Properties

Label 7410.2.a.bo
Level $7410$
Weight $2$
Character orbit 7410.a
Self dual yes
Analytic conductor $59.169$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7410,2,Mod(1,7410)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7410, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7410.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7410 = 2 \cdot 3 \cdot 5 \cdot 13 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7410.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-4,-4,4,4,4,-1,-4,4,-4,4,-4,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(59.1691478978\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.85688.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 10x^{2} - 2x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} - \beta_1 q^{7} - q^{8} + q^{9} - q^{10} + (\beta_{3} + 1) q^{11} - q^{12} + q^{13} + \beta_1 q^{14} - q^{15} + q^{16} + ( - \beta_{2} - \beta_1) q^{17}+ \cdots + (\beta_{3} + 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} - 4 q^{3} + 4 q^{4} + 4 q^{5} + 4 q^{6} - q^{7} - 4 q^{8} + 4 q^{9} - 4 q^{10} + 4 q^{11} - 4 q^{12} + 4 q^{13} + q^{14} - 4 q^{15} + 4 q^{16} - q^{17} - 4 q^{18} + 4 q^{19} + 4 q^{20}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 10x^{2} - 2x + 8 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - \nu^{2} - 8\nu - 2 ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + 3\nu^{2} + 6\nu - 8 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + \beta_{2} + \beta _1 + 5 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 3\beta_{2} + 9\beta _1 + 7 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.69457
0.794255
−1.18164
−2.30718
−1.00000 −1.00000 1.00000 1.00000 1.00000 −3.69457 −1.00000 1.00000 −1.00000
1.2 −1.00000 −1.00000 1.00000 1.00000 1.00000 −0.794255 −1.00000 1.00000 −1.00000
1.3 −1.00000 −1.00000 1.00000 1.00000 1.00000 1.18164 −1.00000 1.00000 −1.00000
1.4 −1.00000 −1.00000 1.00000 1.00000 1.00000 2.30718 −1.00000 1.00000 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(5\) \( -1 \)
\(13\) \( -1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7410.2.a.bo 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
7410.2.a.bo 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7410))\):

\( T_{7}^{4} + T_{7}^{3} - 10T_{7}^{2} + 2T_{7} + 8 \) Copy content Toggle raw display
\( T_{11}^{4} - 4T_{11}^{3} - 13T_{11}^{2} + 52T_{11} - 4 \) Copy content Toggle raw display
\( T_{17}^{4} + T_{17}^{3} - 30T_{17}^{2} + 32T_{17} + 64 \) Copy content Toggle raw display
\( T_{23}^{4} - 5T_{23}^{3} - 36T_{23}^{2} + 128T_{23} + 256 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{4} \) Copy content Toggle raw display
$3$ \( (T + 1)^{4} \) Copy content Toggle raw display
$5$ \( (T - 1)^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + T^{3} - 10 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$11$ \( T^{4} - 4 T^{3} + \cdots - 4 \) Copy content Toggle raw display
$13$ \( (T - 1)^{4} \) Copy content Toggle raw display
$17$ \( T^{4} + T^{3} + \cdots + 64 \) Copy content Toggle raw display
$19$ \( (T - 1)^{4} \) Copy content Toggle raw display
$23$ \( T^{4} - 5 T^{3} + \cdots + 256 \) Copy content Toggle raw display
$29$ \( T^{4} - 12 T^{3} + \cdots - 448 \) Copy content Toggle raw display
$31$ \( T^{4} - 12 T^{3} + \cdots - 448 \) Copy content Toggle raw display
$37$ \( T^{4} + 9 T^{3} + \cdots + 688 \) Copy content Toggle raw display
$41$ \( T^{4} - 12 T^{3} + \cdots + 8 \) Copy content Toggle raw display
$43$ \( T^{4} - T^{3} + \cdots + 1916 \) Copy content Toggle raw display
$47$ \( T^{4} - T^{3} + \cdots + 1172 \) Copy content Toggle raw display
$53$ \( T^{4} + T^{3} + \cdots + 1688 \) Copy content Toggle raw display
$59$ \( T^{4} - 24 T^{3} + \cdots + 128 \) Copy content Toggle raw display
$61$ \( T^{4} + 6 T^{3} + \cdots + 64 \) Copy content Toggle raw display
$67$ \( T^{4} - 5 T^{3} + \cdots - 392 \) Copy content Toggle raw display
$71$ \( T^{4} - 4 T^{3} + \cdots + 5242 \) Copy content Toggle raw display
$73$ \( T^{4} + 17 T^{3} + \cdots - 14188 \) Copy content Toggle raw display
$79$ \( T^{4} - 12 T^{3} + \cdots + 436 \) Copy content Toggle raw display
$83$ \( T^{4} - 2 T^{3} + \cdots - 2656 \) Copy content Toggle raw display
$89$ \( T^{4} - 10 T^{3} + \cdots + 368 \) Copy content Toggle raw display
$97$ \( T^{4} - 4 T^{3} + \cdots + 1136 \) Copy content Toggle raw display
show more
show less