327
\(452\) −127.817 + 127.817i −0.282780 + 0.282780i
\(453\) 136.296 + 136.296i 0.300873 + 0.300873i
\(454\) 445.920i 0.982203i
\(455\) 0 0
\(456\) −106.407 −0.233349
\(457\) 268.706 268.706i 0.587978 0.587978i −0.349105 0.937083i \(-0.613514\pi\)
0.937083 + 0.349105i \(0.113514\pi\)
\(458\) −76.8571 76.8571i −0.167810 0.167810i
\(459\) 169.288i 0.368820i
\(460\) 0 0
\(461\) −337.848 −0.732860 −0.366430 0.930446i \(-0.619420\pi\)
−0.366430 + 0.930446i \(0.619420\pi\)
\(462\) 8.67641 8.67641i 0.0187801 0.0187801i
\(463\) 127.722 + 127.722i 0.275857 + 0.275857i 0.831452 0.555596i \(-0.187510\pi\)
−0.555596 + 0.831452i \(0.687510\pi\)
\(464\) 73.4623i 0.158324i
\(465\) 0 0
\(466\) 117.447 0.252033
\(467\) −48.8594 + 48.8594i −0.104624 + 0.104624i −0.757481 0.652857i \(-0.773570\pi\)
0.652857 + 0.757481i \(0.273570\pi\)
\(468\) −96.7554 96.7554i −0.206742 0.206742i
\(469\) 84.6820i 0.180559i
\(470\) 0 0
\(471\) 325.801 0.691722
\(472\) −147.899 + 147.899i −0.313345 + 0.313345i
\(473\) −28.4511 28.4511i −0.0601504 0.0601504i
\(474\) 0.112621i 0.000237597i
\(475\) 0 0
\(476\) 370.758 0.778903
\(477\) −85.0748 + 85.0748i −0.178354 + 0.178354i
\(478\) 146.681 + 146.681i 0.306865 + 0.306865i
\(479\) 11.1370i 0.0232506i 0.999932 + 0.0116253i \(0.00370053\pi\)
−0.999932 + 0.0116253i \(0.996299\pi\)
\(480\) 0 0
\(481\) 1608.91 3.34494
\(482\) −191.834 + 191.834i −0.397995 + 0.397995i
\(483\) 173.807 + 173.807i 0.359849 + 0.359849i
\(484\) 240.450i 0.496797i
\(485\) 0 0
\(486\) 22.0454 0.0453609
\(487\) 368.776 368.776i 0.757240 0.757240i −0.218579 0.975819i \(-0.570142\pi\)
0.975819 + 0.218579i \(0.0701421\pi\)
\(488\) −40.6615 40.6615i −0.0833228 0.0833228i
\(489\) 403.137i 0.824412i
\(490\) 0 0
\(491\) −535.323 −1.09027 −0.545136 0.838348i \(-0.683522\pi\)
−0.545136 + 0.838348i \(0.683522\pi\)
\(492\) 102.938 102.938i 0.209223 0.209223i
\(493\) −423.092 423.092i −0.858198 0.858198i
\(494\) 700.517i 1.41805i
\(495\) 0 0
\(496\) −172.616 −0.348017
\(497\) 156.866 156.866i 0.315625 0.315625i
\(498\) 8.77210 + 8.77210i 0.0176147 + 0.0176147i
\(499\) 224.560i 0.450020i 0.974356 + 0.225010i \(0.0722415\pi\)
−0.974356 + 0.225010i \(0.927758\pi\)
\(500\) 0 0
\(501\) 338.113 0.674876
\(502\) −397.176 + 397.176i −0.791187 + 0.791187i
\(503\) 527.137 + 527.137i 1.04799 + 1.04799i 0.998789 + 0.0491977i \(0.0156664\pi\)
0.0491977 + 0.998789i \(0.484334\pi\)
\(504\) 48.2816i 0.0957968i
\(505\) 0 0
\(506\) 31.0517 0.0613671
\(507\) −429.995 + 429.995i −0.848116 + 0.848116i
\(508\) −122.275 122.275i −0.240698 0.240698i
\(509\) 672.701i 1.32161i 0.750556 + 0.660807i \(0.229786\pi\)
−0.750556 + 0.660807i \(0.770214\pi\)
\(510\) 0 0
\(511\) −537.845 −1.05253
\(512\) −16.0000 + 16.0000i −0.0312500 + 0.0312500i
\(513\) −79.8053 79.8053i −0.155566 0.155566i
\(514\) 444.158i 0.864120i
\(515\) 0 0
\(516\) 158.322 0.306825
\(517\) 10.0783 10.0783i 0.0194938 0.0194938i
\(518\) −401.430 401.430i −0.774961 0.774961i
\(519\) 108.379i 0.208822i
\(520\) 0 0
\(521\) −478.786 −0.918975 −0.459487 0.888184i \(-0.651967\pi\)
−0.459487 + 0.888184i \(0.651967\pi\)
\(522\) 55.0967 55.0967i 0.105549 0.105549i
\(523\) 371.133 + 371.133i 0.709623 + 0.709623i 0.966456 0.256833i \(-0.0826791\pi\)
−0.256833 + 0.966456i \(0.582679\pi\)
\(524\) 271.070i 0.517308i
\(525\) 0 0
\(526\) −297.927 −0.566402
\(527\) −994.149 + 994.149i −1.88643 + 1.88643i
\(528\) 4.31290 + 4.31290i 0.00816838 + 0.00816838i
\(529\) 93.0331i 0.175866i
\(530\) 0 0
\(531\) −221.848 −0.417793
\(532\) 174.781 174.781i 0.328537 0.328537i
\(533\) −677.678 677.678i −1.27144 1.27144i
\(534\) 156.370i 0.292827i
\(535\) 0 0
\(536\) 42.0941 0.0785337
\(537\) 128.192 128.192i 0.238718 0.238718i
\(538\) −399.749 399.749i −0.743028 0.743028i
\(539\) 14.6347i 0.0271517i
\(540\) 0 0
\(541\) 2.49427 0.00461049 0.00230524 0.999997i \(-0.499266\pi\)
0.00230524 + 0.999997i \(0.499266\pi\)
\(542\) −146.491 + 146.491i −0.270279 + 0.270279i
\(543\) −245.095 245.095i −0.451371 0.451371i
\(544\) 184.298i 0.338783i
\(545\) 0 0
\(546\) 317.856 0.582153
\(547\) −476.872 + 476.872i −0.871796 + 0.871796i −0.992668 0.120872i \(-0.961431\pi\)
0.120872 + 0.992668i \(0.461431\pi\)
\(548\) 175.981 + 175.981i 0.321134 + 0.321134i
\(549\) 60.9923i 0.111097i
\(550\) 0 0
\(551\) −398.905 −0.723966
\(552\) −86.3967 + 86.3967i −0.156516 + 0.156516i
\(553\) 0.184988 + 0.184988i 0.000334518 + 0.000334518i
\(554\) 359.887i 0.649616i
\(555\) 0 0
\(556\) 216.188 0.388827
\(557\) −480.526 + 480.526i −0.862704 + 0.862704i −0.991651 0.128947i \(-0.958840\pi\)
0.128947 + 0.991651i \(0.458840\pi\)
\(558\) −129.462 129.462i −0.232011 0.232011i
\(559\) 1042.29i 1.86457i
\(560\) 0 0
\(561\) 49.6787 0.0885538
\(562\) −286.333 + 286.333i −0.509489 + 0.509489i
\(563\) 528.527 + 528.527i 0.938770 + 0.938770i 0.998231 0.0594608i \(-0.0189381\pi\)
−0.0594608 + 0.998231i \(0.518938\pi\)
\(564\) 56.0827i 0.0994375i
\(565\) 0 0
\(566\) −445.426 −0.786972
\(567\) −36.2112 + 36.2112i −0.0638645 + 0.0638645i
\(568\) 77.9754 + 77.9754i 0.137281 + 0.137281i
\(569\) 153.089i 0.269050i 0.990910 + 0.134525i \(0.0429509\pi\)
−0.990910 + 0.134525i \(0.957049\pi\)
\(570\) 0 0
\(571\) −462.664 −0.810269 −0.405135 0.914257i \(-0.632775\pi\)
−0.405135 + 0.914257i \(0.632775\pi\)
\(572\) 28.3935 28.3935i 0.0496389 0.0496389i
\(573\) −400.766 400.766i −0.699417 0.699417i
\(574\) 338.166i 0.589139i
\(575\) 0 0
\(576\) −24.0000 −0.0416667
\(577\) 444.484 444.484i 0.770336 0.770336i −0.207829 0.978165i \(-0.566640\pi\)
0.978165 + 0.207829i \(0.0666398\pi\)
\(578\) 772.426 + 772.426i 1.33638 + 1.33638i
\(579\) 56.9754i 0.0984032i
\(580\) 0 0
\(581\) −28.8176 −0.0496000
\(582\) 154.535 154.535i 0.265525 0.265525i
\(583\) −24.9657 24.9657i −0.0428229 0.0428229i
\(584\) 267.354i 0.457798i
\(585\) 0 0
\(586\) −200.447 −0.342059
\(587\) −102.115 + 102.115i −0.173961 + 0.173961i −0.788717 0.614756i \(-0.789254\pi\)
0.614756 + 0.788717i \(0.289254\pi\)
\(588\) 40.7189 + 40.7189i 0.0692499 + 0.0692499i
\(589\) 937.317i 1.59137i
\(590\) 0 0
\(591\) 402.431 0.680933
\(592\) 199.544 199.544i 0.337068 0.337068i
\(593\) −38.6110 38.6110i −0.0651112 0.0651112i 0.673801 0.738913i \(-0.264660\pi\)
−0.738913 + 0.673801i \(0.764660\pi\)
\(594\) 6.46936i 0.0108912i
\(595\) 0 0
\(596\) 154.066 0.258501
\(597\) 65.3124 65.3124i 0.109401 0.109401i
\(598\) 568.782 + 568.782i 0.951140 + 0.951140i
\(599\) 458.928i 0.766157i −0.923716 0.383079i \(-0.874864\pi\)
0.923716 0.383079i \(-0.125136\pi\)
\(600\) 0 0
\(601\) 796.357 1.32505 0.662527 0.749038i \(-0.269484\pi\)
0.662527 + 0.749038i \(0.269484\pi\)
\(602\) −260.055 + 260.055i −0.431986 + 0.431986i
\(603\) 31.5706 + 31.5706i 0.0523558 + 0.0523558i
\(604\) 222.570i 0.368493i
\(605\) 0 0
\(606\) −206.311 −0.340447
\(607\) −292.246 + 292.246i −0.481460 + 0.481460i −0.905598 0.424138i \(-0.860577\pi\)
0.424138 + 0.905598i \(0.360577\pi\)
\(608\) 86.8810 + 86.8810i 0.142896 + 0.142896i
\(609\) 181.001i 0.297210i
\(610\) 0 0
\(611\) 369.213 0.604277
\(612\) −138.223 + 138.223i −0.225855 + 0.225855i
\(613\) −105.765 105.765i −0.172536 0.172536i 0.615557 0.788093i \(-0.288931\pi\)
−0.788093 + 0.615557i \(0.788931\pi\)
\(614\) 343.674i 0.559730i
\(615\) 0 0
\(616\) −14.1685 −0.0230008
\(617\) 156.187 156.187i 0.253139 0.253139i −0.569117 0.822256i \(-0.692715\pi\)
0.822256 + 0.569117i \(0.192715\pi\)
\(618\) 183.053 + 183.053i 0.296203 + 0.296203i
\(619\) 526.395i 0.850396i −0.905100 0.425198i \(-0.860205\pi\)
0.905100 0.425198i \(-0.139795\pi\)
\(620\) 0 0
\(621\) −129.595 −0.208688
\(622\) 140.504 140.504i 0.225890 0.225890i
\(623\) −256.849 256.849i −0.412278 0.412278i
\(624\) 158.001i 0.253207i
\(625\) 0 0
\(626\) −783.055 −1.25089
\(627\) 23.4194 23.4194i 0.0373514 0.0373514i
\(628\) −266.016 266.016i −0.423592 0.423592i
\(629\) 2298.47i 3.65417i
\(630\) 0 0
\(631\) −77.2365 −0.122403 −0.0612017 0.998125i \(-0.519493\pi\)
−0.0612017 + 0.998125i \(0.519493\pi\)
\(632\) −0.0919548 + 0.0919548i −0.000145498 + 0.000145498i
\(633\) −489.480 489.480i −0.773271 0.773271i
\(634\) 386.064i 0.608934i
\(635\) 0 0
\(636\) 138.927 0.218438
\(637\) 268.068 268.068i 0.420829 0.420829i
\(638\) 16.1685 + 16.1685i 0.0253424 + 0.0253424i
\(639\) 116.963i 0.183041i
\(640\) 0 0
\(641\) 533.896 0.832911 0.416455 0.909156i \(-0.363272\pi\)
0.416455 + 0.909156i \(0.363272\pi\)
\(642\) 323.031 323.031i 0.503164 0.503164i
\(643\) −666.085 666.085i −1.03590 1.03590i −0.999331 0.0365703i \(-0.988357\pi\)
−0.0365703 0.999331i \(-0.511643\pi\)
\(644\) 283.826i 0.440724i
\(645\) 0 0
\(646\) 1000.75 1.54915
\(647\) −574.511 + 574.511i −0.887962 + 0.887962i −0.994327 0.106365i \(-0.966079\pi\)
0.106365 + 0.994327i \(0.466079\pi\)
\(648\) −18.0000 18.0000i −0.0277778 0.0277778i
\(649\) 65.1026i 0.100312i
\(650\) 0 0
\(651\) 425.302 0.653306
\(652\) −329.160 + 329.160i −0.504847 + 0.504847i
\(653\) −882.196 882.196i −1.35099 1.35099i −0.884556 0.466434i \(-0.845539\pi\)
−0.466434 0.884556i \(-0.654461\pi\)
\(654\) 188.673i 0.288491i
\(655\) 0 0
\(656\) −168.097 −0.256245
\(657\) 200.515 200.515i 0.305199 0.305199i
\(658\) −92.1200 92.1200i −0.140000 0.140000i
\(659\) 566.500i 0.859636i −0.902916 0.429818i \(-0.858578\pi\)
0.902916 0.429818i \(-0.141422\pi\)
\(660\) 0 0
\(661\) 237.420 0.359184 0.179592 0.983741i \(-0.442522\pi\)
0.179592 + 0.983741i \(0.442522\pi\)
\(662\) 339.875 339.875i 0.513406 0.513406i
\(663\) 909.975 + 909.975i 1.37251 + 1.37251i
\(664\) 14.3248i 0.0215735i
\(665\) 0 0
\(666\) 299.316 0.449424
\(667\) −323.889 + 323.889i −0.485591 + 0.485591i
\(668\) −276.068 276.068i −0.413276 0.413276i
\(669\) 44.5976i 0.0666630i
\(670\) 0 0
\(671\) 17.8986 0.0266744
\(672\) 39.4218 39.4218i 0.0586633 0.0586633i
\(673\) 46.1772 + 46.1772i 0.0686139 + 0.0686139i 0.740581 0.671967i \(-0.234550\pi\)
−0.671967 + 0.740581i \(0.734550\pi\)
\(674\) 502.482i 0.745522i
\(675\) 0 0
\(676\) 702.179 1.03873
\(677\) 746.476 746.476i 1.10262 1.10262i 0.108531 0.994093i \(-0.465385\pi\)
0.994093 0.108531i \(-0.0346145\pi\)
\(678\) 156.543 + 156.543i 0.230889 + 0.230889i
\(679\) 507.672i 0.747675i
\(680\) 0 0
\(681\) 546.138 0.801965
\(682\) 37.9914 37.9914i 0.0557059 0.0557059i
\(683\) 367.617 + 367.617i 0.538238 + 0.538238i 0.923011 0.384773i \(-0.125720\pi\)
−0.384773 + 0.923011i \(0.625720\pi\)
\(684\) 130.322i 0.190529i
\(685\) 0 0
\(686\) −528.067 −0.769778
\(687\) −94.1304 + 94.1304i −0.137017 + 0.137017i
\(688\) −129.269 129.269i −0.187891 0.187891i
\(689\) 914.606i 1.32744i
\(690\) 0 0
\(691\) 867.808 1.25587 0.627937 0.778264i \(-0.283900\pi\)
0.627937 + 0.778264i \(0.283900\pi\)
\(692\) 88.4909 88.4909i 0.127877 0.127877i
\(693\) −10.6264 10.6264i −0.0153339 0.0153339i
\(694\) 828.887i 1.19436i
\(695\) 0 0
\(696\) −89.9726 −0.129271
\(697\) −968.120 + 968.120i −1.38898 + 1.38898i
\(698\) 311.540 + 311.540i 0.446332 + 0.446332i
\(699\) 143.843i 0.205784i
\(700\) 0 0
\(701\) −73.7516 −0.105209 −0.0526046 0.998615i \(-0.516752\pi\)
−0.0526046 + 0.998615i \(0.516752\pi\)
\(702\) −118.501 + 118.501i −0.168804 + 0.168804i
\(703\) −1083.54 1083.54i −1.54131 1.54131i
\(704\) 7.04294i 0.0100042i
\(705\) 0 0
\(706\) 482.715 0.683732
\(707\) 338.881 338.881i 0.479323 0.479323i
\(708\) 181.138 + 181.138i 0.255845 + 0.255845i
\(709\) 1222.00i 1.72356i 0.507286 + 0.861778i \(0.330649\pi\)
−0.507286 + 0.861778i \(0.669351\pi\)
\(710\) 0 0
\(711\) −0.137932 −0.000193997
\(712\) 127.675 127.675i 0.179319 0.179319i
\(713\) 761.050 + 761.050i 1.06739 + 1.06739i
\(714\) 454.084i 0.635972i
\(715\) 0 0
\(716\) −209.336 −0.292369
\(717\) 179.647 179.647i 0.250554 0.250554i
\(718\) −65.5040 65.5040i −0.0912312 0.0912312i
\(719\) 1271.29i 1.76814i 0.467354 + 0.884070i \(0.345207\pi\)
−0.467354 + 0.884070i \(0.654793\pi\)
\(720\) 0 0
\(721\) −601.357 −0.834060
\(722\) 110.770 110.770i 0.153420 0.153420i
\(723\) 234.947 + 234.947i 0.324962 + 0.324962i
\(724\) 400.238i 0.552815i
\(725\) 0 0
\(726\) 294.490 0.405633
\(727\) 1004.06 1004.06i 1.38110 1.38110i 0.538434 0.842668i \(-0.319016\pi\)
0.842668 0.538434i \(-0.180984\pi\)
\(728\) −259.528 259.528i −0.356495 0.356495i
\(729\) 27.0000i 0.0370370i
\(730\) 0 0
\(731\) −1489.00 −2.03694
\(732\) −49.8000 + 49.8000i −0.0680328 + 0.0680328i
\(733\) 249.129 + 249.129i 0.339876 + 0.339876i 0.856321 0.516444i \(-0.172745\pi\)
−0.516444 + 0.856321i \(0.672745\pi\)
\(734\) 354.597i 0.483102i
\(735\) 0 0
\(736\) 141.085 0.191692
\(737\) −9.26457 + 9.26457i −0.0125706 + 0.0125706i
\(738\) −126.073 126.073i −0.170830 0.170830i
\(739\) 147.407i 0.199468i 0.995014 + 0.0997340i \(0.0317992\pi\)
−0.995014 + 0.0997340i \(0.968201\pi\)
\(740\) 0 0
\(741\) 857.955 1.15783
\(742\) −228.197 + 228.197i −0.307543 + 0.307543i
\(743\) 593.793 + 593.793i 0.799183 + 0.799183i 0.982967 0.183784i \(-0.0588345\pi\)
−0.183784 + 0.982967i \(0.558835\pi\)
\(744\) 211.411i 0.284154i
\(745\) 0 0
\(746\) −127.907 −0.171457
\(747\) 10.7436 10.7436i 0.0143823 0.0143823i
\(748\) −40.5625 40.5625i −0.0542279 0.0542279i
\(749\) 1061.20i 1.41683i
\(750\) 0 0
\(751\) 410.932 0.547180 0.273590 0.961846i \(-0.411789\pi\)
0.273590 + 0.961846i \(0.411789\pi\)
\(752\) 45.7914 45.7914i 0.0608928 0.0608928i
\(753\) 486.439 + 486.439i 0.646002 + 0.646002i
\(754\) 592.323i 0.785574i
\(755\) 0 0
\(756\) 59.1326 0.0782178
\(757\) 853.737 853.737i 1.12779 1.12779i 0.137254 0.990536i \(-0.456172\pi\)
0.990536 0.137254i \(-0.0438276\pi\)
\(758\) −344.443 344.443i −0.454410 0.454410i
\(759\) 38.0305i 0.0501060i
\(760\) 0 0
\(761\) −179.153 −0.235418 −0.117709 0.993048i \(-0.537555\pi\)
−0.117709 + 0.993048i \(0.537555\pi\)
\(762\) −149.755 + 149.755i −0.196529 + 0.196529i
\(763\) −309.909 309.909i −0.406172 0.406172i
\(764\) 654.448i 0.856607i
\(765\) 0 0
\(766\) 45.3775 0.0592396
\(767\) 1192.50 1192.50i 1.55476 1.55476i
\(768\) 19.5959 + 19.5959i 0.0255155 + 0.0255155i
\(769\) 189.333i 0.246207i −0.992394 0.123104i \(-0.960715\pi\)
0.992394 0.123104i \(-0.0392848\pi\)
\(770\) 0 0
\(771\) −543.980 −0.705551
\(772\) −46.5203 + 46.5203i −0.0602594 + 0.0602594i
\(773\) 349.358 + 349.358i 0.451950 + 0.451950i 0.896002 0.444051i \(-0.146459\pi\)
−0.444051 + 0.896002i \(0.646459\pi\)
\(774\) 193.904i 0.250522i
\(775\) 0 0
\(776\) −252.355 −0.325200
\(777\) −491.649 + 491.649i −0.632753 + 0.632753i
\(778\) −234.054 234.054i −0.300840 0.300840i
\(779\) 912.776i 1.17173i
\(780\) 0 0
\(781\) −34.3235 −0.0439481
\(782\) 812.553 812.553i 1.03907 1.03907i
\(783\) −67.4795 67.4795i −0.0861807 0.0861807i
\(784\) 66.4938i 0.0848135i
\(785\) 0 0
\(786\) −331.991 −0.422381
\(787\) 511.653 511.653i 0.650131 0.650131i −0.302893 0.953025i \(-0.597953\pi\)
0.953025 + 0.302893i \(0.0979525\pi\)
\(788\) −328.584 328.584i −0.416984 0.416984i
\(789\) 364.885i 0.462465i
\(790\) 0 0
\(791\) −514.266 −0.650146
\(792\) 5.28221 5.28221i 0.00666945 0.00666945i
\(793\) 327.852 + 327.852i 0.413432 + 0.413432i
\(794\) 990.017i 1.24687i
\(795\) 0 0
\(796\) −106.655 −0.133988
\(797\) −80.9097 + 80.9097i −0.101518 + 0.101518i −0.756041 0.654524i \(-0.772869\pi\)
0.654524 + 0.756041i \(0.272869\pi\)
\(798\) −214.063 214.063i −0.268249 0.268249i
\(799\) 527.453i 0.660141i
\(800\) 0 0
\(801\) 191.513 0.239093
\(802\) 46.2845 46.2845i 0.0577114 0.0577114i
\(803\) 58.8425 + 58.8425i 0.0732783 + 0.0732783i
\(804\) 51.5545i 0.0641225i
\(805\) 0 0
\(806\) 1391.80 1.72679
\(807\) −489.590 + 489.590i −0.606680 + 0.606680i
\(808\) 168.452 + 168.452i 0.208481 + 0.208481i
\(809\) 256.018i 0.316462i 0.987402 + 0.158231i \(0.0505791\pi\)
−0.987402 + 0.158231i \(0.949421\pi\)
\(810\) 0 0
\(811\) 497.936 0.613978 0.306989 0.951713i \(-0.400678\pi\)
0.306989 + 0.951713i \(0.400678\pi\)
\(812\) 147.787 147.787i 0.182003 0.182003i
\(813\) 179.414 + 179.414i 0.220682 + 0.220682i
\(814\) 87.8361i 0.107907i
\(815\) 0 0
\(816\) 225.718 0.276615
\(817\) −701.941 + 701.941i −0.859169 + 0.859169i
\(818\) 239.436 + 239.436i 0.292710 + 0.292710i
\(819\) 389.292i 0.475326i
\(820\) 0 0
\(821\) 976.995 1.19001 0.595003 0.803724i \(-0.297151\pi\)
0.595003 + 0.803724i \(0.297151\pi\)
\(822\) 215.532 215.532i 0.262205 0.262205i
\(823\) 49.6700 + 49.6700i 0.0603524 + 0.0603524i 0.736639 0.676286i \(-0.236412\pi\)
−0.676286 + 0.736639i \(0.736412\pi\)
\(824\) 298.925i 0.362773i
\(825\) 0 0
\(826\) −595.065 −0.720418
\(827\) −150.970 + 150.970i −0.182551 + 0.182551i −0.792467 0.609915i \(-0.791203\pi\)
0.609915 + 0.792467i \(0.291203\pi\)
\(828\) 105.814 + 105.814i 0.127795 + 0.127795i
\(829\) 808.898i 0.975752i −0.872913 0.487876i \(-0.837772\pi\)
0.872913 0.487876i \(-0.162228\pi\)
\(830\) 0 0
\(831\) 440.770 0.530409
\(832\) 129.007 129.007i 0.155057 0.155057i
\(833\) −382.958 382.958i −0.459733 0.459733i
\(834\) 264.775i 0.317476i
\(835\) 0 0
\(836\) −38.2436 −0.0457460
\(837\) −158.558 + 158.558i −0.189436 + 0.189436i
\(838\) −150.579 150.579i −0.179689 0.179689i
\(839\) 288.815i 0.344237i 0.985076 + 0.172119i \(0.0550613\pi\)
−0.985076 + 0.172119i \(0.944939\pi\)
\(840\) 0 0
\(841\) 503.705 0.598936
\(842\) −485.057 + 485.057i −0.576077 + 0.576077i
\(843\) 350.684 + 350.684i 0.415996 + 0.415996i
\(844\) 799.318i 0.947059i
\(845\) 0 0
\(846\) 68.6870 0.0811903
\(847\) −483.721 + 483.721i −0.571099 + 0.571099i
\(848\) −113.433 113.433i −0.133765 0.133765i
\(849\) 545.533i 0.642560i
\(850\) 0 0
\(851\) −1759.55 −2.06762
\(852\) 95.4999 95.4999i 0.112089 0.112089i
\(853\) 586.627 + 586.627i 0.687723 + 0.687723i 0.961728 0.274005i \(-0.0883486\pi\)
−0.274005 + 0.961728i \(0.588349\pi\)
\(854\) 163.600i 0.191569i
\(855\) 0 0
\(856\) −527.507 −0.616247
\(857\) −293.219 + 293.219i −0.342146 + 0.342146i −0.857174 0.515028i \(-0.827782\pi\)
0.515028 + 0.857174i \(0.327782\pi\)
\(858\) −34.7747 34.7747i −0.0405300 0.0405300i
\(859\) 311.960i 0.363167i 0.983376 + 0.181583i \(0.0581222\pi\)
−0.983376 + 0.181583i \(0.941878\pi\)
\(860\) 0 0
\(861\) 414.167 0.481030
\(862\) 790.360 790.360i 0.916891 0.916891i
\(863\) −590.699 590.699i −0.684471 0.684471i 0.276533 0.961004i \(-0.410814\pi\)
−0.961004 + 0.276533i \(0.910814\pi\)
\(864\) 29.3939i 0.0340207i
\(865\) 0 0
\(866\) −1105.38 −1.27642
\(867\) 946.025 946.025i 1.09115 1.09115i
\(868\) −347.258 347.258i −0.400066 0.400066i
\(869\) 0.0404770i 4.65789e-5i
\(870\) 0 0
\(871\) −339.402 −0.389670
\(872\) 154.051 154.051i 0.176664 0.176664i
\(873\) −189.267 189.267i −0.216800 0.216800i
\(874\) 766.102i 0.876547i
\(875\) 0 0
\(876\) −327.440 −0.373790
\(877\) 881.008 881.008i 1.00457 1.00457i 0.00458097 0.999990i \(-0.498542\pi\)
0.999990 0.00458097i \(-0.00145817\pi\)
\(878\) 649.354 + 649.354i 0.739583 + 0.739583i
\(879\) 245.496i 0.279290i
\(880\) 0 0
\(881\) −705.494 −0.800787 −0.400394 0.916343i \(-0.631127\pi\)
−0.400394 + 0.916343i \(0.631127\pi\)
\(882\) 49.8703 49.8703i 0.0565423 0.0565423i
\(883\) −295.341 295.341i −0.334475 0.334475i 0.519808 0.854283i \(-0.326003\pi\)
−0.854283 + 0.519808i \(0.826003\pi\)
\(884\) 1485.98i 1.68098i
\(885\) 0 0
\(886\) 110.728 0.124975
\(887\) 157.844 157.844i 0.177953 0.177953i −0.612510 0.790463i \(-0.709840\pi\)
0.790463 + 0.612510i \(0.209840\pi\)
\(888\) −244.391 244.391i −0.275215 0.275215i
\(889\) 491.968i 0.553395i
\(890\) 0 0
\(891\) 7.92331 0.00889261
\(892\) −36.4138 + 36.4138i −0.0408226 + 0.0408226i
\(893\) −248.650 248.650i −0.278443 0.278443i
\(894\) 188.692i 0.211065i
\(895\) 0 0
\(896\) −64.3755 −0.0718476
\(897\) 696.613 696.613i 0.776603 0.776603i
\(898\) 835.180 + 835.180i 0.930045 + 0.930045i
\(899\) 792.549i 0.881590i
\(900\) 0 0
\(901\) −1306.59 −1.45016
\(902\) 36.9967 36.9967i 0.0410164 0.0410164i
\(903\) 318.502 + 318.502i 0.352715 + 0.352715i
\(904\) 255.633i 0.282780i
\(905\) 0 0
\(906\) −272.591 −0.300873
\(907\) 1061.72 1061.72i 1.17059 1.17059i 0.188516 0.982070i \(-0.439632\pi\)
0.982070 0.188516i \(-0.0603676\pi\)
\(908\) −445.920 445.920i −0.491101 0.491101i
\(909\) 252.678i 0.277974i
\(910\) 0 0
\(911\) −938.162 −1.02982 −0.514908 0.857246i \(-0.672174\pi\)
−0.514908 + 0.857246i \(0.672174\pi\)
\(912\) 106.407 106.407i 0.116674 0.116674i
\(913\) 3.15277 + 3.15277i 0.00345320 + 0.00345320i
\(914\) 537.412i 0.587978i
\(915\) 0 0
\(916\) 153.714 0.167810
\(917\) 545.320 545.320i 0.594678 0.594678i
\(918\) 169.288 + 169.288i 0.184410 + 0.184410i
\(919\) 552.208i 0.600880i −0.953801 0.300440i \(-0.902867\pi\)
0.953801 0.300440i \(-0.0971335\pi\)
\(920\) 0 0
\(921\) 420.913 0.457017
\(922\) 337.848 337.848i 0.366430 0.366430i
\(923\) −628.711 628.711i −0.681161 0.681161i
\(924\) 17.3528i 0.0187801i
\(925\) 0 0
\(926\) −255.443 −0.275857
\(927\) 224.194 224.194i 0.241849 0.241849i
\(928\) 73.4623 + 73.4623i 0.0791620 + 0.0791620i
\(929\) 773.378i 0.832484i 0.909254 + 0.416242i \(0.136653\pi\)
−0.909254 + 0.416242i \(0.863347\pi\)
\(930\) 0 0
\(931\) −361.065 −0.387825
\(932\) −117.447 + 117.447i −0.126016 + 0.126016i
\(933\) −172.081 172.081i −0.184439 0.184439i
\(934\) 97.7188i 0.104624i
\(935\) 0 0
\(936\) 193.511 0.206742
\(937\) −271.711 + 271.711i −0.289980 + 0.289980i −0.837072 0.547093i \(-0.815735\pi\)
0.547093 + 0.837072i \(0.315735\pi\)
\(938\) 84.6820 + 84.6820i 0.0902793 + 0.0902793i
\(939\) 959.042i 1.02134i
\(940\) 0 0
\(941\) −919.761 −0.977429 −0.488714 0.872444i \(-0.662534\pi\)
−0.488714 + 0.872444i \(0.662534\pi\)
\(942\) −325.801 + 325.801i −0.345861 + 0.345861i
\(943\) 741.124 + 741.124i 0.785922 + 0.785922i
\(944\) 295.797i 0.313345i
\(945\) 0 0
\(946\) 56.9023 0.0601504
\(947\) 1053.78 1053.78i 1.11276 1.11276i 0.119984 0.992776i \(-0.461716\pi\)
0.992776 0.119984i \(-0.0382843\pi\)
\(948\) 0.112621 + 0.112621i 0.000118799 + 0.000118799i
\(949\) 2155.66i 2.27151i
\(950\) 0 0
\(951\) −472.830 −0.497192
\(952\) −370.758 + 370.758i −0.389451 + 0.389451i
\(953\) 926.983 + 926.983i 0.972700 + 0.972700i 0.999637 0.0269370i \(-0.00857537\pi\)
−0.0269370 + 0.999637i \(0.508575\pi\)
\(954\) 170.150i 0.178354i
\(955\) 0 0
\(956\) −293.363 −0.306865
\(957\) 19.8022 19.8022i 0.0206920 0.0206920i
\(958\) −11.1370 11.1370i −0.0116253 0.0116253i
\(959\) 708.055i 0.738326i
\(960\) 0 0
\(961\) 901.272 0.937848
\(962\) −1608.91 + 1608.91i −1.67247 + 1.67247i
\(963\) −395.631 395.631i −0.410831 0.410831i
\(964\) 383.667i 0.397995i
\(965\) 0 0
\(966\) −347.614 −0.359849
\(967\) 32.5615 32.5615i 0.0336727 0.0336727i −0.690070 0.723743i \(-0.742420\pi\)
0.723743 + 0.690070i \(0.242420\pi\)
\(968\) −240.450 240.450i −0.248399 0.248399i
\(969\) 1225.66i 1.26487i
\(970\) 0 0
\(971\) −942.036 −0.970171 −0.485085 0.874467i \(-0.661212\pi\)
−0.485085 + 0.874467i \(0.661212\pi\)
\(972\) −22.0454 + 22.0454i −0.0226805 + 0.0226805i
\(973\) 434.912 + 434.912i 0.446980 + 0.446980i
\(974\) 737.552i 0.757240i
\(975\) 0 0
\(976\) 81.3230 0.0833228
\(977\) 89.4543 89.4543i 0.0915602 0.0915602i −0.659843 0.751403i \(-0.729377\pi\)
0.751403 + 0.659843i \(0.229377\pi\)
\(978\) 403.137 + 403.137i 0.412206 + 0.412206i
\(979\) 56.2007i 0.0574062i
\(980\) 0 0
\(981\) 231.076 0.235552
\(982\) 535.323 535.323i 0.545136 0.545136i
\(983\) 454.713 + 454.713i 0.462576 + 0.462576i 0.899499 0.436923i \(-0.143932\pi\)
−0.436923 + 0.899499i \(0.643932\pi\)
\(984\) 205.876i 0.209223i
\(985\) 0 0
\(986\) 846.184 0.858198
\(987\) −112.823 + 112.823i −0.114309 + 0.114309i
\(988\) −700.517 700.517i −0.709026 0.709026i
\(989\) 1139.88i 1.15255i
\(990\) 0 0
\(991\) 1488.35 1.50187 0.750935 0.660376i \(-0.229603\pi\)
0.750935 + 0.660376i \(0.229603\pi\)
\(992\) 172.616 172.616i 0.174008 0.174008i
\(993\) −416.260 416.260i −0.419195 0.419195i
\(994\) 313.731i 0.315625i
\(995\) 0 0
\(996\) −17.5442 −0.0176147
\(997\) 496.448 496.448i 0.497942 0.497942i −0.412855 0.910797i \(-0.635468\pi\)
0.910797 + 0.412855i \(0.135468\pi\)
\(998\) −224.560 224.560i −0.225010 0.225010i
\(999\) 366.586i 0.366953i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 750.3.f.b.193.8 16
5.2 odd 4 inner 750.3.f.b.307.8 yes 16
5.3 odd 4 750.3.f.c.307.1 yes 16
5.4 even 2 750.3.f.c.193.1 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
750.3.f.b.193.8 16 1.1 even 1 trivial
750.3.f.b.307.8 yes 16 5.2 odd 4 inner
750.3.f.c.193.1 yes 16 5.4 even 2
750.3.f.c.307.1 yes 16 5.3 odd 4