Properties

Label 7410.2.a.ca
Level $7410$
Weight $2$
Character orbit 7410.a
Self dual yes
Analytic conductor $59.169$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7410,2,Mod(1,7410)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7410, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7410.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7410 = 2 \cdot 3 \cdot 5 \cdot 13 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7410.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,6,6,6,-6,6,0,6,6,-6,1,6,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(59.1691478978\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.997608784.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 16x^{4} + 72x^{2} - 4x - 80 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + q^{3} + q^{4} - q^{5} + q^{6} - \beta_{4} q^{7} + q^{8} + q^{9} - q^{10} - \beta_{3} q^{11} + q^{12} + q^{13} - \beta_{4} q^{14} - q^{15} + q^{16} + (\beta_{2} + \beta_1 + 1) q^{17}+ \cdots - \beta_{3} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{2} + 6 q^{3} + 6 q^{4} - 6 q^{5} + 6 q^{6} + 6 q^{8} + 6 q^{9} - 6 q^{10} + q^{11} + 6 q^{12} + 6 q^{13} - 6 q^{15} + 6 q^{16} + 9 q^{17} + 6 q^{18} - 6 q^{19} - 6 q^{20} + q^{22} + 8 q^{23}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 16x^{4} + 72x^{2} - 4x - 80 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{2} - 5 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{5} + 12\nu^{3} - 24\nu + 4 ) / 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{5} - 12\nu^{3} + 32\nu - 4 ) / 4 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{4} - 10\nu^{2} + 16 ) / 2 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{4} + 2\nu^{3} + 10\nu^{2} - 12\nu - 16 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta _1 + 5 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{5} + \beta_{4} + 3\beta_{3} + 3\beta_{2} \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 2\beta_{4} + 10\beta _1 + 34 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 12\beta_{5} + 12\beta_{4} + 24\beta_{3} + 20\beta_{2} + 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.05963
−1.22130
−2.89675
1.37166
−2.48315
2.16991
1.00000 1.00000 1.00000 −1.00000 1.00000 −5.01051 1.00000 1.00000 −1.00000
1.2 1.00000 1.00000 1.00000 −1.00000 1.00000 −1.65456 1.00000 1.00000 −1.00000
1.3 1.00000 1.00000 1.00000 −1.00000 1.00000 −1.24994 1.00000 1.00000 −1.00000
1.4 1.00000 1.00000 1.00000 −1.00000 1.00000 −0.362700 1.00000 1.00000 −1.00000
1.5 1.00000 1.00000 1.00000 −1.00000 1.00000 3.82019 1.00000 1.00000 −1.00000
1.6 1.00000 1.00000 1.00000 −1.00000 1.00000 4.45752 1.00000 1.00000 −1.00000
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( +1 \)
\(13\) \( -1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7410.2.a.ca 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
7410.2.a.ca 6 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7410))\):

\( T_{7}^{6} - 32T_{7}^{4} - 4T_{7}^{3} + 200T_{7}^{2} + 248T_{7} + 64 \) Copy content Toggle raw display
\( T_{11}^{6} - T_{11}^{5} - 40T_{11}^{4} + 8T_{11}^{3} + 352T_{11}^{2} - 96T_{11} - 704 \) Copy content Toggle raw display
\( T_{17}^{6} - 9T_{17}^{5} - 24T_{17}^{4} + 252T_{17}^{3} + 224T_{17}^{2} - 976T_{17} + 528 \) Copy content Toggle raw display
\( T_{23}^{6} - 8T_{23}^{5} - 80T_{23}^{4} + 512T_{23}^{3} + 1792T_{23}^{2} - 5632T_{23} - 2048 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{6} \) Copy content Toggle raw display
$3$ \( (T - 1)^{6} \) Copy content Toggle raw display
$5$ \( (T + 1)^{6} \) Copy content Toggle raw display
$7$ \( T^{6} - 32 T^{4} + \cdots + 64 \) Copy content Toggle raw display
$11$ \( T^{6} - T^{5} + \cdots - 704 \) Copy content Toggle raw display
$13$ \( (T - 1)^{6} \) Copy content Toggle raw display
$17$ \( T^{6} - 9 T^{5} + \cdots + 528 \) Copy content Toggle raw display
$19$ \( (T + 1)^{6} \) Copy content Toggle raw display
$23$ \( T^{6} - 8 T^{5} + \cdots - 2048 \) Copy content Toggle raw display
$29$ \( T^{6} - 8 T^{5} + \cdots + 51744 \) Copy content Toggle raw display
$31$ \( T^{6} - 116 T^{4} + \cdots + 128 \) Copy content Toggle raw display
$37$ \( T^{6} - 11 T^{5} + \cdots - 32 \) Copy content Toggle raw display
$41$ \( T^{6} - 12 T^{5} + \cdots + 400 \) Copy content Toggle raw display
$43$ \( T^{6} - 20 T^{5} + \cdots + 15280 \) Copy content Toggle raw display
$47$ \( T^{6} - 3 T^{5} + \cdots - 88 \) Copy content Toggle raw display
$53$ \( T^{6} + 13 T^{5} + \cdots - 158304 \) Copy content Toggle raw display
$59$ \( T^{6} - 2 T^{5} + \cdots + 7744 \) Copy content Toggle raw display
$61$ \( T^{6} - 18 T^{5} + \cdots - 2176 \) Copy content Toggle raw display
$67$ \( T^{6} - 6 T^{5} + \cdots + 150400 \) Copy content Toggle raw display
$71$ \( T^{6} - 11 T^{5} + \cdots + 4840 \) Copy content Toggle raw display
$73$ \( T^{6} - 9 T^{5} + \cdots - 2920 \) Copy content Toggle raw display
$79$ \( T^{6} + 5 T^{5} + \cdots - 15536 \) Copy content Toggle raw display
$83$ \( T^{6} - 20 T^{5} + \cdots + 148384 \) Copy content Toggle raw display
$89$ \( T^{6} - 12 T^{5} + \cdots + 2640 \) Copy content Toggle raw display
$97$ \( T^{6} - 12 T^{5} + \cdots - 123456 \) Copy content Toggle raw display
show more
show less