Defining parameters
Level: | \( N \) | \(=\) | \( 7410 = 2 \cdot 3 \cdot 5 \cdot 13 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 7410.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 56 \) | ||
Sturm bound: | \(3360\) | ||
Trace bound: | \(13\) | ||
Distinguishing \(T_p\): | \(7\), \(11\), \(17\), \(23\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(7410))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1696 | 143 | 1553 |
Cusp forms | 1665 | 143 | 1522 |
Eisenstein series | 31 | 0 | 31 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(5\) | \(13\) | \(19\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(43\) | \(6\) | \(37\) | \(43\) | \(6\) | \(37\) | \(0\) | \(0\) | \(0\) | |||
\(+\) | \(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(61\) | \(2\) | \(59\) | \(60\) | \(2\) | \(58\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(57\) | \(4\) | \(53\) | \(56\) | \(4\) | \(52\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(51\) | \(6\) | \(45\) | \(50\) | \(6\) | \(44\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(57\) | \(5\) | \(52\) | \(56\) | \(5\) | \(51\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(51\) | \(5\) | \(46\) | \(50\) | \(5\) | \(45\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(53\) | \(4\) | \(49\) | \(52\) | \(4\) | \(48\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(51\) | \(4\) | \(47\) | \(50\) | \(4\) | \(46\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(50\) | \(4\) | \(46\) | \(49\) | \(4\) | \(45\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(56\) | \(5\) | \(51\) | \(55\) | \(5\) | \(50\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(54\) | \(3\) | \(51\) | \(53\) | \(3\) | \(50\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(52\) | \(6\) | \(46\) | \(51\) | \(6\) | \(45\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(55\) | \(3\) | \(52\) | \(54\) | \(3\) | \(51\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(51\) | \(6\) | \(45\) | \(50\) | \(6\) | \(44\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(55\) | \(7\) | \(48\) | \(54\) | \(7\) | \(47\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(51\) | \(2\) | \(49\) | \(50\) | \(2\) | \(48\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(+\) | \(+\) | \(+\) | \(-\) | \(50\) | \(4\) | \(46\) | \(49\) | \(4\) | \(45\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(+\) | \(56\) | \(5\) | \(51\) | \(55\) | \(5\) | \(50\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(+\) | \(52\) | \(5\) | \(47\) | \(51\) | \(5\) | \(46\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(-\) | \(-\) | \(54\) | \(4\) | \(50\) | \(53\) | \(4\) | \(49\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(+\) | \(59\) | \(4\) | \(55\) | \(58\) | \(4\) | \(54\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(-\) | \(-\) | \(47\) | \(5\) | \(42\) | \(46\) | \(5\) | \(41\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(-\) | \(-\) | \(+\) | \(-\) | \(53\) | \(6\) | \(47\) | \(52\) | \(6\) | \(46\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(+\) | \(53\) | \(3\) | \(50\) | \(52\) | \(3\) | \(49\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(+\) | \(50\) | \(4\) | \(46\) | \(49\) | \(4\) | \(45\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(-\) | \(-\) | \(54\) | \(6\) | \(48\) | \(53\) | \(6\) | \(47\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(+\) | \(-\) | \(+\) | \(-\) | \(52\) | \(6\) | \(46\) | \(51\) | \(6\) | \(45\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(+\) | \(56\) | \(2\) | \(54\) | \(55\) | \(2\) | \(53\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(-\) | \(+\) | \(+\) | \(-\) | \(60\) | \(6\) | \(54\) | \(59\) | \(6\) | \(53\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(+\) | \(48\) | \(2\) | \(46\) | \(47\) | \(2\) | \(45\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(+\) | \(48\) | \(1\) | \(47\) | \(47\) | \(1\) | \(46\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(-\) | \(-\) | \(56\) | \(8\) | \(48\) | \(55\) | \(8\) | \(47\) | \(1\) | \(0\) | \(1\) | |||
Plus space | \(+\) | \(836\) | \(60\) | \(776\) | \(821\) | \(60\) | \(761\) | \(15\) | \(0\) | \(15\) | |||||||
Minus space | \(-\) | \(860\) | \(83\) | \(777\) | \(844\) | \(83\) | \(761\) | \(16\) | \(0\) | \(16\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(7410))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(7410))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(7410)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(38))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(57))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(65))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(78))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(95))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(114))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(130))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(190))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(195))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(247))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(285))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(390))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(494))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(570))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(741))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1235))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1482))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2470))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3705))\)\(^{\oplus 2}\)