Properties

Label 150.2.g.a.31.1
Level 150
Weight 2
Character 150.31
Analytic conductor 1.198
Analytic rank 0
Dimension 4
CM No
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 150.g (of order \(5\) and degree \(4\))

Newform invariants

Self dual: No
Analytic conductor: \(1.19775603032\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 31.1
Root \(-0.309017 + 0.951057i\)
Character \(\chi\) = 150.31
Dual form 150.2.g.a.121.1

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(0.309017 + 0.951057i) q^{2}\) \(+(0.809017 - 0.587785i) q^{3}\) \(+(-0.809017 + 0.587785i) q^{4}\) \(+(0.690983 + 2.12663i) q^{5}\) \(+(0.809017 + 0.587785i) q^{6}\) \(+0.381966 q^{7}\) \(+(-0.809017 - 0.587785i) q^{8}\) \(+(0.309017 - 0.951057i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(0.309017 + 0.951057i) q^{2}\) \(+(0.809017 - 0.587785i) q^{3}\) \(+(-0.809017 + 0.587785i) q^{4}\) \(+(0.690983 + 2.12663i) q^{5}\) \(+(0.809017 + 0.587785i) q^{6}\) \(+0.381966 q^{7}\) \(+(-0.809017 - 0.587785i) q^{8}\) \(+(0.309017 - 0.951057i) q^{9}\) \(+(-1.80902 + 1.31433i) q^{10}\) \(+(0.427051 + 1.31433i) q^{11}\) \(+(-0.309017 + 0.951057i) q^{12}\) \(+(0.763932 - 2.35114i) q^{13}\) \(+(0.118034 + 0.363271i) q^{14}\) \(+(1.80902 + 1.31433i) q^{15}\) \(+(0.309017 - 0.951057i) q^{16}\) \(+(2.61803 + 1.90211i) q^{17}\) \(+1.00000 q^{18}\) \(+(-6.23607 - 4.53077i) q^{19}\) \(+(-1.80902 - 1.31433i) q^{20}\) \(+(0.309017 - 0.224514i) q^{21}\) \(+(-1.11803 + 0.812299i) q^{22}\) \(+(-1.38197 - 4.25325i) q^{23}\) \(-1.00000 q^{24}\) \(+(-4.04508 + 2.93893i) q^{25}\) \(+2.47214 q^{26}\) \(+(-0.309017 - 0.951057i) q^{27}\) \(+(-0.309017 + 0.224514i) q^{28}\) \(+(0.381966 - 0.277515i) q^{29}\) \(+(-0.690983 + 2.12663i) q^{30}\) \(+(-3.54508 - 2.57565i) q^{31}\) \(+1.00000 q^{32}\) \(+(1.11803 + 0.812299i) q^{33}\) \(+(-1.00000 + 3.07768i) q^{34}\) \(+(0.263932 + 0.812299i) q^{35}\) \(+(0.309017 + 0.951057i) q^{36}\) \(+(2.47214 - 7.60845i) q^{37}\) \(+(2.38197 - 7.33094i) q^{38}\) \(+(-0.763932 - 2.35114i) q^{39}\) \(+(0.690983 - 2.12663i) q^{40}\) \(+(-2.38197 + 7.33094i) q^{41}\) \(+(0.309017 + 0.224514i) q^{42}\) \(+5.70820 q^{43}\) \(+(-1.11803 - 0.812299i) q^{44}\) \(+2.23607 q^{45}\) \(+(3.61803 - 2.62866i) q^{46}\) \(+(9.47214 - 6.88191i) q^{47}\) \(+(-0.309017 - 0.951057i) q^{48}\) \(-6.85410 q^{49}\) \(+(-4.04508 - 2.93893i) q^{50}\) \(+3.23607 q^{51}\) \(+(0.763932 + 2.35114i) q^{52}\) \(+(-7.35410 + 5.34307i) q^{53}\) \(+(0.809017 - 0.587785i) q^{54}\) \(+(-2.50000 + 1.81636i) q^{55}\) \(+(-0.309017 - 0.224514i) q^{56}\) \(-7.70820 q^{57}\) \(+(0.381966 + 0.277515i) q^{58}\) \(+(-0.427051 + 1.31433i) q^{59}\) \(-2.23607 q^{60}\) \(+(2.23607 + 6.88191i) q^{61}\) \(+(1.35410 - 4.16750i) q^{62}\) \(+(0.118034 - 0.363271i) q^{63}\) \(+(0.309017 + 0.951057i) q^{64}\) \(+5.52786 q^{65}\) \(+(-0.427051 + 1.31433i) q^{66}\) \(+(8.47214 + 6.15537i) q^{67}\) \(-3.23607 q^{68}\) \(+(-3.61803 - 2.62866i) q^{69}\) \(+(-0.690983 + 0.502029i) q^{70}\) \(+(-11.7082 + 8.50651i) q^{71}\) \(+(-0.809017 + 0.587785i) q^{72}\) \(+(3.85410 + 11.8617i) q^{73}\) \(+8.00000 q^{74}\) \(+(-1.54508 + 4.75528i) q^{75}\) \(+7.70820 q^{76}\) \(+(0.163119 + 0.502029i) q^{77}\) \(+(2.00000 - 1.45309i) q^{78}\) \(+(2.73607 - 1.98787i) q^{79}\) \(+2.23607 q^{80}\) \(+(-0.809017 - 0.587785i) q^{81}\) \(-7.70820 q^{82}\) \(+(-7.16312 - 5.20431i) q^{83}\) \(+(-0.118034 + 0.363271i) q^{84}\) \(+(-2.23607 + 6.88191i) q^{85}\) \(+(1.76393 + 5.42882i) q^{86}\) \(+(0.145898 - 0.449028i) q^{87}\) \(+(0.427051 - 1.31433i) q^{88}\) \(+(3.85410 + 11.8617i) q^{89}\) \(+(0.690983 + 2.12663i) q^{90}\) \(+(0.291796 - 0.898056i) q^{91}\) \(+(3.61803 + 2.62866i) q^{92}\) \(-4.38197 q^{93}\) \(+(9.47214 + 6.88191i) q^{94}\) \(+(5.32624 - 16.3925i) q^{95}\) \(+(0.809017 - 0.587785i) q^{96}\) \(+(4.54508 - 3.30220i) q^{97}\) \(+(-2.11803 - 6.51864i) q^{98}\) \(+1.38197 q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(4q \) \(\mathstrut -\mathstrut q^{2} \) \(\mathstrut +\mathstrut q^{3} \) \(\mathstrut -\mathstrut q^{4} \) \(\mathstrut +\mathstrut 5q^{5} \) \(\mathstrut +\mathstrut q^{6} \) \(\mathstrut +\mathstrut 6q^{7} \) \(\mathstrut -\mathstrut q^{8} \) \(\mathstrut -\mathstrut q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(4q \) \(\mathstrut -\mathstrut q^{2} \) \(\mathstrut +\mathstrut q^{3} \) \(\mathstrut -\mathstrut q^{4} \) \(\mathstrut +\mathstrut 5q^{5} \) \(\mathstrut +\mathstrut q^{6} \) \(\mathstrut +\mathstrut 6q^{7} \) \(\mathstrut -\mathstrut q^{8} \) \(\mathstrut -\mathstrut q^{9} \) \(\mathstrut -\mathstrut 5q^{10} \) \(\mathstrut -\mathstrut 5q^{11} \) \(\mathstrut +\mathstrut q^{12} \) \(\mathstrut +\mathstrut 12q^{13} \) \(\mathstrut -\mathstrut 4q^{14} \) \(\mathstrut +\mathstrut 5q^{15} \) \(\mathstrut -\mathstrut q^{16} \) \(\mathstrut +\mathstrut 6q^{17} \) \(\mathstrut +\mathstrut 4q^{18} \) \(\mathstrut -\mathstrut 16q^{19} \) \(\mathstrut -\mathstrut 5q^{20} \) \(\mathstrut -\mathstrut q^{21} \) \(\mathstrut -\mathstrut 10q^{23} \) \(\mathstrut -\mathstrut 4q^{24} \) \(\mathstrut -\mathstrut 5q^{25} \) \(\mathstrut -\mathstrut 8q^{26} \) \(\mathstrut +\mathstrut q^{27} \) \(\mathstrut +\mathstrut q^{28} \) \(\mathstrut +\mathstrut 6q^{29} \) \(\mathstrut -\mathstrut 5q^{30} \) \(\mathstrut -\mathstrut 3q^{31} \) \(\mathstrut +\mathstrut 4q^{32} \) \(\mathstrut -\mathstrut 4q^{34} \) \(\mathstrut +\mathstrut 10q^{35} \) \(\mathstrut -\mathstrut q^{36} \) \(\mathstrut -\mathstrut 8q^{37} \) \(\mathstrut +\mathstrut 14q^{38} \) \(\mathstrut -\mathstrut 12q^{39} \) \(\mathstrut +\mathstrut 5q^{40} \) \(\mathstrut -\mathstrut 14q^{41} \) \(\mathstrut -\mathstrut q^{42} \) \(\mathstrut -\mathstrut 4q^{43} \) \(\mathstrut +\mathstrut 10q^{46} \) \(\mathstrut +\mathstrut 20q^{47} \) \(\mathstrut +\mathstrut q^{48} \) \(\mathstrut -\mathstrut 14q^{49} \) \(\mathstrut -\mathstrut 5q^{50} \) \(\mathstrut +\mathstrut 4q^{51} \) \(\mathstrut +\mathstrut 12q^{52} \) \(\mathstrut -\mathstrut 16q^{53} \) \(\mathstrut +\mathstrut q^{54} \) \(\mathstrut -\mathstrut 10q^{55} \) \(\mathstrut +\mathstrut q^{56} \) \(\mathstrut -\mathstrut 4q^{57} \) \(\mathstrut +\mathstrut 6q^{58} \) \(\mathstrut +\mathstrut 5q^{59} \) \(\mathstrut -\mathstrut 8q^{62} \) \(\mathstrut -\mathstrut 4q^{63} \) \(\mathstrut -\mathstrut q^{64} \) \(\mathstrut +\mathstrut 40q^{65} \) \(\mathstrut +\mathstrut 5q^{66} \) \(\mathstrut +\mathstrut 16q^{67} \) \(\mathstrut -\mathstrut 4q^{68} \) \(\mathstrut -\mathstrut 10q^{69} \) \(\mathstrut -\mathstrut 5q^{70} \) \(\mathstrut -\mathstrut 20q^{71} \) \(\mathstrut -\mathstrut q^{72} \) \(\mathstrut +\mathstrut 2q^{73} \) \(\mathstrut +\mathstrut 32q^{74} \) \(\mathstrut +\mathstrut 5q^{75} \) \(\mathstrut +\mathstrut 4q^{76} \) \(\mathstrut -\mathstrut 15q^{77} \) \(\mathstrut +\mathstrut 8q^{78} \) \(\mathstrut +\mathstrut 2q^{79} \) \(\mathstrut -\mathstrut q^{81} \) \(\mathstrut -\mathstrut 4q^{82} \) \(\mathstrut -\mathstrut 13q^{83} \) \(\mathstrut +\mathstrut 4q^{84} \) \(\mathstrut +\mathstrut 16q^{86} \) \(\mathstrut +\mathstrut 14q^{87} \) \(\mathstrut -\mathstrut 5q^{88} \) \(\mathstrut +\mathstrut 2q^{89} \) \(\mathstrut +\mathstrut 5q^{90} \) \(\mathstrut +\mathstrut 28q^{91} \) \(\mathstrut +\mathstrut 10q^{92} \) \(\mathstrut -\mathstrut 22q^{93} \) \(\mathstrut +\mathstrut 20q^{94} \) \(\mathstrut -\mathstrut 10q^{95} \) \(\mathstrut +\mathstrut q^{96} \) \(\mathstrut +\mathstrut 7q^{97} \) \(\mathstrut -\mathstrut 4q^{98} \) \(\mathstrut +\mathstrut 10q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.309017 + 0.951057i 0.218508 + 0.672499i
\(3\) 0.809017 0.587785i 0.467086 0.339358i
\(4\) −0.809017 + 0.587785i −0.404508 + 0.293893i
\(5\) 0.690983 + 2.12663i 0.309017 + 0.951057i
\(6\) 0.809017 + 0.587785i 0.330280 + 0.239962i
\(7\) 0.381966 0.144370 0.0721848 0.997391i \(-0.477003\pi\)
0.0721848 + 0.997391i \(0.477003\pi\)
\(8\) −0.809017 0.587785i −0.286031 0.207813i
\(9\) 0.309017 0.951057i 0.103006 0.317019i
\(10\) −1.80902 + 1.31433i −0.572061 + 0.415627i
\(11\) 0.427051 + 1.31433i 0.128761 + 0.396285i 0.994567 0.104094i \(-0.0331942\pi\)
−0.865807 + 0.500378i \(0.833194\pi\)
\(12\) −0.309017 + 0.951057i −0.0892055 + 0.274546i
\(13\) 0.763932 2.35114i 0.211877 0.652089i −0.787484 0.616335i \(-0.788617\pi\)
0.999361 0.0357541i \(-0.0113833\pi\)
\(14\) 0.118034 + 0.363271i 0.0315459 + 0.0970883i
\(15\) 1.80902 + 1.31433i 0.467086 + 0.339358i
\(16\) 0.309017 0.951057i 0.0772542 0.237764i
\(17\) 2.61803 + 1.90211i 0.634967 + 0.461330i 0.858117 0.513454i \(-0.171634\pi\)
−0.223151 + 0.974784i \(0.571634\pi\)
\(18\) 1.00000 0.235702
\(19\) −6.23607 4.53077i −1.43065 1.03943i −0.989895 0.141803i \(-0.954710\pi\)
−0.440757 0.897626i \(-0.645290\pi\)
\(20\) −1.80902 1.31433i −0.404508 0.293893i
\(21\) 0.309017 0.224514i 0.0674330 0.0489930i
\(22\) −1.11803 + 0.812299i −0.238366 + 0.173183i
\(23\) −1.38197 4.25325i −0.288160 0.886865i −0.985434 0.170060i \(-0.945604\pi\)
0.697274 0.716805i \(-0.254396\pi\)
\(24\) −1.00000 −0.204124
\(25\) −4.04508 + 2.93893i −0.809017 + 0.587785i
\(26\) 2.47214 0.484826
\(27\) −0.309017 0.951057i −0.0594703 0.183031i
\(28\) −0.309017 + 0.224514i −0.0583987 + 0.0424292i
\(29\) 0.381966 0.277515i 0.0709293 0.0515332i −0.551756 0.834006i \(-0.686042\pi\)
0.622685 + 0.782473i \(0.286042\pi\)
\(30\) −0.690983 + 2.12663i −0.126156 + 0.388267i
\(31\) −3.54508 2.57565i −0.636716 0.462601i 0.222004 0.975046i \(-0.428740\pi\)
−0.858720 + 0.512444i \(0.828740\pi\)
\(32\) 1.00000 0.176777
\(33\) 1.11803 + 0.812299i 0.194625 + 0.141403i
\(34\) −1.00000 + 3.07768i −0.171499 + 0.527818i
\(35\) 0.263932 + 0.812299i 0.0446127 + 0.137304i
\(36\) 0.309017 + 0.951057i 0.0515028 + 0.158509i
\(37\) 2.47214 7.60845i 0.406417 1.25082i −0.513290 0.858215i \(-0.671573\pi\)
0.919707 0.392607i \(-0.128427\pi\)
\(38\) 2.38197 7.33094i 0.386406 1.18924i
\(39\) −0.763932 2.35114i −0.122327 0.376484i
\(40\) 0.690983 2.12663i 0.109254 0.336249i
\(41\) −2.38197 + 7.33094i −0.372001 + 1.14490i 0.573479 + 0.819220i \(0.305593\pi\)
−0.945480 + 0.325680i \(0.894407\pi\)
\(42\) 0.309017 + 0.224514i 0.0476824 + 0.0346433i
\(43\) 5.70820 0.870493 0.435246 0.900311i \(-0.356661\pi\)
0.435246 + 0.900311i \(0.356661\pi\)
\(44\) −1.11803 0.812299i −0.168550 0.122459i
\(45\) 2.23607 0.333333
\(46\) 3.61803 2.62866i 0.533450 0.387574i
\(47\) 9.47214 6.88191i 1.38165 1.00383i 0.384929 0.922946i \(-0.374226\pi\)
0.996724 0.0808837i \(-0.0257742\pi\)
\(48\) −0.309017 0.951057i −0.0446028 0.137273i
\(49\) −6.85410 −0.979157
\(50\) −4.04508 2.93893i −0.572061 0.415627i
\(51\) 3.23607 0.453140
\(52\) 0.763932 + 2.35114i 0.105938 + 0.326045i
\(53\) −7.35410 + 5.34307i −1.01016 + 0.733927i −0.964243 0.265018i \(-0.914622\pi\)
−0.0459202 + 0.998945i \(0.514622\pi\)
\(54\) 0.809017 0.587785i 0.110093 0.0799874i
\(55\) −2.50000 + 1.81636i −0.337100 + 0.244917i
\(56\) −0.309017 0.224514i −0.0412941 0.0300019i
\(57\) −7.70820 −1.02098
\(58\) 0.381966 + 0.277515i 0.0501546 + 0.0364394i
\(59\) −0.427051 + 1.31433i −0.0555973 + 0.171111i −0.974999 0.222209i \(-0.928673\pi\)
0.919402 + 0.393320i \(0.128673\pi\)
\(60\) −2.23607 −0.288675
\(61\) 2.23607 + 6.88191i 0.286299 + 0.881138i 0.986006 + 0.166708i \(0.0533138\pi\)
−0.699707 + 0.714430i \(0.746686\pi\)
\(62\) 1.35410 4.16750i 0.171971 0.529273i
\(63\) 0.118034 0.363271i 0.0148709 0.0457679i
\(64\) 0.309017 + 0.951057i 0.0386271 + 0.118882i
\(65\) 5.52786 0.685647
\(66\) −0.427051 + 1.31433i −0.0525663 + 0.161783i
\(67\) 8.47214 + 6.15537i 1.03504 + 0.751998i 0.969310 0.245840i \(-0.0790638\pi\)
0.0657257 + 0.997838i \(0.479064\pi\)
\(68\) −3.23607 −0.392431
\(69\) −3.61803 2.62866i −0.435560 0.316453i
\(70\) −0.690983 + 0.502029i −0.0825883 + 0.0600039i
\(71\) −11.7082 + 8.50651i −1.38951 + 1.00954i −0.393589 + 0.919286i \(0.628767\pi\)
−0.995919 + 0.0902503i \(0.971233\pi\)
\(72\) −0.809017 + 0.587785i −0.0953436 + 0.0692712i
\(73\) 3.85410 + 11.8617i 0.451089 + 1.38831i 0.875667 + 0.482916i \(0.160422\pi\)
−0.424578 + 0.905391i \(0.639578\pi\)
\(74\) 8.00000 0.929981
\(75\) −1.54508 + 4.75528i −0.178411 + 0.549093i
\(76\) 7.70820 0.884192
\(77\) 0.163119 + 0.502029i 0.0185891 + 0.0572115i
\(78\) 2.00000 1.45309i 0.226455 0.164529i
\(79\) 2.73607 1.98787i 0.307832 0.223653i −0.423134 0.906067i \(-0.639070\pi\)
0.730966 + 0.682414i \(0.239070\pi\)
\(80\) 2.23607 0.250000
\(81\) −0.809017 0.587785i −0.0898908 0.0653095i
\(82\) −7.70820 −0.851229
\(83\) −7.16312 5.20431i −0.786254 0.571247i 0.120595 0.992702i \(-0.461520\pi\)
−0.906850 + 0.421454i \(0.861520\pi\)
\(84\) −0.118034 + 0.363271i −0.0128786 + 0.0396361i
\(85\) −2.23607 + 6.88191i −0.242536 + 0.746448i
\(86\) 1.76393 + 5.42882i 0.190210 + 0.585405i
\(87\) 0.145898 0.449028i 0.0156419 0.0481409i
\(88\) 0.427051 1.31433i 0.0455238 0.140108i
\(89\) 3.85410 + 11.8617i 0.408534 + 1.25734i 0.917908 + 0.396793i \(0.129877\pi\)
−0.509374 + 0.860545i \(0.670123\pi\)
\(90\) 0.690983 + 2.12663i 0.0728360 + 0.224166i
\(91\) 0.291796 0.898056i 0.0305885 0.0941418i
\(92\) 3.61803 + 2.62866i 0.377206 + 0.274056i
\(93\) −4.38197 −0.454389
\(94\) 9.47214 + 6.88191i 0.976976 + 0.709815i
\(95\) 5.32624 16.3925i 0.546460 1.68183i
\(96\) 0.809017 0.587785i 0.0825700 0.0599906i
\(97\) 4.54508 3.30220i 0.461483 0.335287i −0.332629 0.943058i \(-0.607936\pi\)
0.794113 + 0.607770i \(0.207936\pi\)
\(98\) −2.11803 6.51864i −0.213954 0.658482i
\(99\) 1.38197 0.138893
\(100\) 1.54508 4.75528i 0.154508 0.475528i
\(101\) 6.61803 0.658519 0.329259 0.944239i \(-0.393201\pi\)
0.329259 + 0.944239i \(0.393201\pi\)
\(102\) 1.00000 + 3.07768i 0.0990148 + 0.304736i
\(103\) 1.07295 0.779543i 0.105721 0.0768107i −0.533669 0.845694i \(-0.679187\pi\)
0.639390 + 0.768883i \(0.279187\pi\)
\(104\) −2.00000 + 1.45309i −0.196116 + 0.142487i
\(105\) 0.690983 + 0.502029i 0.0674330 + 0.0489930i
\(106\) −7.35410 5.34307i −0.714294 0.518965i
\(107\) −9.38197 −0.906989 −0.453494 0.891259i \(-0.649823\pi\)
−0.453494 + 0.891259i \(0.649823\pi\)
\(108\) 0.809017 + 0.587785i 0.0778477 + 0.0565597i
\(109\) 3.94427 12.1392i 0.377793 1.16273i −0.563782 0.825923i \(-0.690654\pi\)
0.941575 0.336803i \(-0.109346\pi\)
\(110\) −2.50000 1.81636i −0.238366 0.173183i
\(111\) −2.47214 7.60845i −0.234645 0.722162i
\(112\) 0.118034 0.363271i 0.0111532 0.0343259i
\(113\) −4.56231 + 14.0413i −0.429186 + 1.32090i 0.469743 + 0.882803i \(0.344346\pi\)
−0.898929 + 0.438095i \(0.855654\pi\)
\(114\) −2.38197 7.33094i −0.223092 0.686605i
\(115\) 8.09017 5.87785i 0.754412 0.548113i
\(116\) −0.145898 + 0.449028i −0.0135463 + 0.0416912i
\(117\) −2.00000 1.45309i −0.184900 0.134338i
\(118\) −1.38197 −0.127220
\(119\) 1.00000 + 0.726543i 0.0916698 + 0.0666020i
\(120\) −0.690983 2.12663i −0.0630778 0.194134i
\(121\) 7.35410 5.34307i 0.668555 0.485733i
\(122\) −5.85410 + 4.25325i −0.530005 + 0.385072i
\(123\) 2.38197 + 7.33094i 0.214775 + 0.661008i
\(124\) 4.38197 0.393512
\(125\) −9.04508 6.57164i −0.809017 0.587785i
\(126\) 0.381966 0.0340282
\(127\) 3.51722 + 10.8249i 0.312103 + 0.960554i 0.976931 + 0.213557i \(0.0685050\pi\)
−0.664828 + 0.746997i \(0.731495\pi\)
\(128\) −0.809017 + 0.587785i −0.0715077 + 0.0519534i
\(129\) 4.61803 3.35520i 0.406595 0.295409i
\(130\) 1.70820 + 5.25731i 0.149819 + 0.461097i
\(131\) −14.4721 10.5146i −1.26444 0.918667i −0.265470 0.964119i \(-0.585527\pi\)
−0.998967 + 0.0454523i \(0.985527\pi\)
\(132\) −1.38197 −0.120285
\(133\) −2.38197 1.73060i −0.206543 0.150062i
\(134\) −3.23607 + 9.95959i −0.279554 + 0.860378i
\(135\) 1.80902 1.31433i 0.155695 0.113119i
\(136\) −1.00000 3.07768i −0.0857493 0.263909i
\(137\) 3.14590 9.68208i 0.268772 0.827196i −0.722028 0.691864i \(-0.756790\pi\)
0.990800 0.135332i \(-0.0432101\pi\)
\(138\) 1.38197 4.25325i 0.117641 0.362061i
\(139\) 0.472136 + 1.45309i 0.0400460 + 0.123249i 0.969081 0.246743i \(-0.0793604\pi\)
−0.929035 + 0.369992i \(0.879360\pi\)
\(140\) −0.690983 0.502029i −0.0583987 0.0424292i
\(141\) 3.61803 11.1352i 0.304693 0.937750i
\(142\) −11.7082 8.50651i −0.982531 0.713850i
\(143\) 3.41641 0.285694
\(144\) −0.809017 0.587785i −0.0674181 0.0489821i
\(145\) 0.854102 + 0.620541i 0.0709293 + 0.0515332i
\(146\) −10.0902 + 7.33094i −0.835068 + 0.606713i
\(147\) −5.54508 + 4.02874i −0.457351 + 0.332285i
\(148\) 2.47214 + 7.60845i 0.203208 + 0.625411i
\(149\) 10.9098 0.893768 0.446884 0.894592i \(-0.352534\pi\)
0.446884 + 0.894592i \(0.352534\pi\)
\(150\) −5.00000 −0.408248
\(151\) 2.67376 0.217588 0.108794 0.994064i \(-0.465301\pi\)
0.108794 + 0.994064i \(0.465301\pi\)
\(152\) 2.38197 + 7.33094i 0.193203 + 0.594618i
\(153\) 2.61803 1.90211i 0.211656 0.153777i
\(154\) −0.427051 + 0.310271i −0.0344127 + 0.0250023i
\(155\) 3.02786 9.31881i 0.243204 0.748505i
\(156\) 2.00000 + 1.45309i 0.160128 + 0.116340i
\(157\) −22.6525 −1.80786 −0.903932 0.427676i \(-0.859332\pi\)
−0.903932 + 0.427676i \(0.859332\pi\)
\(158\) 2.73607 + 1.98787i 0.217670 + 0.158146i
\(159\) −2.80902 + 8.64527i −0.222770 + 0.685614i
\(160\) 0.690983 + 2.12663i 0.0546270 + 0.168125i
\(161\) −0.527864 1.62460i −0.0416015 0.128036i
\(162\) 0.309017 0.951057i 0.0242787 0.0747221i
\(163\) 2.61803 8.05748i 0.205060 0.631111i −0.794651 0.607067i \(-0.792346\pi\)
0.999711 0.0240436i \(-0.00765404\pi\)
\(164\) −2.38197 7.33094i −0.186000 0.572450i
\(165\) −0.954915 + 2.93893i −0.0743400 + 0.228795i
\(166\) 2.73607 8.42075i 0.212360 0.653577i
\(167\) 1.38197 + 1.00406i 0.106940 + 0.0776963i 0.639970 0.768400i \(-0.278947\pi\)
−0.533030 + 0.846096i \(0.678947\pi\)
\(168\) −0.381966 −0.0294693
\(169\) 5.57295 + 4.04898i 0.428688 + 0.311460i
\(170\) −7.23607 −0.554981
\(171\) −6.23607 + 4.53077i −0.476884 + 0.346477i
\(172\) −4.61803 + 3.35520i −0.352122 + 0.255831i
\(173\) −1.88197 5.79210i −0.143083 0.440365i 0.853676 0.520804i \(-0.174368\pi\)
−0.996760 + 0.0804391i \(0.974368\pi\)
\(174\) 0.472136 0.0357925
\(175\) −1.54508 + 1.12257i −0.116797 + 0.0848583i
\(176\) 1.38197 0.104170
\(177\) 0.427051 + 1.31433i 0.0320991 + 0.0987909i
\(178\) −10.0902 + 7.33094i −0.756290 + 0.549477i
\(179\) −2.54508 + 1.84911i −0.190229 + 0.138209i −0.678823 0.734302i \(-0.737510\pi\)
0.488595 + 0.872511i \(0.337510\pi\)
\(180\) −1.80902 + 1.31433i −0.134836 + 0.0979642i
\(181\) −19.9443 14.4904i −1.48245 1.07706i −0.976758 0.214344i \(-0.931239\pi\)
−0.505688 0.862717i \(-0.668761\pi\)
\(182\) 0.944272 0.0699941
\(183\) 5.85410 + 4.25325i 0.432748 + 0.314410i
\(184\) −1.38197 + 4.25325i −0.101880 + 0.313554i
\(185\) 17.8885 1.31519
\(186\) −1.35410 4.16750i −0.0992876 0.305576i
\(187\) −1.38197 + 4.25325i −0.101059 + 0.311029i
\(188\) −3.61803 + 11.1352i −0.263872 + 0.812115i
\(189\) −0.118034 0.363271i −0.00858571 0.0264241i
\(190\) 17.2361 1.25044
\(191\) 5.47214 16.8415i 0.395950 1.21861i −0.532269 0.846575i \(-0.678661\pi\)
0.928219 0.372033i \(-0.121339\pi\)
\(192\) 0.809017 + 0.587785i 0.0583858 + 0.0424197i
\(193\) 11.1459 0.802299 0.401150 0.916013i \(-0.368611\pi\)
0.401150 + 0.916013i \(0.368611\pi\)
\(194\) 4.54508 + 3.30220i 0.326318 + 0.237084i
\(195\) 4.47214 3.24920i 0.320256 0.232680i
\(196\) 5.54508 4.02874i 0.396077 0.287767i
\(197\) 4.78115 3.47371i 0.340643 0.247492i −0.404290 0.914631i \(-0.632481\pi\)
0.744933 + 0.667139i \(0.232481\pi\)
\(198\) 0.427051 + 1.31433i 0.0303492 + 0.0934052i
\(199\) −18.5066 −1.31190 −0.655948 0.754806i \(-0.727731\pi\)
−0.655948 + 0.754806i \(0.727731\pi\)
\(200\) 5.00000 0.353553
\(201\) 10.4721 0.738648
\(202\) 2.04508 + 6.29412i 0.143892 + 0.442853i
\(203\) 0.145898 0.106001i 0.0102400 0.00743982i
\(204\) −2.61803 + 1.90211i −0.183299 + 0.133175i
\(205\) −17.2361 −1.20382
\(206\) 1.07295 + 0.779543i 0.0747559 + 0.0543133i
\(207\) −4.47214 −0.310835
\(208\) −2.00000 1.45309i −0.138675 0.100753i
\(209\) 3.29180 10.1311i 0.227698 0.700783i
\(210\) −0.263932 + 0.812299i −0.0182130 + 0.0560540i
\(211\) 7.23607 + 22.2703i 0.498151 + 1.53315i 0.811987 + 0.583675i \(0.198386\pi\)
−0.313836 + 0.949477i \(0.601614\pi\)
\(212\) 2.80902 8.64527i 0.192924 0.593759i
\(213\) −4.47214 + 13.7638i −0.306426 + 0.943081i
\(214\) −2.89919 8.92278i −0.198184 0.609949i
\(215\) 3.94427 + 12.1392i 0.268997 + 0.827888i
\(216\) −0.309017 + 0.951057i −0.0210259 + 0.0647112i
\(217\) −1.35410 0.983813i −0.0919224 0.0667856i
\(218\) 12.7639 0.864483
\(219\) 10.0902 + 7.33094i 0.681830 + 0.495379i
\(220\) 0.954915 2.93893i 0.0643804 0.198142i
\(221\) 6.47214 4.70228i 0.435363 0.316310i
\(222\) 6.47214 4.70228i 0.434381 0.315597i
\(223\) 0.954915 + 2.93893i 0.0639458 + 0.196805i 0.977925 0.208956i \(-0.0670065\pi\)
−0.913979 + 0.405761i \(0.867007\pi\)
\(224\) 0.381966 0.0255212
\(225\) 1.54508 + 4.75528i 0.103006 + 0.317019i
\(226\) −14.7639 −0.982082
\(227\) 3.48278 + 10.7189i 0.231160 + 0.711438i 0.997608 + 0.0691308i \(0.0220226\pi\)
−0.766447 + 0.642307i \(0.777977\pi\)
\(228\) 6.23607 4.53077i 0.412994 0.300057i
\(229\) 11.7082 8.50651i 0.773700 0.562126i −0.129382 0.991595i \(-0.541299\pi\)
0.903082 + 0.429469i \(0.141299\pi\)
\(230\) 8.09017 + 5.87785i 0.533450 + 0.387574i
\(231\) 0.427051 + 0.310271i 0.0280979 + 0.0204143i
\(232\) −0.472136 −0.0309972
\(233\) 10.2361 + 7.43694i 0.670587 + 0.487210i 0.870222 0.492660i \(-0.163976\pi\)
−0.199635 + 0.979870i \(0.563976\pi\)
\(234\) 0.763932 2.35114i 0.0499398 0.153699i
\(235\) 21.1803 + 15.3884i 1.38165 + 1.00383i
\(236\) −0.427051 1.31433i −0.0277987 0.0855555i
\(237\) 1.04508 3.21644i 0.0678856 0.208930i
\(238\) −0.381966 + 1.17557i −0.0247592 + 0.0762009i
\(239\) 7.94427 + 24.4500i 0.513872 + 1.58154i 0.785325 + 0.619084i \(0.212496\pi\)
−0.271452 + 0.962452i \(0.587504\pi\)
\(240\) 1.80902 1.31433i 0.116772 0.0848395i
\(241\) −3.26393 + 10.0453i −0.210248 + 0.647078i 0.789209 + 0.614125i \(0.210491\pi\)
−0.999457 + 0.0329526i \(0.989509\pi\)
\(242\) 7.35410 + 5.34307i 0.472740 + 0.343465i
\(243\) −1.00000 −0.0641500
\(244\) −5.85410 4.25325i −0.374770 0.272287i
\(245\) −4.73607 14.5761i −0.302576 0.931234i
\(246\) −6.23607 + 4.53077i −0.397597 + 0.288871i
\(247\) −15.4164 + 11.2007i −0.980923 + 0.712682i
\(248\) 1.35410 + 4.16750i 0.0859856 + 0.264636i
\(249\) −8.85410 −0.561106
\(250\) 3.45492 10.6331i 0.218508 0.672499i
\(251\) −6.56231 −0.414209 −0.207105 0.978319i \(-0.566404\pi\)
−0.207105 + 0.978319i \(0.566404\pi\)
\(252\) 0.118034 + 0.363271i 0.00743544 + 0.0228839i
\(253\) 5.00000 3.63271i 0.314347 0.228387i
\(254\) −9.20820 + 6.69015i −0.577774 + 0.419777i
\(255\) 2.23607 + 6.88191i 0.140028 + 0.430962i
\(256\) −0.809017 0.587785i −0.0505636 0.0367366i
\(257\) −22.0000 −1.37232 −0.686161 0.727450i \(-0.740706\pi\)
−0.686161 + 0.727450i \(0.740706\pi\)
\(258\) 4.61803 + 3.35520i 0.287506 + 0.208886i
\(259\) 0.944272 2.90617i 0.0586742 0.180581i
\(260\) −4.47214 + 3.24920i −0.277350 + 0.201507i
\(261\) −0.145898 0.449028i −0.00903086 0.0277941i
\(262\) 5.52786 17.0130i 0.341513 1.05107i
\(263\) 0.527864 1.62460i 0.0325495 0.100177i −0.933462 0.358677i \(-0.883228\pi\)
0.966011 + 0.258500i \(0.0832281\pi\)
\(264\) −0.427051 1.31433i −0.0262832 0.0808913i
\(265\) −16.4443 11.9475i −1.01016 0.733927i
\(266\) 0.909830 2.80017i 0.0557853 0.171689i
\(267\) 10.0902 + 7.33094i 0.617508 + 0.448646i
\(268\) −10.4721 −0.639688
\(269\) −1.69098 1.22857i −0.103101 0.0749073i 0.535040 0.844827i \(-0.320296\pi\)
−0.638141 + 0.769919i \(0.720296\pi\)
\(270\) 1.80902 + 1.31433i 0.110093 + 0.0799874i
\(271\) −8.92705 + 6.48588i −0.542280 + 0.393989i −0.824931 0.565233i \(-0.808786\pi\)
0.282651 + 0.959223i \(0.408786\pi\)
\(272\) 2.61803 1.90211i 0.158742 0.115333i
\(273\) −0.291796 0.898056i −0.0176603 0.0543528i
\(274\) 10.1803 0.615017
\(275\) −5.59017 4.06150i −0.337100 0.244917i
\(276\) 4.47214 0.269191
\(277\) −0.291796 0.898056i −0.0175323 0.0539590i 0.941908 0.335872i \(-0.109031\pi\)
−0.959440 + 0.281913i \(0.909031\pi\)
\(278\) −1.23607 + 0.898056i −0.0741344 + 0.0538618i
\(279\) −3.54508 + 2.57565i −0.212239 + 0.154200i
\(280\) 0.263932 0.812299i 0.0157730 0.0485442i
\(281\) 24.1803 + 17.5680i 1.44248 + 1.04802i 0.987517 + 0.157510i \(0.0503467\pi\)
0.454961 + 0.890511i \(0.349653\pi\)
\(282\) 11.7082 0.697213
\(283\) −25.4164 18.4661i −1.51085 1.09770i −0.965799 0.259292i \(-0.916511\pi\)
−0.545050 0.838404i \(-0.683489\pi\)
\(284\) 4.47214 13.7638i 0.265372 0.816732i
\(285\) −5.32624 16.3925i −0.315499 0.971006i
\(286\) 1.05573 + 3.24920i 0.0624265 + 0.192129i
\(287\) −0.909830 + 2.80017i −0.0537056 + 0.165289i
\(288\) 0.309017 0.951057i 0.0182090 0.0560415i
\(289\) −2.01722 6.20837i −0.118660 0.365198i
\(290\) −0.326238 + 1.00406i −0.0191574 + 0.0589603i
\(291\) 1.73607 5.34307i 0.101770 0.313216i
\(292\) −10.0902 7.33094i −0.590483 0.429011i
\(293\) −10.9098 −0.637359 −0.318680 0.947863i \(-0.603239\pi\)
−0.318680 + 0.947863i \(0.603239\pi\)
\(294\) −5.54508 4.02874i −0.323396 0.234961i
\(295\) −3.09017 −0.179917
\(296\) −6.47214 + 4.70228i −0.376185 + 0.273315i
\(297\) 1.11803 0.812299i 0.0648749 0.0471344i
\(298\) 3.37132 + 10.3759i 0.195295 + 0.601058i
\(299\) −11.0557 −0.639369
\(300\) −1.54508 4.75528i −0.0892055 0.274546i
\(301\) 2.18034 0.125673
\(302\) 0.826238 + 2.54290i 0.0475446 + 0.146327i
\(303\) 5.35410 3.88998i 0.307585 0.223474i
\(304\) −6.23607 + 4.53077i −0.357663 + 0.259857i
\(305\) −13.0902 + 9.51057i −0.749541 + 0.544573i
\(306\) 2.61803 + 1.90211i 0.149663 + 0.108737i
\(307\) 10.0000 0.570730 0.285365 0.958419i \(-0.407885\pi\)
0.285365 + 0.958419i \(0.407885\pi\)
\(308\) −0.427051 0.310271i −0.0243335 0.0176793i
\(309\) 0.409830 1.26133i 0.0233144 0.0717544i
\(310\) 9.79837 0.556510
\(311\) −5.85410 18.0171i −0.331956 1.02165i −0.968202 0.250169i \(-0.919514\pi\)
0.636247 0.771486i \(-0.280486\pi\)
\(312\) −0.763932 + 2.35114i −0.0432491 + 0.133107i
\(313\) 5.33688 16.4252i 0.301658 0.928409i −0.679245 0.733912i \(-0.737693\pi\)
0.980903 0.194497i \(-0.0623075\pi\)
\(314\) −7.00000 21.5438i −0.395033 1.21579i
\(315\) 0.854102 0.0481232
\(316\) −1.04508 + 3.21644i −0.0587906 + 0.180939i
\(317\) 0.354102 + 0.257270i 0.0198883 + 0.0144497i 0.597685 0.801731i \(-0.296087\pi\)
−0.577797 + 0.816181i \(0.696087\pi\)
\(318\) −9.09017 −0.509751
\(319\) 0.527864 + 0.383516i 0.0295547 + 0.0214728i
\(320\) −1.80902 + 1.31433i −0.101127 + 0.0734732i
\(321\) −7.59017 + 5.51458i −0.423642 + 0.307794i
\(322\) 1.38197 1.00406i 0.0770140 0.0559539i
\(323\) −7.70820 23.7234i −0.428896 1.32001i
\(324\) 1.00000 0.0555556
\(325\) 3.81966 + 11.7557i 0.211877 + 0.652089i
\(326\) 8.47214 0.469228
\(327\) −3.94427 12.1392i −0.218119 0.671300i
\(328\) 6.23607 4.53077i 0.344329 0.250170i
\(329\) 3.61803 2.62866i 0.199469 0.144922i
\(330\) −3.09017 −0.170108
\(331\) 14.5623 + 10.5801i 0.800417 + 0.581537i 0.911036 0.412326i \(-0.135284\pi\)
−0.110620 + 0.993863i \(0.535284\pi\)
\(332\) 8.85410 0.485932
\(333\) −6.47214 4.70228i −0.354671 0.257683i
\(334\) −0.527864 + 1.62460i −0.0288834 + 0.0888941i
\(335\) −7.23607 + 22.2703i −0.395349 + 1.21676i
\(336\) −0.118034 0.363271i −0.00643928 0.0198181i
\(337\) 3.73607 11.4984i 0.203517 0.626360i −0.796254 0.604962i \(-0.793188\pi\)
0.999771 0.0213978i \(-0.00681165\pi\)
\(338\) −2.12868 + 6.55139i −0.115785 + 0.356349i
\(339\) 4.56231 + 14.0413i 0.247790 + 0.762621i
\(340\) −2.23607 6.88191i −0.121268 0.373224i
\(341\) 1.87132 5.75934i 0.101338 0.311886i
\(342\) −6.23607 4.53077i −0.337208 0.244996i
\(343\) −5.29180 −0.285730
\(344\) −4.61803 3.35520i −0.248988 0.180900i
\(345\) 3.09017 9.51057i 0.166369 0.512032i
\(346\) 4.92705 3.57971i 0.264880 0.192447i
\(347\) −0.354102 + 0.257270i −0.0190092 + 0.0138110i −0.597249 0.802056i \(-0.703740\pi\)
0.578240 + 0.815867i \(0.303740\pi\)
\(348\) 0.145898 + 0.449028i 0.00782096 + 0.0240704i
\(349\) 7.88854 0.422264 0.211132 0.977458i \(-0.432285\pi\)
0.211132 + 0.977458i \(0.432285\pi\)
\(350\) −1.54508 1.12257i −0.0825883 0.0600039i
\(351\) −2.47214 −0.131953
\(352\) 0.427051 + 1.31433i 0.0227619 + 0.0700539i
\(353\) 7.09017 5.15131i 0.377372 0.274177i −0.382889 0.923794i \(-0.625071\pi\)
0.760261 + 0.649618i \(0.225071\pi\)
\(354\) −1.11803 + 0.812299i −0.0594228 + 0.0431732i
\(355\) −26.1803 19.0211i −1.38951 1.00954i
\(356\) −10.0902 7.33094i −0.534778 0.388539i
\(357\) 1.23607 0.0654197
\(358\) −2.54508 1.84911i −0.134512 0.0977286i
\(359\) −0.0557281 + 0.171513i −0.00294122 + 0.00905213i −0.952516 0.304487i \(-0.901515\pi\)
0.949575 + 0.313540i \(0.101515\pi\)
\(360\) −1.80902 1.31433i −0.0953436 0.0692712i
\(361\) 12.4894 + 38.4383i 0.657335 + 2.02307i
\(362\) 7.61803 23.4459i 0.400395 1.23229i
\(363\) 2.80902 8.64527i 0.147435 0.453759i
\(364\) 0.291796 + 0.898056i 0.0152943 + 0.0470709i
\(365\) −22.5623 + 16.3925i −1.18097 + 0.858021i
\(366\) −2.23607 + 6.88191i −0.116881 + 0.359723i
\(367\) 22.9615 + 16.6825i 1.19858 + 0.870819i 0.994144 0.108060i \(-0.0344640\pi\)
0.204436 + 0.978880i \(0.434464\pi\)
\(368\) −4.47214 −0.233126
\(369\) 6.23607 + 4.53077i 0.324637 + 0.235862i
\(370\) 5.52786 + 17.0130i 0.287380 + 0.884465i
\(371\) −2.80902 + 2.04087i −0.145837 + 0.105957i
\(372\) 3.54508 2.57565i 0.183804 0.133541i
\(373\) −6.32624 19.4702i −0.327560 1.00813i −0.970272 0.242018i \(-0.922191\pi\)
0.642712 0.766108i \(-0.277809\pi\)
\(374\) −4.47214 −0.231249
\(375\) −11.1803 −0.577350
\(376\) −11.7082 −0.603805
\(377\) −0.360680 1.11006i −0.0185760 0.0571709i
\(378\) 0.309017 0.224514i 0.0158941 0.0115478i
\(379\) −1.76393 + 1.28157i −0.0906071 + 0.0658299i −0.632166 0.774833i \(-0.717834\pi\)
0.541559 + 0.840662i \(0.317834\pi\)
\(380\) 5.32624 + 16.3925i 0.273230 + 0.840916i
\(381\) 9.20820 + 6.69015i 0.471751 + 0.342747i
\(382\) 17.7082 0.906031
\(383\) 16.1803 + 11.7557i 0.826777 + 0.600688i 0.918646 0.395083i \(-0.129284\pi\)
−0.0918688 + 0.995771i \(0.529284\pi\)
\(384\) −0.309017 + 0.951057i −0.0157695 + 0.0485334i
\(385\) −0.954915 + 0.693786i −0.0486670 + 0.0353586i
\(386\) 3.44427 + 10.6004i 0.175309 + 0.539545i
\(387\) 1.76393 5.42882i 0.0896657 0.275963i
\(388\) −1.73607 + 5.34307i −0.0881355 + 0.271253i
\(389\) −4.51722 13.9026i −0.229032 0.704889i −0.997857 0.0654294i \(-0.979158\pi\)
0.768825 0.639459i \(-0.220842\pi\)
\(390\) 4.47214 + 3.24920i 0.226455 + 0.164529i
\(391\) 4.47214 13.7638i 0.226166 0.696066i
\(392\) 5.54508 + 4.02874i 0.280069 + 0.203482i
\(393\) −17.8885 −0.902358
\(394\) 4.78115 + 3.47371i 0.240871 + 0.175003i
\(395\) 6.11803 + 4.44501i 0.307832 + 0.223653i
\(396\) −1.11803 + 0.812299i −0.0561833 + 0.0408196i
\(397\) 28.5066 20.7112i 1.43070 1.03947i 0.440819 0.897596i \(-0.354688\pi\)
0.989885 0.141871i \(-0.0453119\pi\)
\(398\) −5.71885 17.6008i −0.286660 0.882248i
\(399\) −2.94427 −0.147398
\(400\) 1.54508 + 4.75528i 0.0772542 + 0.237764i
\(401\) 12.2918 0.613823 0.306912 0.951738i \(-0.400704\pi\)
0.306912 + 0.951738i \(0.400704\pi\)
\(402\) 3.23607 + 9.95959i 0.161400 + 0.496739i
\(403\) −8.76393 + 6.36737i −0.436563 + 0.317181i
\(404\) −5.35410 + 3.88998i −0.266377 + 0.193534i
\(405\) 0.690983 2.12663i 0.0343352 0.105673i
\(406\) 0.145898 + 0.106001i 0.00724080 + 0.00526075i
\(407\) 11.0557 0.548012
\(408\) −2.61803 1.90211i −0.129612 0.0941686i
\(409\) −5.80902 + 17.8783i −0.287237 + 0.884026i 0.698482 + 0.715628i \(0.253859\pi\)
−0.985719 + 0.168398i \(0.946141\pi\)
\(410\) −5.32624 16.3925i −0.263044 0.809567i
\(411\) −3.14590 9.68208i −0.155176 0.477582i
\(412\) −0.409830 + 1.26133i −0.0201909 + 0.0621411i
\(413\) −0.163119 + 0.502029i −0.00802656 + 0.0247032i
\(414\) −1.38197 4.25325i −0.0679199 0.209036i
\(415\) 6.11803 18.8294i 0.300322 0.924298i
\(416\) 0.763932 2.35114i 0.0374548 0.115274i
\(417\) 1.23607 + 0.898056i 0.0605305 + 0.0439780i
\(418\) 10.6525 0.521030
\(419\) −6.54508 4.75528i −0.319748 0.232311i 0.416320 0.909218i \(-0.363320\pi\)
−0.736068 + 0.676908i \(0.763320\pi\)
\(420\) −0.854102 −0.0416759
\(421\) 22.0344 16.0090i 1.07389 0.780229i 0.0972850 0.995257i \(-0.468984\pi\)
0.976608 + 0.215028i \(0.0689842\pi\)
\(422\) −18.9443 + 13.7638i −0.922193 + 0.670012i
\(423\) −3.61803 11.1352i −0.175915 0.541410i
\(424\) 9.09017 0.441458
\(425\) −16.1803 −0.784862
\(426\) −14.4721 −0.701177
\(427\) 0.854102 + 2.62866i 0.0413329 + 0.127210i
\(428\) 7.59017 5.51458i 0.366885 0.266557i
\(429\) 2.76393 2.00811i 0.133444 0.0969527i
\(430\) −10.3262 + 7.50245i −0.497975 + 0.361800i
\(431\) 29.7984 + 21.6498i 1.43534 + 1.04283i 0.988991 + 0.147973i \(0.0472748\pi\)
0.446346 + 0.894861i \(0.352725\pi\)
\(432\) −1.00000 −0.0481125
\(433\) 18.2082 + 13.2290i 0.875030 + 0.635747i 0.931932 0.362633i \(-0.118122\pi\)
−0.0569016 + 0.998380i \(0.518122\pi\)
\(434\) 0.517221 1.59184i 0.0248274 0.0764109i
\(435\) 1.05573 0.0506183
\(436\) 3.94427 + 12.1392i 0.188896 + 0.581363i
\(437\) −10.6525 + 32.7849i −0.509577 + 1.56832i
\(438\) −3.85410 + 11.8617i −0.184156 + 0.566774i
\(439\) 4.48278 + 13.7966i 0.213951 + 0.658475i 0.999226 + 0.0393275i \(0.0125216\pi\)
−0.785275 + 0.619147i \(0.787478\pi\)
\(440\) 3.09017 0.147318
\(441\) −2.11803 + 6.51864i −0.100859 + 0.310411i
\(442\) 6.47214 + 4.70228i 0.307848 + 0.223665i
\(443\) 14.3820 0.683308 0.341654 0.939826i \(-0.389013\pi\)
0.341654 + 0.939826i \(0.389013\pi\)
\(444\) 6.47214 + 4.70228i 0.307154 + 0.223160i
\(445\) −22.5623 + 16.3925i −1.06956 + 0.777078i
\(446\) −2.50000 + 1.81636i −0.118378 + 0.0860070i
\(447\) 8.82624 6.41264i 0.417467 0.303307i
\(448\) 0.118034 + 0.363271i 0.00557658 + 0.0171630i
\(449\) −14.2918 −0.674472 −0.337236 0.941420i \(-0.609492\pi\)
−0.337236 + 0.941420i \(0.609492\pi\)
\(450\) −4.04508 + 2.93893i −0.190687 + 0.138542i
\(451\) −10.6525 −0.501605
\(452\) −4.56231 14.0413i −0.214593 0.660449i
\(453\) 2.16312 1.57160i 0.101632 0.0738401i
\(454\) −9.11803 + 6.62464i −0.427931 + 0.310910i
\(455\) 2.11146 0.0989866
\(456\) 6.23607 + 4.53077i 0.292031 + 0.212173i
\(457\) 7.09017 0.331664 0.165832 0.986154i \(-0.446969\pi\)
0.165832 + 0.986154i \(0.446969\pi\)
\(458\) 11.7082 + 8.50651i 0.547088 + 0.397483i
\(459\) 1.00000 3.07768i 0.0466760 0.143654i
\(460\) −3.09017 + 9.51057i −0.144080 + 0.443432i
\(461\) −3.88197 11.9475i −0.180801 0.556449i 0.819050 0.573723i \(-0.194501\pi\)
−0.999851 + 0.0172739i \(0.994501\pi\)
\(462\) −0.163119 + 0.502029i −0.00758898 + 0.0233565i
\(463\) 9.52786 29.3238i 0.442797 1.36279i −0.442084 0.896974i \(-0.645761\pi\)
0.884881 0.465817i \(-0.154239\pi\)
\(464\) −0.145898 0.449028i −0.00677315 0.0208456i
\(465\) −3.02786 9.31881i −0.140414 0.432149i
\(466\) −3.90983 + 12.0332i −0.181119 + 0.557428i
\(467\) −21.2984 15.4742i −0.985571 0.716059i −0.0266244 0.999646i \(-0.508476\pi\)
−0.958947 + 0.283586i \(0.908476\pi\)
\(468\) 2.47214 0.114275
\(469\) 3.23607 + 2.35114i 0.149428 + 0.108566i
\(470\) −8.09017 + 24.8990i −0.373172 + 1.14850i
\(471\) −18.3262 + 13.3148i −0.844428 + 0.613513i
\(472\) 1.11803 0.812299i 0.0514617 0.0373891i
\(473\) 2.43769 + 7.50245i 0.112085 + 0.344963i
\(474\) 3.38197 0.155339
\(475\) 38.5410 1.76838
\(476\) −1.23607 −0.0566551
\(477\) 2.80902 + 8.64527i 0.128616 + 0.395840i
\(478\) −20.7984 + 15.1109i −0.951295 + 0.691157i
\(479\) −9.00000 + 6.53888i −0.411220 + 0.298769i −0.774096 0.633069i \(-0.781795\pi\)
0.362875 + 0.931838i \(0.381795\pi\)
\(480\) 1.80902 + 1.31433i 0.0825700 + 0.0599906i
\(481\) −16.0000 11.6247i −0.729537 0.530040i
\(482\) −10.5623 −0.481100
\(483\) −1.38197 1.00406i −0.0628816 0.0456862i
\(484\) −2.80902 + 8.64527i −0.127683 + 0.392967i
\(485\) 10.1631 + 7.38394i 0.461483 + 0.335287i
\(486\) −0.309017 0.951057i −0.0140173 0.0431408i
\(487\) −2.10081 + 6.46564i −0.0951969 + 0.292986i −0.987305 0.158836i \(-0.949226\pi\)
0.892108 + 0.451822i \(0.149226\pi\)
\(488\) 2.23607 6.88191i 0.101222 0.311529i
\(489\) −2.61803 8.05748i −0.118392 0.364372i
\(490\) 12.3992 9.00854i 0.560138 0.406964i
\(491\) 2.55573 7.86572i 0.115338 0.354975i −0.876679 0.481076i \(-0.840246\pi\)
0.992017 + 0.126101i \(0.0402462\pi\)
\(492\) −6.23607 4.53077i −0.281144 0.204263i
\(493\) 1.52786 0.0688115
\(494\) −15.4164 11.2007i −0.693617 0.503942i
\(495\) 0.954915 + 2.93893i 0.0429202 + 0.132095i
\(496\) −3.54508 + 2.57565i −0.159179 + 0.115650i
\(497\) −4.47214 + 3.24920i −0.200603 + 0.145746i
\(498\) −2.73607 8.42075i −0.122606 0.377343i
\(499\) −13.5967 −0.608674 −0.304337 0.952564i \(-0.598435\pi\)
−0.304337 + 0.952564i \(0.598435\pi\)
\(500\) 11.1803 0.500000
\(501\) 1.70820 0.0763169
\(502\) −2.02786 6.24112i −0.0905080 0.278555i
\(503\) 9.61803 6.98791i 0.428847 0.311576i −0.352341 0.935872i \(-0.614614\pi\)
0.781188 + 0.624296i \(0.214614\pi\)
\(504\) −0.309017 + 0.224514i −0.0137647 + 0.0100006i
\(505\) 4.57295 + 14.0741i 0.203494 + 0.626289i
\(506\) 5.00000 + 3.63271i 0.222277 + 0.161494i
\(507\) 6.88854 0.305931
\(508\) −9.20820 6.69015i −0.408548 0.296827i
\(509\) 6.33688 19.5029i 0.280877 0.864451i −0.706727 0.707487i \(-0.749829\pi\)
0.987604 0.156965i \(-0.0501710\pi\)
\(510\) −5.85410 + 4.25325i −0.259224 + 0.188337i
\(511\) 1.47214 + 4.53077i 0.0651235 + 0.200429i
\(512\) 0.309017 0.951057i 0.0136568 0.0420312i
\(513\) −2.38197 + 7.33094i −0.105166 + 0.323669i
\(514\) −6.79837 20.9232i −0.299863 0.922885i
\(515\) 2.39919 + 1.74311i 0.105721 + 0.0768107i
\(516\) −1.76393 + 5.42882i −0.0776528 + 0.238991i
\(517\) 13.0902 + 9.51057i 0.575705 + 0.418274i
\(518\) 3.05573 0.134261
\(519\) −4.92705 3.57971i −0.216274 0.157132i
\(520\) −4.47214 3.24920i −0.196116 0.142487i
\(521\) 6.61803 4.80828i 0.289941 0.210655i −0.433301 0.901249i \(-0.642651\pi\)
0.723242 + 0.690595i \(0.242651\pi\)
\(522\) 0.381966 0.277515i 0.0167182 0.0121465i
\(523\) 8.94427 + 27.5276i 0.391106 + 1.20370i 0.931953 + 0.362579i \(0.118104\pi\)
−0.540847 + 0.841121i \(0.681896\pi\)
\(524\) 17.8885 0.781465
\(525\) −0.590170 + 1.81636i −0.0257571 + 0.0792723i
\(526\) 1.70820 0.0744812
\(527\) −4.38197 13.4863i −0.190881 0.587473i
\(528\) 1.11803 0.812299i 0.0486562 0.0353508i
\(529\) 2.42705 1.76336i 0.105524 0.0766676i
\(530\) 6.28115 19.3314i 0.272836 0.839702i
\(531\) 1.11803 + 0.812299i 0.0485185 + 0.0352508i
\(532\) 2.94427 0.127650
\(533\) 15.4164 + 11.2007i 0.667759 + 0.485155i
\(534\) −3.85410 + 11.8617i −0.166783 + 0.513306i
\(535\) −6.48278 19.9519i −0.280275 0.862598i
\(536\) −3.23607 9.95959i −0.139777 0.430189i
\(537\) −0.972136 + 2.99193i −0.0419508 + 0.129111i
\(538\) 0.645898 1.98787i 0.0278466 0.0857032i
\(539\) −2.92705 9.00854i −0.126077 0.388025i
\(540\) −0.690983 + 2.12663i −0.0297352 + 0.0915155i
\(541\) −1.18034 + 3.63271i −0.0507468 + 0.156183i −0.973218 0.229882i \(-0.926166\pi\)
0.922472 + 0.386065i \(0.126166\pi\)
\(542\) −8.92705 6.48588i −0.383450 0.278592i
\(543\) −24.6525 −1.05794
\(544\) 2.61803 + 1.90211i 0.112247 + 0.0815524i
\(545\) 28.5410 1.22256
\(546\) 0.763932 0.555029i 0.0326933 0.0237531i
\(547\) 3.00000 2.17963i 0.128271 0.0931941i −0.521800 0.853068i \(-0.674739\pi\)
0.650071 + 0.759874i \(0.274739\pi\)
\(548\) 3.14590 + 9.68208i 0.134386 + 0.413598i
\(549\) 7.23607 0.308828
\(550\) 2.13525 6.57164i 0.0910476 0.280216i
\(551\) −3.63932 −0.155040
\(552\) 1.38197 + 4.25325i 0.0588204 + 0.181031i
\(553\) 1.04508 0.759299i 0.0444415 0.0322887i
\(554\) 0.763932 0.555029i 0.0324564 0.0235809i
\(555\) 14.4721 10.5146i 0.614308 0.446321i
\(556\) −1.23607 0.898056i −0.0524210 0.0380861i
\(557\) −2.67376 −0.113291 −0.0566455 0.998394i \(-0.518040\pi\)
−0.0566455 + 0.998394i \(0.518040\pi\)
\(558\) −3.54508 2.57565i −0.150075 0.109036i
\(559\) 4.36068 13.4208i 0.184437 0.567639i
\(560\) 0.854102 0.0360924
\(561\) 1.38197 + 4.25325i 0.0583467 + 0.179573i
\(562\) −9.23607 + 28.4257i −0.389600 + 1.19907i
\(563\) −3.79180 + 11.6699i −0.159805 + 0.491830i −0.998616 0.0525933i \(-0.983251\pi\)
0.838811 + 0.544423i \(0.183251\pi\)
\(564\) 3.61803 + 11.1352i 0.152347 + 0.468875i
\(565\) −33.0132 −1.38887
\(566\) 9.70820 29.8788i 0.408066 1.25590i
\(567\) −0.309017 0.224514i −0.0129775 0.00942870i
\(568\) 14.4721 0.607237
\(569\) −35.4164 25.7315i −1.48473 1.07872i −0.975993 0.217801i \(-0.930111\pi\)
−0.508740 0.860920i \(-0.669889\pi\)
\(570\) 13.9443 10.1311i 0.584061 0.424345i
\(571\) 22.5623 16.3925i 0.944203 0.686004i −0.00522561 0.999986i \(-0.501663\pi\)
0.949429 + 0.313983i \(0.101663\pi\)
\(572\) −2.76393 + 2.00811i −0.115566 + 0.0839635i
\(573\) −5.47214 16.8415i −0.228602 0.703564i
\(574\) −2.94427 −0.122892
\(575\) 18.0902 + 13.1433i 0.754412 + 0.548113i
\(576\) 1.00000 0.0416667
\(577\) −11.7361 36.1199i −0.488579 1.50369i −0.826730 0.562599i \(-0.809801\pi\)
0.338151 0.941092i \(-0.390199\pi\)
\(578\) 5.28115 3.83698i 0.219667 0.159597i
\(579\) 9.01722 6.55139i 0.374743 0.272267i
\(580\) −1.05573 −0.0438367
\(581\) −2.73607 1.98787i −0.113511 0.0824707i
\(582\) 5.61803 0.232875
\(583\) −10.1631 7.38394i −0.420913 0.305811i
\(584\) 3.85410 11.8617i 0.159484 0.490841i
\(585\) 1.70820 5.25731i 0.0706255 0.217363i
\(586\) −3.37132 10.3759i −0.139268 0.428623i
\(587\) −9.28115 + 28.5645i −0.383074 + 1.17898i 0.554794 + 0.831988i \(0.312797\pi\)
−0.937868 + 0.346993i \(0.887203\pi\)
\(588\) 2.11803 6.51864i 0.0873462 0.268824i
\(589\) 10.4377 + 32.1239i 0.430078 + 1.32364i
\(590\) −0.954915 2.93893i −0.0393132 0.120994i
\(591\) 1.82624 5.62058i 0.0751214 0.231200i
\(592\) −6.47214 4.70228i −0.266003 0.193263i
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 1.11803 + 0.812299i 0.0458735 + 0.0333290i
\(595\) −0.854102 + 2.62866i −0.0350148 + 0.107764i
\(596\) −8.82624 + 6.41264i −0.361537 + 0.262672i
\(597\) −14.9721 + 10.8779i −0.612769 + 0.445203i
\(598\) −3.41641 10.5146i −0.139707 0.429975i
\(599\) −8.47214 −0.346162 −0.173081 0.984908i \(-0.555372\pi\)
−0.173081 + 0.984908i \(0.555372\pi\)
\(600\) 4.04508 2.93893i 0.165140 0.119981i
\(601\) −41.2705 −1.68346 −0.841730 0.539899i \(-0.818462\pi\)
−0.841730 + 0.539899i \(0.818462\pi\)
\(602\) 0.673762 + 2.07363i 0.0274605 + 0.0845147i
\(603\) 8.47214 6.15537i 0.345012 0.250666i
\(604\) −2.16312 + 1.57160i −0.0880161 + 0.0639474i
\(605\) 16.4443 + 11.9475i 0.668555 + 0.485733i
\(606\) 5.35410 + 3.88998i 0.217496 + 0.158020i
\(607\) −13.5623 −0.550477 −0.275239 0.961376i \(-0.588757\pi\)
−0.275239 + 0.961376i \(0.588757\pi\)
\(608\) −6.23607 4.53077i −0.252906 0.183747i
\(609\) 0.0557281 0.171513i 0.00225822 0.00695007i
\(610\) −13.0902 9.51057i −0.530005 0.385072i
\(611\) −8.94427 27.5276i −0.361847 1.11365i
\(612\) −1.00000 + 3.07768i −0.0404226 + 0.124408i
\(613\) −9.96556 + 30.6708i −0.402505 + 1.23878i 0.520455 + 0.853889i \(0.325762\pi\)
−0.922961 + 0.384895i \(0.874238\pi\)
\(614\) 3.09017 + 9.51057i 0.124709 + 0.383815i
\(615\) −13.9443 + 10.1311i −0.562287 + 0.408526i
\(616\) 0.163119 0.502029i 0.00657225 0.0202273i
\(617\) −30.6525 22.2703i −1.23402 0.896570i −0.236837 0.971549i \(-0.576111\pi\)
−0.997185 + 0.0749797i \(0.976111\pi\)
\(618\) 1.32624 0.0533491
\(619\) −14.0902 10.2371i −0.566332 0.411464i 0.267439 0.963575i \(-0.413823\pi\)
−0.833771 + 0.552111i \(0.813823\pi\)
\(620\) 3.02786 + 9.31881i 0.121602 + 0.374252i
\(621\) −3.61803 + 2.62866i −0.145187 + 0.105484i
\(622\) 15.3262 11.1352i 0.614526 0.446479i
\(623\) 1.47214 + 4.53077i 0.0589799 + 0.181521i
\(624\) −2.47214 −0.0989646
\(625\) 7.72542 23.7764i 0.309017 0.951057i
\(626\) 17.2705 0.690268
\(627\) −3.29180 10.1311i −0.131462 0.404597i
\(628\) 18.3262 13.3148i 0.731297 0.531318i
\(629\) 20.9443 15.2169i 0.835103 0.606738i
\(630\) 0.263932 + 0.812299i 0.0105153 + 0.0323628i
\(631\) −30.3607 22.0583i −1.20864 0.878128i −0.213533 0.976936i \(-0.568497\pi\)
−0.995107 + 0.0988078i \(0.968497\pi\)
\(632\) −3.38197 −0.134527
\(633\) 18.9443 + 13.7638i 0.752967 + 0.547063i
\(634\) −0.135255 + 0.416272i −0.00537166 + 0.0165323i
\(635\) −20.5902 + 14.9596i −0.817096 + 0.593655i
\(636\) −2.80902 8.64527i −0.111385 0.342807i
\(637\) −5.23607 + 16.1150i −0.207461 + 0.638498i
\(638\) −0.201626 + 0.620541i −0.00798245 + 0.0245675i
\(639\) 4.47214 + 13.7638i 0.176915 + 0.544488i
\(640\) −1.80902 1.31433i −0.0715077 0.0519534i
\(641\) −11.1803 + 34.4095i −0.441597 + 1.35910i 0.444576 + 0.895741i \(0.353354\pi\)
−0.886173 + 0.463354i \(0.846646\pi\)
\(642\) −7.59017 5.51458i −0.299560 0.217643i
\(643\) −13.8885 −0.547711 −0.273855 0.961771i \(-0.588299\pi\)
−0.273855 + 0.961771i \(0.588299\pi\)
\(644\) 1.38197 + 1.00406i 0.0544571 + 0.0395654i
\(645\) 10.3262 + 7.50245i 0.406595 + 0.295409i
\(646\) 20.1803 14.6619i 0.793985 0.576864i
\(647\) 4.09017 2.97168i 0.160801 0.116829i −0.504475 0.863426i \(-0.668314\pi\)
0.665276 + 0.746598i \(0.268314\pi\)
\(648\) 0.309017 + 0.951057i 0.0121393 + 0.0373610i
\(649\) −1.90983 −0.0749674
\(650\) −10.0000 + 7.26543i −0.392232 + 0.284973i
\(651\) −1.67376 −0.0655999
\(652\) 2.61803 + 8.05748i 0.102530 + 0.315555i
\(653\) −2.30902 + 1.67760i −0.0903588 + 0.0656495i −0.632047 0.774930i \(-0.717785\pi\)
0.541689 + 0.840579i \(0.317785\pi\)
\(654\) 10.3262 7.50245i 0.403788 0.293369i
\(655\) 12.3607 38.0423i 0.482972 1.48643i
\(656\) 6.23607 + 4.53077i 0.243478 + 0.176897i
\(657\) 12.4721 0.486584
\(658\) 3.61803 + 2.62866i 0.141046 + 0.102476i
\(659\) −5.68034 + 17.4823i −0.221275 + 0.681013i 0.777374 + 0.629039i \(0.216551\pi\)
−0.998648 + 0.0519743i \(0.983449\pi\)
\(660\) −0.954915 2.93893i −0.0371700 0.114398i
\(661\) −6.65248 20.4742i −0.258751 0.796355i −0.993067 0.117547i \(-0.962497\pi\)
0.734316 0.678808i \(-0.237503\pi\)
\(662\) −5.56231 + 17.1190i −0.216185 + 0.665350i
\(663\) 2.47214 7.60845i 0.0960098 0.295488i
\(664\) 2.73607 + 8.42075i 0.106180 + 0.326789i
\(665\) 2.03444 6.26137i 0.0788923 0.242805i
\(666\) 2.47214 7.60845i 0.0957933 0.294822i
\(667\) −1.70820 1.24108i −0.0661419 0.0480549i
\(668\) −1.70820 −0.0660924
\(669\) 2.50000 + 1.81636i 0.0966556 + 0.0702244i
\(670\) −23.4164 −0.904655
\(671\) −8.09017 + 5.87785i −0.312318 + 0.226912i
\(672\) 0.309017 0.224514i 0.0119206 0.00866082i
\(673\) 7.55573 + 23.2541i 0.291252 + 0.896381i 0.984455 + 0.175639i \(0.0561990\pi\)
−0.693203 + 0.720743i \(0.743801\pi\)
\(674\) 12.0902 0.465696
\(675\) 4.04508 + 2.93893i 0.155695 + 0.113119i
\(676\) −6.88854 −0.264944
\(677\) 5.53444 + 17.0333i 0.212706 + 0.654641i 0.999309 + 0.0371818i \(0.0118381\pi\)
−0.786603 + 0.617460i \(0.788162\pi\)
\(678\) −11.9443 + 8.67802i −0.458717 + 0.333277i
\(679\) 1.73607 1.26133i 0.0666242 0.0484053i
\(680\) 5.85410 4.25325i 0.224495 0.163105i
\(681\) 9.11803 + 6.62464i 0.349404 + 0.253857i
\(682\) 6.05573 0.231886
\(683\) 3.64590 + 2.64890i 0.139506 + 0.101357i 0.655350 0.755326i \(-0.272521\pi\)
−0.515843 + 0.856683i \(0.672521\pi\)
\(684\) 2.38197 7.33094i 0.0910767 0.280305i
\(685\) 22.7639 0.869765
\(686\) −1.63525 5.03280i −0.0624343 0.192153i
\(687\) 4.47214 13.7638i 0.170623 0.525122i
\(688\) 1.76393 5.42882i 0.0672493 0.206972i
\(689\) 6.94427 + 21.3723i 0.264556 + 0.814219i
\(690\) 10.0000 0.380693
\(691\) 2.09017 6.43288i 0.0795138 0.244718i −0.903396 0.428808i \(-0.858934\pi\)
0.982909 + 0.184090i \(0.0589337\pi\)
\(692\) 4.92705 + 3.57971i 0.187298 + 0.136080i
\(693\) 0.527864 0.0200519
\(694\) −0.354102 0.257270i −0.0134415 0.00976584i
\(695\) −2.76393 + 2.00811i −0.104842 + 0.0761721i
\(696\) −0.381966 + 0.277515i −0.0144784 + 0.0105192i
\(697\) −20.1803 + 14.6619i −0.764385 + 0.555358i
\(698\) 2.43769 + 7.50245i 0.0922681 + 0.283972i
\(699\) 12.6525 0.478561
\(700\) 0.590170 1.81636i 0.0223063 0.0686518i
\(701\) −12.8328 −0.484689 −0.242344 0.970190i \(-0.577916\pi\)
−0.242344 + 0.970190i \(0.577916\pi\)
\(702\) −0.763932 2.35114i −0.0288328 0.0887381i
\(703\) −49.8885 + 36.2461i −1.88158 + 1.36705i
\(704\) −1.11803 + 0.812299i −0.0421375 + 0.0306147i
\(705\) 26.1803 0.986009
\(706\) 7.09017 + 5.15131i 0.266842 + 0.193872i
\(707\) 2.52786 0.0950701
\(708\) −1.11803 0.812299i −0.0420183 0.0305281i
\(709\) −9.36068 + 28.8092i −0.351548 + 1.08195i 0.606437 + 0.795132i \(0.292598\pi\)
−0.957984 + 0.286821i \(0.907402\pi\)
\(710\) 10.0000 30.7768i 0.375293 1.15503i
\(711\) −1.04508 3.21644i −0.0391937 0.120626i
\(712\) 3.85410 11.8617i 0.144439 0.444536i
\(713\) −6.05573 + 18.6376i −0.226789 + 0.697984i
\(714\) 0.381966 + 1.17557i 0.0142947 + 0.0439946i
\(715\) 2.36068 + 7.26543i 0.0882844 + 0.271711i
\(716\) 0.972136 2.99193i 0.0363304 0.111814i
\(717\) 20.7984 + 15.1109i 0.776730 + 0.564327i
\(718\) −0.180340 −0.00673022
\(719\) 35.1246 + 25.5195i 1.30993 + 0.951718i 1.00000 0.000957448i \(0.000304765\pi\)
0.309927 + 0.950760i \(0.399695\pi\)
\(720\) 0.690983 2.12663i 0.0257514 0.0792547i
\(721\) 0.409830 0.297759i 0.0152629 0.0110891i
\(722\) −32.6976 + 23.7562i −1.21688 + 0.884113i
\(723\) 3.26393 + 10.0453i 0.121387 + 0.373591i
\(724\) 24.6525 0.916202
\(725\) −0.729490 + 2.24514i −0.0270926 + 0.0833824i
\(726\) 9.09017 0.337368
\(727\) −10.9443 33.6830i −0.405901 1.24923i −0.920141 0.391587i \(-0.871926\pi\)
0.514240 0.857646i \(-0.328074\pi\)
\(728\) −0.763932 + 0.555029i −0.0283132 + 0.0205707i
\(729\) −0.809017 + 0.587785i −0.0299636 + 0.0217698i
\(730\) −22.5623 16.3925i −0.835068 0.606713i
\(731\) 14.9443 + 10.8576i 0.552734 + 0.401585i
\(732\) −7.23607 −0.267453
\(733\) 0.0901699 + 0.0655123i 0.00333050 + 0.00241975i 0.589449 0.807805i \(-0.299345\pi\)
−0.586119 + 0.810225i \(0.699345\pi\)
\(734\) −8.77051 + 26.9929i −0.323725 + 0.996324i
\(735\) −12.3992 9.00854i −0.457351 0.332285i
\(736\) −1.38197 4.25325i −0.0509399 0.156777i
\(737\) −4.47214 + 13.7638i −0.164733 + 0.506997i
\(738\) −2.38197 + 7.33094i −0.0876814 + 0.269856i
\(739\) −7.97871 24.5560i −0.293502 0.903305i −0.983721 0.179705i \(-0.942486\pi\)
0.690219 0.723601i \(-0.257514\pi\)
\(740\) −14.4721 + 10.5146i −0.532006 + 0.386525i
\(741\) −5.88854 + 18.1231i −0.216321 + 0.665768i
\(742\) −2.80902 2.04087i −0.103122 0.0749227i
\(743\) 37.0132 1.35788 0.678940 0.734193i \(-0.262439\pi\)
0.678940 + 0.734193i \(0.262439\pi\)
\(744\) 3.54508 + 2.57565i 0.129969 + 0.0944281i
\(745\) 7.53851 + 23.2011i 0.276190 + 0.850024i
\(746\) 16.5623 12.0332i 0.606389 0.440567i
\(747\) −7.16312 + 5.20431i −0.262085 + 0.190416i
\(748\) −1.38197 4.25325i −0.0505297 0.155514i
\(749\) −3.58359 −0.130942
\(750\) −3.45492 10.6331i −0.126156 0.388267i
\(751\) 0.201626 0.00735744 0.00367872 0.999993i \(-0.498829\pi\)
0.00367872 + 0.999993i \(0.498829\pi\)
\(752\) −3.61803 11.1352i −0.131936 0.406058i
\(753\) −5.30902 + 3.85723i −0.193471 + 0.140565i
\(754\) 0.944272 0.686054i 0.0343884 0.0249846i
\(755\) 1.84752 + 5.68609i 0.0672383 + 0.206938i
\(756\) 0.309017 + 0.224514i 0.0112388 + 0.00816549i
\(757\) 23.1246 0.840478 0.420239 0.907413i \(-0.361946\pi\)
0.420239 + 0.907413i \(0.361946\pi\)
\(758\) −1.76393 1.28157i −0.0640689 0.0465488i
\(759\) 1.90983 5.87785i 0.0693224 0.213353i
\(760\) −13.9443 + 10.1311i −0.505812 + 0.367494i
\(761\) −7.85410 24.1724i −0.284711 0.876250i −0.986485 0.163851i \(-0.947608\pi\)
0.701774 0.712399i \(-0.252392\pi\)
\(762\) −3.51722 + 10.8249i −0.127415 + 0.392144i
\(763\) 1.50658 4.63677i 0.0545418 0.167862i
\(764\) 5.47214 + 16.8415i 0.197975 + 0.609304i
\(765\) 5.85410 + 4.25325i 0.211656 + 0.153777i
\(766\) −6.18034 + 19.0211i −0.223305 + 0.687261i
\(767\) 2.76393 + 2.00811i 0.0997998 + 0.0725088i
\(768\) −1.00000 −0.0360844
\(769\) 28.8713 + 20.9762i 1.04113 + 0.756423i 0.970505 0.241080i \(-0.0775018\pi\)
0.0706214 + 0.997503i \(0.477502\pi\)
\(770\) −0.954915 0.693786i −0.0344127 0.0250023i
\(771\) −17.7984 + 12.9313i −0.640993 + 0.465709i
\(772\) −9.01722 + 6.55139i −0.324537 + 0.235790i
\(773\) −2.42705 7.46969i −0.0872950 0.268666i 0.897874 0.440252i \(-0.145111\pi\)
−0.985169 + 0.171586i \(0.945111\pi\)
\(774\) 5.70820 0.205177
\(775\) 21.9098 0.787024
\(776\) −5.61803 −0.201676
\(777\) −0.944272 2.90617i −0.0338756 0.104258i
\(778\) 11.8262 8.59226i 0.423991 0.308048i
\(779\)