Properties

Label 75.14.a.h
Level $75$
Weight $14$
Character orbit 75.a
Self dual yes
Analytic conductor $80.423$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [75,14,Mod(1,75)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("75.1"); S:= CuspForms(chi, 14); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(75, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 14, names="a")
 
Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 75.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,52] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(80.4231967139\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 1651x^{2} + 4960x + 346125 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{9}\cdot 3\cdot 5^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 + 13) q^{2} + 729 q^{3} + (\beta_{2} + 11 \beta_1 + 5188) q^{4} + (729 \beta_1 + 9477) q^{6} + ( - \beta_{3} - 29 \beta_{2} + \cdots - 74749) q^{7} + (8 \beta_{3} + 12 \beta_{2} + \cdots + 105984) q^{8}+ \cdots + (10097379 \beta_{3} + \cdots - 780434925966) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 52 q^{2} + 2916 q^{3} + 20752 q^{4} + 37908 q^{6} - 298996 q^{7} + 423936 q^{8} + 2125764 q^{9} - 5874104 q^{11} + 15128208 q^{12} - 32044972 q^{13} - 64322292 q^{14} + 6196480 q^{16} + 67409368 q^{17}+ \cdots - 3121739703864 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 1651x^{2} + 4960x + 346125 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 4\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 16\nu^{2} + 52\nu - 13225 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 8\nu^{3} + 48\nu^{2} - 9668\nu - 17367 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{2} - 13\beta _1 + 13212 ) / 16 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{3} - 3\beta_{2} + 2456\beta _1 - 19852 ) / 8 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−38.8667
−13.8546
17.9883
35.7330
−143.467 729.000 12390.7 0 −104587. −115746. −602380. 531441. 0
1.2 −43.4185 729.000 −6306.83 0 −31652.1 200629. 629518. 531441. 0
1.3 83.9533 729.000 −1143.84 0 61202.0 179519. −783775. 531441. 0
1.4 154.932 729.000 15811.9 0 112945. −563397. 1.18057e6 531441. 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 75.14.a.h yes 4
5.b even 2 1 75.14.a.g 4
5.c odd 4 2 75.14.b.g 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
75.14.a.g 4 5.b even 2 1
75.14.a.h yes 4 1.a even 1 1 trivial
75.14.b.g 8 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} - 52T_{2}^{3} - 25408T_{2}^{2} + 942784T_{2} + 81022464 \) acting on \(S_{14}^{\mathrm{new}}(\Gamma_0(75))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 52 T^{3} + \cdots + 81022464 \) Copy content Toggle raw display
$3$ \( (T - 729)^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + \cdots + 23\!\cdots\!25 \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots - 89\!\cdots\!36 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 13\!\cdots\!09 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 36\!\cdots\!96 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 89\!\cdots\!25 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 18\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots - 83\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots - 35\!\cdots\!75 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots - 10\!\cdots\!00 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots - 22\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 60\!\cdots\!61 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 44\!\cdots\!36 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots - 50\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 10\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots - 16\!\cdots\!99 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 36\!\cdots\!21 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 38\!\cdots\!76 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 14\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots - 27\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 23\!\cdots\!36 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 77\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots - 69\!\cdots\!39 \) Copy content Toggle raw display
show more
show less