Properties

Label 750.3.f.b.193.5
Level $750$
Weight $3$
Character 750.193
Analytic conductor $20.436$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [750,3,Mod(193,750)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(750, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("750.193"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 750 = 2 \cdot 3 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 750.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-16,0,0,0,0,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.4360198270\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: 16.0.6879707136000000000000.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 21x^{12} + 86x^{8} + 36x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{8}\cdot 5^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 193.5
Root \(0.575212 + 0.575212i\) of defining polynomial
Character \(\chi\) \(=\) 750.193
Dual form 750.3.f.b.307.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 1.00000i) q^{2} +(1.22474 + 1.22474i) q^{3} -2.00000i q^{4} -2.44949 q^{6} +(-5.70902 + 5.70902i) q^{7} +(2.00000 + 2.00000i) q^{8} +3.00000i q^{9} -20.2091 q^{11} +(2.44949 - 2.44949i) q^{12} +(-4.72244 - 4.72244i) q^{13} -11.4180i q^{14} -4.00000 q^{16} +(17.5826 - 17.5826i) q^{17} +(-3.00000 - 3.00000i) q^{18} -15.9566i q^{19} -13.9842 q^{21} +(20.2091 - 20.2091i) q^{22} +(20.1000 + 20.1000i) q^{23} +4.89898i q^{24} +9.44488 q^{26} +(-3.67423 + 3.67423i) q^{27} +(11.4180 + 11.4180i) q^{28} -18.4148i q^{29} +40.5866 q^{31} +(4.00000 - 4.00000i) q^{32} +(-24.7510 - 24.7510i) q^{33} +35.1653i q^{34} +6.00000 q^{36} +(20.8395 - 20.8395i) q^{37} +(15.9566 + 15.9566i) q^{38} -11.5676i q^{39} -59.4029 q^{41} +(13.9842 - 13.9842i) q^{42} +(7.34188 + 7.34188i) q^{43} +40.4183i q^{44} -40.2000 q^{46} +(39.2382 - 39.2382i) q^{47} +(-4.89898 - 4.89898i) q^{48} -16.1859i q^{49} +43.0685 q^{51} +(-9.44488 + 9.44488i) q^{52} +(-66.4998 - 66.4998i) q^{53} -7.34847i q^{54} -22.8361 q^{56} +(19.5427 - 19.5427i) q^{57} +(18.4148 + 18.4148i) q^{58} -87.4131i q^{59} -66.7335 q^{61} +(-40.5866 + 40.5866i) q^{62} +(-17.1271 - 17.1271i) q^{63} +8.00000i q^{64} +49.5021 q^{66} +(71.0048 - 71.0048i) q^{67} +(-35.1653 - 35.1653i) q^{68} +49.2348i q^{69} +8.10797 q^{71} +(-6.00000 + 6.00000i) q^{72} +(40.3974 + 40.3974i) q^{73} +41.6789i q^{74} -31.9132 q^{76} +(115.374 - 115.374i) q^{77} +(11.5676 + 11.5676i) q^{78} +69.4524i q^{79} -9.00000 q^{81} +(59.4029 - 59.4029i) q^{82} +(3.71032 + 3.71032i) q^{83} +27.9684i q^{84} -14.6838 q^{86} +(22.5534 - 22.5534i) q^{87} +(-40.4183 - 40.4183i) q^{88} -32.4846i q^{89} +53.9211 q^{91} +(40.2000 - 40.2000i) q^{92} +(49.7082 + 49.7082i) q^{93} +78.4763i q^{94} +9.79796 q^{96} +(-27.6584 + 27.6584i) q^{97} +(16.1859 + 16.1859i) q^{98} -60.6274i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{2} + 24 q^{7} + 32 q^{8} - 24 q^{11} - 48 q^{13} - 64 q^{16} - 16 q^{17} - 48 q^{18} - 48 q^{21} + 24 q^{22} + 104 q^{23} + 96 q^{26} - 48 q^{28} + 200 q^{31} + 64 q^{32} - 48 q^{33} + 96 q^{36}+ \cdots - 224 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/750\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(251\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 + 1.00000i −0.500000 + 0.500000i
\(3\) 1.22474 + 1.22474i 0.408248 + 0.408248i
\(4\) 2.00000i 0.500000i
\(5\) 0 0
\(6\) −2.44949 −0.408248
\(7\) −5.70902 + 5.70902i −0.815575 + 0.815575i −0.985463 0.169888i \(-0.945659\pi\)
0.169888 + 0.985463i \(0.445659\pi\)
\(8\) 2.00000 + 2.00000i 0.250000 + 0.250000i
\(9\) 3.00000i 0.333333i
\(10\) 0 0
\(11\) −20.2091 −1.83719 −0.918597 0.395196i \(-0.870677\pi\)
−0.918597 + 0.395196i \(0.870677\pi\)
\(12\) 2.44949 2.44949i 0.204124 0.204124i
\(13\) −4.72244 4.72244i −0.363265 0.363265i 0.501749 0.865013i \(-0.332690\pi\)
−0.865013 + 0.501749i \(0.832690\pi\)
\(14\) 11.4180i 0.815575i
\(15\) 0 0
\(16\) −4.00000 −0.250000
\(17\) 17.5826 17.5826i 1.03427 1.03427i 0.0348812 0.999391i \(-0.488895\pi\)
0.999391 0.0348812i \(-0.0111053\pi\)
\(18\) −3.00000 3.00000i −0.166667 0.166667i
\(19\) 15.9566i 0.839820i −0.907566 0.419910i \(-0.862062\pi\)
0.907566 0.419910i \(-0.137938\pi\)
\(20\) 0 0
\(21\) −13.9842 −0.665914
\(22\) 20.2091 20.2091i 0.918597 0.918597i
\(23\) 20.1000 + 20.1000i 0.873914 + 0.873914i 0.992896 0.118982i \(-0.0379632\pi\)
−0.118982 + 0.992896i \(0.537963\pi\)
\(24\) 4.89898i 0.204124i
\(25\) 0 0
\(26\) 9.44488 0.363265
\(27\) −3.67423 + 3.67423i −0.136083 + 0.136083i
\(28\) 11.4180 + 11.4180i 0.407787 + 0.407787i
\(29\) 18.4148i 0.634992i −0.948260 0.317496i \(-0.897158\pi\)
0.948260 0.317496i \(-0.102842\pi\)
\(30\) 0 0
\(31\) 40.5866 1.30924 0.654622 0.755956i \(-0.272828\pi\)
0.654622 + 0.755956i \(0.272828\pi\)
\(32\) 4.00000 4.00000i 0.125000 0.125000i
\(33\) −24.7510 24.7510i −0.750031 0.750031i
\(34\) 35.1653i 1.03427i
\(35\) 0 0
\(36\) 6.00000 0.166667
\(37\) 20.8395 20.8395i 0.563229 0.563229i −0.366994 0.930223i \(-0.619613\pi\)
0.930223 + 0.366994i \(0.119613\pi\)
\(38\) 15.9566 + 15.9566i 0.419910 + 0.419910i
\(39\) 11.5676i 0.296604i
\(40\) 0 0
\(41\) −59.4029 −1.44885 −0.724426 0.689353i \(-0.757895\pi\)
−0.724426 + 0.689353i \(0.757895\pi\)
\(42\) 13.9842 13.9842i 0.332957 0.332957i
\(43\) 7.34188 + 7.34188i 0.170741 + 0.170741i 0.787305 0.616564i \(-0.211476\pi\)
−0.616564 + 0.787305i \(0.711476\pi\)
\(44\) 40.4183i 0.918597i
\(45\) 0 0
\(46\) −40.2000 −0.873914
\(47\) 39.2382 39.2382i 0.834855 0.834855i −0.153322 0.988176i \(-0.548997\pi\)
0.988176 + 0.153322i \(0.0489971\pi\)
\(48\) −4.89898 4.89898i −0.102062 0.102062i
\(49\) 16.1859i 0.330325i
\(50\) 0 0
\(51\) 43.0685 0.844480
\(52\) −9.44488 + 9.44488i −0.181632 + 0.181632i
\(53\) −66.4998 66.4998i −1.25471 1.25471i −0.953583 0.301129i \(-0.902636\pi\)
−0.301129 0.953583i \(-0.597364\pi\)
\(54\) 7.34847i 0.136083i
\(55\) 0 0
\(56\) −22.8361 −0.407787
\(57\) 19.5427 19.5427i 0.342855 0.342855i
\(58\) 18.4148 + 18.4148i 0.317496 + 0.317496i
\(59\) 87.4131i 1.48158i −0.671737 0.740789i \(-0.734452\pi\)
0.671737 0.740789i \(-0.265548\pi\)
\(60\) 0 0
\(61\) −66.7335 −1.09399 −0.546996 0.837135i \(-0.684229\pi\)
−0.546996 + 0.837135i \(0.684229\pi\)
\(62\) −40.5866 + 40.5866i −0.654622 + 0.654622i
\(63\) −17.1271 17.1271i −0.271858 0.271858i
\(64\) 8.00000i 0.125000i
\(65\) 0 0
\(66\) 49.5021 0.750031
\(67\) 71.0048 71.0048i 1.05977 1.05977i 0.0616766 0.998096i \(-0.480355\pi\)
0.998096 0.0616766i \(-0.0196448\pi\)
\(68\) −35.1653 35.1653i −0.517136 0.517136i
\(69\) 49.2348i 0.713548i
\(70\) 0 0
\(71\) 8.10797 0.114197 0.0570984 0.998369i \(-0.481815\pi\)
0.0570984 + 0.998369i \(0.481815\pi\)
\(72\) −6.00000 + 6.00000i −0.0833333 + 0.0833333i
\(73\) 40.3974 + 40.3974i 0.553389 + 0.553389i 0.927417 0.374028i \(-0.122024\pi\)
−0.374028 + 0.927417i \(0.622024\pi\)
\(74\) 41.6789i 0.563229i
\(75\) 0 0
\(76\) −31.9132 −0.419910
\(77\) 115.374 115.374i 1.49837 1.49837i
\(78\) 11.5676 + 11.5676i 0.148302 + 0.148302i
\(79\) 69.4524i 0.879144i 0.898207 + 0.439572i \(0.144870\pi\)
−0.898207 + 0.439572i \(0.855130\pi\)
\(80\) 0 0
\(81\) −9.00000 −0.111111
\(82\) 59.4029 59.4029i 0.724426 0.724426i
\(83\) 3.71032 + 3.71032i 0.0447027 + 0.0447027i 0.729105 0.684402i \(-0.239937\pi\)
−0.684402 + 0.729105i \(0.739937\pi\)
\(84\) 27.9684i 0.332957i
\(85\) 0 0
\(86\) −14.6838 −0.170741
\(87\) 22.5534 22.5534i 0.259234 0.259234i
\(88\) −40.4183 40.4183i −0.459298 0.459298i
\(89\) 32.4846i 0.364996i −0.983206 0.182498i \(-0.941582\pi\)
0.983206 0.182498i \(-0.0584183\pi\)
\(90\) 0 0
\(91\) 53.9211 0.592539
\(92\) 40.2000 40.2000i 0.436957 0.436957i
\(93\) 49.7082 + 49.7082i 0.534497 + 0.534497i
\(94\) 78.4763i 0.834855i
\(95\) 0 0
\(96\) 9.79796 0.102062
\(97\) −27.6584 + 27.6584i −0.285139 + 0.285139i −0.835154 0.550016i \(-0.814622\pi\)
0.550016 + 0.835154i \(0.314622\pi\)
\(98\) 16.1859 + 16.1859i 0.165162 + 0.165162i
\(99\) 60.6274i 0.612398i
\(100\) 0 0
\(101\) −55.2952 −0.547478 −0.273739 0.961804i \(-0.588260\pi\)
−0.273739 + 0.961804i \(0.588260\pi\)
\(102\) −43.0685 + 43.0685i −0.422240 + 0.422240i
\(103\) 67.1228 + 67.1228i 0.651678 + 0.651678i 0.953397 0.301719i \(-0.0975605\pi\)
−0.301719 + 0.953397i \(0.597561\pi\)
\(104\) 18.8898i 0.181632i
\(105\) 0 0
\(106\) 133.000 1.25471
\(107\) −88.1875 + 88.1875i −0.824182 + 0.824182i −0.986705 0.162522i \(-0.948037\pi\)
0.162522 + 0.986705i \(0.448037\pi\)
\(108\) 7.34847 + 7.34847i 0.0680414 + 0.0680414i
\(109\) 83.1645i 0.762977i −0.924374 0.381488i \(-0.875412\pi\)
0.924374 0.381488i \(-0.124588\pi\)
\(110\) 0 0
\(111\) 51.0461 0.459875
\(112\) 22.8361 22.8361i 0.203894 0.203894i
\(113\) −105.407 105.407i −0.932808 0.932808i 0.0650728 0.997881i \(-0.479272\pi\)
−0.997881 + 0.0650728i \(0.979272\pi\)
\(114\) 39.0855i 0.342855i
\(115\) 0 0
\(116\) −36.8295 −0.317496
\(117\) 14.1673 14.1673i 0.121088 0.121088i
\(118\) 87.4131 + 87.4131i 0.740789 + 0.740789i
\(119\) 200.759i 1.68705i
\(120\) 0 0
\(121\) 287.409 2.37528
\(122\) 66.7335 66.7335i 0.546996 0.546996i
\(123\) −72.7534 72.7534i −0.591491 0.591491i
\(124\) 81.1732i 0.654622i
\(125\) 0 0
\(126\) 34.2541 0.271858
\(127\) −16.2842 + 16.2842i −0.128222 + 0.128222i −0.768305 0.640083i \(-0.778900\pi\)
0.640083 + 0.768305i \(0.278900\pi\)
\(128\) −8.00000 8.00000i −0.0625000 0.0625000i
\(129\) 17.9839i 0.139410i
\(130\) 0 0
\(131\) −69.7174 −0.532194 −0.266097 0.963946i \(-0.585734\pi\)
−0.266097 + 0.963946i \(0.585734\pi\)
\(132\) −49.5021 + 49.5021i −0.375016 + 0.375016i
\(133\) 91.0965 + 91.0965i 0.684936 + 0.684936i
\(134\) 142.010i 1.05977i
\(135\) 0 0
\(136\) 70.3305 0.517136
\(137\) −86.2967 + 86.2967i −0.629903 + 0.629903i −0.948044 0.318141i \(-0.896942\pi\)
0.318141 + 0.948044i \(0.396942\pi\)
\(138\) −49.2348 49.2348i −0.356774 0.356774i
\(139\) 238.515i 1.71593i −0.513707 0.857966i \(-0.671728\pi\)
0.513707 0.857966i \(-0.328272\pi\)
\(140\) 0 0
\(141\) 96.1135 0.681656
\(142\) −8.10797 + 8.10797i −0.0570984 + 0.0570984i
\(143\) 95.4364 + 95.4364i 0.667388 + 0.667388i
\(144\) 12.0000i 0.0833333i
\(145\) 0 0
\(146\) −80.7948 −0.553389
\(147\) 19.8236 19.8236i 0.134854 0.134854i
\(148\) −41.6789 41.6789i −0.281615 0.281615i
\(149\) 287.763i 1.93130i −0.259853 0.965648i \(-0.583674\pi\)
0.259853 0.965648i \(-0.416326\pi\)
\(150\) 0 0
\(151\) 168.462 1.11564 0.557820 0.829962i \(-0.311638\pi\)
0.557820 + 0.829962i \(0.311638\pi\)
\(152\) 31.9132 31.9132i 0.209955 0.209955i
\(153\) 52.7479 + 52.7479i 0.344758 + 0.344758i
\(154\) 230.749i 1.49837i
\(155\) 0 0
\(156\) −23.1351 −0.148302
\(157\) 56.5489 56.5489i 0.360184 0.360184i −0.503697 0.863881i \(-0.668027\pi\)
0.863881 + 0.503697i \(0.168027\pi\)
\(158\) −69.4524 69.4524i −0.439572 0.439572i
\(159\) 162.890i 1.02447i
\(160\) 0 0
\(161\) −229.503 −1.42548
\(162\) 9.00000 9.00000i 0.0555556 0.0555556i
\(163\) 11.4435 + 11.4435i 0.0702055 + 0.0702055i 0.741338 0.671132i \(-0.234192\pi\)
−0.671132 + 0.741338i \(0.734192\pi\)
\(164\) 118.806i 0.724426i
\(165\) 0 0
\(166\) −7.42065 −0.0447027
\(167\) 63.2930 63.2930i 0.379000 0.379000i −0.491741 0.870741i \(-0.663639\pi\)
0.870741 + 0.491741i \(0.163639\pi\)
\(168\) −27.9684 27.9684i −0.166479 0.166479i
\(169\) 124.397i 0.736078i
\(170\) 0 0
\(171\) 47.8697 0.279940
\(172\) 14.6838 14.6838i 0.0853707 0.0853707i
\(173\) −43.9739 43.9739i −0.254185 0.254185i 0.568499 0.822684i \(-0.307524\pi\)
−0.822684 + 0.568499i \(0.807524\pi\)
\(174\) 45.1068i 0.259234i
\(175\) 0 0
\(176\) 80.8365 0.459298
\(177\) 107.059 107.059i 0.604852 0.604852i
\(178\) 32.4846 + 32.4846i 0.182498 + 0.182498i
\(179\) 248.801i 1.38995i −0.719033 0.694976i \(-0.755415\pi\)
0.719033 0.694976i \(-0.244585\pi\)
\(180\) 0 0
\(181\) −21.4944 −0.118754 −0.0593769 0.998236i \(-0.518911\pi\)
−0.0593769 + 0.998236i \(0.518911\pi\)
\(182\) −53.9211 + 53.9211i −0.296270 + 0.296270i
\(183\) −81.7315 81.7315i −0.446620 0.446620i
\(184\) 80.4001i 0.436957i
\(185\) 0 0
\(186\) −99.4164 −0.534497
\(187\) −355.330 + 355.330i −1.90016 + 1.90016i
\(188\) −78.4763 78.4763i −0.417427 0.417427i
\(189\) 41.9526i 0.221971i
\(190\) 0 0
\(191\) −342.435 −1.79285 −0.896427 0.443191i \(-0.853846\pi\)
−0.896427 + 0.443191i \(0.853846\pi\)
\(192\) −9.79796 + 9.79796i −0.0510310 + 0.0510310i
\(193\) 60.0384 + 60.0384i 0.311080 + 0.311080i 0.845328 0.534248i \(-0.179405\pi\)
−0.534248 + 0.845328i \(0.679405\pi\)
\(194\) 55.3169i 0.285139i
\(195\) 0 0
\(196\) −32.3718 −0.165162
\(197\) −25.5854 + 25.5854i −0.129875 + 0.129875i −0.769056 0.639181i \(-0.779273\pi\)
0.639181 + 0.769056i \(0.279273\pi\)
\(198\) 60.6274 + 60.6274i 0.306199 + 0.306199i
\(199\) 135.303i 0.679914i 0.940441 + 0.339957i \(0.110412\pi\)
−0.940441 + 0.339957i \(0.889588\pi\)
\(200\) 0 0
\(201\) 173.925 0.865301
\(202\) 55.2952 55.2952i 0.273739 0.273739i
\(203\) 105.130 + 105.130i 0.517883 + 0.517883i
\(204\) 86.1370i 0.422240i
\(205\) 0 0
\(206\) −134.246 −0.651678
\(207\) −60.3001 + 60.3001i −0.291305 + 0.291305i
\(208\) 18.8898 + 18.8898i 0.0908162 + 0.0908162i
\(209\) 322.469i 1.54291i
\(210\) 0 0
\(211\) −280.929 −1.33142 −0.665709 0.746211i \(-0.731871\pi\)
−0.665709 + 0.746211i \(0.731871\pi\)
\(212\) −133.000 + 133.000i −0.627356 + 0.627356i
\(213\) 9.93020 + 9.93020i 0.0466206 + 0.0466206i
\(214\) 176.375i 0.824182i
\(215\) 0 0
\(216\) −14.6969 −0.0680414
\(217\) −231.710 + 231.710i −1.06779 + 1.06779i
\(218\) 83.1645 + 83.1645i 0.381488 + 0.381488i
\(219\) 98.9531i 0.451841i
\(220\) 0 0
\(221\) −166.066 −0.751429
\(222\) −51.0461 + 51.0461i −0.229937 + 0.229937i
\(223\) −213.070 213.070i −0.955469 0.955469i 0.0435804 0.999050i \(-0.486124\pi\)
−0.999050 + 0.0435804i \(0.986124\pi\)
\(224\) 45.6722i 0.203894i
\(225\) 0 0
\(226\) 210.815 0.932808
\(227\) −199.877 + 199.877i −0.880513 + 0.880513i −0.993587 0.113073i \(-0.963931\pi\)
0.113073 + 0.993587i \(0.463931\pi\)
\(228\) −39.0855 39.0855i −0.171428 0.171428i
\(229\) 107.466i 0.469285i −0.972082 0.234643i \(-0.924608\pi\)
0.972082 0.234643i \(-0.0753920\pi\)
\(230\) 0 0
\(231\) 282.608 1.22341
\(232\) 36.8295 36.8295i 0.158748 0.158748i
\(233\) 185.314 + 185.314i 0.795338 + 0.795338i 0.982356 0.187018i \(-0.0598824\pi\)
−0.187018 + 0.982356i \(0.559882\pi\)
\(234\) 28.3346i 0.121088i
\(235\) 0 0
\(236\) −174.826 −0.740789
\(237\) −85.0615 + 85.0615i −0.358909 + 0.358909i
\(238\) −200.759 200.759i −0.843527 0.843527i
\(239\) 99.8633i 0.417838i −0.977933 0.208919i \(-0.933006\pi\)
0.977933 0.208919i \(-0.0669945\pi\)
\(240\) 0 0
\(241\) −355.694 −1.47591 −0.737955 0.674850i \(-0.764208\pi\)
−0.737955 + 0.674850i \(0.764208\pi\)
\(242\) −287.409 + 287.409i −1.18764 + 1.18764i
\(243\) −11.0227 11.0227i −0.0453609 0.0453609i
\(244\) 133.467i 0.546996i
\(245\) 0 0
\(246\) 145.507 0.591491
\(247\) −75.3540 + 75.3540i −0.305077 + 0.305077i
\(248\) 81.1732 + 81.1732i 0.327311 + 0.327311i
\(249\) 9.08840i 0.0364996i
\(250\) 0 0
\(251\) 319.526 1.27301 0.636505 0.771272i \(-0.280379\pi\)
0.636505 + 0.771272i \(0.280379\pi\)
\(252\) −34.2541 + 34.2541i −0.135929 + 0.135929i
\(253\) −406.204 406.204i −1.60555 1.60555i
\(254\) 32.5684i 0.128222i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) −32.4963 + 32.4963i −0.126445 + 0.126445i −0.767497 0.641052i \(-0.778498\pi\)
0.641052 + 0.767497i \(0.278498\pi\)
\(258\) −17.9839 17.9839i −0.0697048 0.0697048i
\(259\) 237.946i 0.918711i
\(260\) 0 0
\(261\) 55.2443 0.211664
\(262\) 69.7174 69.7174i 0.266097 0.266097i
\(263\) −55.9709 55.9709i −0.212817 0.212817i 0.592646 0.805463i \(-0.298083\pi\)
−0.805463 + 0.592646i \(0.798083\pi\)
\(264\) 99.0041i 0.375016i
\(265\) 0 0
\(266\) −182.193 −0.684936
\(267\) 39.7854 39.7854i 0.149009 0.149009i
\(268\) −142.010 142.010i −0.529886 0.529886i
\(269\) 275.469i 1.02405i 0.858971 + 0.512025i \(0.171104\pi\)
−0.858971 + 0.512025i \(0.828896\pi\)
\(270\) 0 0
\(271\) 265.170 0.978487 0.489243 0.872147i \(-0.337273\pi\)
0.489243 + 0.872147i \(0.337273\pi\)
\(272\) −70.3305 + 70.3305i −0.258568 + 0.258568i
\(273\) 66.0395 + 66.0395i 0.241903 + 0.241903i
\(274\) 172.593i 0.629903i
\(275\) 0 0
\(276\) 98.4696 0.356774
\(277\) −78.3029 + 78.3029i −0.282682 + 0.282682i −0.834178 0.551496i \(-0.814057\pi\)
0.551496 + 0.834178i \(0.314057\pi\)
\(278\) 238.515 + 238.515i 0.857966 + 0.857966i
\(279\) 121.760i 0.436415i
\(280\) 0 0
\(281\) −280.509 −0.998253 −0.499127 0.866529i \(-0.666346\pi\)
−0.499127 + 0.866529i \(0.666346\pi\)
\(282\) −96.1135 + 96.1135i −0.340828 + 0.340828i
\(283\) 268.891 + 268.891i 0.950144 + 0.950144i 0.998815 0.0486709i \(-0.0154985\pi\)
−0.0486709 + 0.998815i \(0.515499\pi\)
\(284\) 16.2159i 0.0570984i
\(285\) 0 0
\(286\) −190.873 −0.667388
\(287\) 339.133 339.133i 1.18165 1.18165i
\(288\) 12.0000 + 12.0000i 0.0416667 + 0.0416667i
\(289\) 329.298i 1.13944i
\(290\) 0 0
\(291\) −67.7491 −0.232815
\(292\) 80.7948 80.7948i 0.276695 0.276695i
\(293\) 79.4739 + 79.4739i 0.271242 + 0.271242i 0.829600 0.558358i \(-0.188568\pi\)
−0.558358 + 0.829600i \(0.688568\pi\)
\(294\) 39.6472i 0.134854i
\(295\) 0 0
\(296\) 83.3579 0.281615
\(297\) 74.2531 74.2531i 0.250010 0.250010i
\(298\) 287.763 + 287.763i 0.965648 + 0.965648i
\(299\) 189.842i 0.634924i
\(300\) 0 0
\(301\) −83.8299 −0.278505
\(302\) −168.462 + 168.462i −0.557820 + 0.557820i
\(303\) −67.7226 67.7226i −0.223507 0.223507i
\(304\) 63.8263i 0.209955i
\(305\) 0 0
\(306\) −105.496 −0.344758
\(307\) −305.867 + 305.867i −0.996310 + 0.996310i −0.999993 0.00368298i \(-0.998828\pi\)
0.00368298 + 0.999993i \(0.498828\pi\)
\(308\) −230.749 230.749i −0.749184 0.749184i
\(309\) 164.417i 0.532092i
\(310\) 0 0
\(311\) −111.946 −0.359956 −0.179978 0.983671i \(-0.557603\pi\)
−0.179978 + 0.983671i \(0.557603\pi\)
\(312\) 23.1351 23.1351i 0.0741511 0.0741511i
\(313\) 155.048 + 155.048i 0.495361 + 0.495361i 0.909990 0.414629i \(-0.136089\pi\)
−0.414629 + 0.909990i \(0.636089\pi\)
\(314\) 113.098i 0.360184i
\(315\) 0 0
\(316\) 138.905 0.439572
\(317\) 224.330 224.330i 0.707665 0.707665i −0.258378 0.966044i \(-0.583188\pi\)
0.966044 + 0.258378i \(0.0831881\pi\)
\(318\) 162.890 + 162.890i 0.512234 + 0.512234i
\(319\) 372.146i 1.16660i
\(320\) 0 0
\(321\) −216.014 −0.672942
\(322\) 229.503 229.503i 0.712742 0.712742i
\(323\) −280.559 280.559i −0.868603 0.868603i
\(324\) 18.0000i 0.0555556i
\(325\) 0 0
\(326\) −22.8870 −0.0702055
\(327\) 101.855 101.855i 0.311484 0.311484i
\(328\) −118.806 118.806i −0.362213 0.362213i
\(329\) 448.023i 1.36177i
\(330\) 0 0
\(331\) 314.778 0.950992 0.475496 0.879718i \(-0.342269\pi\)
0.475496 + 0.879718i \(0.342269\pi\)
\(332\) 7.42065 7.42065i 0.0223513 0.0223513i
\(333\) 62.5184 + 62.5184i 0.187743 + 0.187743i
\(334\) 126.586i 0.379000i
\(335\) 0 0
\(336\) 55.9368 0.166479
\(337\) 27.8091 27.8091i 0.0825197 0.0825197i −0.664642 0.747162i \(-0.731416\pi\)
0.747162 + 0.664642i \(0.231416\pi\)
\(338\) 124.397 + 124.397i 0.368039 + 0.368039i
\(339\) 258.194i 0.761634i
\(340\) 0 0
\(341\) −820.220 −2.40534
\(342\) −47.8697 + 47.8697i −0.139970 + 0.139970i
\(343\) −187.336 187.336i −0.546170 0.546170i
\(344\) 29.3675i 0.0853707i
\(345\) 0 0
\(346\) 87.9479 0.254185
\(347\) −83.0635 + 83.0635i −0.239376 + 0.239376i −0.816592 0.577216i \(-0.804139\pi\)
0.577216 + 0.816592i \(0.304139\pi\)
\(348\) −45.1068 45.1068i −0.129617 0.129617i
\(349\) 170.578i 0.488763i −0.969679 0.244382i \(-0.921415\pi\)
0.969679 0.244382i \(-0.0785850\pi\)
\(350\) 0 0
\(351\) 34.7027 0.0988681
\(352\) −80.8365 + 80.8365i −0.229649 + 0.229649i
\(353\) 6.69721 + 6.69721i 0.0189723 + 0.0189723i 0.716529 0.697557i \(-0.245730\pi\)
−0.697557 + 0.716529i \(0.745730\pi\)
\(354\) 214.118i 0.604852i
\(355\) 0 0
\(356\) −64.9693 −0.182498
\(357\) −245.879 + 245.879i −0.688737 + 0.688737i
\(358\) 248.801 + 248.801i 0.694976 + 0.694976i
\(359\) 297.590i 0.828940i −0.910063 0.414470i \(-0.863967\pi\)
0.910063 0.414470i \(-0.136033\pi\)
\(360\) 0 0
\(361\) 106.387 0.294702
\(362\) 21.4944 21.4944i 0.0593769 0.0593769i
\(363\) 352.003 + 352.003i 0.969704 + 0.969704i
\(364\) 107.842i 0.296270i
\(365\) 0 0
\(366\) 163.463 0.446620
\(367\) −243.376 + 243.376i −0.663151 + 0.663151i −0.956121 0.292971i \(-0.905356\pi\)
0.292971 + 0.956121i \(0.405356\pi\)
\(368\) −80.4001 80.4001i −0.218478 0.218478i
\(369\) 178.209i 0.482951i
\(370\) 0 0
\(371\) 759.297 2.04662
\(372\) 99.4164 99.4164i 0.267248 0.267248i
\(373\) 31.8670 + 31.8670i 0.0854342 + 0.0854342i 0.748532 0.663098i \(-0.230759\pi\)
−0.663098 + 0.748532i \(0.730759\pi\)
\(374\) 710.660i 1.90016i
\(375\) 0 0
\(376\) 156.953 0.417427
\(377\) −86.9626 + 86.9626i −0.230670 + 0.230670i
\(378\) 41.9526 + 41.9526i 0.110986 + 0.110986i
\(379\) 329.670i 0.869843i 0.900468 + 0.434921i \(0.143224\pi\)
−0.900468 + 0.434921i \(0.856776\pi\)
\(380\) 0 0
\(381\) −39.8880 −0.104693
\(382\) 342.435 342.435i 0.896427 0.896427i
\(383\) −377.941 377.941i −0.986792 0.986792i 0.0131216 0.999914i \(-0.495823\pi\)
−0.999914 + 0.0131216i \(0.995823\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) 0 0
\(386\) −120.077 −0.311080
\(387\) −22.0256 + 22.0256i −0.0569138 + 0.0569138i
\(388\) 55.3169 + 55.3169i 0.142569 + 0.142569i
\(389\) 438.570i 1.12743i −0.825969 0.563715i \(-0.809372\pi\)
0.825969 0.563715i \(-0.190628\pi\)
\(390\) 0 0
\(391\) 706.823 1.80773
\(392\) 32.3718 32.3718i 0.0825812 0.0825812i
\(393\) −85.3860 85.3860i −0.217267 0.217267i
\(394\) 51.1709i 0.129875i
\(395\) 0 0
\(396\) −121.255 −0.306199
\(397\) −331.079 + 331.079i −0.833952 + 0.833952i −0.988055 0.154103i \(-0.950751\pi\)
0.154103 + 0.988055i \(0.450751\pi\)
\(398\) −135.303 135.303i −0.339957 0.339957i
\(399\) 223.140i 0.559248i
\(400\) 0 0
\(401\) −441.641 −1.10135 −0.550674 0.834720i \(-0.685629\pi\)
−0.550674 + 0.834720i \(0.685629\pi\)
\(402\) −173.925 + 173.925i −0.432650 + 0.432650i
\(403\) −191.668 191.668i −0.475602 0.475602i
\(404\) 110.590i 0.273739i
\(405\) 0 0
\(406\) −210.261 −0.517883
\(407\) −421.148 + 421.148i −1.03476 + 1.03476i
\(408\) 86.1370 + 86.1370i 0.211120 + 0.211120i
\(409\) 240.811i 0.588779i 0.955686 + 0.294390i \(0.0951163\pi\)
−0.955686 + 0.294390i \(0.904884\pi\)
\(410\) 0 0
\(411\) −211.383 −0.514314
\(412\) 134.246 134.246i 0.325839 0.325839i
\(413\) 499.044 + 499.044i 1.20834 + 1.20834i
\(414\) 120.600i 0.291305i
\(415\) 0 0
\(416\) −37.7795 −0.0908162
\(417\) 292.119 292.119i 0.700526 0.700526i
\(418\) −322.469 322.469i −0.771456 0.771456i
\(419\) 641.021i 1.52988i 0.644100 + 0.764942i \(0.277232\pi\)
−0.644100 + 0.764942i \(0.722768\pi\)
\(420\) 0 0
\(421\) −493.748 −1.17280 −0.586399 0.810023i \(-0.699455\pi\)
−0.586399 + 0.810023i \(0.699455\pi\)
\(422\) 280.929 280.929i 0.665709 0.665709i
\(423\) 117.714 + 117.714i 0.278285 + 0.278285i
\(424\) 265.999i 0.627356i
\(425\) 0 0
\(426\) −19.8604 −0.0466206
\(427\) 380.983 380.983i 0.892232 0.892232i
\(428\) 176.375 + 176.375i 0.412091 + 0.412091i
\(429\) 233.771i 0.544920i
\(430\) 0 0
\(431\) 117.686 0.273054 0.136527 0.990636i \(-0.456406\pi\)
0.136527 + 0.990636i \(0.456406\pi\)
\(432\) 14.6969 14.6969i 0.0340207 0.0340207i
\(433\) −362.842 362.842i −0.837973 0.837973i 0.150619 0.988592i \(-0.451873\pi\)
−0.988592 + 0.150619i \(0.951873\pi\)
\(434\) 463.420i 1.06779i
\(435\) 0 0
\(436\) −166.329 −0.381488
\(437\) 320.728 320.728i 0.733931 0.733931i
\(438\) −98.9531 98.9531i −0.225920 0.225920i
\(439\) 303.617i 0.691610i 0.938306 + 0.345805i \(0.112394\pi\)
−0.938306 + 0.345805i \(0.887606\pi\)
\(440\) 0 0
\(441\) 48.5577 0.110108
\(442\) 166.066 166.066i 0.375715 0.375715i
\(443\) 276.171 + 276.171i 0.623411 + 0.623411i 0.946402 0.322991i \(-0.104688\pi\)
−0.322991 + 0.946402i \(0.604688\pi\)
\(444\) 102.092i 0.229937i
\(445\) 0 0
\(446\) 426.139 0.955469
\(447\) 352.436 352.436i 0.788448 0.788448i
\(448\) −45.6722 45.6722i −0.101947 0.101947i
\(449\) 314.925i 0.701391i −0.936490 0.350696i \(-0.885945\pi\)
0.936490 0.350696i \(-0.114055\pi\)
\(450\) 0 0
\(451\) 1200.48 2.66182
\(452\) −210.815 + 210.815i −0.466404 + 0.466404i
\(453\) 206.322 + 206.322i 0.455458 + 0.455458i
\(454\) 399.753i 0.880513i
\(455\) 0 0
\(456\) 78.1710 0.171428
\(457\) 563.709 563.709i 1.23350 1.23350i 0.270887 0.962611i \(-0.412683\pi\)
0.962611 0.270887i \(-0.0873169\pi\)
\(458\) 107.466 + 107.466i 0.234643 + 0.234643i
\(459\) 129.205i 0.281493i
\(460\) 0 0
\(461\) 660.573 1.43291 0.716457 0.697632i \(-0.245763\pi\)
0.716457 + 0.697632i \(0.245763\pi\)
\(462\) −282.608 + 282.608i −0.611707 + 0.611707i
\(463\) −114.255 114.255i −0.246772 0.246772i 0.572873 0.819644i \(-0.305829\pi\)
−0.819644 + 0.572873i \(0.805829\pi\)
\(464\) 73.6590i 0.158748i
\(465\) 0 0
\(466\) −370.628 −0.795338
\(467\) 497.886 497.886i 1.06614 1.06614i 0.0684851 0.997652i \(-0.478183\pi\)
0.997652 0.0684851i \(-0.0218166\pi\)
\(468\) −28.3346 28.3346i −0.0605441 0.0605441i
\(469\) 810.736i 1.72865i
\(470\) 0 0
\(471\) 138.516 0.294089
\(472\) 174.826 174.826i 0.370395 0.370395i
\(473\) −148.373 148.373i −0.313685 0.313685i
\(474\) 170.123i 0.358909i
\(475\) 0 0
\(476\) 401.519 0.843527
\(477\) 199.499 199.499i 0.418237 0.418237i
\(478\) 99.8633 + 99.8633i 0.208919 + 0.208919i
\(479\) 416.013i 0.868503i −0.900792 0.434252i \(-0.857013\pi\)
0.900792 0.434252i \(-0.142987\pi\)
\(480\) 0 0
\(481\) −196.826 −0.409202
\(482\) 355.694 355.694i 0.737955 0.737955i
\(483\) −281.083 281.083i −0.581952 0.581952i
\(484\) 574.818i 1.18764i
\(485\) 0 0
\(486\) 22.0454 0.0453609
\(487\) 517.473 517.473i 1.06257 1.06257i 0.0646652 0.997907i \(-0.479402\pi\)
0.997907 0.0646652i \(-0.0205980\pi\)
\(488\) −133.467 133.467i −0.273498 0.273498i
\(489\) 28.0307i 0.0573226i
\(490\) 0 0
\(491\) 483.386 0.984492 0.492246 0.870456i \(-0.336176\pi\)
0.492246 + 0.870456i \(0.336176\pi\)
\(492\) −145.507 + 145.507i −0.295746 + 0.295746i
\(493\) −323.780 323.780i −0.656755 0.656755i
\(494\) 150.708i 0.305077i
\(495\) 0 0
\(496\) −162.346 −0.327311
\(497\) −46.2886 + 46.2886i −0.0931360 + 0.0931360i
\(498\) −9.08840 9.08840i −0.0182498 0.0182498i
\(499\) 869.520i 1.74252i −0.490818 0.871262i \(-0.663302\pi\)
0.490818 0.871262i \(-0.336698\pi\)
\(500\) 0 0
\(501\) 155.036 0.309452
\(502\) −319.526 + 319.526i −0.636505 + 0.636505i
\(503\) −378.561 378.561i −0.752607 0.752607i 0.222358 0.974965i \(-0.428625\pi\)
−0.974965 + 0.222358i \(0.928625\pi\)
\(504\) 68.5083i 0.135929i
\(505\) 0 0
\(506\) 812.408 1.60555
\(507\) 152.355 152.355i 0.300502 0.300502i
\(508\) 32.5684 + 32.5684i 0.0641111 + 0.0641111i
\(509\) 764.251i 1.50147i 0.660601 + 0.750737i \(0.270302\pi\)
−0.660601 + 0.750737i \(0.729698\pi\)
\(510\) 0 0
\(511\) −461.260 −0.902661
\(512\) −16.0000 + 16.0000i −0.0312500 + 0.0312500i
\(513\) 58.6282 + 58.6282i 0.114285 + 0.114285i
\(514\) 64.9927i 0.126445i
\(515\) 0 0
\(516\) 35.9677 0.0697048
\(517\) −792.969 + 792.969i −1.53379 + 1.53379i
\(518\) −237.946 237.946i −0.459355 0.459355i
\(519\) 107.714i 0.207541i
\(520\) 0 0
\(521\) 535.527 1.02788 0.513941 0.857825i \(-0.328185\pi\)
0.513941 + 0.857825i \(0.328185\pi\)
\(522\) −55.2443 + 55.2443i −0.105832 + 0.105832i
\(523\) 355.245 + 355.245i 0.679244 + 0.679244i 0.959829 0.280585i \(-0.0905285\pi\)
−0.280585 + 0.959829i \(0.590528\pi\)
\(524\) 139.435i 0.266097i
\(525\) 0 0
\(526\) 111.942 0.212817
\(527\) 713.619 713.619i 1.35412 1.35412i
\(528\) 99.0041 + 99.0041i 0.187508 + 0.187508i
\(529\) 279.022i 0.527451i
\(530\) 0 0
\(531\) 262.239 0.493860
\(532\) 182.193 182.193i 0.342468 0.342468i
\(533\) 280.527 + 280.527i 0.526317 + 0.526317i
\(534\) 79.5708i 0.149009i
\(535\) 0 0
\(536\) 284.019 0.529886
\(537\) 304.718 304.718i 0.567446 0.567446i
\(538\) −275.469 275.469i −0.512025 0.512025i
\(539\) 327.103i 0.606870i
\(540\) 0 0
\(541\) −1051.65 −1.94390 −0.971952 0.235178i \(-0.924433\pi\)
−0.971952 + 0.235178i \(0.924433\pi\)
\(542\) −265.170 + 265.170i −0.489243 + 0.489243i
\(543\) −26.3252 26.3252i −0.0484810 0.0484810i
\(544\) 140.661i 0.258568i
\(545\) 0 0
\(546\) −132.079 −0.241903
\(547\) −547.786 + 547.786i −1.00144 + 1.00144i −0.00143807 + 0.999999i \(0.500458\pi\)
−0.999999 + 0.00143807i \(0.999542\pi\)
\(548\) 172.593 + 172.593i 0.314951 + 0.314951i
\(549\) 200.201i 0.364664i
\(550\) 0 0
\(551\) −293.837 −0.533279
\(552\) −98.4696 + 98.4696i −0.178387 + 0.178387i
\(553\) −396.505 396.505i −0.717008 0.717008i
\(554\) 156.606i 0.282682i
\(555\) 0 0
\(556\) −477.029 −0.857966
\(557\) 93.3418 93.3418i 0.167580 0.167580i −0.618335 0.785915i \(-0.712192\pi\)
0.785915 + 0.618335i \(0.212192\pi\)
\(558\) −121.760 121.760i −0.218207 0.218207i
\(559\) 69.3432i 0.124049i
\(560\) 0 0
\(561\) −870.377 −1.55147
\(562\) 280.509 280.509i 0.499127 0.499127i
\(563\) 427.735 + 427.735i 0.759742 + 0.759742i 0.976275 0.216533i \(-0.0694749\pi\)
−0.216533 + 0.976275i \(0.569475\pi\)
\(564\) 192.227i 0.340828i
\(565\) 0 0
\(566\) −537.782 −0.950144
\(567\) 51.3812 51.3812i 0.0906194 0.0906194i
\(568\) 16.2159 + 16.2159i 0.0285492 + 0.0285492i
\(569\) 445.486i 0.782928i 0.920193 + 0.391464i \(0.128031\pi\)
−0.920193 + 0.391464i \(0.871969\pi\)
\(570\) 0 0
\(571\) −820.418 −1.43681 −0.718404 0.695626i \(-0.755127\pi\)
−0.718404 + 0.695626i \(0.755127\pi\)
\(572\) 190.873 190.873i 0.333694 0.333694i
\(573\) −419.396 419.396i −0.731930 0.731930i
\(574\) 678.266i 1.18165i
\(575\) 0 0
\(576\) −24.0000 −0.0416667
\(577\) 601.773 601.773i 1.04293 1.04293i 0.0438982 0.999036i \(-0.486022\pi\)
0.999036 0.0438982i \(-0.0139777\pi\)
\(578\) 329.298 + 329.298i 0.569720 + 0.569720i
\(579\) 147.063i 0.253995i
\(580\) 0 0
\(581\) −42.3646 −0.0729168
\(582\) 67.7491 67.7491i 0.116407 0.116407i
\(583\) 1343.90 + 1343.90i 2.30515 + 2.30515i
\(584\) 161.590i 0.276695i
\(585\) 0 0
\(586\) −158.948 −0.271242
\(587\) 225.822 225.822i 0.384705 0.384705i −0.488089 0.872794i \(-0.662306\pi\)
0.872794 + 0.488089i \(0.162306\pi\)
\(588\) −39.6472 39.6472i −0.0674272 0.0674272i
\(589\) 647.623i 1.09953i
\(590\) 0 0
\(591\) −62.6713 −0.106043
\(592\) −83.3579 + 83.3579i −0.140807 + 0.140807i
\(593\) −203.495 203.495i −0.343162 0.343162i 0.514393 0.857555i \(-0.328017\pi\)
−0.857555 + 0.514393i \(0.828017\pi\)
\(594\) 148.506i 0.250010i
\(595\) 0 0
\(596\) −575.526 −0.965648
\(597\) −165.711 + 165.711i −0.277574 + 0.277574i
\(598\) 189.842 + 189.842i 0.317462 + 0.317462i
\(599\) 541.417i 0.903869i 0.892051 + 0.451934i \(0.149266\pi\)
−0.892051 + 0.451934i \(0.850734\pi\)
\(600\) 0 0
\(601\) 296.683 0.493650 0.246825 0.969060i \(-0.420613\pi\)
0.246825 + 0.969060i \(0.420613\pi\)
\(602\) 83.8299 83.8299i 0.139252 0.139252i
\(603\) 213.014 + 213.014i 0.353258 + 0.353258i
\(604\) 336.923i 0.557820i
\(605\) 0 0
\(606\) 135.445 0.223507
\(607\) 534.614 534.614i 0.880748 0.880748i −0.112863 0.993611i \(-0.536002\pi\)
0.993611 + 0.112863i \(0.0360021\pi\)
\(608\) −63.8263 63.8263i −0.104978 0.104978i
\(609\) 257.516i 0.422850i
\(610\) 0 0
\(611\) −370.600 −0.606546
\(612\) 105.496 105.496i 0.172379 0.172379i
\(613\) −0.733205 0.733205i −0.00119609 0.00119609i 0.706508 0.707705i \(-0.250269\pi\)
−0.707705 + 0.706508i \(0.750269\pi\)
\(614\) 611.734i 0.996310i
\(615\) 0 0
\(616\) 461.498 0.749184
\(617\) 95.5753 95.5753i 0.154903 0.154903i −0.625401 0.780304i \(-0.715064\pi\)
0.780304 + 0.625401i \(0.215064\pi\)
\(618\) −164.417 164.417i −0.266046 0.266046i
\(619\) 99.8888i 0.161371i −0.996740 0.0806856i \(-0.974289\pi\)
0.996740 0.0806856i \(-0.0257110\pi\)
\(620\) 0 0
\(621\) −147.704 −0.237849
\(622\) 111.946 111.946i 0.179978 0.179978i
\(623\) 185.456 + 185.456i 0.297681 + 0.297681i
\(624\) 46.2703i 0.0741511i
\(625\) 0 0
\(626\) −310.096 −0.495361
\(627\) −394.942 + 394.942i −0.629891 + 0.629891i
\(628\) −113.098 113.098i −0.180092 0.180092i
\(629\) 732.826i 1.16506i
\(630\) 0 0
\(631\) 235.641 0.373441 0.186720 0.982413i \(-0.440214\pi\)
0.186720 + 0.982413i \(0.440214\pi\)
\(632\) −138.905 + 138.905i −0.219786 + 0.219786i
\(633\) −344.067 344.067i −0.543549 0.543549i
\(634\) 448.660i 0.707665i
\(635\) 0 0
\(636\) −325.781 −0.512234
\(637\) −76.4370 + 76.4370i −0.119995 + 0.119995i
\(638\) −372.146 372.146i −0.583301 0.583301i
\(639\) 24.3239i 0.0380656i
\(640\) 0 0
\(641\) 354.178 0.552540 0.276270 0.961080i \(-0.410902\pi\)
0.276270 + 0.961080i \(0.410902\pi\)
\(642\) 216.014 216.014i 0.336471 0.336471i
\(643\) 703.400 + 703.400i 1.09393 + 1.09393i 0.995104 + 0.0988302i \(0.0315101\pi\)
0.0988302 + 0.995104i \(0.468490\pi\)
\(644\) 459.006i 0.712742i
\(645\) 0 0
\(646\) 561.118 0.868603
\(647\) −187.002 + 187.002i −0.289030 + 0.289030i −0.836696 0.547667i \(-0.815516\pi\)
0.547667 + 0.836696i \(0.315516\pi\)
\(648\) −18.0000 18.0000i −0.0277778 0.0277778i
\(649\) 1766.54i 2.72195i
\(650\) 0 0
\(651\) −567.571 −0.871844
\(652\) 22.8870 22.8870i 0.0351028 0.0351028i
\(653\) 329.263 + 329.263i 0.504231 + 0.504231i 0.912750 0.408519i \(-0.133955\pi\)
−0.408519 + 0.912750i \(0.633955\pi\)
\(654\) 203.711i 0.311484i
\(655\) 0 0
\(656\) 237.612 0.362213
\(657\) −121.192 + 121.192i −0.184463 + 0.184463i
\(658\) −448.023 448.023i −0.680886 0.680886i
\(659\) 708.388i 1.07494i 0.843282 + 0.537472i \(0.180620\pi\)
−0.843282 + 0.537472i \(0.819380\pi\)
\(660\) 0 0
\(661\) −462.496 −0.699691 −0.349845 0.936807i \(-0.613766\pi\)
−0.349845 + 0.936807i \(0.613766\pi\)
\(662\) −314.778 + 314.778i −0.475496 + 0.475496i
\(663\) −203.388 203.388i −0.306770 0.306770i
\(664\) 14.8413i 0.0223513i
\(665\) 0 0
\(666\) −125.037 −0.187743
\(667\) 370.137 370.137i 0.554928 0.554928i
\(668\) −126.586 126.586i −0.189500 0.189500i
\(669\) 521.912i 0.780138i
\(670\) 0 0
\(671\) 1348.63 2.00988
\(672\) −55.9368 + 55.9368i −0.0832393 + 0.0832393i
\(673\) −409.524 409.524i −0.608505 0.608505i 0.334050 0.942555i \(-0.391584\pi\)
−0.942555 + 0.334050i \(0.891584\pi\)
\(674\) 55.6183i 0.0825197i
\(675\) 0 0
\(676\) −248.794 −0.368039
\(677\) 360.165 360.165i 0.532001 0.532001i −0.389166 0.921167i \(-0.627237\pi\)
0.921167 + 0.389166i \(0.127237\pi\)
\(678\) 258.194 + 258.194i 0.380817 + 0.380817i
\(679\) 315.805i 0.465104i
\(680\) 0 0
\(681\) −489.595 −0.718936
\(682\) 820.220 820.220i 1.20267 1.20267i
\(683\) −533.712 533.712i −0.781423 0.781423i 0.198648 0.980071i \(-0.436345\pi\)
−0.980071 + 0.198648i \(0.936345\pi\)
\(684\) 95.7395i 0.139970i
\(685\) 0 0
\(686\) 374.673 0.546170
\(687\) 131.619 131.619i 0.191585 0.191585i
\(688\) −29.3675 29.3675i −0.0426853 0.0426853i
\(689\) 628.082i 0.911585i
\(690\) 0 0
\(691\) −258.392 −0.373940 −0.186970 0.982366i \(-0.559867\pi\)
−0.186970 + 0.982366i \(0.559867\pi\)
\(692\) −87.9479 + 87.9479i −0.127092 + 0.127092i
\(693\) 346.123 + 346.123i 0.499456 + 0.499456i
\(694\) 166.127i 0.239376i
\(695\) 0 0
\(696\) 90.2135 0.129617
\(697\) −1044.46 + 1044.46i −1.49851 + 1.49851i
\(698\) 170.578 + 170.578i 0.244382 + 0.244382i
\(699\) 453.924i 0.649391i
\(700\) 0 0
\(701\) 1067.20 1.52239 0.761195 0.648523i \(-0.224613\pi\)
0.761195 + 0.648523i \(0.224613\pi\)
\(702\) −34.7027 + 34.7027i −0.0494341 + 0.0494341i
\(703\) −332.527 332.527i −0.473011 0.473011i
\(704\) 161.673i 0.229649i
\(705\) 0 0
\(706\) −13.3944 −0.0189723
\(707\) 315.682 315.682i 0.446509 0.446509i
\(708\) −214.118 214.118i −0.302426 0.302426i
\(709\) 1234.17i 1.74072i −0.492418 0.870359i \(-0.663887\pi\)
0.492418 0.870359i \(-0.336113\pi\)
\(710\) 0 0
\(711\) −208.357 −0.293048
\(712\) 64.9693 64.9693i 0.0912490 0.0912490i
\(713\) 815.791 + 815.791i 1.14417 + 1.14417i
\(714\) 491.758i 0.688737i
\(715\) 0 0
\(716\) −497.603 −0.694976
\(717\) 122.307 122.307i 0.170582 0.170582i
\(718\) 297.590 + 297.590i 0.414470 + 0.414470i
\(719\) 196.739i 0.273629i −0.990597 0.136814i \(-0.956314\pi\)
0.990597 0.136814i \(-0.0436864\pi\)
\(720\) 0 0
\(721\) −766.411 −1.06298
\(722\) −106.387 + 106.387i −0.147351 + 0.147351i
\(723\) −435.635 435.635i −0.602538 0.602538i
\(724\) 42.9888i 0.0593769i
\(725\) 0 0
\(726\) −704.005 −0.969704
\(727\) −383.339 + 383.339i −0.527288 + 0.527288i −0.919763 0.392474i \(-0.871619\pi\)
0.392474 + 0.919763i \(0.371619\pi\)
\(728\) 107.842 + 107.842i 0.148135 + 0.148135i
\(729\) 27.0000i 0.0370370i
\(730\) 0 0
\(731\) 258.179 0.353186
\(732\) −163.463 + 163.463i −0.223310 + 0.223310i
\(733\) −647.864 647.864i −0.883852 0.883852i 0.110071 0.993924i \(-0.464892\pi\)
−0.993924 + 0.110071i \(0.964892\pi\)
\(734\) 486.753i 0.663151i
\(735\) 0 0
\(736\) 160.800 0.218478
\(737\) −1434.94 + 1434.94i −1.94701 + 1.94701i
\(738\) 178.209 + 178.209i 0.241475 + 0.241475i
\(739\) 1205.22i 1.63088i 0.578839 + 0.815442i \(0.303506\pi\)
−0.578839 + 0.815442i \(0.696494\pi\)
\(740\) 0 0
\(741\) −184.579 −0.249094
\(742\) −759.297 + 759.297i −1.02331 + 1.02331i
\(743\) −513.926 513.926i −0.691691 0.691691i 0.270913 0.962604i \(-0.412674\pi\)
−0.962604 + 0.270913i \(0.912674\pi\)
\(744\) 198.833i 0.267248i
\(745\) 0 0
\(746\) −63.7339 −0.0854342
\(747\) −11.1310 + 11.1310i −0.0149009 + 0.0149009i
\(748\) 710.660 + 710.660i 0.950080 + 0.950080i
\(749\) 1006.93i 1.34436i
\(750\) 0 0
\(751\) −391.376 −0.521140 −0.260570 0.965455i \(-0.583910\pi\)
−0.260570 + 0.965455i \(0.583910\pi\)
\(752\) −156.953 + 156.953i −0.208714 + 0.208714i
\(753\) 391.337 + 391.337i 0.519704 + 0.519704i
\(754\) 173.925i 0.230670i
\(755\) 0 0
\(756\) −83.9052 −0.110986
\(757\) −543.625 + 543.625i −0.718131 + 0.718131i −0.968222 0.250091i \(-0.919539\pi\)
0.250091 + 0.968222i \(0.419539\pi\)
\(758\) −329.670 329.670i −0.434921 0.434921i
\(759\) 994.992i 1.31093i
\(760\) 0 0
\(761\) −413.173 −0.542934 −0.271467 0.962448i \(-0.587509\pi\)
−0.271467 + 0.962448i \(0.587509\pi\)
\(762\) 39.8880 39.8880i 0.0523465 0.0523465i
\(763\) 474.788 + 474.788i 0.622265 + 0.622265i
\(764\) 684.870i 0.896427i
\(765\) 0 0
\(766\) 755.883 0.986792
\(767\) −412.803 + 412.803i −0.538205 + 0.538205i
\(768\) 19.5959 + 19.5959i 0.0255155 + 0.0255155i
\(769\) 54.1412i 0.0704047i −0.999380 0.0352024i \(-0.988792\pi\)
0.999380 0.0352024i \(-0.0112076\pi\)
\(770\) 0 0
\(771\) −79.5994 −0.103242
\(772\) 120.077 120.077i 0.155540 0.155540i
\(773\) −579.780 579.780i −0.750038 0.750038i 0.224448 0.974486i \(-0.427942\pi\)
−0.974486 + 0.224448i \(0.927942\pi\)
\(774\) 44.0513i 0.0569138i
\(775\) 0 0
\(776\) −110.634 −0.142569
\(777\) −291.423 + 291.423i −0.375062 + 0.375062i
\(778\) 438.570 + 438.570i 0.563715 + 0.563715i
\(779\) 947.868i 1.21678i
\(780\) 0 0
\(781\) −163.855 −0.209802
\(782\) −706.823 + 706.823i −0.903865 + 0.903865i
\(783\) 67.6602 + 67.6602i 0.0864114 + 0.0864114i
\(784\) 64.7436i 0.0825812i
\(785\) 0 0
\(786\) 170.772 0.217267
\(787\) 8.08450 8.08450i 0.0102725 0.0102725i −0.701952 0.712224i \(-0.747688\pi\)
0.712224 + 0.701952i \(0.247688\pi\)
\(788\) 51.1709 + 51.1709i 0.0649377 + 0.0649377i
\(789\) 137.100i 0.173765i
\(790\) 0 0
\(791\) 1203.55 1.52155
\(792\) 121.255 121.255i 0.153099 0.153099i
\(793\) 315.145 + 315.145i 0.397409 + 0.397409i
\(794\) 662.158i 0.833952i
\(795\) 0 0
\(796\) 270.606 0.339957
\(797\) 892.181 892.181i 1.11942 1.11942i 0.127598 0.991826i \(-0.459273\pi\)
0.991826 0.127598i \(-0.0407266\pi\)
\(798\) −223.140 223.140i −0.279624 0.279624i
\(799\) 1379.82i 1.72693i
\(800\) 0 0
\(801\) 97.4539 0.121665
\(802\) 441.641 441.641i 0.550674 0.550674i
\(803\) −816.397 816.397i −1.01668 1.01668i
\(804\) 347.851i 0.432650i
\(805\) 0 0
\(806\) 383.335 0.475602
\(807\) −337.380 + 337.380i −0.418066 + 0.418066i
\(808\) −110.590 110.590i −0.136869 0.136869i
\(809\) 239.445i 0.295977i −0.988989 0.147988i \(-0.952720\pi\)
0.988989 0.147988i \(-0.0472798\pi\)
\(810\) 0 0
\(811\) 309.741 0.381925 0.190963 0.981597i \(-0.438839\pi\)
0.190963 + 0.981597i \(0.438839\pi\)
\(812\) 210.261 210.261i 0.258942 0.258942i
\(813\) 324.765 + 324.765i 0.399465 + 0.399465i
\(814\) 842.295i 1.03476i
\(815\) 0 0
\(816\) −172.274 −0.211120
\(817\) 117.151 117.151i 0.143392 0.143392i
\(818\) −240.811 240.811i −0.294390 0.294390i
\(819\) 161.763i 0.197513i
\(820\) 0 0
\(821\) −745.573 −0.908127 −0.454064 0.890969i \(-0.650026\pi\)
−0.454064 + 0.890969i \(0.650026\pi\)
\(822\) 211.383 211.383i 0.257157 0.257157i
\(823\) 898.365 + 898.365i 1.09157 + 1.09157i 0.995361 + 0.0962126i \(0.0306729\pi\)
0.0962126 + 0.995361i \(0.469327\pi\)
\(824\) 268.491i 0.325839i
\(825\) 0 0
\(826\) −998.087 −1.20834
\(827\) −475.096 + 475.096i −0.574481 + 0.574481i −0.933378 0.358896i \(-0.883153\pi\)
0.358896 + 0.933378i \(0.383153\pi\)
\(828\) 120.600 + 120.600i 0.145652 + 0.145652i
\(829\) 818.385i 0.987196i 0.869690 + 0.493598i \(0.164319\pi\)
−0.869690 + 0.493598i \(0.835681\pi\)
\(830\) 0 0
\(831\) −191.802 −0.230809
\(832\) 37.7795 37.7795i 0.0454081 0.0454081i
\(833\) −284.591 284.591i −0.341646 0.341646i
\(834\) 584.239i 0.700526i
\(835\) 0 0
\(836\) 644.937 0.771456
\(837\) −149.125 + 149.125i −0.178166 + 0.178166i
\(838\) −641.021 641.021i −0.764942 0.764942i
\(839\) 160.825i 0.191687i 0.995396 + 0.0958433i \(0.0305548\pi\)
−0.995396 + 0.0958433i \(0.969445\pi\)
\(840\) 0 0
\(841\) 501.897 0.596785
\(842\) 493.748 493.748i 0.586399 0.586399i
\(843\) −343.552 343.552i −0.407535 0.407535i
\(844\) 561.859i 0.665709i
\(845\) 0 0
\(846\) −235.429 −0.278285
\(847\) −1640.82 + 1640.82i −1.93722 + 1.93722i
\(848\) 265.999 + 265.999i 0.313678 + 0.313678i
\(849\) 658.645i 0.775789i
\(850\) 0 0
\(851\) 837.748 0.984427
\(852\) 19.8604 19.8604i 0.0233103 0.0233103i
\(853\) −163.525 163.525i −0.191706 0.191706i 0.604727 0.796433i \(-0.293282\pi\)
−0.796433 + 0.604727i \(0.793282\pi\)
\(854\) 761.967i 0.892232i
\(855\) 0 0
\(856\) −352.750 −0.412091
\(857\) −575.315 + 575.315i −0.671313 + 0.671313i −0.958019 0.286706i \(-0.907440\pi\)
0.286706 + 0.958019i \(0.407440\pi\)
\(858\) −233.771 233.771i −0.272460 0.272460i
\(859\) 831.484i 0.967967i −0.875077 0.483984i \(-0.839189\pi\)
0.875077 0.483984i \(-0.160811\pi\)
\(860\) 0 0
\(861\) 830.702 0.964811
\(862\) −117.686 + 117.686i −0.136527 + 0.136527i
\(863\) −816.894 816.894i −0.946574 0.946574i 0.0520691 0.998643i \(-0.483418\pi\)
−0.998643 + 0.0520691i \(0.983418\pi\)
\(864\) 29.3939i 0.0340207i
\(865\) 0 0
\(866\) 725.685 0.837973
\(867\) 403.306 403.306i 0.465174 0.465174i
\(868\) 463.420 + 463.420i 0.533893 + 0.533893i
\(869\) 1403.57i 1.61516i
\(870\) 0 0
\(871\) −670.632 −0.769956
\(872\) 166.329 166.329i 0.190744 0.190744i
\(873\) −82.9753 82.9753i −0.0950462 0.0950462i
\(874\) 641.455i 0.733931i
\(875\) 0 0
\(876\) 197.906 0.225920
\(877\) 73.5839 73.5839i 0.0839041 0.0839041i −0.663909 0.747813i \(-0.731104\pi\)
0.747813 + 0.663909i \(0.231104\pi\)
\(878\) −303.617 303.617i −0.345805 0.345805i
\(879\) 194.670i 0.221468i
\(880\) 0 0
\(881\) −1040.98 −1.18159 −0.590794 0.806822i \(-0.701186\pi\)
−0.590794 + 0.806822i \(0.701186\pi\)
\(882\) −48.5577 + 48.5577i −0.0550541 + 0.0550541i
\(883\) 840.426 + 840.426i 0.951785 + 0.951785i 0.998890 0.0471052i \(-0.0149996\pi\)
−0.0471052 + 0.998890i \(0.515000\pi\)
\(884\) 332.132i 0.375715i
\(885\) 0 0
\(886\) −552.343 −0.623411
\(887\) 301.035 301.035i 0.339386 0.339386i −0.516750 0.856136i \(-0.672858\pi\)
0.856136 + 0.516750i \(0.172858\pi\)
\(888\) 102.092 + 102.092i 0.114969 + 0.114969i
\(889\) 185.934i 0.209150i
\(890\) 0 0
\(891\) 181.882 0.204133
\(892\) −426.139 + 426.139i −0.477735 + 0.477735i
\(893\) −626.107 626.107i −0.701128 0.701128i
\(894\) 704.873i 0.788448i
\(895\) 0 0
\(896\) 91.3444 0.101947
\(897\) 232.508 232.508i 0.259207 0.259207i
\(898\) 314.925 + 314.925i 0.350696 + 0.350696i
\(899\) 747.392i 0.831360i
\(900\) 0 0
\(901\) −2338.48 −2.59543
\(902\) −1200.48 + 1200.48i −1.33091 + 1.33091i
\(903\) −102.670 102.670i −0.113699 0.113699i
\(904\) 421.629i 0.466404i
\(905\) 0 0
\(906\) −412.645 −0.455458
\(907\) 1120.69 1120.69i 1.23560 1.23560i 0.273825 0.961779i \(-0.411711\pi\)
0.961779 0.273825i \(-0.0882890\pi\)
\(908\) 399.753 + 399.753i 0.440257 + 0.440257i
\(909\) 165.886i 0.182493i
\(910\) 0 0
\(911\) 1739.91 1.90989 0.954946 0.296780i \(-0.0959127\pi\)
0.954946 + 0.296780i \(0.0959127\pi\)
\(912\) −78.1710 + 78.1710i −0.0857138 + 0.0857138i
\(913\) −74.9824 74.9824i −0.0821275 0.0821275i
\(914\) 1127.42i 1.23350i
\(915\) 0 0
\(916\) −214.933 −0.234643
\(917\) 398.018 398.018i 0.434044 0.434044i
\(918\) −129.205 129.205i −0.140747 0.140747i
\(919\) 1602.98i 1.74427i −0.489269 0.872133i \(-0.662736\pi\)
0.489269 0.872133i \(-0.337264\pi\)
\(920\) 0 0
\(921\) −749.219 −0.813484
\(922\) −660.573 + 660.573i −0.716457 + 0.716457i
\(923\) −38.2894 38.2894i −0.0414837 0.0414837i
\(924\) 565.217i 0.611707i
\(925\) 0 0
\(926\) 228.510 0.246772
\(927\) −201.368 + 201.368i −0.217226 + 0.217226i
\(928\) −73.6590 73.6590i −0.0793740 0.0793740i
\(929\) 1838.90i 1.97944i −0.143003 0.989722i \(-0.545676\pi\)
0.143003 0.989722i \(-0.454324\pi\)
\(930\) 0 0
\(931\) −258.272 −0.277413
\(932\) 370.628 370.628i 0.397669 0.397669i
\(933\) −137.106 137.106i −0.146951 0.146951i
\(934\) 995.772i 1.06614i
\(935\) 0 0
\(936\) 56.6693 0.0605441
\(937\) 603.150 603.150i 0.643703 0.643703i −0.307761 0.951464i \(-0.599580\pi\)
0.951464 + 0.307761i \(0.0995796\pi\)
\(938\) −810.736 810.736i −0.864324 0.864324i
\(939\) 379.789i 0.404461i
\(940\) 0 0
\(941\) 1311.13 1.39334 0.696669 0.717393i \(-0.254665\pi\)
0.696669 + 0.717393i \(0.254665\pi\)
\(942\) −138.516 + 138.516i −0.147045 + 0.147045i
\(943\) −1194.00 1194.00i −1.26617 1.26617i
\(944\) 349.653i 0.370395i
\(945\) 0 0
\(946\) 296.746 0.313685
\(947\) −736.685 + 736.685i −0.777915 + 0.777915i −0.979476 0.201561i \(-0.935399\pi\)
0.201561 + 0.979476i \(0.435399\pi\)
\(948\) 170.123 + 170.123i 0.179455 + 0.179455i
\(949\) 381.549i 0.402054i
\(950\) 0 0
\(951\) 549.494 0.577806
\(952\) −401.519 + 401.519i −0.421763 + 0.421763i
\(953\) 1131.73 + 1131.73i 1.18755 + 1.18755i 0.977743 + 0.209805i \(0.0672831\pi\)
0.209805 + 0.977743i \(0.432717\pi\)
\(954\) 398.999i 0.418237i
\(955\) 0 0
\(956\) −199.727 −0.208919
\(957\) −455.784 + 455.784i −0.476264 + 0.476264i
\(958\) 416.013 + 416.013i 0.434252 + 0.434252i
\(959\) 985.340i 1.02747i
\(960\) 0 0
\(961\) 686.271 0.714121
\(962\) 196.826 196.826i 0.204601 0.204601i
\(963\) −264.563 264.563i −0.274727 0.274727i
\(964\) 711.389i 0.737955i
\(965\) 0 0
\(966\) 562.165 0.581952
\(967\) −712.879 + 712.879i −0.737207 + 0.737207i −0.972037 0.234830i \(-0.924547\pi\)
0.234830 + 0.972037i \(0.424547\pi\)
\(968\) 574.818 + 574.818i 0.593820 + 0.593820i
\(969\) 687.226i 0.709211i
\(970\) 0 0
\(971\) 1321.75 1.36123 0.680613 0.732643i \(-0.261713\pi\)
0.680613 + 0.732643i \(0.261713\pi\)
\(972\) −22.0454 + 22.0454i −0.0226805 + 0.0226805i
\(973\) 1361.69 + 1361.69i 1.39947 + 1.39947i
\(974\) 1034.95i 1.06257i
\(975\) 0 0
\(976\) 266.934 0.273498
\(977\) −472.998 + 472.998i −0.484134 + 0.484134i −0.906449 0.422315i \(-0.861217\pi\)
0.422315 + 0.906449i \(0.361217\pi\)
\(978\) −28.0307 28.0307i −0.0286613 0.0286613i
\(979\) 656.486i 0.670568i
\(980\) 0 0
\(981\) 249.493 0.254326
\(982\) −483.386 + 483.386i −0.492246 + 0.492246i
\(983\) 8.96317 + 8.96317i 0.00911818 + 0.00911818i 0.711651 0.702533i \(-0.247948\pi\)
−0.702533 + 0.711651i \(0.747948\pi\)
\(984\) 291.014i 0.295746i
\(985\) 0 0
\(986\) 647.560 0.656755
\(987\) −548.714 + 548.714i −0.555941 + 0.555941i
\(988\) 150.708 + 150.708i 0.152538 + 0.152538i
\(989\) 295.144i 0.298426i
\(990\) 0 0
\(991\) 824.728 0.832218 0.416109 0.909315i \(-0.363393\pi\)
0.416109 + 0.909315i \(0.363393\pi\)
\(992\) 162.346 162.346i 0.163656 0.163656i
\(993\) 385.523 + 385.523i 0.388241 + 0.388241i
\(994\) 92.5772i 0.0931360i
\(995\) 0 0
\(996\) 18.1768 0.0182498
\(997\) 517.929 517.929i 0.519487 0.519487i −0.397929 0.917416i \(-0.630271\pi\)
0.917416 + 0.397929i \(0.130271\pi\)
\(998\) 869.520 + 869.520i 0.871262 + 0.871262i
\(999\) 153.138i 0.153292i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 750.3.f.b.193.5 16
5.2 odd 4 inner 750.3.f.b.307.5 yes 16
5.3 odd 4 750.3.f.c.307.4 yes 16
5.4 even 2 750.3.f.c.193.4 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
750.3.f.b.193.5 16 1.1 even 1 trivial
750.3.f.b.307.5 yes 16 5.2 odd 4 inner
750.3.f.c.193.4 yes 16 5.4 even 2
750.3.f.c.307.4 yes 16 5.3 odd 4