Properties

Label 750.3.f.b.193.2
Level $750$
Weight $3$
Character 750.193
Analytic conductor $20.436$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [750,3,Mod(193,750)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(750, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("750.193"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 750 = 2 \cdot 3 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 750.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-16,0,0,0,0,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.4360198270\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: 16.0.6879707136000000000000.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 21x^{12} + 86x^{8} + 36x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{8}\cdot 5^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 193.2
Root \(1.05097 + 1.05097i\) of defining polynomial
Character \(\chi\) \(=\) 750.193
Dual form 750.3.f.b.307.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 1.00000i) q^{2} +(-1.22474 - 1.22474i) q^{3} -2.00000i q^{4} +2.44949 q^{6} +(2.69401 - 2.69401i) q^{7} +(2.00000 + 2.00000i) q^{8} +3.00000i q^{9} +1.76982 q^{11} +(-2.44949 + 2.44949i) q^{12} +(-13.2862 - 13.2862i) q^{13} +5.38803i q^{14} -4.00000 q^{16} +(13.3785 - 13.3785i) q^{17} +(-3.00000 - 3.00000i) q^{18} +13.5088i q^{19} -6.59896 q^{21} +(-1.76982 + 1.76982i) q^{22} +(-3.45989 - 3.45989i) q^{23} -4.89898i q^{24} +26.5723 q^{26} +(3.67423 - 3.67423i) q^{27} +(-5.38803 - 5.38803i) q^{28} +7.20434i q^{29} +15.1996 q^{31} +(4.00000 - 4.00000i) q^{32} +(-2.16758 - 2.16758i) q^{33} +26.7570i q^{34} +6.00000 q^{36} +(-28.4468 + 28.4468i) q^{37} +(-13.5088 - 13.5088i) q^{38} +32.5443i q^{39} +20.6534 q^{41} +(6.59896 - 6.59896i) q^{42} +(-28.7921 - 28.7921i) q^{43} -3.53965i q^{44} +6.91979 q^{46} +(16.4532 - 16.4532i) q^{47} +(4.89898 + 4.89898i) q^{48} +34.4846i q^{49} -32.7705 q^{51} +(-26.5723 + 26.5723i) q^{52} +(-71.9184 - 71.9184i) q^{53} +7.34847i q^{54} +10.7761 q^{56} +(16.5448 - 16.5448i) q^{57} +(-7.20434 - 7.20434i) q^{58} -27.4099i q^{59} -78.6807 q^{61} +(-15.1996 + 15.1996i) q^{62} +(8.08204 + 8.08204i) q^{63} +8.00000i q^{64} +4.33516 q^{66} +(-32.0521 + 32.0521i) q^{67} +(-26.7570 - 26.7570i) q^{68} +8.47497i q^{69} -111.105 q^{71} +(-6.00000 + 6.00000i) q^{72} +(-20.1117 - 20.1117i) q^{73} -56.8936i q^{74} +27.0176 q^{76} +(4.76793 - 4.76793i) q^{77} +(-32.5443 - 32.5443i) q^{78} -81.3451i q^{79} -9.00000 q^{81} +(-20.6534 + 20.6534i) q^{82} +(-42.2649 - 42.2649i) q^{83} +13.1979i q^{84} +57.5842 q^{86} +(8.82348 - 8.82348i) q^{87} +(3.53965 + 3.53965i) q^{88} -118.921i q^{89} -71.5862 q^{91} +(-6.91979 + 6.91979i) q^{92} +(-18.6157 - 18.6157i) q^{93} +32.9064i q^{94} -9.79796 q^{96} +(79.0793 - 79.0793i) q^{97} +(-34.4846 - 34.4846i) q^{98} +5.30947i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{2} + 24 q^{7} + 32 q^{8} - 24 q^{11} - 48 q^{13} - 64 q^{16} - 16 q^{17} - 48 q^{18} - 48 q^{21} + 24 q^{22} + 104 q^{23} + 96 q^{26} - 48 q^{28} + 200 q^{31} + 64 q^{32} - 48 q^{33} + 96 q^{36}+ \cdots - 224 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/750\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(251\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 + 1.00000i −0.500000 + 0.500000i
\(3\) −1.22474 1.22474i −0.408248 0.408248i
\(4\) 2.00000i 0.500000i
\(5\) 0 0
\(6\) 2.44949 0.408248
\(7\) 2.69401 2.69401i 0.384859 0.384859i −0.487990 0.872849i \(-0.662270\pi\)
0.872849 + 0.487990i \(0.162270\pi\)
\(8\) 2.00000 + 2.00000i 0.250000 + 0.250000i
\(9\) 3.00000i 0.333333i
\(10\) 0 0
\(11\) 1.76982 0.160893 0.0804465 0.996759i \(-0.474365\pi\)
0.0804465 + 0.996759i \(0.474365\pi\)
\(12\) −2.44949 + 2.44949i −0.204124 + 0.204124i
\(13\) −13.2862 13.2862i −1.02201 1.02201i −0.999752 0.0222595i \(-0.992914\pi\)
−0.0222595 0.999752i \(-0.507086\pi\)
\(14\) 5.38803i 0.384859i
\(15\) 0 0
\(16\) −4.00000 −0.250000
\(17\) 13.3785 13.3785i 0.786971 0.786971i −0.194025 0.980997i \(-0.562154\pi\)
0.980997 + 0.194025i \(0.0621544\pi\)
\(18\) −3.00000 3.00000i −0.166667 0.166667i
\(19\) 13.5088i 0.710989i 0.934678 + 0.355494i \(0.115687\pi\)
−0.934678 + 0.355494i \(0.884313\pi\)
\(20\) 0 0
\(21\) −6.59896 −0.314236
\(22\) −1.76982 + 1.76982i −0.0804465 + 0.0804465i
\(23\) −3.45989 3.45989i −0.150430 0.150430i 0.627880 0.778310i \(-0.283923\pi\)
−0.778310 + 0.627880i \(0.783923\pi\)
\(24\) 4.89898i 0.204124i
\(25\) 0 0
\(26\) 26.5723 1.02201
\(27\) 3.67423 3.67423i 0.136083 0.136083i
\(28\) −5.38803 5.38803i −0.192430 0.192430i
\(29\) 7.20434i 0.248426i 0.992256 + 0.124213i \(0.0396405\pi\)
−0.992256 + 0.124213i \(0.960359\pi\)
\(30\) 0 0
\(31\) 15.1996 0.490311 0.245156 0.969484i \(-0.421161\pi\)
0.245156 + 0.969484i \(0.421161\pi\)
\(32\) 4.00000 4.00000i 0.125000 0.125000i
\(33\) −2.16758 2.16758i −0.0656843 0.0656843i
\(34\) 26.7570i 0.786971i
\(35\) 0 0
\(36\) 6.00000 0.166667
\(37\) −28.4468 + 28.4468i −0.768832 + 0.768832i −0.977901 0.209069i \(-0.932957\pi\)
0.209069 + 0.977901i \(0.432957\pi\)
\(38\) −13.5088 13.5088i −0.355494 0.355494i
\(39\) 32.5443i 0.834469i
\(40\) 0 0
\(41\) 20.6534 0.503741 0.251871 0.967761i \(-0.418954\pi\)
0.251871 + 0.967761i \(0.418954\pi\)
\(42\) 6.59896 6.59896i 0.157118 0.157118i
\(43\) −28.7921 28.7921i −0.669583 0.669583i 0.288036 0.957620i \(-0.406998\pi\)
−0.957620 + 0.288036i \(0.906998\pi\)
\(44\) 3.53965i 0.0804465i
\(45\) 0 0
\(46\) 6.91979 0.150430
\(47\) 16.4532 16.4532i 0.350068 0.350068i −0.510067 0.860135i \(-0.670379\pi\)
0.860135 + 0.510067i \(0.170379\pi\)
\(48\) 4.89898 + 4.89898i 0.102062 + 0.102062i
\(49\) 34.4846i 0.703767i
\(50\) 0 0
\(51\) −32.7705 −0.642559
\(52\) −26.5723 + 26.5723i −0.511006 + 0.511006i
\(53\) −71.9184 71.9184i −1.35695 1.35695i −0.877651 0.479300i \(-0.840890\pi\)
−0.479300 0.877651i \(-0.659110\pi\)
\(54\) 7.34847i 0.136083i
\(55\) 0 0
\(56\) 10.7761 0.192430
\(57\) 16.5448 16.5448i 0.290260 0.290260i
\(58\) −7.20434 7.20434i −0.124213 0.124213i
\(59\) 27.4099i 0.464575i −0.972647 0.232287i \(-0.925379\pi\)
0.972647 0.232287i \(-0.0746210\pi\)
\(60\) 0 0
\(61\) −78.6807 −1.28985 −0.644924 0.764247i \(-0.723111\pi\)
−0.644924 + 0.764247i \(0.723111\pi\)
\(62\) −15.1996 + 15.1996i −0.245156 + 0.245156i
\(63\) 8.08204 + 8.08204i 0.128286 + 0.128286i
\(64\) 8.00000i 0.125000i
\(65\) 0 0
\(66\) 4.33516 0.0656843
\(67\) −32.0521 + 32.0521i −0.478389 + 0.478389i −0.904616 0.426227i \(-0.859843\pi\)
0.426227 + 0.904616i \(0.359843\pi\)
\(68\) −26.7570 26.7570i −0.393486 0.393486i
\(69\) 8.47497i 0.122826i
\(70\) 0 0
\(71\) −111.105 −1.56486 −0.782431 0.622737i \(-0.786021\pi\)
−0.782431 + 0.622737i \(0.786021\pi\)
\(72\) −6.00000 + 6.00000i −0.0833333 + 0.0833333i
\(73\) −20.1117 20.1117i −0.275503 0.275503i 0.555808 0.831311i \(-0.312409\pi\)
−0.831311 + 0.555808i \(0.812409\pi\)
\(74\) 56.8936i 0.768832i
\(75\) 0 0
\(76\) 27.0176 0.355494
\(77\) 4.76793 4.76793i 0.0619212 0.0619212i
\(78\) −32.5443 32.5443i −0.417235 0.417235i
\(79\) 81.3451i 1.02968i −0.857285 0.514842i \(-0.827851\pi\)
0.857285 0.514842i \(-0.172149\pi\)
\(80\) 0 0
\(81\) −9.00000 −0.111111
\(82\) −20.6534 + 20.6534i −0.251871 + 0.251871i
\(83\) −42.2649 42.2649i −0.509216 0.509216i 0.405070 0.914286i \(-0.367247\pi\)
−0.914286 + 0.405070i \(0.867247\pi\)
\(84\) 13.1979i 0.157118i
\(85\) 0 0
\(86\) 57.5842 0.669583
\(87\) 8.82348 8.82348i 0.101419 0.101419i
\(88\) 3.53965 + 3.53965i 0.0402233 + 0.0402233i
\(89\) 118.921i 1.33619i −0.744077 0.668094i \(-0.767110\pi\)
0.744077 0.668094i \(-0.232890\pi\)
\(90\) 0 0
\(91\) −71.5862 −0.786661
\(92\) −6.91979 + 6.91979i −0.0752151 + 0.0752151i
\(93\) −18.6157 18.6157i −0.200169 0.200169i
\(94\) 32.9064i 0.350068i
\(95\) 0 0
\(96\) −9.79796 −0.102062
\(97\) 79.0793 79.0793i 0.815250 0.815250i −0.170165 0.985416i \(-0.554430\pi\)
0.985416 + 0.170165i \(0.0544301\pi\)
\(98\) −34.4846 34.4846i −0.351883 0.351883i
\(99\) 5.30947i 0.0536310i
\(100\) 0 0
\(101\) 17.9862 0.178081 0.0890406 0.996028i \(-0.471620\pi\)
0.0890406 + 0.996028i \(0.471620\pi\)
\(102\) 32.7705 32.7705i 0.321280 0.321280i
\(103\) −128.163 128.163i −1.24430 1.24430i −0.958199 0.286102i \(-0.907640\pi\)
−0.286102 0.958199i \(-0.592360\pi\)
\(104\) 53.1446i 0.511006i
\(105\) 0 0
\(106\) 143.837 1.35695
\(107\) −30.0106 + 30.0106i −0.280473 + 0.280473i −0.833298 0.552825i \(-0.813550\pi\)
0.552825 + 0.833298i \(0.313550\pi\)
\(108\) −7.34847 7.34847i −0.0680414 0.0680414i
\(109\) 166.166i 1.52446i 0.647306 + 0.762230i \(0.275896\pi\)
−0.647306 + 0.762230i \(0.724104\pi\)
\(110\) 0 0
\(111\) 69.6801 0.627749
\(112\) −10.7761 + 10.7761i −0.0962148 + 0.0962148i
\(113\) 111.876 + 111.876i 0.990057 + 0.990057i 0.999951 0.00989414i \(-0.00314946\pi\)
−0.00989414 + 0.999951i \(0.503149\pi\)
\(114\) 33.0896i 0.290260i
\(115\) 0 0
\(116\) 14.4087 0.124213
\(117\) 39.8585 39.8585i 0.340671 0.340671i
\(118\) 27.4099 + 27.4099i 0.232287 + 0.232287i
\(119\) 72.0838i 0.605746i
\(120\) 0 0
\(121\) −117.868 −0.974113
\(122\) 78.6807 78.6807i 0.644924 0.644924i
\(123\) −25.2951 25.2951i −0.205651 0.205651i
\(124\) 30.3993i 0.245156i
\(125\) 0 0
\(126\) −16.1641 −0.128286
\(127\) −147.676 + 147.676i −1.16280 + 1.16280i −0.178945 + 0.983859i \(0.557268\pi\)
−0.983859 + 0.178945i \(0.942732\pi\)
\(128\) −8.00000 8.00000i −0.0625000 0.0625000i
\(129\) 70.5259i 0.546712i
\(130\) 0 0
\(131\) −58.6448 −0.447671 −0.223835 0.974627i \(-0.571858\pi\)
−0.223835 + 0.974627i \(0.571858\pi\)
\(132\) −4.33516 + 4.33516i −0.0328421 + 0.0328421i
\(133\) 36.3929 + 36.3929i 0.273631 + 0.273631i
\(134\) 64.1042i 0.478389i
\(135\) 0 0
\(136\) 53.5140 0.393486
\(137\) 25.5466 25.5466i 0.186472 0.186472i −0.607697 0.794169i \(-0.707907\pi\)
0.794169 + 0.607697i \(0.207907\pi\)
\(138\) −8.47497 8.47497i −0.0614129 0.0614129i
\(139\) 151.520i 1.09007i −0.838414 0.545034i \(-0.816517\pi\)
0.838414 0.545034i \(-0.183483\pi\)
\(140\) 0 0
\(141\) −40.3020 −0.285830
\(142\) 111.105 111.105i 0.782431 0.782431i
\(143\) −23.5141 23.5141i −0.164435 0.164435i
\(144\) 12.0000i 0.0833333i
\(145\) 0 0
\(146\) 40.2234 0.275503
\(147\) 42.2348 42.2348i 0.287312 0.287312i
\(148\) 56.8936 + 56.8936i 0.384416 + 0.384416i
\(149\) 254.435i 1.70762i −0.520585 0.853810i \(-0.674286\pi\)
0.520585 0.853810i \(-0.325714\pi\)
\(150\) 0 0
\(151\) −66.3316 −0.439282 −0.219641 0.975581i \(-0.570489\pi\)
−0.219641 + 0.975581i \(0.570489\pi\)
\(152\) −27.0176 + 27.0176i −0.177747 + 0.177747i
\(153\) 40.1355 + 40.1355i 0.262324 + 0.262324i
\(154\) 9.53586i 0.0619212i
\(155\) 0 0
\(156\) 65.0886 0.417235
\(157\) −133.327 + 133.327i −0.849215 + 0.849215i −0.990035 0.140820i \(-0.955026\pi\)
0.140820 + 0.990035i \(0.455026\pi\)
\(158\) 81.3451 + 81.3451i 0.514842 + 0.514842i
\(159\) 176.163i 1.10795i
\(160\) 0 0
\(161\) −18.6420 −0.115789
\(162\) 9.00000 9.00000i 0.0555556 0.0555556i
\(163\) −66.7032 66.7032i −0.409222 0.409222i 0.472245 0.881467i \(-0.343444\pi\)
−0.881467 + 0.472245i \(0.843444\pi\)
\(164\) 41.3068i 0.251871i
\(165\) 0 0
\(166\) 84.5299 0.509216
\(167\) 80.4654 80.4654i 0.481829 0.481829i −0.423886 0.905715i \(-0.639334\pi\)
0.905715 + 0.423886i \(0.139334\pi\)
\(168\) −13.1979 13.1979i −0.0785591 0.0785591i
\(169\) 184.044i 1.08902i
\(170\) 0 0
\(171\) −40.5264 −0.236996
\(172\) −57.5842 + 57.5842i −0.334792 + 0.334792i
\(173\) 101.280 + 101.280i 0.585435 + 0.585435i 0.936392 0.350957i \(-0.114144\pi\)
−0.350957 + 0.936392i \(0.614144\pi\)
\(174\) 17.6470i 0.101419i
\(175\) 0 0
\(176\) −7.07929 −0.0402233
\(177\) −33.5701 + 33.5701i −0.189662 + 0.189662i
\(178\) 118.921 + 118.921i 0.668094 + 0.668094i
\(179\) 301.797i 1.68601i −0.537903 0.843007i \(-0.680783\pi\)
0.537903 0.843007i \(-0.319217\pi\)
\(180\) 0 0
\(181\) 103.906 0.574065 0.287033 0.957921i \(-0.407331\pi\)
0.287033 + 0.957921i \(0.407331\pi\)
\(182\) 71.5862 71.5862i 0.393331 0.393331i
\(183\) 96.3638 + 96.3638i 0.526578 + 0.526578i
\(184\) 13.8396i 0.0752151i
\(185\) 0 0
\(186\) 37.2314 0.200169
\(187\) 23.6776 23.6776i 0.126618 0.126618i
\(188\) −32.9064 32.9064i −0.175034 0.175034i
\(189\) 19.7969i 0.104745i
\(190\) 0 0
\(191\) −93.2098 −0.488010 −0.244005 0.969774i \(-0.578461\pi\)
−0.244005 + 0.969774i \(0.578461\pi\)
\(192\) 9.79796 9.79796i 0.0510310 0.0510310i
\(193\) 69.1868 + 69.1868i 0.358481 + 0.358481i 0.863253 0.504772i \(-0.168423\pi\)
−0.504772 + 0.863253i \(0.668423\pi\)
\(194\) 158.159i 0.815250i
\(195\) 0 0
\(196\) 68.9691 0.351883
\(197\) −66.9137 + 66.9137i −0.339663 + 0.339663i −0.856241 0.516577i \(-0.827206\pi\)
0.516577 + 0.856241i \(0.327206\pi\)
\(198\) −5.30947 5.30947i −0.0268155 0.0268155i
\(199\) 127.464i 0.640521i 0.947330 + 0.320260i \(0.103770\pi\)
−0.947330 + 0.320260i \(0.896230\pi\)
\(200\) 0 0
\(201\) 78.5113 0.390603
\(202\) −17.9862 + 17.9862i −0.0890406 + 0.0890406i
\(203\) 19.4086 + 19.4086i 0.0956089 + 0.0956089i
\(204\) 65.5410i 0.321280i
\(205\) 0 0
\(206\) 256.326 1.24430
\(207\) 10.3797 10.3797i 0.0501434 0.0501434i
\(208\) 53.1446 + 53.1446i 0.255503 + 0.255503i
\(209\) 23.9082i 0.114393i
\(210\) 0 0
\(211\) 360.045 1.70638 0.853188 0.521604i \(-0.174666\pi\)
0.853188 + 0.521604i \(0.174666\pi\)
\(212\) −143.837 + 143.837i −0.678476 + 0.678476i
\(213\) 136.076 + 136.076i 0.638852 + 0.638852i
\(214\) 60.0212i 0.280473i
\(215\) 0 0
\(216\) 14.6969 0.0680414
\(217\) 40.9481 40.9481i 0.188701 0.188701i
\(218\) −166.166 166.166i −0.762230 0.762230i
\(219\) 49.2634i 0.224947i
\(220\) 0 0
\(221\) −355.498 −1.60859
\(222\) −69.6801 + 69.6801i −0.313875 + 0.313875i
\(223\) 120.228 + 120.228i 0.539138 + 0.539138i 0.923276 0.384138i \(-0.125501\pi\)
−0.384138 + 0.923276i \(0.625501\pi\)
\(224\) 21.5521i 0.0962148i
\(225\) 0 0
\(226\) −223.753 −0.990057
\(227\) 11.7621 11.7621i 0.0518155 0.0518155i −0.680724 0.732540i \(-0.738335\pi\)
0.732540 + 0.680724i \(0.238335\pi\)
\(228\) −33.0896 33.0896i −0.145130 0.145130i
\(229\) 406.576i 1.77544i 0.460384 + 0.887720i \(0.347712\pi\)
−0.460384 + 0.887720i \(0.652288\pi\)
\(230\) 0 0
\(231\) −11.6790 −0.0505584
\(232\) −14.4087 + 14.4087i −0.0621064 + 0.0621064i
\(233\) 135.112 + 135.112i 0.579881 + 0.579881i 0.934870 0.354990i \(-0.115516\pi\)
−0.354990 + 0.934870i \(0.615516\pi\)
\(234\) 79.7169i 0.340671i
\(235\) 0 0
\(236\) −54.8198 −0.232287
\(237\) −99.6269 + 99.6269i −0.420367 + 0.420367i
\(238\) 72.0838 + 72.0838i 0.302873 + 0.302873i
\(239\) 462.095i 1.93345i −0.255812 0.966726i \(-0.582343\pi\)
0.255812 0.966726i \(-0.417657\pi\)
\(240\) 0 0
\(241\) −146.704 −0.608730 −0.304365 0.952555i \(-0.598444\pi\)
−0.304365 + 0.952555i \(0.598444\pi\)
\(242\) 117.868 117.868i 0.487057 0.487057i
\(243\) 11.0227 + 11.0227i 0.0453609 + 0.0453609i
\(244\) 157.361i 0.644924i
\(245\) 0 0
\(246\) 50.5902 0.205651
\(247\) 179.480 179.480i 0.726639 0.726639i
\(248\) 30.3993 + 30.3993i 0.122578 + 0.122578i
\(249\) 103.528i 0.415773i
\(250\) 0 0
\(251\) −2.71232 −0.0108060 −0.00540302 0.999985i \(-0.501720\pi\)
−0.00540302 + 0.999985i \(0.501720\pi\)
\(252\) 16.1641 16.1641i 0.0641432 0.0641432i
\(253\) −6.12340 6.12340i −0.0242032 0.0242032i
\(254\) 295.352i 1.16280i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) −73.9734 + 73.9734i −0.287834 + 0.287834i −0.836223 0.548389i \(-0.815241\pi\)
0.548389 + 0.836223i \(0.315241\pi\)
\(258\) −70.5259 70.5259i −0.273356 0.273356i
\(259\) 153.272i 0.591784i
\(260\) 0 0
\(261\) −21.6130 −0.0828085
\(262\) 58.6448 58.6448i 0.223835 0.223835i
\(263\) 243.803 + 243.803i 0.927007 + 0.927007i 0.997511 0.0705046i \(-0.0224609\pi\)
−0.0705046 + 0.997511i \(0.522461\pi\)
\(264\) 8.67033i 0.0328421i
\(265\) 0 0
\(266\) −72.7857 −0.273631
\(267\) −145.648 + 145.648i −0.545497 + 0.545497i
\(268\) 64.1042 + 64.1042i 0.239195 + 0.239195i
\(269\) 475.591i 1.76800i 0.467491 + 0.883998i \(0.345158\pi\)
−0.467491 + 0.883998i \(0.654842\pi\)
\(270\) 0 0
\(271\) −299.402 −1.10480 −0.552402 0.833578i \(-0.686289\pi\)
−0.552402 + 0.833578i \(0.686289\pi\)
\(272\) −53.5140 + 53.5140i −0.196743 + 0.196743i
\(273\) 87.6748 + 87.6748i 0.321153 + 0.321153i
\(274\) 51.0933i 0.186472i
\(275\) 0 0
\(276\) 16.9499 0.0614129
\(277\) −0.773639 + 0.773639i −0.00279292 + 0.00279292i −0.708502 0.705709i \(-0.750629\pi\)
0.705709 + 0.708502i \(0.250629\pi\)
\(278\) 151.520 + 151.520i 0.545034 + 0.545034i
\(279\) 45.5989i 0.163437i
\(280\) 0 0
\(281\) 133.812 0.476198 0.238099 0.971241i \(-0.423476\pi\)
0.238099 + 0.971241i \(0.423476\pi\)
\(282\) 40.3020 40.3020i 0.142915 0.142915i
\(283\) −58.7282 58.7282i −0.207520 0.207520i 0.595692 0.803213i \(-0.296878\pi\)
−0.803213 + 0.595692i \(0.796878\pi\)
\(284\) 222.210i 0.782431i
\(285\) 0 0
\(286\) 47.0283 0.164435
\(287\) 55.6405 55.6405i 0.193869 0.193869i
\(288\) 12.0000 + 12.0000i 0.0416667 + 0.0416667i
\(289\) 68.9690i 0.238647i
\(290\) 0 0
\(291\) −193.704 −0.665649
\(292\) −40.2234 + 40.2234i −0.137751 + 0.137751i
\(293\) 264.851 + 264.851i 0.903929 + 0.903929i 0.995773 0.0918440i \(-0.0292761\pi\)
−0.0918440 + 0.995773i \(0.529276\pi\)
\(294\) 84.4696i 0.287312i
\(295\) 0 0
\(296\) −113.787 −0.384416
\(297\) 6.50275 6.50275i 0.0218948 0.0218948i
\(298\) 254.435 + 254.435i 0.853810 + 0.853810i
\(299\) 91.9373i 0.307483i
\(300\) 0 0
\(301\) −155.133 −0.515391
\(302\) 66.3316 66.3316i 0.219641 0.219641i
\(303\) −22.0285 22.0285i −0.0727013 0.0727013i
\(304\) 54.0352i 0.177747i
\(305\) 0 0
\(306\) −80.2711 −0.262324
\(307\) −62.5922 + 62.5922i −0.203883 + 0.203883i −0.801662 0.597778i \(-0.796050\pi\)
0.597778 + 0.801662i \(0.296050\pi\)
\(308\) −9.53586 9.53586i −0.0309606 0.0309606i
\(309\) 313.934i 1.01597i
\(310\) 0 0
\(311\) 411.007 1.32157 0.660783 0.750577i \(-0.270224\pi\)
0.660783 + 0.750577i \(0.270224\pi\)
\(312\) −65.0886 + 65.0886i −0.208617 + 0.208617i
\(313\) −192.692 192.692i −0.615631 0.615631i 0.328777 0.944408i \(-0.393364\pi\)
−0.944408 + 0.328777i \(0.893364\pi\)
\(314\) 266.653i 0.849215i
\(315\) 0 0
\(316\) −162.690 −0.514842
\(317\) −182.555 + 182.555i −0.575882 + 0.575882i −0.933766 0.357884i \(-0.883498\pi\)
0.357884 + 0.933766i \(0.383498\pi\)
\(318\) −176.163 176.163i −0.553973 0.553973i
\(319\) 12.7504i 0.0399699i
\(320\) 0 0
\(321\) 73.5107 0.229005
\(322\) 18.6420 18.6420i 0.0578944 0.0578944i
\(323\) 180.727 + 180.727i 0.559528 + 0.559528i
\(324\) 18.0000i 0.0555556i
\(325\) 0 0
\(326\) 133.406 0.409222
\(327\) 203.511 203.511i 0.622359 0.622359i
\(328\) 41.3068 + 41.3068i 0.125935 + 0.125935i
\(329\) 88.6503i 0.269454i
\(330\) 0 0
\(331\) 263.961 0.797465 0.398733 0.917067i \(-0.369450\pi\)
0.398733 + 0.917067i \(0.369450\pi\)
\(332\) −84.5299 + 84.5299i −0.254608 + 0.254608i
\(333\) −85.3404 85.3404i −0.256277 0.256277i
\(334\) 160.931i 0.481829i
\(335\) 0 0
\(336\) 26.3958 0.0785591
\(337\) 388.677 388.677i 1.15335 1.15335i 0.167467 0.985878i \(-0.446441\pi\)
0.985878 0.167467i \(-0.0535589\pi\)
\(338\) −184.044 184.044i −0.544508 0.544508i
\(339\) 274.040i 0.808378i
\(340\) 0 0
\(341\) 26.9007 0.0788876
\(342\) 40.5264 40.5264i 0.118498 0.118498i
\(343\) 224.909 + 224.909i 0.655710 + 0.655710i
\(344\) 115.168i 0.334792i
\(345\) 0 0
\(346\) −202.561 −0.585435
\(347\) 84.8870 84.8870i 0.244631 0.244631i −0.574132 0.818763i \(-0.694660\pi\)
0.818763 + 0.574132i \(0.194660\pi\)
\(348\) −17.6470 17.6470i −0.0507097 0.0507097i
\(349\) 176.263i 0.505050i −0.967590 0.252525i \(-0.918739\pi\)
0.967590 0.252525i \(-0.0812610\pi\)
\(350\) 0 0
\(351\) −97.6329 −0.278156
\(352\) 7.07929 7.07929i 0.0201116 0.0201116i
\(353\) −220.926 220.926i −0.625853 0.625853i 0.321169 0.947022i \(-0.395924\pi\)
−0.947022 + 0.321169i \(0.895924\pi\)
\(354\) 67.1403i 0.189662i
\(355\) 0 0
\(356\) −237.842 −0.668094
\(357\) −88.2842 + 88.2842i −0.247295 + 0.247295i
\(358\) 301.797 + 301.797i 0.843007 + 0.843007i
\(359\) 545.295i 1.51893i −0.650550 0.759464i \(-0.725461\pi\)
0.650550 0.759464i \(-0.274539\pi\)
\(360\) 0 0
\(361\) 178.513 0.494495
\(362\) −103.906 + 103.906i −0.287033 + 0.287033i
\(363\) 144.358 + 144.358i 0.397680 + 0.397680i
\(364\) 143.172i 0.393331i
\(365\) 0 0
\(366\) −192.728 −0.526578
\(367\) 134.238 134.238i 0.365772 0.365772i −0.500161 0.865933i \(-0.666726\pi\)
0.865933 + 0.500161i \(0.166726\pi\)
\(368\) 13.8396 + 13.8396i 0.0376075 + 0.0376075i
\(369\) 61.9601i 0.167914i
\(370\) 0 0
\(371\) −387.498 −1.04447
\(372\) −37.2314 + 37.2314i −0.100084 + 0.100084i
\(373\) −314.472 314.472i −0.843089 0.843089i 0.146171 0.989259i \(-0.453305\pi\)
−0.989259 + 0.146171i \(0.953305\pi\)
\(374\) 47.3552i 0.126618i
\(375\) 0 0
\(376\) 65.8128 0.175034
\(377\) 95.7180 95.7180i 0.253894 0.253894i
\(378\) 19.7969 + 19.7969i 0.0523727 + 0.0523727i
\(379\) 146.881i 0.387548i −0.981046 0.193774i \(-0.937927\pi\)
0.981046 0.193774i \(-0.0620729\pi\)
\(380\) 0 0
\(381\) 361.731 0.949425
\(382\) 93.2098 93.2098i 0.244005 0.244005i
\(383\) −60.5500 60.5500i −0.158094 0.158094i 0.623628 0.781722i \(-0.285658\pi\)
−0.781722 + 0.623628i \(0.785658\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) 0 0
\(386\) −138.374 −0.358481
\(387\) 86.3762 86.3762i 0.223194 0.223194i
\(388\) −158.159 158.159i −0.407625 0.407625i
\(389\) 148.935i 0.382867i −0.981506 0.191433i \(-0.938686\pi\)
0.981506 0.191433i \(-0.0613136\pi\)
\(390\) 0 0
\(391\) −92.5764 −0.236768
\(392\) −68.9691 + 68.9691i −0.175942 + 0.175942i
\(393\) 71.8250 + 71.8250i 0.182761 + 0.182761i
\(394\) 133.827i 0.339663i
\(395\) 0 0
\(396\) 10.6189 0.0268155
\(397\) 418.388 418.388i 1.05387 1.05387i 0.0554109 0.998464i \(-0.482353\pi\)
0.998464 0.0554109i \(-0.0176469\pi\)
\(398\) −127.464 127.464i −0.320260 0.320260i
\(399\) 89.1440i 0.223418i
\(400\) 0 0
\(401\) 525.592 1.31070 0.655352 0.755324i \(-0.272520\pi\)
0.655352 + 0.755324i \(0.272520\pi\)
\(402\) −78.5113 + 78.5113i −0.195302 + 0.195302i
\(403\) −201.945 201.945i −0.501104 0.501104i
\(404\) 35.9724i 0.0890406i
\(405\) 0 0
\(406\) −38.8172 −0.0956089
\(407\) −50.3458 + 50.3458i −0.123700 + 0.123700i
\(408\) −65.5410 65.5410i −0.160640 0.160640i
\(409\) 289.417i 0.707620i 0.935317 + 0.353810i \(0.115114\pi\)
−0.935317 + 0.353810i \(0.884886\pi\)
\(410\) 0 0
\(411\) −62.5762 −0.152254
\(412\) −256.326 + 256.326i −0.622151 + 0.622151i
\(413\) −73.8427 73.8427i −0.178796 0.178796i
\(414\) 20.7594i 0.0501434i
\(415\) 0 0
\(416\) −106.289 −0.255503
\(417\) −185.573 + 185.573i −0.445019 + 0.445019i
\(418\) −23.9082 23.9082i −0.0571966 0.0571966i
\(419\) 29.5402i 0.0705017i 0.999378 + 0.0352509i \(0.0112230\pi\)
−0.999378 + 0.0352509i \(0.988777\pi\)
\(420\) 0 0
\(421\) 47.3975 0.112583 0.0562916 0.998414i \(-0.482072\pi\)
0.0562916 + 0.998414i \(0.482072\pi\)
\(422\) −360.045 + 360.045i −0.853188 + 0.853188i
\(423\) 49.3596 + 49.3596i 0.116689 + 0.116689i
\(424\) 287.674i 0.678476i
\(425\) 0 0
\(426\) −272.151 −0.638852
\(427\) −211.967 + 211.967i −0.496410 + 0.496410i
\(428\) 60.0212 + 60.0212i 0.140237 + 0.140237i
\(429\) 57.5976i 0.134260i
\(430\) 0 0
\(431\) 685.640 1.59081 0.795406 0.606076i \(-0.207257\pi\)
0.795406 + 0.606076i \(0.207257\pi\)
\(432\) −14.6969 + 14.6969i −0.0340207 + 0.0340207i
\(433\) −268.308 268.308i −0.619650 0.619650i 0.325792 0.945442i \(-0.394369\pi\)
−0.945442 + 0.325792i \(0.894369\pi\)
\(434\) 81.8961i 0.188701i
\(435\) 0 0
\(436\) 332.332 0.762230
\(437\) 46.7390 46.7390i 0.106954 0.106954i
\(438\) −49.2634 49.2634i −0.112474 0.112474i
\(439\) 758.142i 1.72698i −0.504369 0.863488i \(-0.668275\pi\)
0.504369 0.863488i \(-0.331725\pi\)
\(440\) 0 0
\(441\) −103.454 −0.234589
\(442\) 355.498 355.498i 0.804294 0.804294i
\(443\) −526.285 526.285i −1.18800 1.18800i −0.977619 0.210383i \(-0.932529\pi\)
−0.210383 0.977619i \(-0.567471\pi\)
\(444\) 139.360i 0.313875i
\(445\) 0 0
\(446\) −240.456 −0.539138
\(447\) −311.618 + 311.618i −0.697133 + 0.697133i
\(448\) 21.5521 + 21.5521i 0.0481074 + 0.0481074i
\(449\) 482.572i 1.07477i 0.843337 + 0.537386i \(0.180588\pi\)
−0.843337 + 0.537386i \(0.819412\pi\)
\(450\) 0 0
\(451\) 36.5528 0.0810484
\(452\) 223.753 223.753i 0.495028 0.495028i
\(453\) 81.2393 + 81.2393i 0.179336 + 0.179336i
\(454\) 23.5242i 0.0518155i
\(455\) 0 0
\(456\) 66.1793 0.145130
\(457\) −268.634 + 268.634i −0.587820 + 0.587820i −0.937040 0.349221i \(-0.886446\pi\)
0.349221 + 0.937040i \(0.386446\pi\)
\(458\) −406.576 406.576i −0.887720 0.887720i
\(459\) 98.3116i 0.214186i
\(460\) 0 0
\(461\) 577.734 1.25322 0.626610 0.779333i \(-0.284442\pi\)
0.626610 + 0.779333i \(0.284442\pi\)
\(462\) 11.6790 11.6790i 0.0252792 0.0252792i
\(463\) −583.398 583.398i −1.26004 1.26004i −0.951073 0.308967i \(-0.900017\pi\)
−0.308967 0.951073i \(-0.599983\pi\)
\(464\) 28.8174i 0.0621064i
\(465\) 0 0
\(466\) −270.224 −0.579881
\(467\) −569.585 + 569.585i −1.21967 + 1.21967i −0.251919 + 0.967748i \(0.581062\pi\)
−0.967748 + 0.251919i \(0.918938\pi\)
\(468\) −79.7169 79.7169i −0.170335 0.170335i
\(469\) 172.698i 0.368225i
\(470\) 0 0
\(471\) 326.582 0.693381
\(472\) 54.8198 54.8198i 0.116144 0.116144i
\(473\) −50.9569 50.9569i −0.107731 0.107731i
\(474\) 199.254i 0.420367i
\(475\) 0 0
\(476\) −144.168 −0.302873
\(477\) 215.755 215.755i 0.452317 0.452317i
\(478\) 462.095 + 462.095i 0.966726 + 0.966726i
\(479\) 335.883i 0.701217i −0.936522 0.350609i \(-0.885975\pi\)
0.936522 0.350609i \(-0.114025\pi\)
\(480\) 0 0
\(481\) 755.897 1.57151
\(482\) 146.704 146.704i 0.304365 0.304365i
\(483\) 22.8317 + 22.8317i 0.0472706 + 0.0472706i
\(484\) 235.735i 0.487057i
\(485\) 0 0
\(486\) −22.0454 −0.0453609
\(487\) 281.468 281.468i 0.577964 0.577964i −0.356378 0.934342i \(-0.615989\pi\)
0.934342 + 0.356378i \(0.115989\pi\)
\(488\) −157.361 157.361i −0.322462 0.322462i
\(489\) 163.389i 0.334129i
\(490\) 0 0
\(491\) 383.934 0.781943 0.390971 0.920403i \(-0.372139\pi\)
0.390971 + 0.920403i \(0.372139\pi\)
\(492\) −50.5902 + 50.5902i −0.102826 + 0.102826i
\(493\) 96.3833 + 96.3833i 0.195504 + 0.195504i
\(494\) 358.960i 0.726639i
\(495\) 0 0
\(496\) −60.7986 −0.122578
\(497\) −299.319 + 299.319i −0.602252 + 0.602252i
\(498\) −103.528 103.528i −0.207887 0.207887i
\(499\) 507.775i 1.01759i −0.860889 0.508793i \(-0.830092\pi\)
0.860889 0.508793i \(-0.169908\pi\)
\(500\) 0 0
\(501\) −197.099 −0.393412
\(502\) 2.71232 2.71232i 0.00540302 0.00540302i
\(503\) 181.127 + 181.127i 0.360093 + 0.360093i 0.863847 0.503754i \(-0.168048\pi\)
−0.503754 + 0.863847i \(0.668048\pi\)
\(504\) 32.3282i 0.0641432i
\(505\) 0 0
\(506\) 12.2468 0.0242032
\(507\) 225.407 225.407i 0.444589 0.444589i
\(508\) 295.352 + 295.352i 0.581402 + 0.581402i
\(509\) 335.611i 0.659354i 0.944094 + 0.329677i \(0.106940\pi\)
−0.944094 + 0.329677i \(0.893060\pi\)
\(510\) 0 0
\(511\) −108.362 −0.212060
\(512\) −16.0000 + 16.0000i −0.0312500 + 0.0312500i
\(513\) 49.6345 + 49.6345i 0.0967533 + 0.0967533i
\(514\) 147.947i 0.287834i
\(515\) 0 0
\(516\) 141.052 0.273356
\(517\) 29.1193 29.1193i 0.0563235 0.0563235i
\(518\) −153.272 153.272i −0.295892 0.295892i
\(519\) 248.085i 0.478006i
\(520\) 0 0
\(521\) −745.739 −1.43136 −0.715681 0.698428i \(-0.753883\pi\)
−0.715681 + 0.698428i \(0.753883\pi\)
\(522\) 21.6130 21.6130i 0.0414043 0.0414043i
\(523\) −689.743 689.743i −1.31882 1.31882i −0.914711 0.404110i \(-0.867581\pi\)
−0.404110 0.914711i \(-0.632419\pi\)
\(524\) 117.290i 0.223835i
\(525\) 0 0
\(526\) −487.606 −0.927007
\(527\) 203.349 203.349i 0.385861 0.385861i
\(528\) 8.67033 + 8.67033i 0.0164211 + 0.0164211i
\(529\) 505.058i 0.954742i
\(530\) 0 0
\(531\) 82.2297 0.154858
\(532\) 72.7857 72.7857i 0.136815 0.136815i
\(533\) −274.404 274.404i −0.514829 0.514829i
\(534\) 291.295i 0.545497i
\(535\) 0 0
\(536\) −128.208 −0.239195
\(537\) −369.624 + 369.624i −0.688312 + 0.688312i
\(538\) −475.591 475.591i −0.883998 0.883998i
\(539\) 61.0316i 0.113231i
\(540\) 0 0
\(541\) −696.184 −1.28685 −0.643423 0.765511i \(-0.722486\pi\)
−0.643423 + 0.765511i \(0.722486\pi\)
\(542\) 299.402 299.402i 0.552402 0.552402i
\(543\) −127.258 127.258i −0.234361 0.234361i
\(544\) 107.028i 0.196743i
\(545\) 0 0
\(546\) −175.350 −0.321153
\(547\) −650.591 + 650.591i −1.18938 + 1.18938i −0.212141 + 0.977239i \(0.568044\pi\)
−0.977239 + 0.212141i \(0.931956\pi\)
\(548\) −51.0933 51.0933i −0.0932359 0.0932359i
\(549\) 236.042i 0.429949i
\(550\) 0 0
\(551\) −97.3219 −0.176628
\(552\) −16.9499 + 16.9499i −0.0307064 + 0.0307064i
\(553\) −219.145 219.145i −0.396283 0.396283i
\(554\) 1.54728i 0.00279292i
\(555\) 0 0
\(556\) −303.039 −0.545034
\(557\) 582.001 582.001i 1.04488 1.04488i 0.0459407 0.998944i \(-0.485371\pi\)
0.998944 0.0459407i \(-0.0146285\pi\)
\(558\) −45.5989 45.5989i −0.0817185 0.0817185i
\(559\) 765.072i 1.36864i
\(560\) 0 0
\(561\) −57.9980 −0.103383
\(562\) −133.812 + 133.812i −0.238099 + 0.238099i
\(563\) 619.402 + 619.402i 1.10018 + 1.10018i 0.994388 + 0.105793i \(0.0337381\pi\)
0.105793 + 0.994388i \(0.466262\pi\)
\(564\) 80.6039i 0.142915i
\(565\) 0 0
\(566\) 117.456 0.207520
\(567\) −24.2461 + 24.2461i −0.0427621 + 0.0427621i
\(568\) −222.210 222.210i −0.391216 0.391216i
\(569\) 925.011i 1.62568i 0.582488 + 0.812839i \(0.302079\pi\)
−0.582488 + 0.812839i \(0.697921\pi\)
\(570\) 0 0
\(571\) 824.295 1.44360 0.721800 0.692102i \(-0.243315\pi\)
0.721800 + 0.692102i \(0.243315\pi\)
\(572\) −47.0283 + 47.0283i −0.0822173 + 0.0822173i
\(573\) 114.158 + 114.158i 0.199229 + 0.199229i
\(574\) 111.281i 0.193869i
\(575\) 0 0
\(576\) −24.0000 −0.0416667
\(577\) 10.5780 10.5780i 0.0183328 0.0183328i −0.697881 0.716214i \(-0.745874\pi\)
0.716214 + 0.697881i \(0.245874\pi\)
\(578\) 68.9690 + 68.9690i 0.119323 + 0.119323i
\(579\) 169.472i 0.292698i
\(580\) 0 0
\(581\) −227.725 −0.391953
\(582\) 193.704 193.704i 0.332825 0.332825i
\(583\) −127.283 127.283i −0.218324 0.218324i
\(584\) 80.4468i 0.137751i
\(585\) 0 0
\(586\) −529.703 −0.903929
\(587\) 371.049 371.049i 0.632110 0.632110i −0.316487 0.948597i \(-0.602503\pi\)
0.948597 + 0.316487i \(0.102503\pi\)
\(588\) −84.4696 84.4696i −0.143656 0.143656i
\(589\) 205.329i 0.348606i
\(590\) 0 0
\(591\) 163.904 0.277334
\(592\) 113.787 113.787i 0.192208 0.192208i
\(593\) 44.5712 + 44.5712i 0.0751623 + 0.0751623i 0.743689 0.668526i \(-0.233075\pi\)
−0.668526 + 0.743689i \(0.733075\pi\)
\(594\) 13.0055i 0.0218948i
\(595\) 0 0
\(596\) −508.871 −0.853810
\(597\) 156.110 156.110i 0.261492 0.261492i
\(598\) −91.9373 91.9373i −0.153741 0.153741i
\(599\) 93.3473i 0.155839i −0.996960 0.0779193i \(-0.975172\pi\)
0.996960 0.0779193i \(-0.0248276\pi\)
\(600\) 0 0
\(601\) 963.008 1.60234 0.801171 0.598435i \(-0.204211\pi\)
0.801171 + 0.598435i \(0.204211\pi\)
\(602\) 155.133 155.133i 0.257695 0.257695i
\(603\) −96.1563 96.1563i −0.159463 0.159463i
\(604\) 132.663i 0.219641i
\(605\) 0 0
\(606\) 44.0570 0.0727013
\(607\) −392.925 + 392.925i −0.647323 + 0.647323i −0.952345 0.305023i \(-0.901336\pi\)
0.305023 + 0.952345i \(0.401336\pi\)
\(608\) 54.0352 + 54.0352i 0.0888736 + 0.0888736i
\(609\) 47.5412i 0.0780643i
\(610\) 0 0
\(611\) −437.200 −0.715548
\(612\) 80.2711 80.2711i 0.131162 0.131162i
\(613\) −216.267 216.267i −0.352801 0.352801i 0.508350 0.861151i \(-0.330256\pi\)
−0.861151 + 0.508350i \(0.830256\pi\)
\(614\) 125.184i 0.203883i
\(615\) 0 0
\(616\) 19.0717 0.0309606
\(617\) −642.181 + 642.181i −1.04081 + 1.04081i −0.0416816 + 0.999131i \(0.513272\pi\)
−0.999131 + 0.0416816i \(0.986728\pi\)
\(618\) −313.934 313.934i −0.507984 0.507984i
\(619\) 544.753i 0.880053i −0.897985 0.440027i \(-0.854969\pi\)
0.897985 0.440027i \(-0.145031\pi\)
\(620\) 0 0
\(621\) −25.4249 −0.0409419
\(622\) −411.007 + 411.007i −0.660783 + 0.660783i
\(623\) −320.374 320.374i −0.514244 0.514244i
\(624\) 130.177i 0.208617i
\(625\) 0 0
\(626\) 385.385 0.615631
\(627\) 29.2814 29.2814i 0.0467008 0.0467008i
\(628\) 266.653 + 266.653i 0.424607 + 0.424607i
\(629\) 761.152i 1.21010i
\(630\) 0 0
\(631\) −590.551 −0.935897 −0.467949 0.883756i \(-0.655007\pi\)
−0.467949 + 0.883756i \(0.655007\pi\)
\(632\) 162.690 162.690i 0.257421 0.257421i
\(633\) −440.964 440.964i −0.696625 0.696625i
\(634\) 365.109i 0.575882i
\(635\) 0 0
\(636\) 352.327 0.553973
\(637\) 458.167 458.167i 0.719258 0.719258i
\(638\) −12.7504 12.7504i −0.0199850 0.0199850i
\(639\) 333.316i 0.521621i
\(640\) 0 0
\(641\) 789.374 1.23147 0.615736 0.787952i \(-0.288859\pi\)
0.615736 + 0.787952i \(0.288859\pi\)
\(642\) −73.5107 + 73.5107i −0.114503 + 0.114503i
\(643\) 808.269 + 808.269i 1.25703 + 1.25703i 0.952505 + 0.304522i \(0.0984968\pi\)
0.304522 + 0.952505i \(0.401503\pi\)
\(644\) 37.2840i 0.0578944i
\(645\) 0 0
\(646\) −361.455 −0.559528
\(647\) 667.540 667.540i 1.03175 1.03175i 0.0322677 0.999479i \(-0.489727\pi\)
0.999479 0.0322677i \(-0.0102729\pi\)
\(648\) −18.0000 18.0000i −0.0277778 0.0277778i
\(649\) 48.5107i 0.0747468i
\(650\) 0 0
\(651\) −100.302 −0.154074
\(652\) −133.406 + 133.406i −0.204611 + 0.204611i
\(653\) 135.714 + 135.714i 0.207831 + 0.207831i 0.803345 0.595514i \(-0.203052\pi\)
−0.595514 + 0.803345i \(0.703052\pi\)
\(654\) 407.023i 0.622359i
\(655\) 0 0
\(656\) −82.6135 −0.125935
\(657\) 60.3351 60.3351i 0.0918343 0.0918343i
\(658\) 88.6503 + 88.6503i 0.134727 + 0.134727i
\(659\) 262.431i 0.398226i 0.979977 + 0.199113i \(0.0638061\pi\)
−0.979977 + 0.199113i \(0.936194\pi\)
\(660\) 0 0
\(661\) 361.983 0.547630 0.273815 0.961782i \(-0.411714\pi\)
0.273815 + 0.961782i \(0.411714\pi\)
\(662\) −263.961 + 263.961i −0.398733 + 0.398733i
\(663\) 435.394 + 435.394i 0.656703 + 0.656703i
\(664\) 169.060i 0.254608i
\(665\) 0 0
\(666\) 170.681 0.256277
\(667\) 24.9263 24.9263i 0.0373707 0.0373707i
\(668\) −160.931 160.931i −0.240914 0.240914i
\(669\) 294.497i 0.440205i
\(670\) 0 0
\(671\) −139.251 −0.207527
\(672\) −26.3958 + 26.3958i −0.0392795 + 0.0392795i
\(673\) −650.086 650.086i −0.965953 0.965953i 0.0334866 0.999439i \(-0.489339\pi\)
−0.999439 + 0.0334866i \(0.989339\pi\)
\(674\) 777.355i 1.15335i
\(675\) 0 0
\(676\) 368.087 0.544508
\(677\) −121.450 + 121.450i −0.179395 + 0.179395i −0.791092 0.611697i \(-0.790487\pi\)
0.611697 + 0.791092i \(0.290487\pi\)
\(678\) 274.040 + 274.040i 0.404189 + 0.404189i
\(679\) 426.081i 0.627513i
\(680\) 0 0
\(681\) −28.8112 −0.0423071
\(682\) −26.9007 + 26.9007i −0.0394438 + 0.0394438i
\(683\) −531.607 531.607i −0.778342 0.778342i 0.201207 0.979549i \(-0.435514\pi\)
−0.979549 + 0.201207i \(0.935514\pi\)
\(684\) 81.0527i 0.118498i
\(685\) 0 0
\(686\) −449.817 −0.655710
\(687\) 497.951 497.951i 0.724820 0.724820i
\(688\) 115.168 + 115.168i 0.167396 + 0.167396i
\(689\) 1911.04i 2.77364i
\(690\) 0 0
\(691\) 376.676 0.545118 0.272559 0.962139i \(-0.412130\pi\)
0.272559 + 0.962139i \(0.412130\pi\)
\(692\) 202.561 202.561i 0.292718 0.292718i
\(693\) 14.3038 + 14.3038i 0.0206404 + 0.0206404i
\(694\) 169.774i 0.244631i
\(695\) 0 0
\(696\) 35.2939 0.0507097
\(697\) 276.311 276.311i 0.396430 0.396430i
\(698\) 176.263 + 176.263i 0.252525 + 0.252525i
\(699\) 330.956i 0.473471i
\(700\) 0 0
\(701\) −1042.39 −1.48700 −0.743500 0.668735i \(-0.766836\pi\)
−0.743500 + 0.668735i \(0.766836\pi\)
\(702\) 97.6329 97.6329i 0.139078 0.139078i
\(703\) −384.282 384.282i −0.546631 0.546631i
\(704\) 14.1586i 0.0201116i
\(705\) 0 0
\(706\) 441.852 0.625853
\(707\) 48.4551 48.4551i 0.0685362 0.0685362i
\(708\) 67.1403 + 67.1403i 0.0948309 + 0.0948309i
\(709\) 783.451i 1.10501i 0.833510 + 0.552504i \(0.186328\pi\)
−0.833510 + 0.552504i \(0.813672\pi\)
\(710\) 0 0
\(711\) 244.035 0.343228
\(712\) 237.842 237.842i 0.334047 0.334047i
\(713\) −52.5892 52.5892i −0.0737576 0.0737576i
\(714\) 176.568i 0.247295i
\(715\) 0 0
\(716\) −603.593 −0.843007
\(717\) −565.949 + 565.949i −0.789329 + 0.789329i
\(718\) 545.295 + 545.295i 0.759464 + 0.759464i
\(719\) 569.165i 0.791606i 0.918335 + 0.395803i \(0.129534\pi\)
−0.918335 + 0.395803i \(0.870466\pi\)
\(720\) 0 0
\(721\) −690.546 −0.957762
\(722\) −178.513 + 178.513i −0.247247 + 0.247247i
\(723\) 179.675 + 179.675i 0.248513 + 0.248513i
\(724\) 207.812i 0.287033i
\(725\) 0 0
\(726\) −288.716 −0.397680
\(727\) −824.929 + 824.929i −1.13470 + 1.13470i −0.145317 + 0.989385i \(0.546420\pi\)
−0.989385 + 0.145317i \(0.953580\pi\)
\(728\) −143.172 143.172i −0.196665 0.196665i
\(729\) 27.0000i 0.0370370i
\(730\) 0 0
\(731\) −770.390 −1.05389
\(732\) 192.728 192.728i 0.263289 0.263289i
\(733\) 315.116 + 315.116i 0.429900 + 0.429900i 0.888594 0.458695i \(-0.151683\pi\)
−0.458695 + 0.888594i \(0.651683\pi\)
\(734\) 268.477i 0.365772i
\(735\) 0 0
\(736\) −27.6791 −0.0376075
\(737\) −56.7265 + 56.7265i −0.0769695 + 0.0769695i
\(738\) −61.9601 61.9601i −0.0839568 0.0839568i
\(739\) 354.088i 0.479145i −0.970879 0.239572i \(-0.922993\pi\)
0.970879 0.239572i \(-0.0770072\pi\)
\(740\) 0 0
\(741\) −439.634 −0.593298
\(742\) 387.498 387.498i 0.522235 0.522235i
\(743\) 731.870 + 731.870i 0.985020 + 0.985020i 0.999889 0.0148696i \(-0.00473331\pi\)
−0.0148696 + 0.999889i \(0.504733\pi\)
\(744\) 74.4628i 0.100084i
\(745\) 0 0
\(746\) 628.944 0.843089
\(747\) 126.795 126.795i 0.169739 0.169739i
\(748\) −47.3552 47.3552i −0.0633091 0.0633091i
\(749\) 161.698i 0.215885i
\(750\) 0 0
\(751\) −55.6888 −0.0741529 −0.0370764 0.999312i \(-0.511805\pi\)
−0.0370764 + 0.999312i \(0.511805\pi\)
\(752\) −65.8128 + 65.8128i −0.0875171 + 0.0875171i
\(753\) 3.32190 + 3.32190i 0.00441155 + 0.00441155i
\(754\) 191.436i 0.253894i
\(755\) 0 0
\(756\) −39.5938 −0.0523727
\(757\) −368.602 + 368.602i −0.486925 + 0.486925i −0.907335 0.420409i \(-0.861886\pi\)
0.420409 + 0.907335i \(0.361886\pi\)
\(758\) 146.881 + 146.881i 0.193774 + 0.193774i
\(759\) 14.9992i 0.0197618i
\(760\) 0 0
\(761\) 371.468 0.488131 0.244065 0.969759i \(-0.421519\pi\)
0.244065 + 0.969759i \(0.421519\pi\)
\(762\) −361.731 + 361.731i −0.474713 + 0.474713i
\(763\) 447.654 + 447.654i 0.586703 + 0.586703i
\(764\) 186.420i 0.244005i
\(765\) 0 0
\(766\) 121.100 0.158094
\(767\) −364.172 + 364.172i −0.474801 + 0.474801i
\(768\) −19.5959 19.5959i −0.0255155 0.0255155i
\(769\) 19.8844i 0.0258575i −0.999916 0.0129287i \(-0.995885\pi\)
0.999916 0.0129287i \(-0.00411546\pi\)
\(770\) 0 0
\(771\) 181.197 0.235016
\(772\) 138.374 138.374i 0.179240 0.179240i
\(773\) −556.637 556.637i −0.720100 0.720100i 0.248525 0.968625i \(-0.420054\pi\)
−0.968625 + 0.248525i \(0.920054\pi\)
\(774\) 172.752i 0.223194i
\(775\) 0 0
\(776\) 316.317 0.407625
\(777\) 187.719 187.719i 0.241595 0.241595i
\(778\) 148.935 + 148.935i 0.191433 + 0.191433i
\(779\) 279.002i 0.358154i
\(780\) 0 0
\(781\) −196.637 −0.251775
\(782\) 92.5764 92.5764i 0.118384 0.118384i
\(783\) 26.4704 + 26.4704i 0.0338064 + 0.0338064i
\(784\) 137.938i 0.175942i
\(785\) 0 0
\(786\) −143.650 −0.182761
\(787\) −405.252 + 405.252i −0.514932 + 0.514932i −0.916034 0.401101i \(-0.868628\pi\)
0.401101 + 0.916034i \(0.368628\pi\)
\(788\) 133.827 + 133.827i 0.169832 + 0.169832i
\(789\) 597.192i 0.756898i
\(790\) 0 0
\(791\) 602.793 0.762065
\(792\) −10.6189 + 10.6189i −0.0134078 + 0.0134078i
\(793\) 1045.36 + 1045.36i 1.31824 + 1.31824i
\(794\) 836.776i 1.05387i
\(795\) 0 0
\(796\) 254.927 0.320260
\(797\) 136.640 136.640i 0.171443 0.171443i −0.616170 0.787613i \(-0.711317\pi\)
0.787613 + 0.616170i \(0.211317\pi\)
\(798\) 89.1440 + 89.1440i 0.111709 + 0.111709i
\(799\) 440.239i 0.550987i
\(800\) 0 0
\(801\) 356.762 0.445396
\(802\) −525.592 + 525.592i −0.655352 + 0.655352i
\(803\) −35.5942 35.5942i −0.0443265 0.0443265i
\(804\) 157.023i 0.195302i
\(805\) 0 0
\(806\) 403.890 0.501104
\(807\) 582.478 582.478i 0.721781 0.721781i
\(808\) 35.9724 + 35.9724i 0.0445203 + 0.0445203i
\(809\) 1028.37i 1.27116i −0.772033 0.635582i \(-0.780760\pi\)
0.772033 0.635582i \(-0.219240\pi\)
\(810\) 0 0
\(811\) −825.076 −1.01736 −0.508678 0.860957i \(-0.669866\pi\)
−0.508678 + 0.860957i \(0.669866\pi\)
\(812\) 38.8172 38.8172i 0.0478044 0.0478044i
\(813\) 366.691 + 366.691i 0.451034 + 0.451034i
\(814\) 100.692i 0.123700i
\(815\) 0 0
\(816\) 131.082 0.160640
\(817\) 388.946 388.946i 0.476066 0.476066i
\(818\) −289.417 289.417i −0.353810 0.353810i
\(819\) 214.758i 0.262220i
\(820\) 0 0
\(821\) 323.031 0.393460 0.196730 0.980458i \(-0.436968\pi\)
0.196730 + 0.980458i \(0.436968\pi\)
\(822\) 62.5762 62.5762i 0.0761268 0.0761268i
\(823\) 448.732 + 448.732i 0.545239 + 0.545239i 0.925060 0.379821i \(-0.124014\pi\)
−0.379821 + 0.925060i \(0.624014\pi\)
\(824\) 512.652i 0.622151i
\(825\) 0 0
\(826\) 147.685 0.178796
\(827\) −17.9769 + 17.9769i −0.0217374 + 0.0217374i −0.717892 0.696155i \(-0.754893\pi\)
0.696155 + 0.717892i \(0.254893\pi\)
\(828\) −20.7594 20.7594i −0.0250717 0.0250717i
\(829\) 85.2213i 0.102800i 0.998678 + 0.0514001i \(0.0163684\pi\)
−0.998678 + 0.0514001i \(0.983632\pi\)
\(830\) 0 0
\(831\) 1.89502 0.00228041
\(832\) 106.289 106.289i 0.127751 0.127751i
\(833\) 461.352 + 461.352i 0.553844 + 0.553844i
\(834\) 371.146i 0.445019i
\(835\) 0 0
\(836\) 47.8163 0.0571966
\(837\) 55.8471 55.8471i 0.0667229 0.0667229i
\(838\) −29.5402 29.5402i −0.0352509 0.0352509i
\(839\) 536.490i 0.639440i 0.947512 + 0.319720i \(0.103589\pi\)
−0.947512 + 0.319720i \(0.896411\pi\)
\(840\) 0 0
\(841\) 789.097 0.938285
\(842\) −47.3975 + 47.3975i −0.0562916 + 0.0562916i
\(843\) −163.885 163.885i −0.194407 0.194407i
\(844\) 720.090i 0.853188i
\(845\) 0 0
\(846\) −98.7192 −0.116689
\(847\) −317.537 + 317.537i −0.374896 + 0.374896i
\(848\) 287.674 + 287.674i 0.339238 + 0.339238i
\(849\) 143.854i 0.169440i
\(850\) 0 0
\(851\) 196.846 0.231311
\(852\) 272.151 272.151i 0.319426 0.319426i
\(853\) −328.915 328.915i −0.385597 0.385597i 0.487516 0.873114i \(-0.337903\pi\)
−0.873114 + 0.487516i \(0.837903\pi\)
\(854\) 423.934i 0.496410i
\(855\) 0 0
\(856\) −120.042 −0.140237
\(857\) 209.117 209.117i 0.244010 0.244010i −0.574497 0.818507i \(-0.694802\pi\)
0.818507 + 0.574497i \(0.194802\pi\)
\(858\) −57.5976 57.5976i −0.0671301 0.0671301i
\(859\) 1488.84i 1.73323i −0.498979 0.866614i \(-0.666292\pi\)
0.498979 0.866614i \(-0.333708\pi\)
\(860\) 0 0
\(861\) −136.291 −0.158294
\(862\) −685.640 + 685.640i −0.795406 + 0.795406i
\(863\) 827.823 + 827.823i 0.959239 + 0.959239i 0.999201 0.0399626i \(-0.0127239\pi\)
−0.0399626 + 0.999201i \(0.512724\pi\)
\(864\) 29.3939i 0.0340207i
\(865\) 0 0
\(866\) 536.617 0.619650
\(867\) −84.4694 + 84.4694i −0.0974272 + 0.0974272i
\(868\) −81.8961 81.8961i −0.0943504 0.0943504i
\(869\) 143.966i 0.165669i
\(870\) 0 0
\(871\) 851.698 0.977839
\(872\) −332.332 + 332.332i −0.381115 + 0.381115i
\(873\) 237.238 + 237.238i 0.271750 + 0.271750i
\(874\) 93.4779i 0.106954i
\(875\) 0 0
\(876\) 98.5269 0.112474
\(877\) −4.35746 + 4.35746i −0.00496860 + 0.00496860i −0.709587 0.704618i \(-0.751118\pi\)
0.704618 + 0.709587i \(0.251118\pi\)
\(878\) 758.142 + 758.142i 0.863488 + 0.863488i
\(879\) 648.751i 0.738055i
\(880\) 0 0
\(881\) 798.035 0.905829 0.452914 0.891554i \(-0.350384\pi\)
0.452914 + 0.891554i \(0.350384\pi\)
\(882\) 103.454 103.454i 0.117294 0.117294i
\(883\) 1150.08 + 1150.08i 1.30247 + 1.30247i 0.926724 + 0.375744i \(0.122613\pi\)
0.375744 + 0.926724i \(0.377387\pi\)
\(884\) 710.996i 0.804294i
\(885\) 0 0
\(886\) 1052.57 1.18800
\(887\) 173.672 173.672i 0.195797 0.195797i −0.602399 0.798195i \(-0.705788\pi\)
0.798195 + 0.602399i \(0.205788\pi\)
\(888\) 139.360 + 139.360i 0.156937 + 0.156937i
\(889\) 795.683i 0.895032i
\(890\) 0 0
\(891\) −15.9284 −0.0178770
\(892\) 240.456 240.456i 0.269569 0.269569i
\(893\) 222.263 + 222.263i 0.248895 + 0.248895i
\(894\) 623.237i 0.697133i
\(895\) 0 0
\(896\) −43.1042 −0.0481074
\(897\) 112.600 112.600i 0.125529 0.125529i
\(898\) −482.572 482.572i −0.537386 0.537386i
\(899\) 109.503i 0.121806i
\(900\) 0 0
\(901\) −1924.32 −2.13576
\(902\) −36.5528 + 36.5528i −0.0405242 + 0.0405242i
\(903\) 189.998 + 189.998i 0.210407 + 0.210407i
\(904\) 447.506i 0.495028i
\(905\) 0 0
\(906\) −162.479 −0.179336
\(907\) −254.707 + 254.707i −0.280824 + 0.280824i −0.833438 0.552614i \(-0.813631\pi\)
0.552614 + 0.833438i \(0.313631\pi\)
\(908\) −23.5242 23.5242i −0.0259077 0.0259077i
\(909\) 53.9586i 0.0593604i
\(910\) 0 0
\(911\) −734.298 −0.806035 −0.403017 0.915192i \(-0.632039\pi\)
−0.403017 + 0.915192i \(0.632039\pi\)
\(912\) −66.1793 + 66.1793i −0.0725650 + 0.0725650i
\(913\) −74.8015 74.8015i −0.0819293 0.0819293i
\(914\) 537.267i 0.587820i
\(915\) 0 0
\(916\) 813.151 0.887720
\(917\) −157.990 + 157.990i −0.172290 + 0.172290i
\(918\) 98.3116 + 98.3116i 0.107093 + 0.107093i
\(919\) 479.433i 0.521689i −0.965381 0.260845i \(-0.915999\pi\)
0.965381 0.260845i \(-0.0840011\pi\)
\(920\) 0 0
\(921\) 153.319 0.166470
\(922\) −577.734 + 577.734i −0.626610 + 0.626610i
\(923\) 1476.16 + 1476.16i 1.59931 + 1.59931i
\(924\) 23.3580i 0.0252792i
\(925\) 0 0
\(926\) 1166.80 1.26004
\(927\) 384.489 384.489i 0.414767 0.414767i
\(928\) 28.8174 + 28.8174i 0.0310532 + 0.0310532i
\(929\) 79.1230i 0.0851701i 0.999093 + 0.0425850i \(0.0135593\pi\)
−0.999093 + 0.0425850i \(0.986441\pi\)
\(930\) 0 0
\(931\) −465.845 −0.500370
\(932\) 270.224 270.224i 0.289940 0.289940i
\(933\) −503.379 503.379i −0.539527 0.539527i
\(934\) 1139.17i 1.21967i
\(935\) 0 0
\(936\) 159.434 0.170335
\(937\) −171.622 + 171.622i −0.183161 + 0.183161i −0.792732 0.609571i \(-0.791342\pi\)
0.609571 + 0.792732i \(0.291342\pi\)
\(938\) −172.698 172.698i −0.184113 0.184113i
\(939\) 471.998i 0.502660i
\(940\) 0 0
\(941\) −890.001 −0.945803 −0.472902 0.881115i \(-0.656793\pi\)
−0.472902 + 0.881115i \(0.656793\pi\)
\(942\) −326.582 + 326.582i −0.346691 + 0.346691i
\(943\) −71.4585 71.4585i −0.0757778 0.0757778i
\(944\) 109.640i 0.116144i
\(945\) 0 0
\(946\) 101.914 0.107731
\(947\) 212.637 212.637i 0.224538 0.224538i −0.585868 0.810406i \(-0.699246\pi\)
0.810406 + 0.585868i \(0.199246\pi\)
\(948\) 199.254 + 199.254i 0.210183 + 0.210183i
\(949\) 534.414i 0.563134i
\(950\) 0 0
\(951\) 447.166 0.470206
\(952\) 144.168 144.168i 0.151437 0.151437i
\(953\) 149.539 + 149.539i 0.156914 + 0.156914i 0.781198 0.624284i \(-0.214609\pi\)
−0.624284 + 0.781198i \(0.714609\pi\)
\(954\) 431.511i 0.452317i
\(955\) 0 0
\(956\) −924.191 −0.966726
\(957\) 15.6160 15.6160i 0.0163177 0.0163177i
\(958\) 335.883 + 335.883i 0.350609 + 0.350609i
\(959\) 137.646i 0.143531i
\(960\) 0 0
\(961\) −729.971 −0.759595
\(962\) −755.897 + 755.897i −0.785756 + 0.785756i
\(963\) −90.0318 90.0318i −0.0934910 0.0934910i
\(964\) 293.408i 0.304365i
\(965\) 0 0
\(966\) −45.6634 −0.0472706
\(967\) 438.543 438.543i 0.453509 0.453509i −0.443009 0.896517i \(-0.646089\pi\)
0.896517 + 0.443009i \(0.146089\pi\)
\(968\) −235.735 235.735i −0.243528 0.243528i
\(969\) 442.690i 0.456852i
\(970\) 0 0
\(971\) 926.353 0.954020 0.477010 0.878898i \(-0.341721\pi\)
0.477010 + 0.878898i \(0.341721\pi\)
\(972\) 22.0454 22.0454i 0.0226805 0.0226805i
\(973\) −408.196 408.196i −0.419523 0.419523i
\(974\) 562.936i 0.577964i
\(975\) 0 0
\(976\) 314.723 0.322462
\(977\) 665.771 665.771i 0.681444 0.681444i −0.278881 0.960326i \(-0.589964\pi\)
0.960326 + 0.278881i \(0.0899636\pi\)
\(978\) −163.389 163.389i −0.167064 0.167064i
\(979\) 210.469i 0.214983i
\(980\) 0 0
\(981\) −498.499 −0.508154
\(982\) −383.934 + 383.934i −0.390971 + 0.390971i
\(983\) −577.101 577.101i −0.587082 0.587082i 0.349758 0.936840i \(-0.386264\pi\)
−0.936840 + 0.349758i \(0.886264\pi\)
\(984\) 101.180i 0.102826i
\(985\) 0 0
\(986\) −192.767 −0.195504
\(987\) −108.574 + 108.574i −0.110004 + 0.110004i
\(988\) −358.960 358.960i −0.363319 0.363319i
\(989\) 199.235i 0.201451i
\(990\) 0 0
\(991\) −1264.50 −1.27599 −0.637994 0.770041i \(-0.720236\pi\)
−0.637994 + 0.770041i \(0.720236\pi\)
\(992\) 60.7986 60.7986i 0.0612889 0.0612889i
\(993\) −323.285 323.285i −0.325564 0.325564i
\(994\) 598.638i 0.602252i
\(995\) 0 0
\(996\) 207.055 0.207887
\(997\) 1255.30 1255.30i 1.25908 1.25908i 0.307544 0.951534i \(-0.400493\pi\)
0.951534 0.307544i \(-0.0995070\pi\)
\(998\) 507.775 + 507.775i 0.508793 + 0.508793i
\(999\) 209.040i 0.209250i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 750.3.f.b.193.2 16
5.2 odd 4 inner 750.3.f.b.307.2 yes 16
5.3 odd 4 750.3.f.c.307.7 yes 16
5.4 even 2 750.3.f.c.193.7 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
750.3.f.b.193.2 16 1.1 even 1 trivial
750.3.f.b.307.2 yes 16 5.2 odd 4 inner
750.3.f.c.193.7 yes 16 5.4 even 2
750.3.f.c.307.7 yes 16 5.3 odd 4