Properties

Label 750.2.g.b.601.1
Level $750$
Weight $2$
Character 750.601
Analytic conductor $5.989$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [750,2,Mod(151,750)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("750.151"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(750, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 750 = 2 \cdot 3 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 750.g (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,1,-1,-1,0,1,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.98878015160\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 150)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 601.1
Root \(-0.309017 - 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 750.601
Dual form 750.2.g.b.151.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.309017 + 0.951057i) q^{2} +(-0.809017 - 0.587785i) q^{3} +(-0.809017 - 0.587785i) q^{4} +(0.809017 - 0.587785i) q^{6} -0.381966 q^{7} +(0.809017 - 0.587785i) q^{8} +(0.309017 + 0.951057i) q^{9} +(0.427051 - 1.31433i) q^{11} +(0.309017 + 0.951057i) q^{12} +(-0.763932 - 2.35114i) q^{13} +(0.118034 - 0.363271i) q^{14} +(0.309017 + 0.951057i) q^{16} +(-2.61803 + 1.90211i) q^{17} -1.00000 q^{18} +(-6.23607 + 4.53077i) q^{19} +(0.309017 + 0.224514i) q^{21} +(1.11803 + 0.812299i) q^{22} +(1.38197 - 4.25325i) q^{23} -1.00000 q^{24} +2.47214 q^{26} +(0.309017 - 0.951057i) q^{27} +(0.309017 + 0.224514i) q^{28} +(0.381966 + 0.277515i) q^{29} +(-3.54508 + 2.57565i) q^{31} -1.00000 q^{32} +(-1.11803 + 0.812299i) q^{33} +(-1.00000 - 3.07768i) q^{34} +(0.309017 - 0.951057i) q^{36} +(-2.47214 - 7.60845i) q^{37} +(-2.38197 - 7.33094i) q^{38} +(-0.763932 + 2.35114i) q^{39} +(-2.38197 - 7.33094i) q^{41} +(-0.309017 + 0.224514i) q^{42} -5.70820 q^{43} +(-1.11803 + 0.812299i) q^{44} +(3.61803 + 2.62866i) q^{46} +(-9.47214 - 6.88191i) q^{47} +(0.309017 - 0.951057i) q^{48} -6.85410 q^{49} +3.23607 q^{51} +(-0.763932 + 2.35114i) q^{52} +(7.35410 + 5.34307i) q^{53} +(0.809017 + 0.587785i) q^{54} +(-0.309017 + 0.224514i) q^{56} +7.70820 q^{57} +(-0.381966 + 0.277515i) q^{58} +(-0.427051 - 1.31433i) q^{59} +(2.23607 - 6.88191i) q^{61} +(-1.35410 - 4.16750i) q^{62} +(-0.118034 - 0.363271i) q^{63} +(0.309017 - 0.951057i) q^{64} +(-0.427051 - 1.31433i) q^{66} +(-8.47214 + 6.15537i) q^{67} +3.23607 q^{68} +(-3.61803 + 2.62866i) q^{69} +(-11.7082 - 8.50651i) q^{71} +(0.809017 + 0.587785i) q^{72} +(-3.85410 + 11.8617i) q^{73} +8.00000 q^{74} +7.70820 q^{76} +(-0.163119 + 0.502029i) q^{77} +(-2.00000 - 1.45309i) q^{78} +(2.73607 + 1.98787i) q^{79} +(-0.809017 + 0.587785i) q^{81} +7.70820 q^{82} +(7.16312 - 5.20431i) q^{83} +(-0.118034 - 0.363271i) q^{84} +(1.76393 - 5.42882i) q^{86} +(-0.145898 - 0.449028i) q^{87} +(-0.427051 - 1.31433i) q^{88} +(3.85410 - 11.8617i) q^{89} +(0.291796 + 0.898056i) q^{91} +(-3.61803 + 2.62866i) q^{92} +4.38197 q^{93} +(9.47214 - 6.88191i) q^{94} +(0.809017 + 0.587785i) q^{96} +(-4.54508 - 3.30220i) q^{97} +(2.11803 - 6.51864i) q^{98} +1.38197 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} - q^{3} - q^{4} + q^{6} - 6 q^{7} + q^{8} - q^{9} - 5 q^{11} - q^{12} - 12 q^{13} - 4 q^{14} - q^{16} - 6 q^{17} - 4 q^{18} - 16 q^{19} - q^{21} + 10 q^{23} - 4 q^{24} - 8 q^{26} - q^{27}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/750\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(251\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.309017 + 0.951057i −0.218508 + 0.672499i
\(3\) −0.809017 0.587785i −0.467086 0.339358i
\(4\) −0.809017 0.587785i −0.404508 0.293893i
\(5\) 0 0
\(6\) 0.809017 0.587785i 0.330280 0.239962i
\(7\) −0.381966 −0.144370 −0.0721848 0.997391i \(-0.522997\pi\)
−0.0721848 + 0.997391i \(0.522997\pi\)
\(8\) 0.809017 0.587785i 0.286031 0.207813i
\(9\) 0.309017 + 0.951057i 0.103006 + 0.317019i
\(10\) 0 0
\(11\) 0.427051 1.31433i 0.128761 0.396285i −0.865807 0.500378i \(-0.833194\pi\)
0.994567 + 0.104094i \(0.0331942\pi\)
\(12\) 0.309017 + 0.951057i 0.0892055 + 0.274546i
\(13\) −0.763932 2.35114i −0.211877 0.652089i −0.999361 0.0357541i \(-0.988617\pi\)
0.787484 0.616335i \(-0.211383\pi\)
\(14\) 0.118034 0.363271i 0.0315459 0.0970883i
\(15\) 0 0
\(16\) 0.309017 + 0.951057i 0.0772542 + 0.237764i
\(17\) −2.61803 + 1.90211i −0.634967 + 0.461330i −0.858117 0.513454i \(-0.828366\pi\)
0.223151 + 0.974784i \(0.428366\pi\)
\(18\) −1.00000 −0.235702
\(19\) −6.23607 + 4.53077i −1.43065 + 1.03943i −0.440757 + 0.897626i \(0.645290\pi\)
−0.989895 + 0.141803i \(0.954710\pi\)
\(20\) 0 0
\(21\) 0.309017 + 0.224514i 0.0674330 + 0.0489930i
\(22\) 1.11803 + 0.812299i 0.238366 + 0.173183i
\(23\) 1.38197 4.25325i 0.288160 0.886865i −0.697274 0.716805i \(-0.745604\pi\)
0.985434 0.170060i \(-0.0543961\pi\)
\(24\) −1.00000 −0.204124
\(25\) 0 0
\(26\) 2.47214 0.484826
\(27\) 0.309017 0.951057i 0.0594703 0.183031i
\(28\) 0.309017 + 0.224514i 0.0583987 + 0.0424292i
\(29\) 0.381966 + 0.277515i 0.0709293 + 0.0515332i 0.622685 0.782473i \(-0.286042\pi\)
−0.551756 + 0.834006i \(0.686042\pi\)
\(30\) 0 0
\(31\) −3.54508 + 2.57565i −0.636716 + 0.462601i −0.858720 0.512444i \(-0.828740\pi\)
0.222004 + 0.975046i \(0.428740\pi\)
\(32\) −1.00000 −0.176777
\(33\) −1.11803 + 0.812299i −0.194625 + 0.141403i
\(34\) −1.00000 3.07768i −0.171499 0.527818i
\(35\) 0 0
\(36\) 0.309017 0.951057i 0.0515028 0.158509i
\(37\) −2.47214 7.60845i −0.406417 1.25082i −0.919707 0.392607i \(-0.871573\pi\)
0.513290 0.858215i \(-0.328427\pi\)
\(38\) −2.38197 7.33094i −0.386406 1.18924i
\(39\) −0.763932 + 2.35114i −0.122327 + 0.376484i
\(40\) 0 0
\(41\) −2.38197 7.33094i −0.372001 1.14490i −0.945480 0.325680i \(-0.894407\pi\)
0.573479 0.819220i \(-0.305593\pi\)
\(42\) −0.309017 + 0.224514i −0.0476824 + 0.0346433i
\(43\) −5.70820 −0.870493 −0.435246 0.900311i \(-0.643339\pi\)
−0.435246 + 0.900311i \(0.643339\pi\)
\(44\) −1.11803 + 0.812299i −0.168550 + 0.122459i
\(45\) 0 0
\(46\) 3.61803 + 2.62866i 0.533450 + 0.387574i
\(47\) −9.47214 6.88191i −1.38165 1.00383i −0.996724 0.0808837i \(-0.974226\pi\)
−0.384929 0.922946i \(-0.625774\pi\)
\(48\) 0.309017 0.951057i 0.0446028 0.137273i
\(49\) −6.85410 −0.979157
\(50\) 0 0
\(51\) 3.23607 0.453140
\(52\) −0.763932 + 2.35114i −0.105938 + 0.326045i
\(53\) 7.35410 + 5.34307i 1.01016 + 0.733927i 0.964243 0.265018i \(-0.0853780\pi\)
0.0459202 + 0.998945i \(0.485378\pi\)
\(54\) 0.809017 + 0.587785i 0.110093 + 0.0799874i
\(55\) 0 0
\(56\) −0.309017 + 0.224514i −0.0412941 + 0.0300019i
\(57\) 7.70820 1.02098
\(58\) −0.381966 + 0.277515i −0.0501546 + 0.0364394i
\(59\) −0.427051 1.31433i −0.0555973 0.171111i 0.919402 0.393320i \(-0.128673\pi\)
−0.974999 + 0.222209i \(0.928673\pi\)
\(60\) 0 0
\(61\) 2.23607 6.88191i 0.286299 0.881138i −0.699707 0.714430i \(-0.746686\pi\)
0.986006 0.166708i \(-0.0533138\pi\)
\(62\) −1.35410 4.16750i −0.171971 0.529273i
\(63\) −0.118034 0.363271i −0.0148709 0.0457679i
\(64\) 0.309017 0.951057i 0.0386271 0.118882i
\(65\) 0 0
\(66\) −0.427051 1.31433i −0.0525663 0.161783i
\(67\) −8.47214 + 6.15537i −1.03504 + 0.751998i −0.969310 0.245840i \(-0.920936\pi\)
−0.0657257 + 0.997838i \(0.520936\pi\)
\(68\) 3.23607 0.392431
\(69\) −3.61803 + 2.62866i −0.435560 + 0.316453i
\(70\) 0 0
\(71\) −11.7082 8.50651i −1.38951 1.00954i −0.995919 0.0902503i \(-0.971233\pi\)
−0.393589 0.919286i \(-0.628767\pi\)
\(72\) 0.809017 + 0.587785i 0.0953436 + 0.0692712i
\(73\) −3.85410 + 11.8617i −0.451089 + 1.38831i 0.424578 + 0.905391i \(0.360422\pi\)
−0.875667 + 0.482916i \(0.839578\pi\)
\(74\) 8.00000 0.929981
\(75\) 0 0
\(76\) 7.70820 0.884192
\(77\) −0.163119 + 0.502029i −0.0185891 + 0.0572115i
\(78\) −2.00000 1.45309i −0.226455 0.164529i
\(79\) 2.73607 + 1.98787i 0.307832 + 0.223653i 0.730966 0.682414i \(-0.239070\pi\)
−0.423134 + 0.906067i \(0.639070\pi\)
\(80\) 0 0
\(81\) −0.809017 + 0.587785i −0.0898908 + 0.0653095i
\(82\) 7.70820 0.851229
\(83\) 7.16312 5.20431i 0.786254 0.571247i −0.120595 0.992702i \(-0.538480\pi\)
0.906850 + 0.421454i \(0.138480\pi\)
\(84\) −0.118034 0.363271i −0.0128786 0.0396361i
\(85\) 0 0
\(86\) 1.76393 5.42882i 0.190210 0.585405i
\(87\) −0.145898 0.449028i −0.0156419 0.0481409i
\(88\) −0.427051 1.31433i −0.0455238 0.140108i
\(89\) 3.85410 11.8617i 0.408534 1.25734i −0.509374 0.860545i \(-0.670123\pi\)
0.917908 0.396793i \(-0.129877\pi\)
\(90\) 0 0
\(91\) 0.291796 + 0.898056i 0.0305885 + 0.0941418i
\(92\) −3.61803 + 2.62866i −0.377206 + 0.274056i
\(93\) 4.38197 0.454389
\(94\) 9.47214 6.88191i 0.976976 0.709815i
\(95\) 0 0
\(96\) 0.809017 + 0.587785i 0.0825700 + 0.0599906i
\(97\) −4.54508 3.30220i −0.461483 0.335287i 0.332629 0.943058i \(-0.392064\pi\)
−0.794113 + 0.607770i \(0.792064\pi\)
\(98\) 2.11803 6.51864i 0.213954 0.658482i
\(99\) 1.38197 0.138893
\(100\) 0 0
\(101\) 6.61803 0.658519 0.329259 0.944239i \(-0.393201\pi\)
0.329259 + 0.944239i \(0.393201\pi\)
\(102\) −1.00000 + 3.07768i −0.0990148 + 0.304736i
\(103\) −1.07295 0.779543i −0.105721 0.0768107i 0.533669 0.845694i \(-0.320813\pi\)
−0.639390 + 0.768883i \(0.720813\pi\)
\(104\) −2.00000 1.45309i −0.196116 0.142487i
\(105\) 0 0
\(106\) −7.35410 + 5.34307i −0.714294 + 0.518965i
\(107\) 9.38197 0.906989 0.453494 0.891259i \(-0.350177\pi\)
0.453494 + 0.891259i \(0.350177\pi\)
\(108\) −0.809017 + 0.587785i −0.0778477 + 0.0565597i
\(109\) 3.94427 + 12.1392i 0.377793 + 1.16273i 0.941575 + 0.336803i \(0.109346\pi\)
−0.563782 + 0.825923i \(0.690654\pi\)
\(110\) 0 0
\(111\) −2.47214 + 7.60845i −0.234645 + 0.722162i
\(112\) −0.118034 0.363271i −0.0111532 0.0343259i
\(113\) 4.56231 + 14.0413i 0.429186 + 1.32090i 0.898929 + 0.438095i \(0.144346\pi\)
−0.469743 + 0.882803i \(0.655654\pi\)
\(114\) −2.38197 + 7.33094i −0.223092 + 0.686605i
\(115\) 0 0
\(116\) −0.145898 0.449028i −0.0135463 0.0416912i
\(117\) 2.00000 1.45309i 0.184900 0.134338i
\(118\) 1.38197 0.127220
\(119\) 1.00000 0.726543i 0.0916698 0.0666020i
\(120\) 0 0
\(121\) 7.35410 + 5.34307i 0.668555 + 0.485733i
\(122\) 5.85410 + 4.25325i 0.530005 + 0.385072i
\(123\) −2.38197 + 7.33094i −0.214775 + 0.661008i
\(124\) 4.38197 0.393512
\(125\) 0 0
\(126\) 0.381966 0.0340282
\(127\) −3.51722 + 10.8249i −0.312103 + 0.960554i 0.664828 + 0.746997i \(0.268505\pi\)
−0.976931 + 0.213557i \(0.931495\pi\)
\(128\) 0.809017 + 0.587785i 0.0715077 + 0.0519534i
\(129\) 4.61803 + 3.35520i 0.406595 + 0.295409i
\(130\) 0 0
\(131\) −14.4721 + 10.5146i −1.26444 + 0.918667i −0.998967 0.0454523i \(-0.985527\pi\)
−0.265470 + 0.964119i \(0.585527\pi\)
\(132\) 1.38197 0.120285
\(133\) 2.38197 1.73060i 0.206543 0.150062i
\(134\) −3.23607 9.95959i −0.279554 0.860378i
\(135\) 0 0
\(136\) −1.00000 + 3.07768i −0.0857493 + 0.263909i
\(137\) −3.14590 9.68208i −0.268772 0.827196i −0.990800 0.135332i \(-0.956790\pi\)
0.722028 0.691864i \(-0.243210\pi\)
\(138\) −1.38197 4.25325i −0.117641 0.362061i
\(139\) 0.472136 1.45309i 0.0400460 0.123249i −0.929035 0.369992i \(-0.879360\pi\)
0.969081 + 0.246743i \(0.0793604\pi\)
\(140\) 0 0
\(141\) 3.61803 + 11.1352i 0.304693 + 0.937750i
\(142\) 11.7082 8.50651i 0.982531 0.713850i
\(143\) −3.41641 −0.285694
\(144\) −0.809017 + 0.587785i −0.0674181 + 0.0489821i
\(145\) 0 0
\(146\) −10.0902 7.33094i −0.835068 0.606713i
\(147\) 5.54508 + 4.02874i 0.457351 + 0.332285i
\(148\) −2.47214 + 7.60845i −0.203208 + 0.625411i
\(149\) 10.9098 0.893768 0.446884 0.894592i \(-0.352534\pi\)
0.446884 + 0.894592i \(0.352534\pi\)
\(150\) 0 0
\(151\) 2.67376 0.217588 0.108794 0.994064i \(-0.465301\pi\)
0.108794 + 0.994064i \(0.465301\pi\)
\(152\) −2.38197 + 7.33094i −0.193203 + 0.594618i
\(153\) −2.61803 1.90211i −0.211656 0.153777i
\(154\) −0.427051 0.310271i −0.0344127 0.0250023i
\(155\) 0 0
\(156\) 2.00000 1.45309i 0.160128 0.116340i
\(157\) 22.6525 1.80786 0.903932 0.427676i \(-0.140668\pi\)
0.903932 + 0.427676i \(0.140668\pi\)
\(158\) −2.73607 + 1.98787i −0.217670 + 0.158146i
\(159\) −2.80902 8.64527i −0.222770 0.685614i
\(160\) 0 0
\(161\) −0.527864 + 1.62460i −0.0416015 + 0.128036i
\(162\) −0.309017 0.951057i −0.0242787 0.0747221i
\(163\) −2.61803 8.05748i −0.205060 0.631111i −0.999711 0.0240436i \(-0.992346\pi\)
0.794651 0.607067i \(-0.207654\pi\)
\(164\) −2.38197 + 7.33094i −0.186000 + 0.572450i
\(165\) 0 0
\(166\) 2.73607 + 8.42075i 0.212360 + 0.653577i
\(167\) −1.38197 + 1.00406i −0.106940 + 0.0776963i −0.639970 0.768400i \(-0.721053\pi\)
0.533030 + 0.846096i \(0.321053\pi\)
\(168\) 0.381966 0.0294693
\(169\) 5.57295 4.04898i 0.428688 0.311460i
\(170\) 0 0
\(171\) −6.23607 4.53077i −0.476884 0.346477i
\(172\) 4.61803 + 3.35520i 0.352122 + 0.255831i
\(173\) 1.88197 5.79210i 0.143083 0.440365i −0.853676 0.520804i \(-0.825632\pi\)
0.996760 + 0.0804391i \(0.0256322\pi\)
\(174\) 0.472136 0.0357925
\(175\) 0 0
\(176\) 1.38197 0.104170
\(177\) −0.427051 + 1.31433i −0.0320991 + 0.0987909i
\(178\) 10.0902 + 7.33094i 0.756290 + 0.549477i
\(179\) −2.54508 1.84911i −0.190229 0.138209i 0.488595 0.872511i \(-0.337510\pi\)
−0.678823 + 0.734302i \(0.737510\pi\)
\(180\) 0 0
\(181\) −19.9443 + 14.4904i −1.48245 + 1.07706i −0.505688 + 0.862717i \(0.668761\pi\)
−0.976758 + 0.214344i \(0.931239\pi\)
\(182\) −0.944272 −0.0699941
\(183\) −5.85410 + 4.25325i −0.432748 + 0.314410i
\(184\) −1.38197 4.25325i −0.101880 0.313554i
\(185\) 0 0
\(186\) −1.35410 + 4.16750i −0.0992876 + 0.305576i
\(187\) 1.38197 + 4.25325i 0.101059 + 0.311029i
\(188\) 3.61803 + 11.1352i 0.263872 + 0.812115i
\(189\) −0.118034 + 0.363271i −0.00858571 + 0.0264241i
\(190\) 0 0
\(191\) 5.47214 + 16.8415i 0.395950 + 1.21861i 0.928219 + 0.372033i \(0.121339\pi\)
−0.532269 + 0.846575i \(0.678661\pi\)
\(192\) −0.809017 + 0.587785i −0.0583858 + 0.0424197i
\(193\) −11.1459 −0.802299 −0.401150 0.916013i \(-0.631389\pi\)
−0.401150 + 0.916013i \(0.631389\pi\)
\(194\) 4.54508 3.30220i 0.326318 0.237084i
\(195\) 0 0
\(196\) 5.54508 + 4.02874i 0.396077 + 0.287767i
\(197\) −4.78115 3.47371i −0.340643 0.247492i 0.404290 0.914631i \(-0.367519\pi\)
−0.744933 + 0.667139i \(0.767519\pi\)
\(198\) −0.427051 + 1.31433i −0.0303492 + 0.0934052i
\(199\) −18.5066 −1.31190 −0.655948 0.754806i \(-0.727731\pi\)
−0.655948 + 0.754806i \(0.727731\pi\)
\(200\) 0 0
\(201\) 10.4721 0.738648
\(202\) −2.04508 + 6.29412i −0.143892 + 0.442853i
\(203\) −0.145898 0.106001i −0.0102400 0.00743982i
\(204\) −2.61803 1.90211i −0.183299 0.133175i
\(205\) 0 0
\(206\) 1.07295 0.779543i 0.0747559 0.0543133i
\(207\) 4.47214 0.310835
\(208\) 2.00000 1.45309i 0.138675 0.100753i
\(209\) 3.29180 + 10.1311i 0.227698 + 0.700783i
\(210\) 0 0
\(211\) 7.23607 22.2703i 0.498151 1.53315i −0.313836 0.949477i \(-0.601614\pi\)
0.811987 0.583675i \(-0.198386\pi\)
\(212\) −2.80902 8.64527i −0.192924 0.593759i
\(213\) 4.47214 + 13.7638i 0.306426 + 0.943081i
\(214\) −2.89919 + 8.92278i −0.198184 + 0.609949i
\(215\) 0 0
\(216\) −0.309017 0.951057i −0.0210259 0.0647112i
\(217\) 1.35410 0.983813i 0.0919224 0.0667856i
\(218\) −12.7639 −0.864483
\(219\) 10.0902 7.33094i 0.681830 0.495379i
\(220\) 0 0
\(221\) 6.47214 + 4.70228i 0.435363 + 0.316310i
\(222\) −6.47214 4.70228i −0.434381 0.315597i
\(223\) −0.954915 + 2.93893i −0.0639458 + 0.196805i −0.977925 0.208956i \(-0.932993\pi\)
0.913979 + 0.405761i \(0.132993\pi\)
\(224\) 0.381966 0.0255212
\(225\) 0 0
\(226\) −14.7639 −0.982082
\(227\) −3.48278 + 10.7189i −0.231160 + 0.711438i 0.766447 + 0.642307i \(0.222023\pi\)
−0.997608 + 0.0691308i \(0.977977\pi\)
\(228\) −6.23607 4.53077i −0.412994 0.300057i
\(229\) 11.7082 + 8.50651i 0.773700 + 0.562126i 0.903082 0.429469i \(-0.141299\pi\)
−0.129382 + 0.991595i \(0.541299\pi\)
\(230\) 0 0
\(231\) 0.427051 0.310271i 0.0280979 0.0204143i
\(232\) 0.472136 0.0309972
\(233\) −10.2361 + 7.43694i −0.670587 + 0.487210i −0.870222 0.492660i \(-0.836024\pi\)
0.199635 + 0.979870i \(0.436024\pi\)
\(234\) 0.763932 + 2.35114i 0.0499398 + 0.153699i
\(235\) 0 0
\(236\) −0.427051 + 1.31433i −0.0277987 + 0.0855555i
\(237\) −1.04508 3.21644i −0.0678856 0.208930i
\(238\) 0.381966 + 1.17557i 0.0247592 + 0.0762009i
\(239\) 7.94427 24.4500i 0.513872 1.58154i −0.271452 0.962452i \(-0.587504\pi\)
0.785325 0.619084i \(-0.212496\pi\)
\(240\) 0 0
\(241\) −3.26393 10.0453i −0.210248 0.647078i −0.999457 0.0329526i \(-0.989509\pi\)
0.789209 0.614125i \(-0.210491\pi\)
\(242\) −7.35410 + 5.34307i −0.472740 + 0.343465i
\(243\) 1.00000 0.0641500
\(244\) −5.85410 + 4.25325i −0.374770 + 0.272287i
\(245\) 0 0
\(246\) −6.23607 4.53077i −0.397597 0.288871i
\(247\) 15.4164 + 11.2007i 0.980923 + 0.712682i
\(248\) −1.35410 + 4.16750i −0.0859856 + 0.264636i
\(249\) −8.85410 −0.561106
\(250\) 0 0
\(251\) −6.56231 −0.414209 −0.207105 0.978319i \(-0.566404\pi\)
−0.207105 + 0.978319i \(0.566404\pi\)
\(252\) −0.118034 + 0.363271i −0.00743544 + 0.0228839i
\(253\) −5.00000 3.63271i −0.314347 0.228387i
\(254\) −9.20820 6.69015i −0.577774 0.419777i
\(255\) 0 0
\(256\) −0.809017 + 0.587785i −0.0505636 + 0.0367366i
\(257\) 22.0000 1.37232 0.686161 0.727450i \(-0.259294\pi\)
0.686161 + 0.727450i \(0.259294\pi\)
\(258\) −4.61803 + 3.35520i −0.287506 + 0.208886i
\(259\) 0.944272 + 2.90617i 0.0586742 + 0.180581i
\(260\) 0 0
\(261\) −0.145898 + 0.449028i −0.00903086 + 0.0277941i
\(262\) −5.52786 17.0130i −0.341513 1.05107i
\(263\) −0.527864 1.62460i −0.0325495 0.100177i 0.933462 0.358677i \(-0.116772\pi\)
−0.966011 + 0.258500i \(0.916772\pi\)
\(264\) −0.427051 + 1.31433i −0.0262832 + 0.0808913i
\(265\) 0 0
\(266\) 0.909830 + 2.80017i 0.0557853 + 0.171689i
\(267\) −10.0902 + 7.33094i −0.617508 + 0.448646i
\(268\) 10.4721 0.639688
\(269\) −1.69098 + 1.22857i −0.103101 + 0.0749073i −0.638141 0.769919i \(-0.720296\pi\)
0.535040 + 0.844827i \(0.320296\pi\)
\(270\) 0 0
\(271\) −8.92705 6.48588i −0.542280 0.393989i 0.282651 0.959223i \(-0.408786\pi\)
−0.824931 + 0.565233i \(0.808786\pi\)
\(272\) −2.61803 1.90211i −0.158742 0.115333i
\(273\) 0.291796 0.898056i 0.0176603 0.0543528i
\(274\) 10.1803 0.615017
\(275\) 0 0
\(276\) 4.47214 0.269191
\(277\) 0.291796 0.898056i 0.0175323 0.0539590i −0.941908 0.335872i \(-0.890969\pi\)
0.959440 + 0.281913i \(0.0909690\pi\)
\(278\) 1.23607 + 0.898056i 0.0741344 + 0.0538618i
\(279\) −3.54508 2.57565i −0.212239 0.154200i
\(280\) 0 0
\(281\) 24.1803 17.5680i 1.44248 1.04802i 0.454961 0.890511i \(-0.349653\pi\)
0.987517 0.157510i \(-0.0503467\pi\)
\(282\) −11.7082 −0.697213
\(283\) 25.4164 18.4661i 1.51085 1.09770i 0.545050 0.838404i \(-0.316511\pi\)
0.965799 0.259292i \(-0.0834892\pi\)
\(284\) 4.47214 + 13.7638i 0.265372 + 0.816732i
\(285\) 0 0
\(286\) 1.05573 3.24920i 0.0624265 0.192129i
\(287\) 0.909830 + 2.80017i 0.0537056 + 0.165289i
\(288\) −0.309017 0.951057i −0.0182090 0.0560415i
\(289\) −2.01722 + 6.20837i −0.118660 + 0.365198i
\(290\) 0 0
\(291\) 1.73607 + 5.34307i 0.101770 + 0.313216i
\(292\) 10.0902 7.33094i 0.590483 0.429011i
\(293\) 10.9098 0.637359 0.318680 0.947863i \(-0.396761\pi\)
0.318680 + 0.947863i \(0.396761\pi\)
\(294\) −5.54508 + 4.02874i −0.323396 + 0.234961i
\(295\) 0 0
\(296\) −6.47214 4.70228i −0.376185 0.273315i
\(297\) −1.11803 0.812299i −0.0648749 0.0471344i
\(298\) −3.37132 + 10.3759i −0.195295 + 0.601058i
\(299\) −11.0557 −0.639369
\(300\) 0 0
\(301\) 2.18034 0.125673
\(302\) −0.826238 + 2.54290i −0.0475446 + 0.146327i
\(303\) −5.35410 3.88998i −0.307585 0.223474i
\(304\) −6.23607 4.53077i −0.357663 0.259857i
\(305\) 0 0
\(306\) 2.61803 1.90211i 0.149663 0.108737i
\(307\) −10.0000 −0.570730 −0.285365 0.958419i \(-0.592115\pi\)
−0.285365 + 0.958419i \(0.592115\pi\)
\(308\) 0.427051 0.310271i 0.0243335 0.0176793i
\(309\) 0.409830 + 1.26133i 0.0233144 + 0.0717544i
\(310\) 0 0
\(311\) −5.85410 + 18.0171i −0.331956 + 1.02165i 0.636247 + 0.771486i \(0.280486\pi\)
−0.968202 + 0.250169i \(0.919514\pi\)
\(312\) 0.763932 + 2.35114i 0.0432491 + 0.133107i
\(313\) −5.33688 16.4252i −0.301658 0.928409i −0.980903 0.194497i \(-0.937693\pi\)
0.679245 0.733912i \(-0.262307\pi\)
\(314\) −7.00000 + 21.5438i −0.395033 + 1.21579i
\(315\) 0 0
\(316\) −1.04508 3.21644i −0.0587906 0.180939i
\(317\) −0.354102 + 0.257270i −0.0198883 + 0.0144497i −0.597685 0.801731i \(-0.703913\pi\)
0.577797 + 0.816181i \(0.303913\pi\)
\(318\) 9.09017 0.509751
\(319\) 0.527864 0.383516i 0.0295547 0.0214728i
\(320\) 0 0
\(321\) −7.59017 5.51458i −0.423642 0.307794i
\(322\) −1.38197 1.00406i −0.0770140 0.0559539i
\(323\) 7.70820 23.7234i 0.428896 1.32001i
\(324\) 1.00000 0.0555556
\(325\) 0 0
\(326\) 8.47214 0.469228
\(327\) 3.94427 12.1392i 0.218119 0.671300i
\(328\) −6.23607 4.53077i −0.344329 0.250170i
\(329\) 3.61803 + 2.62866i 0.199469 + 0.144922i
\(330\) 0 0
\(331\) 14.5623 10.5801i 0.800417 0.581537i −0.110620 0.993863i \(-0.535284\pi\)
0.911036 + 0.412326i \(0.135284\pi\)
\(332\) −8.85410 −0.485932
\(333\) 6.47214 4.70228i 0.354671 0.257683i
\(334\) −0.527864 1.62460i −0.0288834 0.0888941i
\(335\) 0 0
\(336\) −0.118034 + 0.363271i −0.00643928 + 0.0198181i
\(337\) −3.73607 11.4984i −0.203517 0.626360i −0.999771 0.0213978i \(-0.993188\pi\)
0.796254 0.604962i \(-0.206812\pi\)
\(338\) 2.12868 + 6.55139i 0.115785 + 0.356349i
\(339\) 4.56231 14.0413i 0.247790 0.762621i
\(340\) 0 0
\(341\) 1.87132 + 5.75934i 0.101338 + 0.311886i
\(342\) 6.23607 4.53077i 0.337208 0.244996i
\(343\) 5.29180 0.285730
\(344\) −4.61803 + 3.35520i −0.248988 + 0.180900i
\(345\) 0 0
\(346\) 4.92705 + 3.57971i 0.264880 + 0.192447i
\(347\) 0.354102 + 0.257270i 0.0190092 + 0.0138110i 0.597249 0.802056i \(-0.296260\pi\)
−0.578240 + 0.815867i \(0.696260\pi\)
\(348\) −0.145898 + 0.449028i −0.00782096 + 0.0240704i
\(349\) 7.88854 0.422264 0.211132 0.977458i \(-0.432285\pi\)
0.211132 + 0.977458i \(0.432285\pi\)
\(350\) 0 0
\(351\) −2.47214 −0.131953
\(352\) −0.427051 + 1.31433i −0.0227619 + 0.0700539i
\(353\) −7.09017 5.15131i −0.377372 0.274177i 0.382889 0.923794i \(-0.374929\pi\)
−0.760261 + 0.649618i \(0.774929\pi\)
\(354\) −1.11803 0.812299i −0.0594228 0.0431732i
\(355\) 0 0
\(356\) −10.0902 + 7.33094i −0.534778 + 0.388539i
\(357\) −1.23607 −0.0654197
\(358\) 2.54508 1.84911i 0.134512 0.0977286i
\(359\) −0.0557281 0.171513i −0.00294122 0.00905213i 0.949575 0.313540i \(-0.101515\pi\)
−0.952516 + 0.304487i \(0.901515\pi\)
\(360\) 0 0
\(361\) 12.4894 38.4383i 0.657335 2.02307i
\(362\) −7.61803 23.4459i −0.400395 1.23229i
\(363\) −2.80902 8.64527i −0.147435 0.453759i
\(364\) 0.291796 0.898056i 0.0152943 0.0470709i
\(365\) 0 0
\(366\) −2.23607 6.88191i −0.116881 0.359723i
\(367\) −22.9615 + 16.6825i −1.19858 + 0.870819i −0.994144 0.108060i \(-0.965536\pi\)
−0.204436 + 0.978880i \(0.565536\pi\)
\(368\) 4.47214 0.233126
\(369\) 6.23607 4.53077i 0.324637 0.235862i
\(370\) 0 0
\(371\) −2.80902 2.04087i −0.145837 0.105957i
\(372\) −3.54508 2.57565i −0.183804 0.133541i
\(373\) 6.32624 19.4702i 0.327560 1.00813i −0.642712 0.766108i \(-0.722191\pi\)
0.970272 0.242018i \(-0.0778094\pi\)
\(374\) −4.47214 −0.231249
\(375\) 0 0
\(376\) −11.7082 −0.603805
\(377\) 0.360680 1.11006i 0.0185760 0.0571709i
\(378\) −0.309017 0.224514i −0.0158941 0.0115478i
\(379\) −1.76393 1.28157i −0.0906071 0.0658299i 0.541559 0.840662i \(-0.317834\pi\)
−0.632166 + 0.774833i \(0.717834\pi\)
\(380\) 0 0
\(381\) 9.20820 6.69015i 0.471751 0.342747i
\(382\) −17.7082 −0.906031
\(383\) −16.1803 + 11.7557i −0.826777 + 0.600688i −0.918646 0.395083i \(-0.870716\pi\)
0.0918688 + 0.995771i \(0.470716\pi\)
\(384\) −0.309017 0.951057i −0.0157695 0.0485334i
\(385\) 0 0
\(386\) 3.44427 10.6004i 0.175309 0.539545i
\(387\) −1.76393 5.42882i −0.0896657 0.275963i
\(388\) 1.73607 + 5.34307i 0.0881355 + 0.271253i
\(389\) −4.51722 + 13.9026i −0.229032 + 0.704889i 0.768825 + 0.639459i \(0.220842\pi\)
−0.997857 + 0.0654294i \(0.979158\pi\)
\(390\) 0 0
\(391\) 4.47214 + 13.7638i 0.226166 + 0.696066i
\(392\) −5.54508 + 4.02874i −0.280069 + 0.203482i
\(393\) 17.8885 0.902358
\(394\) 4.78115 3.47371i 0.240871 0.175003i
\(395\) 0 0
\(396\) −1.11803 0.812299i −0.0561833 0.0408196i
\(397\) −28.5066 20.7112i −1.43070 1.03947i −0.989885 0.141871i \(-0.954688\pi\)
−0.440819 0.897596i \(-0.645312\pi\)
\(398\) 5.71885 17.6008i 0.286660 0.882248i
\(399\) −2.94427 −0.147398
\(400\) 0 0
\(401\) 12.2918 0.613823 0.306912 0.951738i \(-0.400704\pi\)
0.306912 + 0.951738i \(0.400704\pi\)
\(402\) −3.23607 + 9.95959i −0.161400 + 0.496739i
\(403\) 8.76393 + 6.36737i 0.436563 + 0.317181i
\(404\) −5.35410 3.88998i −0.266377 0.193534i
\(405\) 0 0
\(406\) 0.145898 0.106001i 0.00724080 0.00526075i
\(407\) −11.0557 −0.548012
\(408\) 2.61803 1.90211i 0.129612 0.0941686i
\(409\) −5.80902 17.8783i −0.287237 0.884026i −0.985719 0.168398i \(-0.946141\pi\)
0.698482 0.715628i \(-0.253859\pi\)
\(410\) 0 0
\(411\) −3.14590 + 9.68208i −0.155176 + 0.477582i
\(412\) 0.409830 + 1.26133i 0.0201909 + 0.0621411i
\(413\) 0.163119 + 0.502029i 0.00802656 + 0.0247032i
\(414\) −1.38197 + 4.25325i −0.0679199 + 0.209036i
\(415\) 0 0
\(416\) 0.763932 + 2.35114i 0.0374548 + 0.115274i
\(417\) −1.23607 + 0.898056i −0.0605305 + 0.0439780i
\(418\) −10.6525 −0.521030
\(419\) −6.54508 + 4.75528i −0.319748 + 0.232311i −0.736068 0.676908i \(-0.763320\pi\)
0.416320 + 0.909218i \(0.363320\pi\)
\(420\) 0 0
\(421\) 22.0344 + 16.0090i 1.07389 + 0.780229i 0.976608 0.215028i \(-0.0689842\pi\)
0.0972850 + 0.995257i \(0.468984\pi\)
\(422\) 18.9443 + 13.7638i 0.922193 + 0.670012i
\(423\) 3.61803 11.1352i 0.175915 0.541410i
\(424\) 9.09017 0.441458
\(425\) 0 0
\(426\) −14.4721 −0.701177
\(427\) −0.854102 + 2.62866i −0.0413329 + 0.127210i
\(428\) −7.59017 5.51458i −0.366885 0.266557i
\(429\) 2.76393 + 2.00811i 0.133444 + 0.0969527i
\(430\) 0 0
\(431\) 29.7984 21.6498i 1.43534 1.04283i 0.446346 0.894861i \(-0.352725\pi\)
0.988991 0.147973i \(-0.0472748\pi\)
\(432\) 1.00000 0.0481125
\(433\) −18.2082 + 13.2290i −0.875030 + 0.635747i −0.931932 0.362633i \(-0.881878\pi\)
0.0569016 + 0.998380i \(0.481878\pi\)
\(434\) 0.517221 + 1.59184i 0.0248274 + 0.0764109i
\(435\) 0 0
\(436\) 3.94427 12.1392i 0.188896 0.581363i
\(437\) 10.6525 + 32.7849i 0.509577 + 1.56832i
\(438\) 3.85410 + 11.8617i 0.184156 + 0.566774i
\(439\) 4.48278 13.7966i 0.213951 0.658475i −0.785275 0.619147i \(-0.787478\pi\)
0.999226 0.0393275i \(-0.0125216\pi\)
\(440\) 0 0
\(441\) −2.11803 6.51864i −0.100859 0.310411i
\(442\) −6.47214 + 4.70228i −0.307848 + 0.223665i
\(443\) −14.3820 −0.683308 −0.341654 0.939826i \(-0.610987\pi\)
−0.341654 + 0.939826i \(0.610987\pi\)
\(444\) 6.47214 4.70228i 0.307154 0.223160i
\(445\) 0 0
\(446\) −2.50000 1.81636i −0.118378 0.0860070i
\(447\) −8.82624 6.41264i −0.417467 0.303307i
\(448\) −0.118034 + 0.363271i −0.00557658 + 0.0171630i
\(449\) −14.2918 −0.674472 −0.337236 0.941420i \(-0.609492\pi\)
−0.337236 + 0.941420i \(0.609492\pi\)
\(450\) 0 0
\(451\) −10.6525 −0.501605
\(452\) 4.56231 14.0413i 0.214593 0.660449i
\(453\) −2.16312 1.57160i −0.101632 0.0738401i
\(454\) −9.11803 6.62464i −0.427931 0.310910i
\(455\) 0 0
\(456\) 6.23607 4.53077i 0.292031 0.212173i
\(457\) −7.09017 −0.331664 −0.165832 0.986154i \(-0.553031\pi\)
−0.165832 + 0.986154i \(0.553031\pi\)
\(458\) −11.7082 + 8.50651i −0.547088 + 0.397483i
\(459\) 1.00000 + 3.07768i 0.0466760 + 0.143654i
\(460\) 0 0
\(461\) −3.88197 + 11.9475i −0.180801 + 0.556449i −0.999851 0.0172739i \(-0.994501\pi\)
0.819050 + 0.573723i \(0.194501\pi\)
\(462\) 0.163119 + 0.502029i 0.00758898 + 0.0233565i
\(463\) −9.52786 29.3238i −0.442797 1.36279i −0.884881 0.465817i \(-0.845761\pi\)
0.442084 0.896974i \(-0.354239\pi\)
\(464\) −0.145898 + 0.449028i −0.00677315 + 0.0208456i
\(465\) 0 0
\(466\) −3.90983 12.0332i −0.181119 0.557428i
\(467\) 21.2984 15.4742i 0.985571 0.716059i 0.0266244 0.999646i \(-0.491524\pi\)
0.958947 + 0.283586i \(0.0915242\pi\)
\(468\) −2.47214 −0.114275
\(469\) 3.23607 2.35114i 0.149428 0.108566i
\(470\) 0 0
\(471\) −18.3262 13.3148i −0.844428 0.613513i
\(472\) −1.11803 0.812299i −0.0514617 0.0373891i
\(473\) −2.43769 + 7.50245i −0.112085 + 0.344963i
\(474\) 3.38197 0.155339
\(475\) 0 0
\(476\) −1.23607 −0.0566551
\(477\) −2.80902 + 8.64527i −0.128616 + 0.395840i
\(478\) 20.7984 + 15.1109i 0.951295 + 0.691157i
\(479\) −9.00000 6.53888i −0.411220 0.298769i 0.362875 0.931838i \(-0.381795\pi\)
−0.774096 + 0.633069i \(0.781795\pi\)
\(480\) 0 0
\(481\) −16.0000 + 11.6247i −0.729537 + 0.530040i
\(482\) 10.5623 0.481100
\(483\) 1.38197 1.00406i 0.0628816 0.0456862i
\(484\) −2.80902 8.64527i −0.127683 0.392967i
\(485\) 0 0
\(486\) −0.309017 + 0.951057i −0.0140173 + 0.0431408i
\(487\) 2.10081 + 6.46564i 0.0951969 + 0.292986i 0.987305 0.158836i \(-0.0507742\pi\)
−0.892108 + 0.451822i \(0.850774\pi\)
\(488\) −2.23607 6.88191i −0.101222 0.311529i
\(489\) −2.61803 + 8.05748i −0.118392 + 0.364372i
\(490\) 0 0
\(491\) 2.55573 + 7.86572i 0.115338 + 0.354975i 0.992017 0.126101i \(-0.0402462\pi\)
−0.876679 + 0.481076i \(0.840246\pi\)
\(492\) 6.23607 4.53077i 0.281144 0.204263i
\(493\) −1.52786 −0.0688115
\(494\) −15.4164 + 11.2007i −0.693617 + 0.503942i
\(495\) 0 0
\(496\) −3.54508 2.57565i −0.159179 0.115650i
\(497\) 4.47214 + 3.24920i 0.200603 + 0.145746i
\(498\) 2.73607 8.42075i 0.122606 0.377343i
\(499\) −13.5967 −0.608674 −0.304337 0.952564i \(-0.598435\pi\)
−0.304337 + 0.952564i \(0.598435\pi\)
\(500\) 0 0
\(501\) 1.70820 0.0763169
\(502\) 2.02786 6.24112i 0.0905080 0.278555i
\(503\) −9.61803 6.98791i −0.428847 0.311576i 0.352341 0.935872i \(-0.385386\pi\)
−0.781188 + 0.624296i \(0.785386\pi\)
\(504\) −0.309017 0.224514i −0.0137647 0.0100006i
\(505\) 0 0
\(506\) 5.00000 3.63271i 0.222277 0.161494i
\(507\) −6.88854 −0.305931
\(508\) 9.20820 6.69015i 0.408548 0.296827i
\(509\) 6.33688 + 19.5029i 0.280877 + 0.864451i 0.987604 + 0.156965i \(0.0501710\pi\)
−0.706727 + 0.707487i \(0.749829\pi\)
\(510\) 0 0
\(511\) 1.47214 4.53077i 0.0651235 0.200429i
\(512\) −0.309017 0.951057i −0.0136568 0.0420312i
\(513\) 2.38197 + 7.33094i 0.105166 + 0.323669i
\(514\) −6.79837 + 20.9232i −0.299863 + 0.922885i
\(515\) 0 0
\(516\) −1.76393 5.42882i −0.0776528 0.238991i
\(517\) −13.0902 + 9.51057i −0.575705 + 0.418274i
\(518\) −3.05573 −0.134261
\(519\) −4.92705 + 3.57971i −0.216274 + 0.157132i
\(520\) 0 0
\(521\) 6.61803 + 4.80828i 0.289941 + 0.210655i 0.723242 0.690595i \(-0.242651\pi\)
−0.433301 + 0.901249i \(0.642651\pi\)
\(522\) −0.381966 0.277515i −0.0167182 0.0121465i
\(523\) −8.94427 + 27.5276i −0.391106 + 1.20370i 0.540847 + 0.841121i \(0.318104\pi\)
−0.931953 + 0.362579i \(0.881896\pi\)
\(524\) 17.8885 0.781465
\(525\) 0 0
\(526\) 1.70820 0.0744812
\(527\) 4.38197 13.4863i 0.190881 0.587473i
\(528\) −1.11803 0.812299i −0.0486562 0.0353508i
\(529\) 2.42705 + 1.76336i 0.105524 + 0.0766676i
\(530\) 0 0
\(531\) 1.11803 0.812299i 0.0485185 0.0352508i
\(532\) −2.94427 −0.127650
\(533\) −15.4164 + 11.2007i −0.667759 + 0.485155i
\(534\) −3.85410 11.8617i −0.166783 0.513306i
\(535\) 0 0
\(536\) −3.23607 + 9.95959i −0.139777 + 0.430189i
\(537\) 0.972136 + 2.99193i 0.0419508 + 0.129111i
\(538\) −0.645898 1.98787i −0.0278466 0.0857032i
\(539\) −2.92705 + 9.00854i −0.126077 + 0.388025i
\(540\) 0 0
\(541\) −1.18034 3.63271i −0.0507468 0.156183i 0.922472 0.386065i \(-0.126166\pi\)
−0.973218 + 0.229882i \(0.926166\pi\)
\(542\) 8.92705 6.48588i 0.383450 0.278592i
\(543\) 24.6525 1.05794
\(544\) 2.61803 1.90211i 0.112247 0.0815524i
\(545\) 0 0
\(546\) 0.763932 + 0.555029i 0.0326933 + 0.0237531i
\(547\) −3.00000 2.17963i −0.128271 0.0931941i 0.521800 0.853068i \(-0.325261\pi\)
−0.650071 + 0.759874i \(0.725261\pi\)
\(548\) −3.14590 + 9.68208i −0.134386 + 0.413598i
\(549\) 7.23607 0.308828
\(550\) 0 0
\(551\) −3.63932 −0.155040
\(552\) −1.38197 + 4.25325i −0.0588204 + 0.181031i
\(553\) −1.04508 0.759299i −0.0444415 0.0322887i
\(554\) 0.763932 + 0.555029i 0.0324564 + 0.0235809i
\(555\) 0 0
\(556\) −1.23607 + 0.898056i −0.0524210 + 0.0380861i
\(557\) 2.67376 0.113291 0.0566455 0.998394i \(-0.481960\pi\)
0.0566455 + 0.998394i \(0.481960\pi\)
\(558\) 3.54508 2.57565i 0.150075 0.109036i
\(559\) 4.36068 + 13.4208i 0.184437 + 0.567639i
\(560\) 0 0
\(561\) 1.38197 4.25325i 0.0583467 0.179573i
\(562\) 9.23607 + 28.4257i 0.389600 + 1.19907i
\(563\) 3.79180 + 11.6699i 0.159805 + 0.491830i 0.998616 0.0525933i \(-0.0167487\pi\)
−0.838811 + 0.544423i \(0.816749\pi\)
\(564\) 3.61803 11.1352i 0.152347 0.468875i
\(565\) 0 0
\(566\) 9.70820 + 29.8788i 0.408066 + 1.25590i
\(567\) 0.309017 0.224514i 0.0129775 0.00942870i
\(568\) −14.4721 −0.607237
\(569\) −35.4164 + 25.7315i −1.48473 + 1.07872i −0.508740 + 0.860920i \(0.669889\pi\)
−0.975993 + 0.217801i \(0.930111\pi\)
\(570\) 0 0
\(571\) 22.5623 + 16.3925i 0.944203 + 0.686004i 0.949429 0.313983i \(-0.101663\pi\)
−0.00522561 + 0.999986i \(0.501663\pi\)
\(572\) 2.76393 + 2.00811i 0.115566 + 0.0839635i
\(573\) 5.47214 16.8415i 0.228602 0.703564i
\(574\) −2.94427 −0.122892
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) 11.7361 36.1199i 0.488579 1.50369i −0.338151 0.941092i \(-0.609801\pi\)
0.826730 0.562599i \(-0.190199\pi\)
\(578\) −5.28115 3.83698i −0.219667 0.159597i
\(579\) 9.01722 + 6.55139i 0.374743 + 0.272267i
\(580\) 0 0
\(581\) −2.73607 + 1.98787i −0.113511 + 0.0824707i
\(582\) −5.61803 −0.232875
\(583\) 10.1631 7.38394i 0.420913 0.305811i
\(584\) 3.85410 + 11.8617i 0.159484 + 0.490841i
\(585\) 0 0
\(586\) −3.37132 + 10.3759i −0.139268 + 0.428623i
\(587\) 9.28115 + 28.5645i 0.383074 + 1.17898i 0.937868 + 0.346993i \(0.112797\pi\)
−0.554794 + 0.831988i \(0.687203\pi\)
\(588\) −2.11803 6.51864i −0.0873462 0.268824i
\(589\) 10.4377 32.1239i 0.430078 1.32364i
\(590\) 0 0
\(591\) 1.82624 + 5.62058i 0.0751214 + 0.231200i
\(592\) 6.47214 4.70228i 0.266003 0.193263i
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 1.11803 0.812299i 0.0458735 0.0333290i
\(595\) 0 0
\(596\) −8.82624 6.41264i −0.361537 0.262672i
\(597\) 14.9721 + 10.8779i 0.612769 + 0.445203i
\(598\) 3.41641 10.5146i 0.139707 0.429975i
\(599\) −8.47214 −0.346162 −0.173081 0.984908i \(-0.555372\pi\)
−0.173081 + 0.984908i \(0.555372\pi\)
\(600\) 0 0
\(601\) −41.2705 −1.68346 −0.841730 0.539899i \(-0.818462\pi\)
−0.841730 + 0.539899i \(0.818462\pi\)
\(602\) −0.673762 + 2.07363i −0.0274605 + 0.0845147i
\(603\) −8.47214 6.15537i −0.345012 0.250666i
\(604\) −2.16312 1.57160i −0.0880161 0.0639474i
\(605\) 0 0
\(606\) 5.35410 3.88998i 0.217496 0.158020i
\(607\) 13.5623 0.550477 0.275239 0.961376i \(-0.411243\pi\)
0.275239 + 0.961376i \(0.411243\pi\)
\(608\) 6.23607 4.53077i 0.252906 0.183747i
\(609\) 0.0557281 + 0.171513i 0.00225822 + 0.00695007i
\(610\) 0 0
\(611\) −8.94427 + 27.5276i −0.361847 + 1.11365i
\(612\) 1.00000 + 3.07768i 0.0404226 + 0.124408i
\(613\) 9.96556 + 30.6708i 0.402505 + 1.23878i 0.922961 + 0.384895i \(0.125762\pi\)
−0.520455 + 0.853889i \(0.674238\pi\)
\(614\) 3.09017 9.51057i 0.124709 0.383815i
\(615\) 0 0
\(616\) 0.163119 + 0.502029i 0.00657225 + 0.0202273i
\(617\) 30.6525 22.2703i 1.23402 0.896570i 0.236837 0.971549i \(-0.423889\pi\)
0.997185 + 0.0749797i \(0.0238892\pi\)
\(618\) −1.32624 −0.0533491
\(619\) −14.0902 + 10.2371i −0.566332 + 0.411464i −0.833771 0.552111i \(-0.813823\pi\)
0.267439 + 0.963575i \(0.413823\pi\)
\(620\) 0 0
\(621\) −3.61803 2.62866i −0.145187 0.105484i
\(622\) −15.3262 11.1352i −0.614526 0.446479i
\(623\) −1.47214 + 4.53077i −0.0589799 + 0.181521i
\(624\) −2.47214 −0.0989646
\(625\) 0 0
\(626\) 17.2705 0.690268
\(627\) 3.29180 10.1311i 0.131462 0.404597i
\(628\) −18.3262 13.3148i −0.731297 0.531318i
\(629\) 20.9443 + 15.2169i 0.835103 + 0.606738i
\(630\) 0 0
\(631\) −30.3607 + 22.0583i −1.20864 + 0.878128i −0.995107 0.0988078i \(-0.968497\pi\)
−0.213533 + 0.976936i \(0.568497\pi\)
\(632\) 3.38197 0.134527
\(633\) −18.9443 + 13.7638i −0.752967 + 0.547063i
\(634\) −0.135255 0.416272i −0.00537166 0.0165323i
\(635\) 0 0
\(636\) −2.80902 + 8.64527i −0.111385 + 0.342807i
\(637\) 5.23607 + 16.1150i 0.207461 + 0.638498i
\(638\) 0.201626 + 0.620541i 0.00798245 + 0.0245675i
\(639\) 4.47214 13.7638i 0.176915 0.544488i
\(640\) 0 0
\(641\) −11.1803 34.4095i −0.441597 1.35910i −0.886173 0.463354i \(-0.846646\pi\)
0.444576 0.895741i \(-0.353354\pi\)
\(642\) 7.59017 5.51458i 0.299560 0.217643i
\(643\) 13.8885 0.547711 0.273855 0.961771i \(-0.411701\pi\)
0.273855 + 0.961771i \(0.411701\pi\)
\(644\) 1.38197 1.00406i 0.0544571 0.0395654i
\(645\) 0 0
\(646\) 20.1803 + 14.6619i 0.793985 + 0.576864i
\(647\) −4.09017 2.97168i −0.160801 0.116829i 0.504475 0.863426i \(-0.331686\pi\)
−0.665276 + 0.746598i \(0.731686\pi\)
\(648\) −0.309017 + 0.951057i −0.0121393 + 0.0373610i
\(649\) −1.90983 −0.0749674
\(650\) 0 0
\(651\) −1.67376 −0.0655999
\(652\) −2.61803 + 8.05748i −0.102530 + 0.315555i
\(653\) 2.30902 + 1.67760i 0.0903588 + 0.0656495i 0.632047 0.774930i \(-0.282215\pi\)
−0.541689 + 0.840579i \(0.682215\pi\)
\(654\) 10.3262 + 7.50245i 0.403788 + 0.293369i
\(655\) 0 0
\(656\) 6.23607 4.53077i 0.243478 0.176897i
\(657\) −12.4721 −0.486584
\(658\) −3.61803 + 2.62866i −0.141046 + 0.102476i
\(659\) −5.68034 17.4823i −0.221275 0.681013i −0.998648 0.0519743i \(-0.983449\pi\)
0.777374 0.629039i \(-0.216551\pi\)
\(660\) 0 0
\(661\) −6.65248 + 20.4742i −0.258751 + 0.796355i 0.734316 + 0.678808i \(0.237503\pi\)
−0.993067 + 0.117547i \(0.962497\pi\)
\(662\) 5.56231 + 17.1190i 0.216185 + 0.665350i
\(663\) −2.47214 7.60845i −0.0960098 0.295488i
\(664\) 2.73607 8.42075i 0.106180 0.326789i
\(665\) 0 0
\(666\) 2.47214 + 7.60845i 0.0957933 + 0.294822i
\(667\) 1.70820 1.24108i 0.0661419 0.0480549i
\(668\) 1.70820 0.0660924
\(669\) 2.50000 1.81636i 0.0966556 0.0702244i
\(670\) 0 0
\(671\) −8.09017 5.87785i −0.312318 0.226912i
\(672\) −0.309017 0.224514i −0.0119206 0.00866082i
\(673\) −7.55573 + 23.2541i −0.291252 + 0.896381i 0.693203 + 0.720743i \(0.256199\pi\)
−0.984455 + 0.175639i \(0.943801\pi\)
\(674\) 12.0902 0.465696
\(675\) 0 0
\(676\) −6.88854 −0.264944
\(677\) −5.53444 + 17.0333i −0.212706 + 0.654641i 0.786603 + 0.617460i \(0.211838\pi\)
−0.999309 + 0.0371818i \(0.988162\pi\)
\(678\) 11.9443 + 8.67802i 0.458717 + 0.333277i
\(679\) 1.73607 + 1.26133i 0.0666242 + 0.0484053i
\(680\) 0 0
\(681\) 9.11803 6.62464i 0.349404 0.253857i
\(682\) −6.05573 −0.231886
\(683\) −3.64590 + 2.64890i −0.139506 + 0.101357i −0.655350 0.755326i \(-0.727479\pi\)
0.515843 + 0.856683i \(0.327479\pi\)
\(684\) 2.38197 + 7.33094i 0.0910767 + 0.280305i
\(685\) 0 0
\(686\) −1.63525 + 5.03280i −0.0624343 + 0.192153i
\(687\) −4.47214 13.7638i −0.170623 0.525122i
\(688\) −1.76393 5.42882i −0.0672493 0.206972i
\(689\) 6.94427 21.3723i 0.264556 0.814219i
\(690\) 0 0
\(691\) 2.09017 + 6.43288i 0.0795138 + 0.244718i 0.982909 0.184090i \(-0.0589337\pi\)
−0.903396 + 0.428808i \(0.858934\pi\)
\(692\) −4.92705 + 3.57971i −0.187298 + 0.136080i
\(693\) −0.527864 −0.0200519
\(694\) −0.354102 + 0.257270i −0.0134415 + 0.00976584i
\(695\) 0 0
\(696\) −0.381966 0.277515i −0.0144784 0.0105192i
\(697\) 20.1803 + 14.6619i 0.764385 + 0.555358i
\(698\) −2.43769 + 7.50245i −0.0922681 + 0.283972i
\(699\) 12.6525 0.478561
\(700\) 0 0
\(701\) −12.8328 −0.484689 −0.242344 0.970190i \(-0.577916\pi\)
−0.242344 + 0.970190i \(0.577916\pi\)
\(702\) 0.763932 2.35114i 0.0288328 0.0887381i
\(703\) 49.8885 + 36.2461i 1.88158 + 1.36705i
\(704\) −1.11803 0.812299i −0.0421375 0.0306147i
\(705\) 0 0
\(706\) 7.09017 5.15131i 0.266842 0.193872i
\(707\) −2.52786 −0.0950701
\(708\) 1.11803 0.812299i 0.0420183 0.0305281i
\(709\) −9.36068 28.8092i −0.351548 1.08195i −0.957984 0.286821i \(-0.907402\pi\)
0.606437 0.795132i \(-0.292598\pi\)
\(710\) 0 0
\(711\) −1.04508 + 3.21644i −0.0391937 + 0.120626i
\(712\) −3.85410 11.8617i −0.144439 0.444536i
\(713\) 6.05573 + 18.6376i 0.226789 + 0.697984i
\(714\) 0.381966 1.17557i 0.0142947 0.0439946i
\(715\) 0 0
\(716\) 0.972136 + 2.99193i 0.0363304 + 0.111814i
\(717\) −20.7984 + 15.1109i −0.776730 + 0.564327i
\(718\) 0.180340 0.00673022
\(719\) 35.1246 25.5195i 1.30993 0.951718i 0.309927 0.950760i \(-0.399695\pi\)
1.00000 0.000957448i \(-0.000304765\pi\)
\(720\) 0 0
\(721\) 0.409830 + 0.297759i 0.0152629 + 0.0110891i
\(722\) 32.6976 + 23.7562i 1.21688 + 0.884113i
\(723\) −3.26393 + 10.0453i −0.121387 + 0.373591i
\(724\) 24.6525 0.916202
\(725\) 0 0
\(726\) 9.09017 0.337368
\(727\) 10.9443 33.6830i 0.405901 1.24923i −0.514240 0.857646i \(-0.671926\pi\)
0.920141 0.391587i \(-0.128074\pi\)
\(728\) 0.763932 + 0.555029i 0.0283132 + 0.0205707i
\(729\) −0.809017 0.587785i −0.0299636 0.0217698i
\(730\) 0 0
\(731\) 14.9443 10.8576i 0.552734 0.401585i
\(732\) 7.23607 0.267453
\(733\) −0.0901699 + 0.0655123i −0.00333050 + 0.00241975i −0.589449 0.807805i \(-0.700655\pi\)
0.586119 + 0.810225i \(0.300655\pi\)
\(734\) −8.77051 26.9929i −0.323725 0.996324i
\(735\) 0 0
\(736\) −1.38197 + 4.25325i −0.0509399 + 0.156777i
\(737\) 4.47214 + 13.7638i 0.164733 + 0.506997i
\(738\) 2.38197 + 7.33094i 0.0876814 + 0.269856i
\(739\) −7.97871 + 24.5560i −0.293502 + 0.903305i 0.690219 + 0.723601i \(0.257514\pi\)
−0.983721 + 0.179705i \(0.942486\pi\)
\(740\) 0 0
\(741\) −5.88854 18.1231i −0.216321 0.665768i
\(742\) 2.80902 2.04087i 0.103122 0.0749227i
\(743\) −37.0132 −1.35788 −0.678940 0.734193i \(-0.737561\pi\)
−0.678940 + 0.734193i \(0.737561\pi\)
\(744\) 3.54508 2.57565i 0.129969 0.0944281i
\(745\) 0 0
\(746\) 16.5623 + 12.0332i 0.606389 + 0.440567i
\(747\) 7.16312 + 5.20431i 0.262085 + 0.190416i
\(748\) 1.38197 4.25325i 0.0505297 0.155514i
\(749\) −3.58359 −0.130942
\(750\) 0 0
\(751\) 0.201626 0.00735744 0.00367872 0.999993i \(-0.498829\pi\)
0.00367872 + 0.999993i \(0.498829\pi\)
\(752\) 3.61803 11.1352i 0.131936 0.406058i
\(753\) 5.30902 + 3.85723i 0.193471 + 0.140565i
\(754\) 0.944272 + 0.686054i 0.0343884 + 0.0249846i
\(755\) 0 0
\(756\) 0.309017 0.224514i 0.0112388 0.00816549i
\(757\) −23.1246 −0.840478 −0.420239 0.907413i \(-0.638054\pi\)
−0.420239 + 0.907413i \(0.638054\pi\)
\(758\) 1.76393 1.28157i 0.0640689 0.0465488i
\(759\) 1.90983 + 5.87785i 0.0693224 + 0.213353i
\(760\) 0 0
\(761\) −7.85410 + 24.1724i −0.284711 + 0.876250i 0.701774 + 0.712399i \(0.252392\pi\)
−0.986485 + 0.163851i \(0.947608\pi\)
\(762\) 3.51722 + 10.8249i 0.127415 + 0.392144i
\(763\) −1.50658 4.63677i −0.0545418 0.167862i
\(764\) 5.47214 16.8415i 0.197975 0.609304i
\(765\) 0 0
\(766\) −6.18034 19.0211i −0.223305 0.687261i
\(767\) −2.76393 + 2.00811i −0.0997998 + 0.0725088i
\(768\) 1.00000 0.0360844
\(769\) 28.8713 20.9762i 1.04113 0.756423i 0.0706214 0.997503i \(-0.477502\pi\)
0.970505 + 0.241080i \(0.0775018\pi\)
\(770\) 0 0
\(771\) −17.7984 12.9313i −0.640993 0.465709i
\(772\) 9.01722 + 6.55139i 0.324537 + 0.235790i
\(773\) 2.42705 7.46969i 0.0872950 0.268666i −0.897874 0.440252i \(-0.854889\pi\)
0.985169 + 0.171586i \(0.0548891\pi\)
\(774\) 5.70820 0.205177
\(775\) 0 0
\(776\) −5.61803 −0.201676
\(777\) 0.944272 2.90617i 0.0338756 0.104258i
\(778\) −11.8262 8.59226i −0.423991 0.308048i
\(779\) 48.0689 + 34.9241i 1.72225 + 1.25129i
\(780\) 0 0
\(781\) −16.1803 + 11.7557i −0.578978 + 0.420652i
\(782\) −14.4721 −0.517523
\(783\) 0.381966 0.277515i 0.0136504 0.00991756i
\(784\) −2.11803 6.51864i −0.0756441 0.232809i
\(785\) 0 0
\(786\) −5.52786 + 17.0130i −0.197172 + 0.606834i
\(787\) 9.29180 + 28.5972i 0.331217 + 1.01938i 0.968556 + 0.248797i \(0.0800351\pi\)
−0.637339 + 0.770584i \(0.719965\pi\)
\(788\) 1.82624 + 5.62058i 0.0650570 + 0.200225i
\(789\) −0.527864 + 1.62460i −0.0187925 + 0.0578372i
\(790\) 0 0
\(791\) −1.74265 5.36331i −0.0619614 0.190697i
\(792\) 1.11803 0.812299i 0.0397276 0.0288638i
\(793\) −17.8885 −0.635241
\(794\) 28.5066 20.7112i 1.01166 0.735014i
\(795\) 0 0
\(796\) 14.9721 + 10.8779i 0.530673 + 0.385557i
\(797\) −29.5344 21.4580i −1.04616 0.760082i −0.0746844 0.997207i \(-0.523795\pi\)
−0.971479 + 0.237125i \(0.923795\pi\)
\(798\) 0.909830 2.80017i 0.0322076 0.0991249i
\(799\) 37.8885 1.34040
\(800\) 0 0
\(801\) 12.4721 0.440681
\(802\) −3.79837 + 11.6902i −0.134125 + 0.412795i
\(803\) 13.9443 + 10.1311i 0.492083 + 0.357519i
\(804\) −8.47214 6.15537i −0.298789 0.217083i
\(805\) 0 0
\(806\) −8.76393 + 6.36737i −0.308696 + 0.224281i
\(807\) 2.09017 0.0735775
\(808\) 5.35410 3.88998i 0.188357 0.136849i
\(809\) 7.05573 + 21.7153i 0.248066 + 0.763469i 0.995117 + 0.0987023i \(0.0314692\pi\)
−0.747051 + 0.664767i \(0.768531\pi\)
\(810\) 0 0
\(811\) 2.38197 7.33094i 0.0836421 0.257424i −0.900486 0.434886i \(-0.856789\pi\)
0.984128 + 0.177462i \(0.0567887\pi\)
\(812\) 0.0557281 + 0.171513i 0.00195567 + 0.00601894i
\(813\) 3.40983 + 10.4944i 0.119588 + 0.368054i
\(814\) 3.41641 10.5146i 0.119745 0.368537i
\(815\) 0 0
\(816\) 1.00000 + 3.07768i 0.0350070 + 0.107740i
\(817\) 35.5967 25.8626i 1.24537 0.904816i
\(818\) 18.7984 0.657270
\(819\) −0.763932 + 0.555029i −0.0266939 + 0.0193943i
\(820\) 0 0
\(821\) 27.4336 + 19.9317i 0.957440 + 0.695621i 0.952555 0.304367i \(-0.0984449\pi\)
0.00488541 + 0.999988i \(0.498445\pi\)
\(822\) −8.23607 5.98385i −0.287266 0.208711i
\(823\) −9.89919 + 30.4666i −0.345064 + 1.06200i 0.616486 + 0.787366i \(0.288556\pi\)
−0.961550 + 0.274631i \(0.911444\pi\)
\(824\) −1.32624 −0.0462017
\(825\) 0 0
\(826\) −0.527864 −0.0183667
\(827\) 13.3197 40.9937i 0.463170 1.42549i −0.398100 0.917342i \(-0.630330\pi\)
0.861270 0.508148i \(-0.169670\pi\)
\(828\) −3.61803 2.62866i −0.125735 0.0913521i
\(829\) 8.00000 + 5.81234i 0.277851 + 0.201871i 0.717980 0.696064i \(-0.245067\pi\)
−0.440128 + 0.897935i \(0.645067\pi\)
\(830\) 0 0
\(831\) −0.763932 + 0.555029i −0.0265005 + 0.0192537i
\(832\) −2.47214 −0.0857059
\(833\) 17.9443 13.0373i 0.621732 0.451715i
\(834\) −0.472136 1.45309i −0.0163487 0.0503162i
\(835\) 0 0
\(836\) 3.29180 10.1311i 0.113849 0.350392i
\(837\) 1.35410 + 4.16750i 0.0468046 + 0.144050i
\(838\) −2.50000 7.69421i −0.0863611 0.265792i
\(839\) −11.8541 + 36.4832i −0.409249 + 1.25954i 0.508046 + 0.861330i \(0.330368\pi\)
−0.917295 + 0.398209i \(0.869632\pi\)
\(840\) 0 0
\(841\) −8.89261 27.3686i −0.306642 0.943746i
\(842\) −22.0344 + 16.0090i −0.759357 + 0.551705i
\(843\) −29.8885 −1.02942
\(844\) −18.9443 + 13.7638i −0.652089 + 0.473770i
\(845\) 0 0
\(846\) 9.47214 + 6.88191i 0.325659 + 0.236605i
\(847\) −2.80902 2.04087i −0.0965190 0.0701251i
\(848\) −2.80902 + 8.64527i −0.0964620 + 0.296880i
\(849\) −31.4164 −1.07821
\(850\) 0 0
\(851\) −35.7771 −1.22642
\(852\) 4.47214 13.7638i 0.153213 0.471541i
\(853\) 4.52786 + 3.28969i 0.155031 + 0.112637i 0.662597 0.748977i \(-0.269454\pi\)
−0.507565 + 0.861613i \(0.669454\pi\)
\(854\) −2.23607 1.62460i −0.0765167 0.0555926i
\(855\) 0 0
\(856\) 7.59017 5.51458i 0.259427 0.188485i
\(857\) −42.0689 −1.43705 −0.718523 0.695503i \(-0.755181\pi\)
−0.718523 + 0.695503i \(0.755181\pi\)
\(858\) −2.76393 + 2.00811i −0.0943591 + 0.0685559i
\(859\) −4.85410 14.9394i −0.165620 0.509725i 0.833462 0.552577i \(-0.186356\pi\)
−0.999081 + 0.0428520i \(0.986356\pi\)
\(860\) 0 0
\(861\) 0.909830 2.80017i 0.0310069 0.0954295i
\(862\) 11.3820 + 35.0301i 0.387671 + 1.19313i
\(863\) −3.76393 11.5842i −0.128126 0.394330i 0.866332 0.499469i \(-0.166471\pi\)
−0.994458 + 0.105138i \(0.966471\pi\)
\(864\) −0.309017 + 0.951057i −0.0105130 + 0.0323556i
\(865\) 0 0
\(866\) −6.95492 21.4050i −0.236338 0.727372i
\(867\) 5.28115 3.83698i 0.179357 0.130311i
\(868\) −1.67376 −0.0568112
\(869\) 3.78115 2.74717i 0.128267 0.0931913i
\(870\) 0 0
\(871\) 20.9443 + 15.2169i 0.709670 + 0.515605i
\(872\) 10.3262 + 7.50245i 0.349691 + 0.254065i
\(873\) 1.73607 5.34307i 0.0587570 0.180835i
\(874\) −34.4721 −1.16604
\(875\) 0 0
\(876\) −12.4721 −0.421394
\(877\) −0.965558 + 2.97168i −0.0326046 + 0.100347i −0.966034 0.258413i \(-0.916800\pi\)
0.933430 + 0.358760i \(0.116800\pi\)
\(878\) 11.7361 + 8.52675i 0.396073 + 0.287764i
\(879\) −8.82624 6.41264i −0.297702 0.216293i
\(880\) 0 0
\(881\) −20.7082 + 15.0454i −0.697677 + 0.506892i −0.879175 0.476499i \(-0.841905\pi\)
0.181498 + 0.983391i \(0.441905\pi\)
\(882\) 6.85410 0.230790
\(883\) 22.7082 16.4985i 0.764192 0.555218i −0.136001 0.990709i \(-0.543425\pi\)
0.900193 + 0.435491i \(0.143425\pi\)
\(884\) −2.47214 7.60845i −0.0831469 0.255900i
\(885\) 0 0
\(886\) 4.44427 13.6781i 0.149308 0.459523i
\(887\) 1.05573 + 3.24920i 0.0354479 + 0.109097i 0.967215 0.253960i \(-0.0817330\pi\)
−0.931767 + 0.363057i \(0.881733\pi\)
\(888\) 2.47214 + 7.60845i 0.0829595 + 0.255323i
\(889\) 1.34346 4.13474i 0.0450582 0.138675i
\(890\) 0 0
\(891\) 0.427051 + 1.31433i 0.0143067 + 0.0440316i
\(892\) 2.50000 1.81636i 0.0837062 0.0608161i
\(893\) 90.2492 3.02008
\(894\) 8.82624 6.41264i 0.295194 0.214471i
\(895\) 0 0
\(896\) −0.309017 0.224514i −0.0103235 0.00750049i
\(897\) 8.94427 + 6.49839i 0.298641 + 0.216975i
\(898\) 4.41641 13.5923i 0.147377 0.453581i
\(899\) −2.06888 −0.0690011
\(900\) 0 0
\(901\) −29.4164 −0.980003
\(902\) 3.29180 10.1311i 0.109605 0.337329i
\(903\) −1.76393 1.28157i −0.0587000 0.0426480i
\(904\) 11.9443 + 8.67802i 0.397261 + 0.288627i
\(905\) 0 0
\(906\) 2.16312 1.57160i 0.0718648 0.0522128i
\(907\) −21.5279 −0.714821 −0.357410 0.933947i \(-0.616340\pi\)
−0.357410 + 0.933947i \(0.616340\pi\)
\(908\) 9.11803 6.62464i 0.302593 0.219846i
\(909\) 2.04508 + 6.29412i 0.0678312 + 0.208763i
\(910\) 0 0
\(911\) −1.29180 + 3.97574i −0.0427991 + 0.131722i −0.970173 0.242414i \(-0.922061\pi\)
0.927374 + 0.374136i \(0.122061\pi\)
\(912\) 2.38197 + 7.33094i 0.0788748 + 0.242752i
\(913\) −3.78115 11.6372i −0.125138 0.385135i
\(914\) 2.19098 6.74315i 0.0724713 0.223044i
\(915\) 0 0
\(916\) −4.47214 13.7638i −0.147764 0.454769i
\(917\) 5.52786 4.01623i 0.182546 0.132628i
\(918\) −3.23607 −0.106806
\(919\) −39.4164 + 28.6377i −1.30023 + 0.944670i −0.999958 0.00918396i \(-0.997077\pi\)
−0.300269 + 0.953854i \(0.597077\pi\)
\(920\) 0 0
\(921\) 8.09017 + 5.87785i 0.266580 + 0.193682i
\(922\) −10.1631 7.38394i −0.334704 0.243177i
\(923\) −11.0557 + 34.0260i −0.363904 + 1.11998i
\(924\) −0.527864 −0.0173655
\(925\) 0 0
\(926\) 30.8328 1.01323
\(927\) 0.409830 1.26133i 0.0134606 0.0414274i
\(928\) −0.381966 0.277515i −0.0125386 0.00910986i
\(929\) −46.1246 33.5115i −1.51330 1.09948i −0.964687 0.263400i \(-0.915156\pi\)
−0.548613 0.836077i \(-0.684844\pi\)
\(930\) 0 0
\(931\) 42.7426 31.0543i 1.40083 1.01777i
\(932\) 12.6525 0.414446
\(933\) 15.3262 11.1352i 0.501759 0.364549i
\(934\) 8.13525 + 25.0377i 0.266194 + 0.819260i
\(935\) 0 0
\(936\) 0.763932 2.35114i 0.0249699 0.0768494i
\(937\) −15.9721 49.1572i −0.521787 1.60590i −0.770583 0.637339i \(-0.780035\pi\)
0.248796 0.968556i \(-0.419965\pi\)
\(938\) 1.23607 + 3.80423i 0.0403591 + 0.124212i
\(939\) −5.33688 + 16.4252i −0.174163 + 0.536017i
\(940\) 0 0
\(941\) −7.59017 23.3601i −0.247432 0.761519i −0.995227 0.0975885i \(-0.968887\pi\)
0.747794 0.663930i \(-0.231113\pi\)
\(942\) 18.3262 13.3148i 0.597101 0.433819i
\(943\) −34.4721 −1.12257
\(944\) 1.11803 0.812299i 0.0363889 0.0264381i
\(945\) 0 0
\(946\) −6.38197 4.63677i −0.207496 0.150754i
\(947\) −10.8713 7.89848i −0.353271 0.256666i 0.396969 0.917832i \(-0.370062\pi\)
−0.750240 + 0.661166i \(0.770062\pi\)
\(948\) −1.04508 + 3.21644i −0.0339428 + 0.104465i
\(949\) 30.8328 1.00088
\(950\) 0 0
\(951\) 0.437694 0.0141932
\(952\) 0.381966 1.17557i 0.0123796 0.0381005i
\(953\) −46.3607 33.6830i −1.50177 1.09110i −0.969670 0.244418i \(-0.921403\pi\)
−0.532100 0.846682i \(-0.678597\pi\)
\(954\) −7.35410 5.34307i −0.238098 0.172988i
\(955\) 0 0
\(956\) −20.7984 + 15.1109i −0.672667 + 0.488722i
\(957\) −0.652476 −0.0210915
\(958\) 9.00000 6.53888i 0.290777 0.211262i
\(959\) 1.20163 + 3.69822i 0.0388025 + 0.119422i
\(960\) 0 0
\(961\) −3.64590 + 11.2209i −0.117610 + 0.361965i
\(962\) −6.11146 18.8091i −0.197041 0.606431i
\(963\) 2.89919 + 8.92278i 0.0934250 + 0.287533i
\(964\) −3.26393 + 10.0453i −0.105124 + 0.323539i
\(965\) 0 0
\(966\) 0.527864 + 1.62460i 0.0169837 + 0.0522706i
\(967\) 17.8713 12.9843i 0.574703 0.417546i −0.262108 0.965039i \(-0.584418\pi\)
0.836811 + 0.547492i \(0.184418\pi\)
\(968\) 9.09017 0.292169
\(969\) −20.1803 + 14.6619i −0.648286 + 0.471007i
\(970\) 0 0
\(971\) −30.1074 21.8743i −0.966192 0.701980i −0.0116116 0.999933i \(-0.503696\pi\)
−0.954581 + 0.297953i \(0.903696\pi\)
\(972\) −0.809017 0.587785i −0.0259492 0.0188532i
\(973\) −0.180340 + 0.555029i −0.00578143 + 0.0177934i
\(974\) −6.79837 −0.217834
\(975\) 0 0
\(976\) 7.23607 0.231621
\(977\) 1.61803 4.97980i 0.0517655 0.159318i −0.921832 0.387590i \(-0.873308\pi\)
0.973597 + 0.228272i \(0.0733076\pi\)
\(978\) −6.85410 4.97980i −0.219170 0.159236i
\(979\) −13.9443 10.1311i −0.445661 0.323792i
\(980\) 0 0
\(981\) −10.3262 + 7.50245i −0.329691 + 0.239535i
\(982\) −8.27051 −0.263923
\(983\) 14.4164 10.4741i 0.459812 0.334073i −0.333646 0.942699i \(-0.608279\pi\)
0.793458 + 0.608626i \(0.208279\pi\)
\(984\) 2.38197 + 7.33094i 0.0759343 + 0.233702i
\(985\) 0 0
\(986\) 0.472136 1.45309i 0.0150359 0.0462757i
\(987\) −1.38197 4.25325i −0.0439885 0.135383i
\(988\) −5.88854 18.1231i −0.187340 0.576572i
\(989\) −7.88854 + 24.2784i −0.250841 + 0.772010i
\(990\) 0 0
\(991\) −8.17376 25.1563i −0.259648 0.799115i −0.992878 0.119134i \(-0.961988\pi\)
0.733230 0.679981i \(-0.238012\pi\)
\(992\) 3.54508 2.57565i 0.112557 0.0817771i
\(993\) −18.0000 −0.571213
\(994\) −4.47214 + 3.24920i −0.141848 + 0.103058i
\(995\) 0 0
\(996\) 7.16312 + 5.20431i 0.226972 + 0.164905i
\(997\) 35.2705 + 25.6255i 1.11703 + 0.811569i 0.983756 0.179511i \(-0.0574515\pi\)
0.133272 + 0.991079i \(0.457452\pi\)
\(998\) 4.20163 12.9313i 0.133000 0.409332i
\(999\) −8.00000 −0.253109
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 750.2.g.b.601.1 4
5.2 odd 4 750.2.h.b.649.1 8
5.3 odd 4 750.2.h.b.649.2 8
5.4 even 2 150.2.g.a.121.1 yes 4
15.14 odd 2 450.2.h.c.271.1 4
25.6 even 5 inner 750.2.g.b.151.1 4
25.8 odd 20 750.2.h.b.349.1 8
25.9 even 10 3750.2.a.f.1.1 2
25.12 odd 20 3750.2.c.b.1249.2 4
25.13 odd 20 3750.2.c.b.1249.3 4
25.16 even 5 3750.2.a.d.1.2 2
25.17 odd 20 750.2.h.b.349.2 8
25.19 even 10 150.2.g.a.31.1 4
75.44 odd 10 450.2.h.c.181.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
150.2.g.a.31.1 4 25.19 even 10
150.2.g.a.121.1 yes 4 5.4 even 2
450.2.h.c.181.1 4 75.44 odd 10
450.2.h.c.271.1 4 15.14 odd 2
750.2.g.b.151.1 4 25.6 even 5 inner
750.2.g.b.601.1 4 1.1 even 1 trivial
750.2.h.b.349.1 8 25.8 odd 20
750.2.h.b.349.2 8 25.17 odd 20
750.2.h.b.649.1 8 5.2 odd 4
750.2.h.b.649.2 8 5.3 odd 4
3750.2.a.d.1.2 2 25.16 even 5
3750.2.a.f.1.1 2 25.9 even 10
3750.2.c.b.1249.2 4 25.12 odd 20
3750.2.c.b.1249.3 4 25.13 odd 20