Properties

Label 75.5.f.c
Level $75$
Weight $5$
Character orbit 75.f
Analytic conductor $7.753$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [75,5,Mod(7,75)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("75.7"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(75, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 75.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,72] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.75274723129\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 \beta_1 q^{2} - 3 \beta_{3} q^{3} - 4 \beta_{2} q^{4} + 18 q^{6} + 17 \beta_1 q^{7} - 40 \beta_{3} q^{8} - 27 \beta_{2} q^{9} + 102 q^{11} - 12 \beta_1 q^{12} - 147 \beta_{3} q^{13} + 102 \beta_{2} q^{14}+ \cdots - 2754 \beta_{2} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 72 q^{6} + 408 q^{11} + 704 q^{16} + 612 q^{21} + 3528 q^{26} - 4172 q^{31} - 432 q^{36} - 9552 q^{41} - 5232 q^{46} - 7848 q^{51} + 8160 q^{56} + 10988 q^{61} + 7344 q^{66} + 48 q^{71} + 10160 q^{76}+ \cdots - 10368 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 3\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/75\mathbb{Z}\right)^\times\).

\(n\) \(26\) \(52\)
\(\chi(n)\) \(1\) \(\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
7.1
−1.22474 1.22474i
1.22474 + 1.22474i
−1.22474 + 1.22474i
1.22474 1.22474i
−2.44949 2.44949i −3.67423 + 3.67423i 4.00000i 0 18.0000 −20.8207 20.8207i −48.9898 + 48.9898i 27.0000i 0
7.2 2.44949 + 2.44949i 3.67423 3.67423i 4.00000i 0 18.0000 20.8207 + 20.8207i 48.9898 48.9898i 27.0000i 0
43.1 −2.44949 + 2.44949i −3.67423 3.67423i 4.00000i 0 18.0000 −20.8207 + 20.8207i −48.9898 48.9898i 27.0000i 0
43.2 2.44949 2.44949i 3.67423 + 3.67423i 4.00000i 0 18.0000 20.8207 20.8207i 48.9898 + 48.9898i 27.0000i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
5.c odd 4 2 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 75.5.f.c 4
3.b odd 2 1 225.5.g.g 4
5.b even 2 1 inner 75.5.f.c 4
5.c odd 4 2 inner 75.5.f.c 4
15.d odd 2 1 225.5.g.g 4
15.e even 4 2 225.5.g.g 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
75.5.f.c 4 1.a even 1 1 trivial
75.5.f.c 4 5.b even 2 1 inner
75.5.f.c 4 5.c odd 4 2 inner
225.5.g.g 4 3.b odd 2 1
225.5.g.g 4 15.d odd 2 1
225.5.g.g 4 15.e even 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + 144 \) acting on \(S_{5}^{\mathrm{new}}(75, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 144 \) Copy content Toggle raw display
$3$ \( T^{4} + 729 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 751689 \) Copy content Toggle raw display
$11$ \( (T - 102)^{4} \) Copy content Toggle raw display
$13$ \( T^{4} + 4202539929 \) Copy content Toggle raw display
$17$ \( T^{4} + 20326775184 \) Copy content Toggle raw display
$19$ \( (T^{2} + 403225)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 20326775184 \) Copy content Toggle raw display
$29$ \( (T^{2} + 562500)^{2} \) Copy content Toggle raw display
$31$ \( (T + 1043)^{4} \) Copy content Toggle raw display
$37$ \( T^{4} + 3196772354304 \) Copy content Toggle raw display
$41$ \( (T + 2388)^{4} \) Copy content Toggle raw display
$43$ \( T^{4} + 2955466407609 \) Copy content Toggle raw display
$47$ \( T^{4} + 39876894864 \) Copy content Toggle raw display
$53$ \( T^{4} + 206267963169024 \) Copy content Toggle raw display
$59$ \( (T^{2} + 40832100)^{2} \) Copy content Toggle raw display
$61$ \( (T - 2747)^{4} \) Copy content Toggle raw display
$67$ \( T^{4} + 515607849 \) Copy content Toggle raw display
$71$ \( (T - 12)^{4} \) Copy content Toggle raw display
$73$ \( T^{4} + 393845934184704 \) Copy content Toggle raw display
$79$ \( (T^{2} + 9796900)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 56\!\cdots\!44 \) Copy content Toggle raw display
$89$ \( (T^{2} + 435600)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + 67\!\cdots\!69 \) Copy content Toggle raw display
show more
show less