Properties

Label 7488.2.a.dc.1.4
Level $7488$
Weight $2$
Character 7488.1
Self dual yes
Analytic conductor $59.792$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7488,2,Mod(1,7488)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7488.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7488, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7488 = 2^{6} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7488.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,0,0,8,0,4,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(29)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(59.7919810335\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{24})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 3744)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(1.93185\) of defining polynomial
Character \(\chi\) \(=\) 7488.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.86370 q^{5} +1.03528 q^{7} +5.46410 q^{11} +1.00000 q^{13} +5.65685 q^{17} -6.69213 q^{19} +6.92820 q^{23} +9.92820 q^{25} +7.72741 q^{29} +1.03528 q^{31} +4.00000 q^{35} +2.00000 q^{37} +3.86370 q^{41} -5.65685 q^{43} -9.46410 q^{47} -5.92820 q^{49} -5.65685 q^{53} +21.1117 q^{55} +2.53590 q^{59} -4.92820 q^{61} +3.86370 q^{65} +6.69213 q^{67} -9.46410 q^{71} -15.8564 q^{73} +5.65685 q^{77} +13.4641 q^{83} +21.8564 q^{85} +0.277401 q^{89} +1.03528 q^{91} -25.8564 q^{95} +6.00000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{11} + 4 q^{13} + 12 q^{25} + 16 q^{35} + 8 q^{37} - 24 q^{47} + 4 q^{49} + 24 q^{59} + 8 q^{61} - 24 q^{71} - 8 q^{73} + 40 q^{83} + 32 q^{85} - 48 q^{95} + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 3.86370 1.72790 0.863950 0.503577i \(-0.167983\pi\)
0.863950 + 0.503577i \(0.167983\pi\)
\(6\) 0 0
\(7\) 1.03528 0.391298 0.195649 0.980674i \(-0.437319\pi\)
0.195649 + 0.980674i \(0.437319\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.46410 1.64749 0.823744 0.566961i \(-0.191881\pi\)
0.823744 + 0.566961i \(0.191881\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.65685 1.37199 0.685994 0.727607i \(-0.259367\pi\)
0.685994 + 0.727607i \(0.259367\pi\)
\(18\) 0 0
\(19\) −6.69213 −1.53528 −0.767640 0.640881i \(-0.778569\pi\)
−0.767640 + 0.640881i \(0.778569\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 6.92820 1.44463 0.722315 0.691564i \(-0.243078\pi\)
0.722315 + 0.691564i \(0.243078\pi\)
\(24\) 0 0
\(25\) 9.92820 1.98564
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 7.72741 1.43494 0.717472 0.696588i \(-0.245299\pi\)
0.717472 + 0.696588i \(0.245299\pi\)
\(30\) 0 0
\(31\) 1.03528 0.185941 0.0929705 0.995669i \(-0.470364\pi\)
0.0929705 + 0.995669i \(0.470364\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 4.00000 0.676123
\(36\) 0 0
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.86370 0.603409 0.301705 0.953401i \(-0.402444\pi\)
0.301705 + 0.953401i \(0.402444\pi\)
\(42\) 0 0
\(43\) −5.65685 −0.862662 −0.431331 0.902194i \(-0.641956\pi\)
−0.431331 + 0.902194i \(0.641956\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −9.46410 −1.38048 −0.690241 0.723580i \(-0.742495\pi\)
−0.690241 + 0.723580i \(0.742495\pi\)
\(48\) 0 0
\(49\) −5.92820 −0.846886
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −5.65685 −0.777029 −0.388514 0.921443i \(-0.627012\pi\)
−0.388514 + 0.921443i \(0.627012\pi\)
\(54\) 0 0
\(55\) 21.1117 2.84670
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 2.53590 0.330146 0.165073 0.986281i \(-0.447214\pi\)
0.165073 + 0.986281i \(0.447214\pi\)
\(60\) 0 0
\(61\) −4.92820 −0.630992 −0.315496 0.948927i \(-0.602171\pi\)
−0.315496 + 0.948927i \(0.602171\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 3.86370 0.479233
\(66\) 0 0
\(67\) 6.69213 0.817574 0.408787 0.912630i \(-0.365952\pi\)
0.408787 + 0.912630i \(0.365952\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −9.46410 −1.12318 −0.561591 0.827415i \(-0.689811\pi\)
−0.561591 + 0.827415i \(0.689811\pi\)
\(72\) 0 0
\(73\) −15.8564 −1.85585 −0.927926 0.372764i \(-0.878410\pi\)
−0.927926 + 0.372764i \(0.878410\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 5.65685 0.644658
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 13.4641 1.47788 0.738939 0.673773i \(-0.235327\pi\)
0.738939 + 0.673773i \(0.235327\pi\)
\(84\) 0 0
\(85\) 21.8564 2.37066
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0.277401 0.0294045 0.0147022 0.999892i \(-0.495320\pi\)
0.0147022 + 0.999892i \(0.495320\pi\)
\(90\) 0 0
\(91\) 1.03528 0.108526
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −25.8564 −2.65281
\(96\) 0 0
\(97\) 6.00000 0.609208 0.304604 0.952479i \(-0.401476\pi\)
0.304604 + 0.952479i \(0.401476\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 2.07055 0.206028 0.103014 0.994680i \(-0.467151\pi\)
0.103014 + 0.994680i \(0.467151\pi\)
\(102\) 0 0
\(103\) −16.9706 −1.67216 −0.836080 0.548608i \(-0.815158\pi\)
−0.836080 + 0.548608i \(0.815158\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −6.92820 −0.669775 −0.334887 0.942258i \(-0.608698\pi\)
−0.334887 + 0.942258i \(0.608698\pi\)
\(108\) 0 0
\(109\) 6.00000 0.574696 0.287348 0.957826i \(-0.407226\pi\)
0.287348 + 0.957826i \(0.407226\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −9.24316 −0.869523 −0.434761 0.900546i \(-0.643167\pi\)
−0.434761 + 0.900546i \(0.643167\pi\)
\(114\) 0 0
\(115\) 26.7685 2.49618
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 5.85641 0.536856
\(120\) 0 0
\(121\) 18.8564 1.71422
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 19.0411 1.70309
\(126\) 0 0
\(127\) −17.5254 −1.55512 −0.777562 0.628806i \(-0.783544\pi\)
−0.777562 + 0.628806i \(0.783544\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1.07180 0.0936433 0.0468217 0.998903i \(-0.485091\pi\)
0.0468217 + 0.998903i \(0.485091\pi\)
\(132\) 0 0
\(133\) −6.92820 −0.600751
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 19.3185 1.65049 0.825246 0.564773i \(-0.191036\pi\)
0.825246 + 0.564773i \(0.191036\pi\)
\(138\) 0 0
\(139\) −3.58630 −0.304186 −0.152093 0.988366i \(-0.548601\pi\)
−0.152093 + 0.988366i \(0.548601\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 5.46410 0.456931
\(144\) 0 0
\(145\) 29.8564 2.47944
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −23.4596 −1.92189 −0.960944 0.276745i \(-0.910744\pi\)
−0.960944 + 0.276745i \(0.910744\pi\)
\(150\) 0 0
\(151\) −16.4901 −1.34194 −0.670972 0.741482i \(-0.734123\pi\)
−0.670972 + 0.741482i \(0.734123\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 4.00000 0.321288
\(156\) 0 0
\(157\) 16.9282 1.35102 0.675509 0.737352i \(-0.263924\pi\)
0.675509 + 0.737352i \(0.263924\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 7.17260 0.565280
\(162\) 0 0
\(163\) −12.9038 −1.01070 −0.505351 0.862914i \(-0.668637\pi\)
−0.505351 + 0.862914i \(0.668637\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −9.46410 −0.732354 −0.366177 0.930545i \(-0.619334\pi\)
−0.366177 + 0.930545i \(0.619334\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 6.21166 0.472264 0.236132 0.971721i \(-0.424120\pi\)
0.236132 + 0.971721i \(0.424120\pi\)
\(174\) 0 0
\(175\) 10.2784 0.776976
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 17.8564 1.33465 0.667325 0.744766i \(-0.267439\pi\)
0.667325 + 0.744766i \(0.267439\pi\)
\(180\) 0 0
\(181\) −22.7846 −1.69357 −0.846783 0.531938i \(-0.821464\pi\)
−0.846783 + 0.531938i \(0.821464\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 7.72741 0.568130
\(186\) 0 0
\(187\) 30.9096 2.26034
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −20.0000 −1.44715 −0.723575 0.690246i \(-0.757502\pi\)
−0.723575 + 0.690246i \(0.757502\pi\)
\(192\) 0 0
\(193\) 10.0000 0.719816 0.359908 0.932988i \(-0.382808\pi\)
0.359908 + 0.932988i \(0.382808\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −11.5911 −0.825832 −0.412916 0.910769i \(-0.635490\pi\)
−0.412916 + 0.910769i \(0.635490\pi\)
\(198\) 0 0
\(199\) 13.3843 0.948785 0.474393 0.880313i \(-0.342668\pi\)
0.474393 + 0.880313i \(0.342668\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 8.00000 0.561490
\(204\) 0 0
\(205\) 14.9282 1.04263
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −36.5665 −2.52936
\(210\) 0 0
\(211\) −15.4548 −1.06395 −0.531977 0.846759i \(-0.678551\pi\)
−0.531977 + 0.846759i \(0.678551\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −21.8564 −1.49059
\(216\) 0 0
\(217\) 1.07180 0.0727583
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 5.65685 0.380521
\(222\) 0 0
\(223\) −18.5606 −1.24291 −0.621456 0.783449i \(-0.713459\pi\)
−0.621456 + 0.783449i \(0.713459\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2.53590 0.168313 0.0841567 0.996453i \(-0.473180\pi\)
0.0841567 + 0.996453i \(0.473180\pi\)
\(228\) 0 0
\(229\) 6.00000 0.396491 0.198246 0.980152i \(-0.436476\pi\)
0.198246 + 0.980152i \(0.436476\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3.58630 0.234946 0.117473 0.993076i \(-0.462521\pi\)
0.117473 + 0.993076i \(0.462521\pi\)
\(234\) 0 0
\(235\) −36.5665 −2.38533
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −3.60770 −0.233362 −0.116681 0.993169i \(-0.537226\pi\)
−0.116681 + 0.993169i \(0.537226\pi\)
\(240\) 0 0
\(241\) 14.0000 0.901819 0.450910 0.892570i \(-0.351100\pi\)
0.450910 + 0.892570i \(0.351100\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −22.9048 −1.46334
\(246\) 0 0
\(247\) −6.69213 −0.425810
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −24.7846 −1.56439 −0.782195 0.623033i \(-0.785900\pi\)
−0.782195 + 0.623033i \(0.785900\pi\)
\(252\) 0 0
\(253\) 37.8564 2.38001
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −11.8685 −0.740337 −0.370169 0.928965i \(-0.620700\pi\)
−0.370169 + 0.928965i \(0.620700\pi\)
\(258\) 0 0
\(259\) 2.07055 0.128658
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −2.92820 −0.180561 −0.0902804 0.995916i \(-0.528776\pi\)
−0.0902804 + 0.995916i \(0.528776\pi\)
\(264\) 0 0
\(265\) −21.8564 −1.34263
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 3.58630 0.218661 0.109330 0.994005i \(-0.465129\pi\)
0.109330 + 0.994005i \(0.465129\pi\)
\(270\) 0 0
\(271\) −29.8744 −1.81474 −0.907369 0.420335i \(-0.861912\pi\)
−0.907369 + 0.420335i \(0.861912\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 54.2487 3.27132
\(276\) 0 0
\(277\) −2.00000 −0.120168 −0.0600842 0.998193i \(-0.519137\pi\)
−0.0600842 + 0.998193i \(0.519137\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −0.277401 −0.0165484 −0.00827419 0.999966i \(-0.502634\pi\)
−0.00827419 + 0.999966i \(0.502634\pi\)
\(282\) 0 0
\(283\) 24.6980 1.46814 0.734071 0.679073i \(-0.237618\pi\)
0.734071 + 0.679073i \(0.237618\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4.00000 0.236113
\(288\) 0 0
\(289\) 15.0000 0.882353
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 7.45001 0.435234 0.217617 0.976034i \(-0.430172\pi\)
0.217617 + 0.976034i \(0.430172\pi\)
\(294\) 0 0
\(295\) 9.79796 0.570459
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 6.92820 0.400668
\(300\) 0 0
\(301\) −5.85641 −0.337558
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −19.0411 −1.09029
\(306\) 0 0
\(307\) −26.2880 −1.50034 −0.750169 0.661246i \(-0.770028\pi\)
−0.750169 + 0.661246i \(0.770028\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 6.92820 0.392862 0.196431 0.980518i \(-0.437065\pi\)
0.196431 + 0.980518i \(0.437065\pi\)
\(312\) 0 0
\(313\) −19.8564 −1.12235 −0.561175 0.827697i \(-0.689651\pi\)
−0.561175 + 0.827697i \(0.689651\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 12.1459 0.682182 0.341091 0.940030i \(-0.389203\pi\)
0.341091 + 0.940030i \(0.389203\pi\)
\(318\) 0 0
\(319\) 42.2233 2.36405
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −37.8564 −2.10639
\(324\) 0 0
\(325\) 9.92820 0.550718
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −9.79796 −0.540179
\(330\) 0 0
\(331\) 33.4607 1.83916 0.919582 0.392898i \(-0.128528\pi\)
0.919582 + 0.392898i \(0.128528\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 25.8564 1.41269
\(336\) 0 0
\(337\) 0.143594 0.00782204 0.00391102 0.999992i \(-0.498755\pi\)
0.00391102 + 0.999992i \(0.498755\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 5.65685 0.306336
\(342\) 0 0
\(343\) −13.3843 −0.722682
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 24.0000 1.28839 0.644194 0.764862i \(-0.277193\pi\)
0.644194 + 0.764862i \(0.277193\pi\)
\(348\) 0 0
\(349\) 18.0000 0.963518 0.481759 0.876304i \(-0.339998\pi\)
0.481759 + 0.876304i \(0.339998\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −27.0459 −1.43951 −0.719755 0.694229i \(-0.755746\pi\)
−0.719755 + 0.694229i \(0.755746\pi\)
\(354\) 0 0
\(355\) −36.5665 −1.94075
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −1.46410 −0.0772723 −0.0386362 0.999253i \(-0.512301\pi\)
−0.0386362 + 0.999253i \(0.512301\pi\)
\(360\) 0 0
\(361\) 25.7846 1.35708
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −61.2645 −3.20673
\(366\) 0 0
\(367\) 23.1822 1.21010 0.605051 0.796187i \(-0.293153\pi\)
0.605051 + 0.796187i \(0.293153\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −5.85641 −0.304049
\(372\) 0 0
\(373\) 10.0000 0.517780 0.258890 0.965907i \(-0.416643\pi\)
0.258890 + 0.965907i \(0.416643\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 7.72741 0.397982
\(378\) 0 0
\(379\) 4.62158 0.237395 0.118697 0.992930i \(-0.462128\pi\)
0.118697 + 0.992930i \(0.462128\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 9.46410 0.483593 0.241797 0.970327i \(-0.422263\pi\)
0.241797 + 0.970327i \(0.422263\pi\)
\(384\) 0 0
\(385\) 21.8564 1.11391
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −4.14110 −0.209962 −0.104981 0.994474i \(-0.533478\pi\)
−0.104981 + 0.994474i \(0.533478\pi\)
\(390\) 0 0
\(391\) 39.1918 1.98202
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 4.14359 0.207961 0.103980 0.994579i \(-0.466842\pi\)
0.103980 + 0.994579i \(0.466842\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −26.4911 −1.32290 −0.661452 0.749988i \(-0.730059\pi\)
−0.661452 + 0.749988i \(0.730059\pi\)
\(402\) 0 0
\(403\) 1.03528 0.0515708
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 10.9282 0.541691
\(408\) 0 0
\(409\) 27.8564 1.37741 0.688705 0.725041i \(-0.258179\pi\)
0.688705 + 0.725041i \(0.258179\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 2.62536 0.129185
\(414\) 0 0
\(415\) 52.0213 2.55362
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 12.7846 0.624569 0.312285 0.949989i \(-0.398906\pi\)
0.312285 + 0.949989i \(0.398906\pi\)
\(420\) 0 0
\(421\) 17.7128 0.863270 0.431635 0.902048i \(-0.357937\pi\)
0.431635 + 0.902048i \(0.357937\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 56.1624 2.72428
\(426\) 0 0
\(427\) −5.10205 −0.246906
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −20.3923 −0.982263 −0.491131 0.871086i \(-0.663417\pi\)
−0.491131 + 0.871086i \(0.663417\pi\)
\(432\) 0 0
\(433\) 3.07180 0.147621 0.0738106 0.997272i \(-0.476484\pi\)
0.0738106 + 0.997272i \(0.476484\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −46.3644 −2.21791
\(438\) 0 0
\(439\) −18.0802 −0.862919 −0.431460 0.902132i \(-0.642001\pi\)
−0.431460 + 0.902132i \(0.642001\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 34.6410 1.64584 0.822922 0.568154i \(-0.192342\pi\)
0.822922 + 0.568154i \(0.192342\pi\)
\(444\) 0 0
\(445\) 1.07180 0.0508080
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 4.41851 0.208522 0.104261 0.994550i \(-0.466752\pi\)
0.104261 + 0.994550i \(0.466752\pi\)
\(450\) 0 0
\(451\) 21.1117 0.994110
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 4.00000 0.187523
\(456\) 0 0
\(457\) −2.00000 −0.0935561 −0.0467780 0.998905i \(-0.514895\pi\)
−0.0467780 + 0.998905i \(0.514895\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 6.89520 0.321142 0.160571 0.987024i \(-0.448667\pi\)
0.160571 + 0.987024i \(0.448667\pi\)
\(462\) 0 0
\(463\) −7.24693 −0.336794 −0.168397 0.985719i \(-0.553859\pi\)
−0.168397 + 0.985719i \(0.553859\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −21.0718 −0.975086 −0.487543 0.873099i \(-0.662107\pi\)
−0.487543 + 0.873099i \(0.662107\pi\)
\(468\) 0 0
\(469\) 6.92820 0.319915
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −30.9096 −1.42123
\(474\) 0 0
\(475\) −66.4408 −3.04851
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 25.4641 1.16348 0.581742 0.813373i \(-0.302371\pi\)
0.581742 + 0.813373i \(0.302371\pi\)
\(480\) 0 0
\(481\) 2.00000 0.0911922
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 23.1822 1.05265
\(486\) 0 0
\(487\) 5.17638 0.234564 0.117282 0.993099i \(-0.462582\pi\)
0.117282 + 0.993099i \(0.462582\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 24.7846 1.11851 0.559257 0.828994i \(-0.311087\pi\)
0.559257 + 0.828994i \(0.311087\pi\)
\(492\) 0 0
\(493\) 43.7128 1.96873
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −9.79796 −0.439499
\(498\) 0 0
\(499\) 30.4292 1.36220 0.681098 0.732192i \(-0.261503\pi\)
0.681098 + 0.732192i \(0.261503\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 2.92820 0.130562 0.0652811 0.997867i \(-0.479206\pi\)
0.0652811 + 0.997867i \(0.479206\pi\)
\(504\) 0 0
\(505\) 8.00000 0.355995
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −15.7322 −0.697318 −0.348659 0.937250i \(-0.613363\pi\)
−0.348659 + 0.937250i \(0.613363\pi\)
\(510\) 0 0
\(511\) −16.4158 −0.726190
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −65.5692 −2.88933
\(516\) 0 0
\(517\) −51.7128 −2.27433
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −28.8391 −1.26346 −0.631731 0.775187i \(-0.717655\pi\)
−0.631731 + 0.775187i \(0.717655\pi\)
\(522\) 0 0
\(523\) −11.8685 −0.518974 −0.259487 0.965747i \(-0.583553\pi\)
−0.259487 + 0.965747i \(0.583553\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 5.85641 0.255109
\(528\) 0 0
\(529\) 25.0000 1.08696
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 3.86370 0.167356
\(534\) 0 0
\(535\) −26.7685 −1.15730
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −32.3923 −1.39524
\(540\) 0 0
\(541\) 0.143594 0.00617357 0.00308678 0.999995i \(-0.499017\pi\)
0.00308678 + 0.999995i \(0.499017\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 23.1822 0.993017
\(546\) 0 0
\(547\) −10.7589 −0.460018 −0.230009 0.973189i \(-0.573875\pi\)
−0.230009 + 0.973189i \(0.573875\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −51.7128 −2.20304
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 3.30890 0.140203 0.0701013 0.997540i \(-0.477668\pi\)
0.0701013 + 0.997540i \(0.477668\pi\)
\(558\) 0 0
\(559\) −5.65685 −0.239259
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −25.8564 −1.08972 −0.544859 0.838528i \(-0.683417\pi\)
−0.544859 + 0.838528i \(0.683417\pi\)
\(564\) 0 0
\(565\) −35.7128 −1.50245
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 42.7781 1.79335 0.896676 0.442687i \(-0.145975\pi\)
0.896676 + 0.442687i \(0.145975\pi\)
\(570\) 0 0
\(571\) −16.4158 −0.686978 −0.343489 0.939157i \(-0.611609\pi\)
−0.343489 + 0.939157i \(0.611609\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 68.7846 2.86852
\(576\) 0 0
\(577\) 15.8564 0.660111 0.330055 0.943962i \(-0.392933\pi\)
0.330055 + 0.943962i \(0.392933\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 13.9391 0.578290
\(582\) 0 0
\(583\) −30.9096 −1.28015
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 7.60770 0.314003 0.157002 0.987598i \(-0.449817\pi\)
0.157002 + 0.987598i \(0.449817\pi\)
\(588\) 0 0
\(589\) −6.92820 −0.285472
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 22.9048 0.940588 0.470294 0.882510i \(-0.344148\pi\)
0.470294 + 0.882510i \(0.344148\pi\)
\(594\) 0 0
\(595\) 22.6274 0.927634
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 10.9282 0.446514 0.223257 0.974760i \(-0.428331\pi\)
0.223257 + 0.974760i \(0.428331\pi\)
\(600\) 0 0
\(601\) −35.8564 −1.46261 −0.731307 0.682049i \(-0.761089\pi\)
−0.731307 + 0.682049i \(0.761089\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 72.8556 2.96200
\(606\) 0 0
\(607\) −26.2137 −1.06398 −0.531991 0.846750i \(-0.678556\pi\)
−0.531991 + 0.846750i \(0.678556\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −9.46410 −0.382877
\(612\) 0 0
\(613\) 15.8564 0.640434 0.320217 0.947344i \(-0.396244\pi\)
0.320217 + 0.947344i \(0.396244\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −15.7322 −0.633355 −0.316678 0.948533i \(-0.602567\pi\)
−0.316678 + 0.948533i \(0.602567\pi\)
\(618\) 0 0
\(619\) 27.2490 1.09523 0.547615 0.836731i \(-0.315536\pi\)
0.547615 + 0.836731i \(0.315536\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0.287187 0.0115059
\(624\) 0 0
\(625\) 23.9282 0.957128
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 11.3137 0.451107
\(630\) 0 0
\(631\) 17.4510 0.694715 0.347357 0.937733i \(-0.387079\pi\)
0.347357 + 0.937733i \(0.387079\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −67.7128 −2.68710
\(636\) 0 0
\(637\) −5.92820 −0.234884
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 32.4254 1.28073 0.640363 0.768073i \(-0.278784\pi\)
0.640363 + 0.768073i \(0.278784\pi\)
\(642\) 0 0
\(643\) 6.69213 0.263912 0.131956 0.991256i \(-0.457874\pi\)
0.131956 + 0.991256i \(0.457874\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 18.1436 0.713298 0.356649 0.934238i \(-0.383919\pi\)
0.356649 + 0.934238i \(0.383919\pi\)
\(648\) 0 0
\(649\) 13.8564 0.543912
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −45.8096 −1.79267 −0.896335 0.443378i \(-0.853780\pi\)
−0.896335 + 0.443378i \(0.853780\pi\)
\(654\) 0 0
\(655\) 4.14110 0.161806
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 37.8564 1.47468 0.737338 0.675524i \(-0.236082\pi\)
0.737338 + 0.675524i \(0.236082\pi\)
\(660\) 0 0
\(661\) 15.8564 0.616743 0.308371 0.951266i \(-0.400216\pi\)
0.308371 + 0.951266i \(0.400216\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −26.7685 −1.03804
\(666\) 0 0
\(667\) 53.5370 2.07296
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −26.9282 −1.03955
\(672\) 0 0
\(673\) −28.9282 −1.11510 −0.557550 0.830143i \(-0.688259\pi\)
−0.557550 + 0.830143i \(0.688259\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 16.9706 0.652232 0.326116 0.945330i \(-0.394260\pi\)
0.326116 + 0.945330i \(0.394260\pi\)
\(678\) 0 0
\(679\) 6.21166 0.238382
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 17.1769 0.657256 0.328628 0.944459i \(-0.393414\pi\)
0.328628 + 0.944459i \(0.393414\pi\)
\(684\) 0 0
\(685\) 74.6410 2.85189
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −5.65685 −0.215509
\(690\) 0 0
\(691\) 14.9743 0.569651 0.284825 0.958579i \(-0.408064\pi\)
0.284825 + 0.958579i \(0.408064\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −13.8564 −0.525603
\(696\) 0 0
\(697\) 21.8564 0.827870
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 19.5959 0.740128 0.370064 0.929006i \(-0.379336\pi\)
0.370064 + 0.929006i \(0.379336\pi\)
\(702\) 0 0
\(703\) −13.3843 −0.504797
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 2.14359 0.0806181
\(708\) 0 0
\(709\) −37.7128 −1.41633 −0.708167 0.706045i \(-0.750478\pi\)
−0.708167 + 0.706045i \(0.750478\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 7.17260 0.268616
\(714\) 0 0
\(715\) 21.1117 0.789532
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 3.21539 0.119914 0.0599569 0.998201i \(-0.480904\pi\)
0.0599569 + 0.998201i \(0.480904\pi\)
\(720\) 0 0
\(721\) −17.5692 −0.654312
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 76.7193 2.84928
\(726\) 0 0
\(727\) −2.07055 −0.0767925 −0.0383963 0.999263i \(-0.512225\pi\)
−0.0383963 + 0.999263i \(0.512225\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −32.0000 −1.18356
\(732\) 0 0
\(733\) −37.7128 −1.39295 −0.696477 0.717579i \(-0.745250\pi\)
−0.696477 + 0.717579i \(0.745250\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 36.5665 1.34694
\(738\) 0 0
\(739\) 39.6723 1.45937 0.729685 0.683784i \(-0.239667\pi\)
0.729685 + 0.683784i \(0.239667\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 18.2487 0.669480 0.334740 0.942310i \(-0.391351\pi\)
0.334740 + 0.942310i \(0.391351\pi\)
\(744\) 0 0
\(745\) −90.6410 −3.32083
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −7.17260 −0.262081
\(750\) 0 0
\(751\) −52.0213 −1.89828 −0.949142 0.314848i \(-0.898046\pi\)
−0.949142 + 0.314848i \(0.898046\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −63.7128 −2.31875
\(756\) 0 0
\(757\) 40.6410 1.47712 0.738561 0.674186i \(-0.235505\pi\)
0.738561 + 0.674186i \(0.235505\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 41.9459 1.52054 0.760269 0.649608i \(-0.225067\pi\)
0.760269 + 0.649608i \(0.225067\pi\)
\(762\) 0 0
\(763\) 6.21166 0.224877
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 2.53590 0.0915660
\(768\) 0 0
\(769\) −33.7128 −1.21572 −0.607858 0.794046i \(-0.707971\pi\)
−0.607858 + 0.794046i \(0.707971\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −49.1185 −1.76667 −0.883335 0.468741i \(-0.844708\pi\)
−0.883335 + 0.468741i \(0.844708\pi\)
\(774\) 0 0
\(775\) 10.2784 0.369212
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −25.8564 −0.926402
\(780\) 0 0
\(781\) −51.7128 −1.85043
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 65.4056 2.33442
\(786\) 0 0
\(787\) −14.9743 −0.533778 −0.266889 0.963727i \(-0.585996\pi\)
−0.266889 + 0.963727i \(0.585996\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −9.56922 −0.340242
\(792\) 0 0
\(793\) −4.92820 −0.175006
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 46.3644 1.64231 0.821156 0.570703i \(-0.193329\pi\)
0.821156 + 0.570703i \(0.193329\pi\)
\(798\) 0 0
\(799\) −53.5370 −1.89400
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −86.6410 −3.05750
\(804\) 0 0
\(805\) 27.7128 0.976748
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 28.8391 1.01393 0.506964 0.861967i \(-0.330768\pi\)
0.506964 + 0.861967i \(0.330768\pi\)
\(810\) 0 0
\(811\) −44.7744 −1.57224 −0.786120 0.618074i \(-0.787913\pi\)
−0.786120 + 0.618074i \(0.787913\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −49.8564 −1.74639
\(816\) 0 0
\(817\) 37.8564 1.32443
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −15.1774 −0.529695 −0.264848 0.964290i \(-0.585322\pi\)
−0.264848 + 0.964290i \(0.585322\pi\)
\(822\) 0 0
\(823\) 24.1432 0.841578 0.420789 0.907159i \(-0.361753\pi\)
0.420789 + 0.907159i \(0.361753\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 39.0333 1.35732 0.678661 0.734452i \(-0.262561\pi\)
0.678661 + 0.734452i \(0.262561\pi\)
\(828\) 0 0
\(829\) 34.7846 1.20812 0.604060 0.796939i \(-0.293549\pi\)
0.604060 + 0.796939i \(0.293549\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −33.5350 −1.16192
\(834\) 0 0
\(835\) −36.5665 −1.26544
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 15.3205 0.528923 0.264461 0.964396i \(-0.414806\pi\)
0.264461 + 0.964396i \(0.414806\pi\)
\(840\) 0 0
\(841\) 30.7128 1.05906
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 3.86370 0.132915
\(846\) 0 0
\(847\) 19.5216 0.670770
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 13.8564 0.474991
\(852\) 0 0
\(853\) 13.7128 0.469518 0.234759 0.972054i \(-0.424570\pi\)
0.234759 + 0.972054i \(0.424570\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −14.9000 −0.508975 −0.254487 0.967076i \(-0.581907\pi\)
−0.254487 + 0.967076i \(0.581907\pi\)
\(858\) 0 0
\(859\) 33.9411 1.15806 0.579028 0.815308i \(-0.303432\pi\)
0.579028 + 0.815308i \(0.303432\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 45.1769 1.53784 0.768920 0.639345i \(-0.220794\pi\)
0.768920 + 0.639345i \(0.220794\pi\)
\(864\) 0 0
\(865\) 24.0000 0.816024
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 6.69213 0.226754
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 19.7128 0.666415
\(876\) 0 0
\(877\) 26.0000 0.877958 0.438979 0.898497i \(-0.355340\pi\)
0.438979 + 0.898497i \(0.355340\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 45.8096 1.54337 0.771683 0.636007i \(-0.219415\pi\)
0.771683 + 0.636007i \(0.219415\pi\)
\(882\) 0 0
\(883\) 17.5254 0.589776 0.294888 0.955532i \(-0.404718\pi\)
0.294888 + 0.955532i \(0.404718\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 49.8564 1.67401 0.837007 0.547192i \(-0.184303\pi\)
0.837007 + 0.547192i \(0.184303\pi\)
\(888\) 0 0
\(889\) −18.1436 −0.608517
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 63.3350 2.11943
\(894\) 0 0
\(895\) 68.9919 2.30614
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 8.00000 0.266815
\(900\) 0 0
\(901\) −32.0000 −1.06607
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −88.0330 −2.92631
\(906\) 0 0
\(907\) −32.9802 −1.09509 −0.547544 0.836777i \(-0.684437\pi\)
−0.547544 + 0.836777i \(0.684437\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 39.7128 1.31574 0.657872 0.753130i \(-0.271457\pi\)
0.657872 + 0.753130i \(0.271457\pi\)
\(912\) 0 0
\(913\) 73.5692 2.43479
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1.10961 0.0366424
\(918\) 0 0
\(919\) −8.28221 −0.273205 −0.136602 0.990626i \(-0.543618\pi\)
−0.136602 + 0.990626i \(0.543618\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −9.46410 −0.311515
\(924\) 0 0
\(925\) 19.8564 0.652875
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −14.6226 −0.479752 −0.239876 0.970804i \(-0.577107\pi\)
−0.239876 + 0.970804i \(0.577107\pi\)
\(930\) 0 0
\(931\) 39.6723 1.30021
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 119.426 3.90564
\(936\) 0 0
\(937\) 20.6410 0.674313 0.337156 0.941449i \(-0.390535\pi\)
0.337156 + 0.941449i \(0.390535\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −34.7733 −1.13358 −0.566789 0.823863i \(-0.691815\pi\)
−0.566789 + 0.823863i \(0.691815\pi\)
\(942\) 0 0
\(943\) 26.7685 0.871703
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 14.2487 0.463021 0.231510 0.972832i \(-0.425633\pi\)
0.231510 + 0.972832i \(0.425633\pi\)
\(948\) 0 0
\(949\) −15.8564 −0.514721
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −22.0726 −0.715002 −0.357501 0.933913i \(-0.616371\pi\)
−0.357501 + 0.933913i \(0.616371\pi\)
\(954\) 0 0
\(955\) −77.2741 −2.50053
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 20.0000 0.645834
\(960\) 0 0
\(961\) −29.9282 −0.965426
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 38.6370 1.24377
\(966\) 0 0
\(967\) −10.2784 −0.330532 −0.165266 0.986249i \(-0.552848\pi\)
−0.165266 + 0.986249i \(0.552848\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −11.7128 −0.375882 −0.187941 0.982180i \(-0.560181\pi\)
−0.187941 + 0.982180i \(0.560181\pi\)
\(972\) 0 0
\(973\) −3.71281 −0.119027
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −50.2281 −1.60694 −0.803470 0.595345i \(-0.797015\pi\)
−0.803470 + 0.595345i \(0.797015\pi\)
\(978\) 0 0
\(979\) 1.51575 0.0484436
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 11.6077 0.370228 0.185114 0.982717i \(-0.440735\pi\)
0.185114 + 0.982717i \(0.440735\pi\)
\(984\) 0 0
\(985\) −44.7846 −1.42696
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −39.1918 −1.24623
\(990\) 0 0
\(991\) −3.58630 −0.113923 −0.0569613 0.998376i \(-0.518141\pi\)
−0.0569613 + 0.998376i \(0.518141\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 51.7128 1.63941
\(996\) 0 0
\(997\) −41.7128 −1.32106 −0.660529 0.750801i \(-0.729668\pi\)
−0.660529 + 0.750801i \(0.729668\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7488.2.a.dc.1.4 4
3.2 odd 2 7488.2.a.db.1.1 4
4.3 odd 2 7488.2.a.db.1.4 4
8.3 odd 2 3744.2.a.bd.1.1 yes 4
8.5 even 2 3744.2.a.bc.1.1 4
12.11 even 2 inner 7488.2.a.dc.1.1 4
24.5 odd 2 3744.2.a.bd.1.4 yes 4
24.11 even 2 3744.2.a.bc.1.4 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3744.2.a.bc.1.1 4 8.5 even 2
3744.2.a.bc.1.4 yes 4 24.11 even 2
3744.2.a.bd.1.1 yes 4 8.3 odd 2
3744.2.a.bd.1.4 yes 4 24.5 odd 2
7488.2.a.db.1.1 4 3.2 odd 2
7488.2.a.db.1.4 4 4.3 odd 2
7488.2.a.dc.1.1 4 12.11 even 2 inner
7488.2.a.dc.1.4 4 1.1 even 1 trivial