Properties

Label 7410.2.a.bv
Level $7410$
Weight $2$
Character orbit 7410.a
Self dual yes
Analytic conductor $59.169$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7410,2,Mod(1,7410)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7410, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7410.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7410 = 2 \cdot 3 \cdot 5 \cdot 13 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7410.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,-5,5,5,-5,-5,-9,-5,5,5,1,5,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(59.1691478978\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.998068.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 6x^{3} + 10x^{2} + 3x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} + (\beta_{3} - 2) q^{7} - q^{8} + q^{9} + q^{10} + (\beta_{2} - \beta_1) q^{11} + q^{12} - q^{13} + ( - \beta_{3} + 2) q^{14} - q^{15} + q^{16} + (\beta_{4} + \beta_1 + 1) q^{17}+ \cdots + (\beta_{2} - \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 5 q^{2} + 5 q^{3} + 5 q^{4} - 5 q^{5} - 5 q^{6} - 9 q^{7} - 5 q^{8} + 5 q^{9} + 5 q^{10} + q^{11} + 5 q^{12} - 5 q^{13} + 9 q^{14} - 5 q^{15} + 5 q^{16} + 4 q^{17} - 5 q^{18} + 5 q^{19} - 5 q^{20}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - 2x^{4} - 6x^{3} + 10x^{2} + 3x - 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{3} - 5\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{4} - \nu^{3} - 7\nu^{2} + 7\nu + 4 ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{4} - \nu^{3} - 7\nu^{2} + 3\nu + 6 ) / 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - 2\nu^{3} - 5\nu^{2} + 8\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{3} + \beta_{2} + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{4} - 2\beta_{3} + \beta _1 + 7 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -5\beta_{3} + 5\beta_{2} + 2\beta _1 + 7 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 7\beta_{4} - 12\beta_{3} + 2\beta_{2} + 9\beta _1 + 41 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.70130
2.75031
−2.26473
−0.537811
0.350931
−1.00000 1.00000 1.00000 −1.00000 −1.00000 −4.85184 −1.00000 1.00000 1.00000
1.2 −1.00000 1.00000 1.00000 −1.00000 −1.00000 −3.14266 −1.00000 1.00000 1.00000
1.3 −1.00000 1.00000 1.00000 −1.00000 −1.00000 −1.38739 −1.00000 1.00000 1.00000
1.4 −1.00000 1.00000 1.00000 −1.00000 −1.00000 −0.699450 −1.00000 1.00000 1.00000
1.5 −1.00000 1.00000 1.00000 −1.00000 −1.00000 1.08134 −1.00000 1.00000 1.00000
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(5\) \( +1 \)
\(13\) \( +1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7410.2.a.bv 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
7410.2.a.bv 5 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7410))\):

\( T_{7}^{5} + 9T_{7}^{4} + 22T_{7}^{3} + 4T_{7}^{2} - 28T_{7} - 16 \) Copy content Toggle raw display
\( T_{11}^{5} - T_{11}^{4} - 36T_{11}^{3} - 16T_{11}^{2} + 336T_{11} + 512 \) Copy content Toggle raw display
\( T_{17}^{5} - 4T_{17}^{4} - 52T_{17}^{3} + 144T_{17}^{2} + 576T_{17} - 256 \) Copy content Toggle raw display
\( T_{23}^{5} - T_{23}^{4} - 84T_{23}^{3} + 48T_{23}^{2} + 1344T_{23} - 512 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{5} \) Copy content Toggle raw display
$3$ \( (T - 1)^{5} \) Copy content Toggle raw display
$5$ \( (T + 1)^{5} \) Copy content Toggle raw display
$7$ \( T^{5} + 9 T^{4} + \cdots - 16 \) Copy content Toggle raw display
$11$ \( T^{5} - T^{4} + \cdots + 512 \) Copy content Toggle raw display
$13$ \( (T + 1)^{5} \) Copy content Toggle raw display
$17$ \( T^{5} - 4 T^{4} + \cdots - 256 \) Copy content Toggle raw display
$19$ \( (T - 1)^{5} \) Copy content Toggle raw display
$23$ \( T^{5} - T^{4} + \cdots - 512 \) Copy content Toggle raw display
$29$ \( T^{5} - 4 T^{4} + \cdots + 32 \) Copy content Toggle raw display
$31$ \( T^{5} + 2 T^{4} + \cdots - 3200 \) Copy content Toggle raw display
$37$ \( T^{5} + 22 T^{4} + \cdots - 1184 \) Copy content Toggle raw display
$41$ \( T^{5} - 8 T^{4} + \cdots - 6736 \) Copy content Toggle raw display
$43$ \( T^{5} - 3 T^{4} + \cdots - 4688 \) Copy content Toggle raw display
$47$ \( T^{5} + 6 T^{4} + \cdots + 37376 \) Copy content Toggle raw display
$53$ \( T^{5} + 2 T^{4} + \cdots + 106016 \) Copy content Toggle raw display
$59$ \( T^{5} + 6 T^{4} + \cdots - 2048 \) Copy content Toggle raw display
$61$ \( T^{5} - 18 T^{4} + \cdots - 1312 \) Copy content Toggle raw display
$67$ \( T^{5} + 17 T^{4} + \cdots - 15424 \) Copy content Toggle raw display
$71$ \( T^{5} - 7 T^{4} + \cdots + 3776 \) Copy content Toggle raw display
$73$ \( T^{5} + 14 T^{4} + \cdots + 5552 \) Copy content Toggle raw display
$79$ \( T^{5} + 13 T^{4} + \cdots + 64 \) Copy content Toggle raw display
$83$ \( T^{5} + 2 T^{4} + \cdots + 128 \) Copy content Toggle raw display
$89$ \( T^{5} + 6 T^{4} + \cdots + 17792 \) Copy content Toggle raw display
$97$ \( T^{5} + 34 T^{4} + \cdots - 247136 \) Copy content Toggle raw display
show more
show less