Properties

Label 741.2.d.a.740.10
Level $741$
Weight $2$
Character 741.740
Analytic conductor $5.917$
Analytic rank $0$
Dimension $88$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [741,2,Mod(740,741)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("741.740"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(741, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 741 = 3 \cdot 13 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 741.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.91691478978\)
Analytic rank: \(0\)
Dimension: \(88\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 740.10
Character \(\chi\) \(=\) 741.740
Dual form 741.2.d.a.740.77

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.19415i q^{2} +(-1.62296 + 0.604979i) q^{3} -2.81428 q^{4} +1.77589 q^{5} +(1.32741 + 3.56101i) q^{6} +2.44560i q^{7} +1.78666i q^{8} +(2.26800 - 1.96372i) q^{9} -3.89657i q^{10} -3.41871 q^{11} +(4.56747 - 1.70258i) q^{12} +(-3.55149 - 0.622039i) q^{13} +5.36600 q^{14} +(-2.88220 + 1.07438i) q^{15} -1.70838 q^{16} -0.383868i q^{17} +(-4.30868 - 4.97633i) q^{18} +(-2.15458 + 3.78917i) q^{19} -4.99786 q^{20} +(-1.47954 - 3.96911i) q^{21} +7.50114i q^{22} +1.45851i q^{23} +(-1.08089 - 2.89967i) q^{24} -1.84621 q^{25} +(-1.36485 + 7.79249i) q^{26} +(-2.49287 + 4.55912i) q^{27} -6.88260i q^{28} -4.42214 q^{29} +(2.35734 + 6.32398i) q^{30} -0.673992 q^{31} +7.32175i q^{32} +(5.54842 - 2.06825i) q^{33} -0.842262 q^{34} +4.34312i q^{35} +(-6.38279 + 5.52645i) q^{36} -5.01097 q^{37} +(8.31399 + 4.72747i) q^{38} +(6.14024 - 1.13903i) q^{39} +3.17291i q^{40} +3.03845i q^{41} +(-8.70880 + 3.24632i) q^{42} +2.64413 q^{43} +9.62120 q^{44} +(4.02772 - 3.48735i) q^{45} +3.20018 q^{46} -10.4132 q^{47} +(2.77263 - 1.03353i) q^{48} +1.01906 q^{49} +4.05085i q^{50} +(0.232232 + 0.623002i) q^{51} +(9.99489 + 1.75059i) q^{52} +8.49420 q^{53} +(10.0034 + 5.46972i) q^{54} -6.07125 q^{55} -4.36944 q^{56} +(1.20443 - 7.45314i) q^{57} +9.70283i q^{58} -10.9052i q^{59} +(8.11133 - 3.02360i) q^{60} +4.27333 q^{61} +1.47884i q^{62} +(4.80246 + 5.54661i) q^{63} +12.6482 q^{64} +(-6.30706 - 1.10468i) q^{65} +(-4.53804 - 12.1741i) q^{66} +5.69814 q^{67} +1.08031i q^{68} +(-0.882368 - 2.36710i) q^{69} +9.52944 q^{70} +13.1942i q^{71} +(3.50848 + 4.05213i) q^{72} -1.84337i q^{73} +10.9948i q^{74} +(2.99632 - 1.11692i) q^{75} +(6.06360 - 10.6638i) q^{76} -8.36078i q^{77} +(-2.49920 - 13.4726i) q^{78} +16.2314i q^{79} -3.03390 q^{80} +(1.28765 - 8.90741i) q^{81} +6.66681 q^{82} -12.3912 q^{83} +(4.16383 + 11.1702i) q^{84} -0.681708i q^{85} -5.80161i q^{86} +(7.17696 - 2.67530i) q^{87} -6.10805i q^{88} +5.81937i q^{89} +(-7.65175 - 8.83742i) q^{90} +(1.52126 - 8.68551i) q^{91} -4.10466i q^{92} +(1.09386 - 0.407751i) q^{93} +22.8481i q^{94} +(-3.82630 + 6.72915i) q^{95} +(-4.42951 - 11.8829i) q^{96} -8.97647 q^{97} -2.23596i q^{98} +(-7.75362 + 6.71336i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 88 q - 88 q^{4} - 4 q^{9} + 72 q^{16} + 64 q^{25} - 60 q^{30} - 48 q^{36} + 20 q^{39} + 48 q^{42} - 64 q^{43} - 112 q^{49} - 24 q^{55} - 64 q^{61} - 104 q^{64} + 12 q^{66} + 60 q^{81} + 56 q^{82} - 32 q^{87}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/741\mathbb{Z}\right)^\times\).

\(n\) \(40\) \(248\) \(457\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.19415i 1.55150i −0.631043 0.775748i \(-0.717373\pi\)
0.631043 0.775748i \(-0.282627\pi\)
\(3\) −1.62296 + 0.604979i −0.937017 + 0.349285i
\(4\) −2.81428 −1.40714
\(5\) 1.77589 0.794203 0.397102 0.917775i \(-0.370016\pi\)
0.397102 + 0.917775i \(0.370016\pi\)
\(6\) 1.32741 + 3.56101i 0.541914 + 1.45378i
\(7\) 2.44560i 0.924349i 0.886789 + 0.462174i \(0.152931\pi\)
−0.886789 + 0.462174i \(0.847069\pi\)
\(8\) 1.78666i 0.631678i
\(9\) 2.26800 1.96372i 0.756000 0.654572i
\(10\) 3.89657i 1.23220i
\(11\) −3.41871 −1.03078 −0.515389 0.856956i \(-0.672353\pi\)
−0.515389 + 0.856956i \(0.672353\pi\)
\(12\) 4.56747 1.70258i 1.31851 0.491493i
\(13\) −3.55149 0.622039i −0.985006 0.172523i
\(14\) 5.36600 1.43412
\(15\) −2.88220 + 1.07438i −0.744182 + 0.277403i
\(16\) −1.70838 −0.427095
\(17\) 0.383868i 0.0931016i −0.998916 0.0465508i \(-0.985177\pi\)
0.998916 0.0465508i \(-0.0148229\pi\)
\(18\) −4.30868 4.97633i −1.01557 1.17293i
\(19\) −2.15458 + 3.78917i −0.494295 + 0.869294i
\(20\) −4.99786 −1.11756
\(21\) −1.47954 3.96911i −0.322861 0.866130i
\(22\) 7.50114i 1.59925i
\(23\) 1.45851i 0.304120i 0.988371 + 0.152060i \(0.0485907\pi\)
−0.988371 + 0.152060i \(0.951409\pi\)
\(24\) −1.08089 2.89967i −0.220636 0.591893i
\(25\) −1.84621 −0.369241
\(26\) −1.36485 + 7.79249i −0.267668 + 1.52823i
\(27\) −2.49287 + 4.55912i −0.479752 + 0.877404i
\(28\) 6.88260i 1.30069i
\(29\) −4.42214 −0.821171 −0.410585 0.911822i \(-0.634676\pi\)
−0.410585 + 0.911822i \(0.634676\pi\)
\(30\) 2.35734 + 6.32398i 0.430390 + 1.15460i
\(31\) −0.673992 −0.121052 −0.0605262 0.998167i \(-0.519278\pi\)
−0.0605262 + 0.998167i \(0.519278\pi\)
\(32\) 7.32175i 1.29431i
\(33\) 5.54842 2.06825i 0.965857 0.360036i
\(34\) −0.842262 −0.144447
\(35\) 4.34312i 0.734121i
\(36\) −6.38279 + 5.52645i −1.06380 + 0.921075i
\(37\) −5.01097 −0.823799 −0.411900 0.911229i \(-0.635135\pi\)
−0.411900 + 0.911229i \(0.635135\pi\)
\(38\) 8.31399 + 4.72747i 1.34871 + 0.766897i
\(39\) 6.14024 1.13903i 0.983226 0.182391i
\(40\) 3.17291i 0.501681i
\(41\) 3.03845i 0.474526i 0.971445 + 0.237263i \(0.0762504\pi\)
−0.971445 + 0.237263i \(0.923750\pi\)
\(42\) −8.70880 + 3.24632i −1.34380 + 0.500918i
\(43\) 2.64413 0.403226 0.201613 0.979465i \(-0.435382\pi\)
0.201613 + 0.979465i \(0.435382\pi\)
\(44\) 9.62120 1.45045
\(45\) 4.02772 3.48735i 0.600418 0.519863i
\(46\) 3.20018 0.471841
\(47\) −10.4132 −1.51892 −0.759459 0.650555i \(-0.774536\pi\)
−0.759459 + 0.650555i \(0.774536\pi\)
\(48\) 2.77263 1.03353i 0.400195 0.149178i
\(49\) 1.01906 0.145579
\(50\) 4.05085i 0.572876i
\(51\) 0.232232 + 0.623002i 0.0325190 + 0.0872377i
\(52\) 9.99489 + 1.75059i 1.38604 + 0.242764i
\(53\) 8.49420 1.16677 0.583384 0.812196i \(-0.301728\pi\)
0.583384 + 0.812196i \(0.301728\pi\)
\(54\) 10.0034 + 5.46972i 1.36129 + 0.744334i
\(55\) −6.07125 −0.818648
\(56\) −4.36944 −0.583891
\(57\) 1.20443 7.45314i 0.159531 0.987193i
\(58\) 9.70283i 1.27404i
\(59\) 10.9052i 1.41973i −0.704337 0.709865i \(-0.748756\pi\)
0.704337 0.709865i \(-0.251244\pi\)
\(60\) 8.11133 3.02360i 1.04717 0.390346i
\(61\) 4.27333 0.547144 0.273572 0.961852i \(-0.411795\pi\)
0.273572 + 0.961852i \(0.411795\pi\)
\(62\) 1.47884i 0.187812i
\(63\) 4.80246 + 5.54661i 0.605053 + 0.698808i
\(64\) 12.6482 1.58103
\(65\) −6.30706 1.10468i −0.782295 0.137018i
\(66\) −4.53804 12.1741i −0.558594 1.49852i
\(67\) 5.69814 0.696138 0.348069 0.937469i \(-0.386837\pi\)
0.348069 + 0.937469i \(0.386837\pi\)
\(68\) 1.08031i 0.131007i
\(69\) −0.882368 2.36710i −0.106225 0.284966i
\(70\) 9.52944 1.13899
\(71\) 13.1942i 1.56587i 0.622105 + 0.782934i \(0.286278\pi\)
−0.622105 + 0.782934i \(0.713722\pi\)
\(72\) 3.50848 + 4.05213i 0.413479 + 0.477549i
\(73\) 1.84337i 0.215750i −0.994164 0.107875i \(-0.965595\pi\)
0.994164 0.107875i \(-0.0344046\pi\)
\(74\) 10.9948i 1.27812i
\(75\) 2.99632 1.11692i 0.345985 0.128970i
\(76\) 6.06360 10.6638i 0.695543 1.22322i
\(77\) 8.36078i 0.952799i
\(78\) −2.49920 13.4726i −0.282979 1.52547i
\(79\) 16.2314i 1.82617i 0.407769 + 0.913085i \(0.366307\pi\)
−0.407769 + 0.913085i \(0.633693\pi\)
\(80\) −3.03390 −0.339200
\(81\) 1.28765 8.90741i 0.143072 0.989712i
\(82\) 6.66681 0.736226
\(83\) −12.3912 −1.36011 −0.680054 0.733162i \(-0.738044\pi\)
−0.680054 + 0.733162i \(0.738044\pi\)
\(84\) 4.16383 + 11.1702i 0.454311 + 1.21877i
\(85\) 0.681708i 0.0739416i
\(86\) 5.80161i 0.625604i
\(87\) 7.17696 2.67530i 0.769451 0.286823i
\(88\) 6.10805i 0.651120i
\(89\) 5.81937i 0.616852i 0.951248 + 0.308426i \(0.0998022\pi\)
−0.951248 + 0.308426i \(0.900198\pi\)
\(90\) −7.65175 8.83742i −0.806566 0.931546i
\(91\) 1.52126 8.68551i 0.159471 0.910489i
\(92\) 4.10466i 0.427940i
\(93\) 1.09386 0.407751i 0.113428 0.0422818i
\(94\) 22.8481i 2.35660i
\(95\) −3.82630 + 6.72915i −0.392571 + 0.690396i
\(96\) −4.42951 11.8829i −0.452085 1.21279i
\(97\) −8.97647 −0.911422 −0.455711 0.890128i \(-0.650615\pi\)
−0.455711 + 0.890128i \(0.650615\pi\)
\(98\) 2.23596i 0.225866i
\(99\) −7.75362 + 6.71336i −0.779268 + 0.674718i
\(100\) 5.19574 0.519574
\(101\) 19.1114i 1.90165i −0.309725 0.950826i \(-0.600237\pi\)
0.309725 0.950826i \(-0.399763\pi\)
\(102\) 1.36696 0.509551i 0.135349 0.0504531i
\(103\) 7.85248i 0.773728i 0.922137 + 0.386864i \(0.126442\pi\)
−0.922137 + 0.386864i \(0.873558\pi\)
\(104\) 1.11137 6.34529i 0.108979 0.622206i
\(105\) −2.62750 7.04871i −0.256417 0.687883i
\(106\) 18.6375i 1.81024i
\(107\) −6.92645 −0.669605 −0.334803 0.942288i \(-0.608670\pi\)
−0.334803 + 0.942288i \(0.608670\pi\)
\(108\) 7.01563 12.8307i 0.675079 1.23463i
\(109\) −6.11369 −0.585586 −0.292793 0.956176i \(-0.594585\pi\)
−0.292793 + 0.956176i \(0.594585\pi\)
\(110\) 13.3212i 1.27013i
\(111\) 8.13261 3.03154i 0.771913 0.287741i
\(112\) 4.17801i 0.394785i
\(113\) −10.2489 −0.964134 −0.482067 0.876134i \(-0.660114\pi\)
−0.482067 + 0.876134i \(0.660114\pi\)
\(114\) −16.3533 2.64270i −1.53163 0.247512i
\(115\) 2.59016i 0.241533i
\(116\) 12.4451 1.15550
\(117\) −9.27628 + 5.56333i −0.857593 + 0.514330i
\(118\) −23.9275 −2.20271
\(119\) 0.938785 0.0860583
\(120\) −1.91954 5.14950i −0.175230 0.470083i
\(121\) 0.687548 0.0625044
\(122\) 9.37631i 0.848892i
\(123\) −1.83820 4.93129i −0.165745 0.444639i
\(124\) 1.89680 0.170338
\(125\) −12.1581 −1.08746
\(126\) 12.1701 10.5373i 1.08420 0.938737i
\(127\) 6.06054i 0.537786i −0.963170 0.268893i \(-0.913342\pi\)
0.963170 0.268893i \(-0.0866577\pi\)
\(128\) 13.1086i 1.15865i
\(129\) −4.29132 + 1.59964i −0.377829 + 0.140841i
\(130\) −2.42382 + 13.8386i −0.212583 + 1.21373i
\(131\) 1.81315i 0.158416i −0.996858 0.0792080i \(-0.974761\pi\)
0.996858 0.0792080i \(-0.0252391\pi\)
\(132\) −15.6148 + 5.82063i −1.35910 + 0.506621i
\(133\) −9.26677 5.26924i −0.803531 0.456901i
\(134\) 12.5026i 1.08006i
\(135\) −4.42706 + 8.09652i −0.381021 + 0.696837i
\(136\) 0.685839 0.0588102
\(137\) −6.67925 −0.570647 −0.285324 0.958431i \(-0.592101\pi\)
−0.285324 + 0.958431i \(0.592101\pi\)
\(138\) −5.19377 + 1.93605i −0.442123 + 0.164807i
\(139\) 16.4442 1.39478 0.697390 0.716692i \(-0.254345\pi\)
0.697390 + 0.716692i \(0.254345\pi\)
\(140\) 12.2228i 1.03301i
\(141\) 16.9002 6.29976i 1.42325 0.530536i
\(142\) 28.9501 2.42944
\(143\) 12.1415 + 2.12657i 1.01532 + 0.177833i
\(144\) −3.87460 + 3.35477i −0.322884 + 0.279564i
\(145\) −7.85325 −0.652177
\(146\) −4.04462 −0.334735
\(147\) −1.65389 + 0.616508i −0.136410 + 0.0508487i
\(148\) 14.1023 1.15920
\(149\) 9.81281 0.803897 0.401948 0.915662i \(-0.368333\pi\)
0.401948 + 0.915662i \(0.368333\pi\)
\(150\) −2.45068 6.57436i −0.200097 0.536794i
\(151\) 18.2661 1.48647 0.743237 0.669028i \(-0.233290\pi\)
0.743237 + 0.669028i \(0.233290\pi\)
\(152\) −6.76993 3.84949i −0.549114 0.312235i
\(153\) −0.753807 0.870612i −0.0609417 0.0703848i
\(154\) −18.3448 −1.47826
\(155\) −1.19694 −0.0961403
\(156\) −17.2804 + 3.20556i −1.38354 + 0.256650i
\(157\) 2.52379 0.201420 0.100710 0.994916i \(-0.467889\pi\)
0.100710 + 0.994916i \(0.467889\pi\)
\(158\) 35.6140 2.83330
\(159\) −13.7858 + 5.13882i −1.09328 + 0.407535i
\(160\) 13.0026i 1.02795i
\(161\) −3.56693 −0.281113
\(162\) −19.5442 2.82529i −1.53554 0.221975i
\(163\) 0.430567i 0.0337246i −0.999858 0.0168623i \(-0.994632\pi\)
0.999858 0.0168623i \(-0.00536769\pi\)
\(164\) 8.55106i 0.667726i
\(165\) 9.85340 3.67298i 0.767086 0.285941i
\(166\) 27.1881i 2.11020i
\(167\) 12.3352i 0.954528i −0.878760 0.477264i \(-0.841629\pi\)
0.878760 0.477264i \(-0.158371\pi\)
\(168\) 7.09143 2.64342i 0.547115 0.203944i
\(169\) 12.2261 + 4.41833i 0.940472 + 0.339872i
\(170\) −1.49577 −0.114720
\(171\) 2.55425 + 12.8248i 0.195329 + 0.980738i
\(172\) −7.44133 −0.567396
\(173\) 9.87383 0.750693 0.375347 0.926885i \(-0.377524\pi\)
0.375347 + 0.926885i \(0.377524\pi\)
\(174\) −5.87001 15.7473i −0.445004 1.19380i
\(175\) 4.51507i 0.341307i
\(176\) 5.84045 0.440240
\(177\) 6.59740 + 17.6986i 0.495891 + 1.33031i
\(178\) 12.7686 0.957044
\(179\) −10.2315 −0.764738 −0.382369 0.924010i \(-0.624892\pi\)
−0.382369 + 0.924010i \(0.624892\pi\)
\(180\) −11.3352 + 9.81438i −0.844872 + 0.731521i
\(181\) 22.5031i 1.67264i −0.548242 0.836320i \(-0.684703\pi\)
0.548242 0.836320i \(-0.315297\pi\)
\(182\) −19.0573 3.33786i −1.41262 0.247419i
\(183\) −6.93544 + 2.58528i −0.512683 + 0.191109i
\(184\) −2.60585 −0.192106
\(185\) −8.89895 −0.654264
\(186\) −0.894666 2.40009i −0.0656001 0.175983i
\(187\) 1.31233i 0.0959671i
\(188\) 29.3056 2.13733
\(189\) −11.1498 6.09655i −0.811027 0.443458i
\(190\) 14.7648 + 8.39548i 1.07115 + 0.609072i
\(191\) 1.21409i 0.0878487i −0.999035 0.0439244i \(-0.986014\pi\)
0.999035 0.0439244i \(-0.0139861\pi\)
\(192\) −20.5276 + 7.65192i −1.48145 + 0.552230i
\(193\) −5.41054 −0.389459 −0.194729 0.980857i \(-0.562383\pi\)
−0.194729 + 0.980857i \(0.562383\pi\)
\(194\) 19.6957i 1.41407i
\(195\) 10.9044 2.02280i 0.780881 0.144856i
\(196\) −2.86791 −0.204851
\(197\) −8.47680 −0.603947 −0.301974 0.953316i \(-0.597645\pi\)
−0.301974 + 0.953316i \(0.597645\pi\)
\(198\) 14.7301 + 17.0126i 1.04682 + 1.20903i
\(199\) −7.18421 −0.509275 −0.254637 0.967037i \(-0.581956\pi\)
−0.254637 + 0.967037i \(0.581956\pi\)
\(200\) 3.29853i 0.233241i
\(201\) −9.24785 + 3.44726i −0.652293 + 0.243151i
\(202\) −41.9332 −2.95041
\(203\) 10.8148i 0.759048i
\(204\) −0.653566 1.75330i −0.0457588 0.122756i
\(205\) 5.39596i 0.376870i
\(206\) 17.2295 1.20044
\(207\) 2.86410 + 3.30790i 0.199068 + 0.229915i
\(208\) 6.06729 + 1.06268i 0.420691 + 0.0736836i
\(209\) 7.36588 12.9540i 0.509508 0.896050i
\(210\) −15.4659 + 5.76511i −1.06725 + 0.397831i
\(211\) 13.5675i 0.934025i −0.884251 0.467012i \(-0.845330\pi\)
0.884251 0.467012i \(-0.154670\pi\)
\(212\) −23.9051 −1.64181
\(213\) −7.98224 21.4137i −0.546934 1.46724i
\(214\) 15.1977i 1.03889i
\(215\) 4.69569 0.320243
\(216\) −8.14558 4.45389i −0.554237 0.303049i
\(217\) 1.64831i 0.111895i
\(218\) 13.4143i 0.908534i
\(219\) 1.11520 + 2.99171i 0.0753581 + 0.202161i
\(220\) 17.0862 1.15195
\(221\) −0.238781 + 1.36330i −0.0160621 + 0.0917056i
\(222\) −6.65164 17.8442i −0.446429 1.19762i
\(223\) −25.3386 −1.69680 −0.848400 0.529356i \(-0.822434\pi\)
−0.848400 + 0.529356i \(0.822434\pi\)
\(224\) −17.9060 −1.19640
\(225\) −4.18719 + 3.62542i −0.279146 + 0.241695i
\(226\) 22.4876i 1.49585i
\(227\) 6.71358i 0.445596i 0.974865 + 0.222798i \(0.0715191\pi\)
−0.974865 + 0.222798i \(0.928481\pi\)
\(228\) −3.38961 + 20.9752i −0.224482 + 1.38912i
\(229\) 2.51631i 0.166283i 0.996538 + 0.0831413i \(0.0264953\pi\)
−0.996538 + 0.0831413i \(0.973505\pi\)
\(230\) 5.68318 0.374738
\(231\) 5.05810 + 13.5692i 0.332798 + 0.892788i
\(232\) 7.90084i 0.518716i
\(233\) 5.09736i 0.333939i −0.985962 0.166969i \(-0.946602\pi\)
0.985962 0.166969i \(-0.0533981\pi\)
\(234\) 12.2068 + 20.3535i 0.797981 + 1.33055i
\(235\) −18.4927 −1.20633
\(236\) 30.6902i 1.99776i
\(237\) −9.81964 26.3428i −0.637854 1.71115i
\(238\) 2.05983i 0.133519i
\(239\) −0.142934 −0.00924564 −0.00462282 0.999989i \(-0.501471\pi\)
−0.00462282 + 0.999989i \(0.501471\pi\)
\(240\) 4.92390 1.83545i 0.317836 0.118478i
\(241\) 17.4195 1.12209 0.561045 0.827786i \(-0.310400\pi\)
0.561045 + 0.827786i \(0.310400\pi\)
\(242\) 1.50858i 0.0969753i
\(243\) 3.29900 + 15.2354i 0.211631 + 0.977350i
\(244\) −12.0264 −0.769908
\(245\) 1.80973 0.115620
\(246\) −10.8200 + 4.03328i −0.689856 + 0.257153i
\(247\) 10.0090 12.1169i 0.636856 0.770983i
\(248\) 1.20419i 0.0764662i
\(249\) 20.1104 7.49640i 1.27444 0.475065i
\(250\) 26.6767i 1.68718i
\(251\) 27.1809i 1.71564i −0.513947 0.857822i \(-0.671817\pi\)
0.513947 0.857822i \(-0.328183\pi\)
\(252\) −13.5155 15.6097i −0.851394 0.983321i
\(253\) 4.98621i 0.313481i
\(254\) −13.2977 −0.834372
\(255\) 0.412419 + 1.10638i 0.0258267 + 0.0692845i
\(256\) −3.46571 −0.216607
\(257\) 26.5783 1.65791 0.828955 0.559315i \(-0.188936\pi\)
0.828955 + 0.559315i \(0.188936\pi\)
\(258\) 3.50986 + 9.41578i 0.218514 + 0.586201i
\(259\) 12.2548i 0.761478i
\(260\) 17.7499 + 3.10887i 1.10080 + 0.192804i
\(261\) −10.0294 + 8.68382i −0.620805 + 0.537515i
\(262\) −3.97832 −0.245782
\(263\) 20.6763i 1.27495i 0.770470 + 0.637477i \(0.220022\pi\)
−0.770470 + 0.637477i \(0.779978\pi\)
\(264\) 3.69524 + 9.91312i 0.227427 + 0.610110i
\(265\) 15.0848 0.926652
\(266\) −11.5615 + 20.3327i −0.708880 + 1.24668i
\(267\) −3.52060 9.44461i −0.215457 0.578001i
\(268\) −16.0362 −0.979565
\(269\) −19.2226 −1.17202 −0.586011 0.810303i \(-0.699302\pi\)
−0.586011 + 0.810303i \(0.699302\pi\)
\(270\) 17.7649 + 9.71363i 1.08114 + 0.591153i
\(271\) 26.4640i 1.60757i −0.594917 0.803787i \(-0.702815\pi\)
0.594917 0.803787i \(-0.297185\pi\)
\(272\) 0.655792i 0.0397632i
\(273\) 2.78561 + 15.0166i 0.168593 + 0.908844i
\(274\) 14.6553i 0.885357i
\(275\) 6.31163 0.380606
\(276\) 2.48323 + 6.66169i 0.149473 + 0.400987i
\(277\) −12.2304 −0.734854 −0.367427 0.930052i \(-0.619761\pi\)
−0.367427 + 0.930052i \(0.619761\pi\)
\(278\) 36.0810i 2.16400i
\(279\) −1.52861 + 1.32353i −0.0915156 + 0.0792375i
\(280\) −7.75965 −0.463728
\(281\) 9.72685i 0.580255i 0.956988 + 0.290128i \(0.0936978\pi\)
−0.956988 + 0.290128i \(0.906302\pi\)
\(282\) −13.8226 37.0815i −0.823124 2.20817i
\(283\) 5.88646 0.349914 0.174957 0.984576i \(-0.444021\pi\)
0.174957 + 0.984576i \(0.444021\pi\)
\(284\) 37.1323i 2.20340i
\(285\) 2.13894 13.2360i 0.126700 0.784032i
\(286\) 4.66601 26.6402i 0.275907 1.57527i
\(287\) −7.43083 −0.438628
\(288\) 14.3778 + 16.6057i 0.847222 + 0.978502i
\(289\) 16.8526 0.991332
\(290\) 17.2312i 1.01185i
\(291\) 14.5684 5.43058i 0.854018 0.318346i
\(292\) 5.18775i 0.303590i
\(293\) 23.0301i 1.34543i 0.739900 + 0.672716i \(0.234873\pi\)
−0.739900 + 0.672716i \(0.765127\pi\)
\(294\) 1.35271 + 3.62887i 0.0788916 + 0.211640i
\(295\) 19.3664i 1.12755i
\(296\) 8.95288i 0.520376i
\(297\) 8.52238 15.5863i 0.494518 0.904409i
\(298\) 21.5308i 1.24724i
\(299\) 0.907250 5.17988i 0.0524676 0.299560i
\(300\) −8.43248 + 3.14332i −0.486850 + 0.181479i
\(301\) 6.46648i 0.372721i
\(302\) 40.0785i 2.30626i
\(303\) 11.5620 + 31.0170i 0.664219 + 1.78188i
\(304\) 3.68084 6.47333i 0.211111 0.371271i
\(305\) 7.58897 0.434543
\(306\) −1.91025 + 1.65396i −0.109202 + 0.0945508i
\(307\) −1.90392 −0.108662 −0.0543311 0.998523i \(-0.517303\pi\)
−0.0543311 + 0.998523i \(0.517303\pi\)
\(308\) 23.5296i 1.34072i
\(309\) −4.75059 12.7443i −0.270252 0.724996i
\(310\) 2.62626i 0.149161i
\(311\) 17.7602i 1.00709i 0.863970 + 0.503543i \(0.167971\pi\)
−0.863970 + 0.503543i \(0.832029\pi\)
\(312\) 2.03506 + 10.9705i 0.115212 + 0.621082i
\(313\) −28.6638 −1.62018 −0.810088 0.586308i \(-0.800581\pi\)
−0.810088 + 0.586308i \(0.800581\pi\)
\(314\) 5.53756i 0.312503i
\(315\) 8.52865 + 9.85019i 0.480535 + 0.554995i
\(316\) 45.6796i 2.56968i
\(317\) 2.34835i 0.131896i 0.997823 + 0.0659481i \(0.0210072\pi\)
−0.997823 + 0.0659481i \(0.978993\pi\)
\(318\) 11.2753 + 30.2480i 0.632289 + 1.69622i
\(319\) 15.1180 0.846445
\(320\) 22.4619 1.25566
\(321\) 11.2414 4.19036i 0.627431 0.233883i
\(322\) 7.82636i 0.436146i
\(323\) 1.45454 + 0.827074i 0.0809327 + 0.0460196i
\(324\) −3.62380 + 25.0680i −0.201322 + 1.39266i
\(325\) 6.55677 + 1.14841i 0.363704 + 0.0637024i
\(326\) −0.944728 −0.0523236
\(327\) 9.92228 3.69866i 0.548703 0.204536i
\(328\) −5.42867 −0.299748
\(329\) 25.4664i 1.40401i
\(330\) −8.05907 21.6198i −0.443637 1.19013i
\(331\) 19.1482 1.05248 0.526240 0.850336i \(-0.323601\pi\)
0.526240 + 0.850336i \(0.323601\pi\)
\(332\) 34.8723 1.91386
\(333\) −11.3649 + 9.84013i −0.622792 + 0.539236i
\(334\) −27.0653 −1.48095
\(335\) 10.1193 0.552875
\(336\) 2.52761 + 6.78074i 0.137892 + 0.369920i
\(337\) 7.90353i 0.430533i 0.976555 + 0.215266i \(0.0690620\pi\)
−0.976555 + 0.215266i \(0.930938\pi\)
\(338\) 9.69447 26.8259i 0.527310 1.45914i
\(339\) 16.6335 6.20036i 0.903409 0.336757i
\(340\) 1.91852i 0.104046i
\(341\) 2.30418 0.124778
\(342\) 28.1395 5.60441i 1.52161 0.303052i
\(343\) 19.6114i 1.05891i
\(344\) 4.72415i 0.254709i
\(345\) −1.56699 4.20372i −0.0843640 0.226321i
\(346\) 21.6646i 1.16470i
\(347\) 27.8343i 1.49422i 0.664700 + 0.747111i \(0.268559\pi\)
−0.664700 + 0.747111i \(0.731441\pi\)
\(348\) −20.1980 + 7.52906i −1.08273 + 0.403600i
\(349\) 20.2631i 1.08466i −0.840166 0.542330i \(-0.817542\pi\)
0.840166 0.542330i \(-0.182458\pi\)
\(350\) −9.90674 −0.529537
\(351\) 11.6893 14.6410i 0.623931 0.781480i
\(352\) 25.0309i 1.33415i
\(353\) 15.6171 0.831215 0.415607 0.909544i \(-0.363569\pi\)
0.415607 + 0.909544i \(0.363569\pi\)
\(354\) 38.8334 14.4757i 2.06397 0.769373i
\(355\) 23.4316i 1.24362i
\(356\) 16.3774i 0.867998i
\(357\) −1.52361 + 0.567946i −0.0806381 + 0.0300589i
\(358\) 22.4494i 1.18649i
\(359\) 14.4480 0.762537 0.381269 0.924464i \(-0.375487\pi\)
0.381269 + 0.924464i \(0.375487\pi\)
\(360\) 6.23069 + 7.19616i 0.328386 + 0.379271i
\(361\) −9.71556 16.3281i −0.511345 0.859375i
\(362\) −49.3750 −2.59509
\(363\) −1.11586 + 0.415952i −0.0585676 + 0.0218318i
\(364\) −4.28125 + 24.4435i −0.224398 + 1.28119i
\(365\) 3.27362i 0.171349i
\(366\) 5.67248 + 15.2174i 0.296505 + 0.795425i
\(367\) −37.3420 −1.94924 −0.974619 0.223871i \(-0.928131\pi\)
−0.974619 + 0.223871i \(0.928131\pi\)
\(368\) 2.49169i 0.129888i
\(369\) 5.96665 + 6.89121i 0.310612 + 0.358742i
\(370\) 19.5256i 1.01509i
\(371\) 20.7734i 1.07850i
\(372\) −3.07844 + 1.14753i −0.159609 + 0.0594965i
\(373\) 23.1218i 1.19720i −0.801048 0.598599i \(-0.795724\pi\)
0.801048 0.598599i \(-0.204276\pi\)
\(374\) 2.87945 0.148893
\(375\) 19.7322 7.35542i 1.01896 0.379832i
\(376\) 18.6048i 0.959468i
\(377\) 15.7052 + 2.75074i 0.808858 + 0.141671i
\(378\) −13.3767 + 24.4643i −0.688024 + 1.25831i
\(379\) 12.7725 0.656079 0.328039 0.944664i \(-0.393612\pi\)
0.328039 + 0.944664i \(0.393612\pi\)
\(380\) 10.7683 18.9377i 0.552402 0.971485i
\(381\) 3.66650 + 9.83601i 0.187840 + 0.503914i
\(382\) −2.66390 −0.136297
\(383\) 16.8247i 0.859702i −0.902900 0.429851i \(-0.858566\pi\)
0.902900 0.429851i \(-0.141434\pi\)
\(384\) 7.93043 + 21.2747i 0.404698 + 1.08567i
\(385\) 14.8478i 0.756716i
\(386\) 11.8715i 0.604244i
\(387\) 5.99689 5.19232i 0.304839 0.263940i
\(388\) 25.2623 1.28250
\(389\) 32.4646i 1.64602i 0.568026 + 0.823011i \(0.307707\pi\)
−0.568026 + 0.823011i \(0.692293\pi\)
\(390\) −4.43832 23.9259i −0.224743 1.21153i
\(391\) 0.559875 0.0283141
\(392\) 1.82070i 0.0919594i
\(393\) 1.09692 + 2.94268i 0.0553323 + 0.148438i
\(394\) 18.5993i 0.937022i
\(395\) 28.8251i 1.45035i
\(396\) 21.8209 18.8933i 1.09654 0.949424i
\(397\) 17.6007i 0.883354i 0.897174 + 0.441677i \(0.145616\pi\)
−0.897174 + 0.441677i \(0.854384\pi\)
\(398\) 15.7632i 0.790138i
\(399\) 18.2274 + 2.94555i 0.912511 + 0.147462i
\(400\) 3.15402 0.157701
\(401\) 9.21560i 0.460205i −0.973166 0.230102i \(-0.926094\pi\)
0.973166 0.230102i \(-0.0739061\pi\)
\(402\) 7.56379 + 20.2911i 0.377247 + 1.01203i
\(403\) 2.39367 + 0.419249i 0.119237 + 0.0208843i
\(404\) 53.7848i 2.67589i
\(405\) 2.28672 15.8186i 0.113628 0.786033i
\(406\) −23.7292 −1.17766
\(407\) 17.1310 0.849155
\(408\) −1.11309 + 0.414919i −0.0551062 + 0.0205415i
\(409\) 16.2917 0.805574 0.402787 0.915294i \(-0.368042\pi\)
0.402787 + 0.915294i \(0.368042\pi\)
\(410\) 11.8395 0.584713
\(411\) 10.8402 4.04081i 0.534706 0.199319i
\(412\) 22.0991i 1.08874i
\(413\) 26.6696 1.31233
\(414\) 7.25802 6.28425i 0.356712 0.308854i
\(415\) −22.0054 −1.08020
\(416\) 4.55442 26.0031i 0.223299 1.27491i
\(417\) −26.6883 + 9.94841i −1.30693 + 0.487176i
\(418\) −28.4231 16.1618i −1.39022 0.790501i
\(419\) 21.2135i 1.03635i 0.855275 + 0.518174i \(0.173388\pi\)
−0.855275 + 0.518174i \(0.826612\pi\)
\(420\) 7.39452 + 19.8371i 0.360816 + 0.967949i
\(421\) 9.14400 0.445651 0.222826 0.974858i \(-0.428472\pi\)
0.222826 + 0.974858i \(0.428472\pi\)
\(422\) −29.7691 −1.44914
\(423\) −23.6171 + 20.4485i −1.14830 + 0.994241i
\(424\) 15.1762i 0.737022i
\(425\) 0.708698i 0.0343769i
\(426\) −46.9849 + 17.5142i −2.27642 + 0.848567i
\(427\) 10.4508i 0.505752i
\(428\) 19.4930 0.942229
\(429\) −20.9917 + 3.89402i −1.01349 + 0.188005i
\(430\) 10.3030i 0.496857i
\(431\) 18.1126i 0.872453i −0.899837 0.436226i \(-0.856315\pi\)
0.899837 0.436226i \(-0.143685\pi\)
\(432\) 4.25876 7.78872i 0.204900 0.374735i
\(433\) 11.4600i 0.550731i 0.961340 + 0.275366i \(0.0887989\pi\)
−0.961340 + 0.275366i \(0.911201\pi\)
\(434\) −3.61664 −0.173604
\(435\) 12.7455 4.75105i 0.611100 0.227796i
\(436\) 17.2057 0.824002
\(437\) −5.52653 3.14248i −0.264370 0.150325i
\(438\) 6.56425 2.44691i 0.313652 0.116918i
\(439\) 0.442499i 0.0211193i −0.999944 0.0105597i \(-0.996639\pi\)
0.999944 0.0105597i \(-0.00336131\pi\)
\(440\) 10.8472i 0.517122i
\(441\) 2.31122 2.00114i 0.110058 0.0952922i
\(442\) 2.99128 + 0.523920i 0.142281 + 0.0249203i
\(443\) 7.68937i 0.365333i 0.983175 + 0.182666i \(0.0584728\pi\)
−0.983175 + 0.182666i \(0.941527\pi\)
\(444\) −22.8875 + 8.53160i −1.08619 + 0.404892i
\(445\) 10.3346i 0.489906i
\(446\) 55.5967i 2.63258i
\(447\) −15.9258 + 5.93655i −0.753265 + 0.280789i
\(448\) 30.9325i 1.46142i
\(449\) 32.9051i 1.55289i 0.630188 + 0.776443i \(0.282978\pi\)
−0.630188 + 0.776443i \(0.717022\pi\)
\(450\) 7.95471 + 9.18732i 0.374988 + 0.433094i
\(451\) 10.3876i 0.489132i
\(452\) 28.8432 1.35667
\(453\) −29.6451 + 11.0506i −1.39285 + 0.519203i
\(454\) 14.7306 0.691341
\(455\) 2.70159 15.4245i 0.126653 0.723113i
\(456\) 13.3162 + 2.15190i 0.623588 + 0.100772i
\(457\) 4.84822i 0.226790i 0.993550 + 0.113395i \(0.0361726\pi\)
−0.993550 + 0.113395i \(0.963827\pi\)
\(458\) 5.52116 0.257987
\(459\) 1.75010 + 0.956931i 0.0816877 + 0.0446657i
\(460\) 7.28943i 0.339871i
\(461\) −39.4754 −1.83855 −0.919276 0.393614i \(-0.871225\pi\)
−0.919276 + 0.393614i \(0.871225\pi\)
\(462\) 29.7728 11.0982i 1.38516 0.516335i
\(463\) 36.5463i 1.69845i −0.528029 0.849226i \(-0.677069\pi\)
0.528029 0.849226i \(-0.322931\pi\)
\(464\) 7.55469 0.350718
\(465\) 1.94258 0.724122i 0.0900850 0.0335804i
\(466\) −11.1843 −0.518105
\(467\) 29.3316i 1.35731i −0.734459 0.678653i \(-0.762564\pi\)
0.734459 0.678653i \(-0.237436\pi\)
\(468\) 26.1061 15.6568i 1.20675 0.723734i
\(469\) 13.9353i 0.643474i
\(470\) 40.5757i 1.87162i
\(471\) −4.09601 + 1.52684i −0.188734 + 0.0703531i
\(472\) 19.4838 0.896813
\(473\) −9.03950 −0.415637
\(474\) −57.8001 + 21.5457i −2.65485 + 0.989628i
\(475\) 3.97780 6.99558i 0.182514 0.320979i
\(476\) −2.64201 −0.121096
\(477\) 19.2649 16.6802i 0.882077 0.763734i
\(478\) 0.313619i 0.0143446i
\(479\) −1.88926 −0.0863225 −0.0431612 0.999068i \(-0.513743\pi\)
−0.0431612 + 0.999068i \(0.513743\pi\)
\(480\) −7.86633 21.1028i −0.359047 0.963205i
\(481\) 17.7964 + 3.11702i 0.811447 + 0.142124i
\(482\) 38.2210i 1.74092i
\(483\) 5.78898 2.15792i 0.263408 0.0981886i
\(484\) −1.93495 −0.0879525
\(485\) −15.9412 −0.723855
\(486\) 33.4287 7.23850i 1.51635 0.328345i
\(487\) −23.1347 −1.04833 −0.524167 0.851615i \(-0.675623\pi\)
−0.524167 + 0.851615i \(0.675623\pi\)
\(488\) 7.63497i 0.345619i
\(489\) 0.260484 + 0.698793i 0.0117795 + 0.0316005i
\(490\) 3.97082i 0.179384i
\(491\) 9.27794i 0.418707i 0.977840 + 0.209354i \(0.0671360\pi\)
−0.977840 + 0.209354i \(0.932864\pi\)
\(492\) 5.17322 + 13.8780i 0.233227 + 0.625670i
\(493\) 1.69752i 0.0764523i
\(494\) −26.5864 21.9612i −1.19618 0.988080i
\(495\) −13.7696 + 11.9222i −0.618898 + 0.535864i
\(496\) 1.15143 0.0517009
\(497\) −32.2678 −1.44741
\(498\) −16.4482 44.1251i −0.737062 1.97729i
\(499\) 10.8652i 0.486395i 0.969977 + 0.243197i \(0.0781963\pi\)
−0.969977 + 0.243197i \(0.921804\pi\)
\(500\) 34.2164 1.53020
\(501\) 7.46256 + 20.0196i 0.333402 + 0.894409i
\(502\) −59.6389 −2.66181
\(503\) 30.4683i 1.35851i 0.733901 + 0.679257i \(0.237698\pi\)
−0.733901 + 0.679257i \(0.762302\pi\)
\(504\) −9.90989 + 8.58033i −0.441421 + 0.382198i
\(505\) 33.9397i 1.51030i
\(506\) −10.9405 −0.486364
\(507\) −22.5155 + 0.225784i −0.999950 + 0.0100274i
\(508\) 17.0561i 0.756740i
\(509\) 7.44698i 0.330082i 0.986287 + 0.165041i \(0.0527756\pi\)
−0.986287 + 0.165041i \(0.947224\pi\)
\(510\) 2.42757 0.904908i 0.107495 0.0400700i
\(511\) 4.50813 0.199428
\(512\) 18.6129i 0.822582i
\(513\) −11.9042 19.2689i −0.525583 0.850742i
\(514\) 58.3168i 2.57224i
\(515\) 13.9452i 0.614497i
\(516\) 12.0770 4.50185i 0.531659 0.198183i
\(517\) 35.5996 1.56567
\(518\) −26.8889 −1.18143
\(519\) −16.0248 + 5.97346i −0.703412 + 0.262206i
\(520\) 1.97367 11.2685i 0.0865513 0.494158i
\(521\) −20.7909 −0.910866 −0.455433 0.890270i \(-0.650515\pi\)
−0.455433 + 0.890270i \(0.650515\pi\)
\(522\) 19.0536 + 22.0060i 0.833953 + 0.963177i
\(523\) 27.3557i 1.19618i −0.801429 0.598090i \(-0.795927\pi\)
0.801429 0.598090i \(-0.204073\pi\)
\(524\) 5.10272i 0.222914i
\(525\) 2.73153 + 7.32778i 0.119214 + 0.319811i
\(526\) 45.3668 1.97809
\(527\) 0.258724i 0.0112702i
\(528\) −9.47881 + 3.53335i −0.412512 + 0.153769i
\(529\) 20.8728 0.907511
\(530\) 33.0983i 1.43770i
\(531\) −21.4146 24.7329i −0.929316 1.07332i
\(532\) 26.0793 + 14.8291i 1.13068 + 0.642924i
\(533\) 1.89004 10.7910i 0.0818666 0.467411i
\(534\) −20.7229 + 7.72471i −0.896766 + 0.334281i
\(535\) −12.3006 −0.531803
\(536\) 10.1806i 0.439735i
\(537\) 16.6053 6.18984i 0.716572 0.267111i
\(538\) 42.1772i 1.81839i
\(539\) −3.48385 −0.150060
\(540\) 12.4590 22.7859i 0.536150 0.980548i
\(541\) 25.3385i 1.08939i 0.838635 + 0.544694i \(0.183354\pi\)
−0.838635 + 0.544694i \(0.816646\pi\)
\(542\) −58.0659 −2.49414
\(543\) 13.6139 + 36.5216i 0.584228 + 1.56729i
\(544\) 2.81058 0.120503
\(545\) −10.8573 −0.465074
\(546\) 32.9486 6.11205i 1.41007 0.261571i
\(547\) 18.3421i 0.784253i 0.919911 + 0.392127i \(0.128260\pi\)
−0.919911 + 0.392127i \(0.871740\pi\)
\(548\) 18.7973 0.802981
\(549\) 9.69191 8.39160i 0.413641 0.358145i
\(550\) 13.8486i 0.590508i
\(551\) 9.52786 16.7562i 0.405900 0.713839i
\(552\) 4.22920 1.57649i 0.180007 0.0670998i
\(553\) −39.6954 −1.68802
\(554\) 26.8353i 1.14012i
\(555\) 14.4426 5.38368i 0.613056 0.228525i
\(556\) −46.2787 −1.96265
\(557\) −20.7675 −0.879949 −0.439974 0.898010i \(-0.645012\pi\)
−0.439974 + 0.898010i \(0.645012\pi\)
\(558\) 2.90401 + 3.35400i 0.122937 + 0.141986i
\(559\) −9.39060 1.64475i −0.397180 0.0695656i
\(560\) 7.41969i 0.313539i
\(561\) −0.793933 2.12986i −0.0335199 0.0899228i
\(562\) 21.3422 0.900264
\(563\) −3.44142 −0.145039 −0.0725193 0.997367i \(-0.523104\pi\)
−0.0725193 + 0.997367i \(0.523104\pi\)
\(564\) −47.5619 + 17.7293i −2.00272 + 0.746538i
\(565\) −18.2009 −0.765718
\(566\) 12.9158i 0.542890i
\(567\) 21.7839 + 3.14906i 0.914839 + 0.132248i
\(568\) −23.5736 −0.989124
\(569\) −5.96717 −0.250157 −0.125078 0.992147i \(-0.539918\pi\)
−0.125078 + 0.992147i \(0.539918\pi\)
\(570\) −29.0417 4.69315i −1.21642 0.196575i
\(571\) −35.2314 −1.47439 −0.737194 0.675681i \(-0.763850\pi\)
−0.737194 + 0.675681i \(0.763850\pi\)
\(572\) −34.1696 5.98477i −1.42870 0.250236i
\(573\) 0.734502 + 1.97043i 0.0306842 + 0.0823157i
\(574\) 16.3043i 0.680530i
\(575\) 2.69271i 0.112294i
\(576\) 28.6862 24.8375i 1.19526 1.03490i
\(577\) 47.1180i 1.96155i 0.195148 + 0.980774i \(0.437481\pi\)
−0.195148 + 0.980774i \(0.562519\pi\)
\(578\) 36.9772i 1.53805i
\(579\) 8.78109 3.27326i 0.364929 0.136032i
\(580\) 22.1013 0.917704
\(581\) 30.3038i 1.25721i
\(582\) −11.9155 31.9653i −0.493913 1.32501i
\(583\) −29.0392 −1.20268
\(584\) 3.29346 0.136284
\(585\) −16.4737 + 9.87987i −0.681103 + 0.408482i
\(586\) 50.5314 2.08743
\(587\) −34.3331 −1.41708 −0.708539 0.705672i \(-0.750645\pi\)
−0.708539 + 0.705672i \(0.750645\pi\)
\(588\) 4.65451 1.73503i 0.191949 0.0715513i
\(589\) 1.45217 2.55387i 0.0598356 0.105230i
\(590\) −42.4927 −1.74940
\(591\) 13.7575 5.12829i 0.565908 0.210950i
\(592\) 8.56065 0.351840
\(593\) −8.31173 −0.341322 −0.170661 0.985330i \(-0.554590\pi\)
−0.170661 + 0.985330i \(0.554590\pi\)
\(594\) −34.1986 18.6993i −1.40319 0.767244i
\(595\) 1.66718 0.0683478
\(596\) −27.6160 −1.13120
\(597\) 11.6597 4.34630i 0.477199 0.177882i
\(598\) −11.3654 1.99064i −0.464766 0.0814033i
\(599\) 35.2949 1.44211 0.721056 0.692877i \(-0.243657\pi\)
0.721056 + 0.692877i \(0.243657\pi\)
\(600\) 1.99554 + 5.35339i 0.0814677 + 0.218551i
\(601\) 28.6869i 1.17016i 0.810974 + 0.585082i \(0.198938\pi\)
−0.810974 + 0.585082i \(0.801062\pi\)
\(602\) 14.1884 0.578276
\(603\) 12.9234 11.1895i 0.526280 0.455672i
\(604\) −51.4059 −2.09168
\(605\) 1.22101 0.0496412
\(606\) 68.0559 25.3687i 2.76458 1.03053i
\(607\) 36.6064i 1.48581i 0.669399 + 0.742903i \(0.266552\pi\)
−0.669399 + 0.742903i \(0.733448\pi\)
\(608\) −27.7433 15.7753i −1.12514 0.639773i
\(609\) 6.54271 + 17.5519i 0.265124 + 0.711241i
\(610\) 16.6513i 0.674193i
\(611\) 36.9823 + 6.47741i 1.49614 + 0.262048i
\(612\) 2.12142 + 2.45015i 0.0857535 + 0.0990413i
\(613\) 23.9494i 0.967306i −0.875260 0.483653i \(-0.839310\pi\)
0.875260 0.483653i \(-0.160690\pi\)
\(614\) 4.17747i 0.168589i
\(615\) −3.26445 8.75743i −0.131635 0.353134i
\(616\) 14.9378 0.601862
\(617\) 34.3448 1.38267 0.691335 0.722534i \(-0.257023\pi\)
0.691335 + 0.722534i \(0.257023\pi\)
\(618\) −27.9628 + 10.4235i −1.12483 + 0.419294i
\(619\) 33.3883i 1.34199i 0.741461 + 0.670995i \(0.234133\pi\)
−0.741461 + 0.670995i \(0.765867\pi\)
\(620\) 3.36852 0.135283
\(621\) −6.64953 3.63587i −0.266836 0.145902i
\(622\) 38.9684 1.56249
\(623\) −14.2318 −0.570186
\(624\) −10.4899 + 1.94590i −0.419931 + 0.0778983i
\(625\) −12.3605 −0.494420
\(626\) 62.8927i 2.51370i
\(627\) −4.11760 + 25.4801i −0.164441 + 1.01758i
\(628\) −7.10265 −0.283427
\(629\) 1.92355i 0.0766970i
\(630\) 21.6128 18.7131i 0.861073 0.745548i
\(631\) 31.6249i 1.25897i 0.777014 + 0.629483i \(0.216733\pi\)
−0.777014 + 0.629483i \(0.783267\pi\)
\(632\) −28.9998 −1.15355
\(633\) 8.20805 + 22.0195i 0.326241 + 0.875196i
\(634\) 5.15262 0.204636
\(635\) 10.7629i 0.427111i
\(636\) 38.7970 14.4621i 1.53840 0.573459i
\(637\) −3.61917 0.633893i −0.143397 0.0251158i
\(638\) 33.1711i 1.31326i
\(639\) 25.9097 + 29.9245i 1.02497 + 1.18380i
\(640\) 23.2795i 0.920201i
\(641\) −2.12035 −0.0837488 −0.0418744 0.999123i \(-0.513333\pi\)
−0.0418744 + 0.999123i \(0.513333\pi\)
\(642\) −9.19427 24.6652i −0.362869 0.973458i
\(643\) 18.8098i 0.741787i −0.928675 0.370893i \(-0.879052\pi\)
0.928675 0.370893i \(-0.120948\pi\)
\(644\) 10.0383 0.395566
\(645\) −7.62092 + 2.84080i −0.300073 + 0.111856i
\(646\) 1.81472 3.19147i 0.0713993 0.125567i
\(647\) 15.3126i 0.601998i 0.953624 + 0.300999i \(0.0973202\pi\)
−0.953624 + 0.300999i \(0.902680\pi\)
\(648\) 15.9145 + 2.30058i 0.625180 + 0.0903753i
\(649\) 37.2815i 1.46343i
\(650\) 2.51979 14.3865i 0.0988341 0.564286i
\(651\) 0.997195 + 2.67514i 0.0390831 + 0.104847i
\(652\) 1.21174i 0.0474553i
\(653\) 18.1328i 0.709591i 0.934944 + 0.354796i \(0.115450\pi\)
−0.934944 + 0.354796i \(0.884550\pi\)
\(654\) −8.11540 21.7709i −0.317337 0.851311i
\(655\) 3.21997i 0.125814i
\(656\) 5.19083i 0.202668i
\(657\) −3.61985 4.18075i −0.141224 0.163107i
\(658\) −55.8771 −2.17832
\(659\) 4.10302 0.159831 0.0799154 0.996802i \(-0.474535\pi\)
0.0799154 + 0.996802i \(0.474535\pi\)
\(660\) −27.7303 + 10.3368i −1.07940 + 0.402360i
\(661\) 26.3364 1.02437 0.512184 0.858876i \(-0.328837\pi\)
0.512184 + 0.858876i \(0.328837\pi\)
\(662\) 42.0140i 1.63292i
\(663\) −0.437238 2.35704i −0.0169809 0.0915399i
\(664\) 22.1388i 0.859150i
\(665\) −16.4568 9.35760i −0.638167 0.362872i
\(666\) 21.5907 + 24.9362i 0.836622 + 0.966260i
\(667\) 6.44973i 0.249735i
\(668\) 34.7148i 1.34316i
\(669\) 41.1236 15.3293i 1.58993 0.592667i
\(670\) 22.2032i 0.857784i
\(671\) −14.6093 −0.563984
\(672\) 29.0608 10.8328i 1.12104 0.417884i
\(673\) 24.6386i 0.949748i −0.880054 0.474874i \(-0.842494\pi\)
0.880054 0.474874i \(-0.157506\pi\)
\(674\) 17.3415 0.667970
\(675\) 4.60234 8.41708i 0.177144 0.323974i
\(676\) −34.4078 12.4344i −1.32338 0.478247i
\(677\) 23.9665 0.921109 0.460555 0.887631i \(-0.347651\pi\)
0.460555 + 0.887631i \(0.347651\pi\)
\(678\) −13.6045 36.4964i −0.522478 1.40164i
\(679\) 21.9528i 0.842472i
\(680\) 1.21798 0.0467073
\(681\) −4.06158 10.8959i −0.155640 0.417531i
\(682\) 5.05571i 0.193593i
\(683\) 15.9954i 0.612047i 0.952024 + 0.306023i \(0.0989986\pi\)
−0.952024 + 0.306023i \(0.901001\pi\)
\(684\) −7.18839 36.0926i −0.274855 1.38004i
\(685\) −11.8616 −0.453210
\(686\) 43.0303 1.64290
\(687\) −1.52232 4.08387i −0.0580800 0.155810i
\(688\) −4.51718 −0.172216
\(689\) −30.1671 5.28373i −1.14927 0.201294i
\(690\) −9.22358 + 3.43821i −0.351136 + 0.130890i
\(691\) 17.5009i 0.665764i 0.942968 + 0.332882i \(0.108021\pi\)
−0.942968 + 0.332882i \(0.891979\pi\)
\(692\) −27.7877 −1.05633
\(693\) −16.4182 18.9622i −0.623675 0.720316i
\(694\) 61.0725 2.31828
\(695\) 29.2032 1.10774
\(696\) 4.77985 + 12.8227i 0.181180 + 0.486045i
\(697\) 1.16636 0.0441792
\(698\) −44.4602 −1.68285
\(699\) 3.08380 + 8.27281i 0.116640 + 0.312906i
\(700\) 12.7067i 0.480268i
\(701\) 23.5942i 0.891139i −0.895247 0.445570i \(-0.853001\pi\)
0.895247 0.445570i \(-0.146999\pi\)
\(702\) −32.1245 25.6481i −1.21246 0.968026i
\(703\) 10.7966 18.9874i 0.407200 0.716124i
\(704\) −43.2406 −1.62969
\(705\) 30.0129 11.1877i 1.13035 0.421353i
\(706\) 34.2662i 1.28963i
\(707\) 46.7387 1.75779
\(708\) −18.5669 49.8090i −0.697788 1.87194i
\(709\) 28.8737i 1.08438i −0.840257 0.542188i \(-0.817596\pi\)
0.840257 0.542188i \(-0.182404\pi\)
\(710\) 51.4123 1.92947
\(711\) 31.8738 + 36.8127i 1.19536 + 1.38058i
\(712\) −10.3972 −0.389652
\(713\) 0.983023i 0.0368145i
\(714\) 1.24616 + 3.34303i 0.0466363 + 0.125110i
\(715\) 21.5620 + 3.77656i 0.806373 + 0.141235i
\(716\) 28.7943 1.07609
\(717\) 0.231977 0.0864722i 0.00866332 0.00322937i
\(718\) 31.7011i 1.18307i
\(719\) 45.0706i 1.68085i 0.541928 + 0.840425i \(0.317694\pi\)
−0.541928 + 0.840425i \(0.682306\pi\)
\(720\) −6.88088 + 5.95771i −0.256435 + 0.222031i
\(721\) −19.2040 −0.715194
\(722\) −35.8263 + 21.3174i −1.33332 + 0.793350i
\(723\) −28.2712 + 10.5384i −1.05142 + 0.391929i
\(724\) 63.3300i 2.35364i
\(725\) 8.16418 0.303210
\(726\) 0.912661 + 2.44837i 0.0338720 + 0.0908674i
\(727\) −42.5861 −1.57943 −0.789715 0.613474i \(-0.789772\pi\)
−0.789715 + 0.613474i \(0.789772\pi\)
\(728\) 15.5180 + 2.71796i 0.575136 + 0.100734i
\(729\) −14.5712 22.7306i −0.539675 0.841873i
\(730\) −7.18281 −0.265848
\(731\) 1.01500i 0.0375410i
\(732\) 19.5183 7.27570i 0.721417 0.268918i
\(733\) 48.9006i 1.80618i 0.429448 + 0.903092i \(0.358708\pi\)
−0.429448 + 0.903092i \(0.641292\pi\)
\(734\) 81.9339i 3.02423i
\(735\) −2.93713 + 1.09485i −0.108338 + 0.0403842i
\(736\) −10.6788 −0.393627
\(737\) −19.4803 −0.717564
\(738\) 15.1203 13.0917i 0.556587 0.481913i
\(739\) 21.2118i 0.780287i −0.920754 0.390144i \(-0.872425\pi\)
0.920754 0.390144i \(-0.127575\pi\)
\(740\) 25.0442 0.920642
\(741\) −8.91367 + 25.7205i −0.327452 + 0.944868i
\(742\) 45.5799 1.67329
\(743\) 5.22071i 0.191529i −0.995404 0.0957647i \(-0.969470\pi\)
0.995404 0.0957647i \(-0.0305296\pi\)
\(744\) 0.728511 + 1.95435i 0.0267085 + 0.0716501i
\(745\) 17.4265 0.638458
\(746\) −50.7325 −1.85745
\(747\) −28.1032 + 24.3327i −1.02824 + 0.890288i
\(748\) 3.69327i 0.135039i
\(749\) 16.9393i 0.618949i
\(750\) −16.1389 43.2953i −0.589308 1.58092i
\(751\) 14.0346i 0.512131i −0.966659 0.256065i \(-0.917574\pi\)
0.966659 0.256065i \(-0.0824262\pi\)
\(752\) 17.7897 0.648722
\(753\) 16.4439 + 44.1135i 0.599249 + 1.60759i
\(754\) 6.03554 34.4595i 0.219801 1.25494i
\(755\) 32.4386 1.18056
\(756\) 31.3786 + 17.1574i 1.14123 + 0.624009i
\(757\) 25.8857 0.940832 0.470416 0.882445i \(-0.344104\pi\)
0.470416 + 0.882445i \(0.344104\pi\)
\(758\) 28.0247i 1.01790i
\(759\) 3.01656 + 8.09243i 0.109494 + 0.293736i
\(760\) −12.0227 6.83629i −0.436108 0.247978i
\(761\) 33.6515 1.21987 0.609933 0.792453i \(-0.291196\pi\)
0.609933 + 0.792453i \(0.291196\pi\)
\(762\) 21.5817 8.04484i 0.781821 0.291434i
\(763\) 14.9516i 0.541285i
\(764\) 3.41680i 0.123616i
\(765\) −1.33868 1.54611i −0.0484001 0.0558998i
\(766\) −36.9159 −1.33382
\(767\) −6.78344 + 38.7295i −0.244936 + 1.39844i
\(768\) 5.62472 2.09669i 0.202964 0.0756576i
\(769\) 2.31025i 0.0833097i −0.999132 0.0416548i \(-0.986737\pi\)
0.999132 0.0416548i \(-0.0132630\pi\)
\(770\) −32.5783 −1.17404
\(771\) −43.1356 + 16.0793i −1.55349 + 0.579083i
\(772\) 15.2268 0.548024
\(773\) 31.9021i 1.14744i −0.819052 0.573720i \(-0.805500\pi\)
0.819052 0.573720i \(-0.194500\pi\)
\(774\) −11.3927 13.1581i −0.409503 0.472956i
\(775\) 1.24433 0.0446975
\(776\) 16.0379i 0.575725i
\(777\) 7.41392 + 19.8891i 0.265973 + 0.713517i
\(778\) 71.2322 2.55380
\(779\) −11.5132 6.54659i −0.412503 0.234556i
\(780\) −30.6881 + 5.69273i −1.09881 + 0.203832i
\(781\) 45.1072i 1.61406i
\(782\) 1.22845i 0.0439292i
\(783\) 11.0238 20.1611i 0.393959 0.720498i
\(784\) −1.74093 −0.0621762
\(785\) 4.48198 0.159969
\(786\) 6.45666 2.40680i 0.230302 0.0858479i
\(787\) −21.3222 −0.760056 −0.380028 0.924975i \(-0.624086\pi\)
−0.380028 + 0.924975i \(0.624086\pi\)
\(788\) 23.8561 0.849839
\(789\) −12.5087 33.5568i −0.445322 1.19465i
\(790\) 63.2466 2.25021
\(791\) 25.0646i 0.891196i
\(792\) −11.9945 13.8531i −0.426205 0.492247i
\(793\) −15.1767 2.65818i −0.538940 0.0943947i
\(794\) 38.6185 1.37052
\(795\) −24.4820 + 9.12599i −0.868288 + 0.323666i
\(796\) 20.2184 0.716622
\(797\) −41.3353 −1.46417 −0.732085 0.681213i \(-0.761453\pi\)
−0.732085 + 0.681213i \(0.761453\pi\)
\(798\) 6.46298 39.9936i 0.228787 1.41576i
\(799\) 3.99728i 0.141414i
\(800\) 13.5174i 0.477914i
\(801\) 11.4276 + 13.1983i 0.403774 + 0.466340i
\(802\) −20.2204 −0.714006
\(803\) 6.30193i 0.222390i
\(804\) 26.0261 9.70155i 0.917868 0.342147i
\(805\) −6.33448 −0.223261
\(806\) 0.919895 5.25207i 0.0324019 0.184996i
\(807\) 31.1975 11.6293i 1.09820 0.409370i
\(808\) 34.1454 1.20123
\(809\) 15.9126i 0.559458i 0.960079 + 0.279729i \(0.0902446\pi\)
−0.960079 + 0.279729i \(0.909755\pi\)
\(810\) −34.7084 5.01740i −1.21953 0.176294i
\(811\) −46.4285 −1.63033 −0.815163 0.579232i \(-0.803353\pi\)
−0.815163 + 0.579232i \(0.803353\pi\)
\(812\) 30.4358i 1.06809i
\(813\) 16.0102 + 42.9500i 0.561501 + 1.50632i
\(814\) 37.5880i 1.31746i
\(815\) 0.764641i 0.0267842i
\(816\) −0.396740 1.06432i −0.0138887 0.0372588i
\(817\) −5.69699 + 10.0190i −0.199313 + 0.350522i
\(818\) 35.7464i 1.24984i
\(819\) −13.6057 22.6860i −0.475420 0.792715i
\(820\) 15.1858i 0.530310i
\(821\) 12.8136 0.447197 0.223598 0.974681i \(-0.428220\pi\)
0.223598 + 0.974681i \(0.428220\pi\)
\(822\) −8.86613 23.7849i −0.309242 0.829594i
\(823\) −34.9116 −1.21694 −0.608472 0.793576i \(-0.708217\pi\)
−0.608472 + 0.793576i \(0.708217\pi\)
\(824\) −14.0297 −0.488747
\(825\) −10.2435 + 3.81841i −0.356634 + 0.132940i
\(826\) 58.5171i 2.03607i
\(827\) 10.5979i 0.368526i −0.982877 0.184263i \(-0.941010\pi\)
0.982877 0.184263i \(-0.0589899\pi\)
\(828\) −8.06038 9.30936i −0.280117 0.323523i
\(829\) 35.9849i 1.24981i 0.780702 + 0.624904i \(0.214862\pi\)
−0.780702 + 0.624904i \(0.785138\pi\)
\(830\) 48.2831i 1.67593i
\(831\) 19.8495 7.39914i 0.688570 0.256673i
\(832\) −44.9200 7.86770i −1.55732 0.272763i
\(833\) 0.391183i 0.0135537i
\(834\) 21.8283 + 58.5581i 0.755852 + 2.02770i
\(835\) 21.9060i 0.758089i
\(836\) −20.7297 + 36.4563i −0.716950 + 1.26087i
\(837\) 1.68017 3.07281i 0.0580752 0.106212i
\(838\) 46.5455 1.60789
\(839\) 26.0904i 0.900741i −0.892842 0.450371i \(-0.851292\pi\)
0.892842 0.450371i \(-0.148708\pi\)
\(840\) 12.5936 4.69443i 0.434521 0.161973i
\(841\) −9.44468 −0.325679
\(842\) 20.0633i 0.691427i
\(843\) −5.88455 15.7863i −0.202675 0.543709i
\(844\) 38.1827i 1.31430i
\(845\) 21.7123 + 7.84648i 0.746926 + 0.269927i
\(846\) 44.8671 + 51.8194i 1.54256 + 1.78159i
\(847\) 1.68147i 0.0577758i
\(848\) −14.5113 −0.498321
\(849\) −9.55349 + 3.56119i −0.327875 + 0.122220i
\(850\) 1.55499 0.0533357
\(851\) 7.30855i 0.250534i
\(852\) 22.4643 + 60.2643i 0.769614 + 2.06462i
\(853\) 8.28443i 0.283653i 0.989891 + 0.141827i \(0.0452976\pi\)
−0.989891 + 0.141827i \(0.954702\pi\)
\(854\) 22.9307 0.784672
\(855\) 4.53608 + 22.7755i 0.155131 + 0.778905i
\(856\) 12.3752i 0.422975i
\(857\) −16.7955 −0.573725 −0.286862 0.957972i \(-0.592612\pi\)
−0.286862 + 0.957972i \(0.592612\pi\)
\(858\) 8.54404 + 46.0589i 0.291689 + 1.57242i
\(859\) −31.3596 −1.06998 −0.534988 0.844859i \(-0.679684\pi\)
−0.534988 + 0.844859i \(0.679684\pi\)
\(860\) −13.2150 −0.450628
\(861\) 12.0599 4.49550i 0.411002 0.153206i
\(862\) −39.7417 −1.35361
\(863\) 33.0619i 1.12544i 0.826648 + 0.562720i \(0.190245\pi\)
−0.826648 + 0.562720i \(0.809755\pi\)
\(864\) −33.3808 18.2521i −1.13564 0.620950i
\(865\) 17.5349 0.596203
\(866\) 25.1449 0.854457
\(867\) −27.3512 + 10.1955i −0.928895 + 0.346257i
\(868\) 4.63881i 0.157452i
\(869\) 55.4902i 1.88238i
\(870\) −10.4245 27.9655i −0.353424 0.948120i
\(871\) −20.2369 3.54447i −0.685700 0.120100i
\(872\) 10.9231i 0.369902i
\(873\) −20.3586 + 17.6272i −0.689035 + 0.596591i
\(874\) −6.89506 + 12.1260i −0.233229 + 0.410169i
\(875\) 29.7339i 1.00519i
\(876\) −3.13848 8.41952i −0.106040 0.284469i
\(877\) 39.3895 1.33009 0.665045 0.746803i \(-0.268412\pi\)
0.665045 + 0.746803i \(0.268412\pi\)
\(878\) −0.970908 −0.0327666
\(879\) −13.9327 37.3769i −0.469940 1.26069i
\(880\) 10.3720 0.349640
\(881\) 8.71472i 0.293606i 0.989166 + 0.146803i \(0.0468984\pi\)
−0.989166 + 0.146803i \(0.953102\pi\)
\(882\) −4.39079 5.07116i −0.147845 0.170755i
\(883\) 7.76314 0.261250 0.130625 0.991432i \(-0.458302\pi\)
0.130625 + 0.991432i \(0.458302\pi\)
\(884\) 0.671997 3.83671i 0.0226017 0.129043i
\(885\) 11.7163 + 31.4309i 0.393838 + 1.05654i
\(886\) 16.8716 0.566813
\(887\) 7.76176 0.260614 0.130307 0.991474i \(-0.458404\pi\)
0.130307 + 0.991474i \(0.458404\pi\)
\(888\) 5.41631 + 14.5302i 0.181760 + 0.487601i
\(889\) 14.8216 0.497101
\(890\) 22.6756 0.760087
\(891\) −4.40208 + 30.4518i −0.147475 + 1.02017i
\(892\) 71.3101 2.38764
\(893\) 22.4360 39.4573i 0.750794 1.32039i
\(894\) 13.0257 + 34.9436i 0.435643 + 1.16869i
\(895\) −18.1700 −0.607357
\(896\) 32.0583 1.07099
\(897\) 1.66129 + 8.95560i 0.0554688 + 0.299019i
\(898\) 72.1986 2.40930
\(899\) 2.98048 0.0994047
\(900\) 11.7839 10.2030i 0.392798 0.340099i
\(901\) 3.26065i 0.108628i
\(902\) −22.7919 −0.758886
\(903\) −3.91209 10.4948i −0.130186 0.349246i
\(904\) 18.3112i 0.609022i
\(905\) 39.9630i 1.32842i
\(906\) 24.2467 + 65.0458i 0.805542 + 2.16100i
\(907\) 36.4997i 1.21195i −0.795483 0.605976i \(-0.792783\pi\)
0.795483 0.605976i \(-0.207217\pi\)
\(908\) 18.8939i 0.627017i
\(909\) −37.5293 43.3446i −1.24477 1.43765i
\(910\) −33.8437 5.92769i −1.12191 0.196501i
\(911\) −2.12265 −0.0703267 −0.0351633 0.999382i \(-0.511195\pi\)
−0.0351633 + 0.999382i \(0.511195\pi\)
\(912\) −2.05763 + 12.7328i −0.0681348 + 0.421625i
\(913\) 42.3618 1.40197
\(914\) 10.6377 0.351864
\(915\) −12.3166 + 4.59117i −0.407174 + 0.151780i
\(916\) 7.08161i 0.233983i
\(917\) 4.43424 0.146432
\(918\) 2.09965 3.83998i 0.0692987 0.126738i
\(919\) 17.5086 0.577554 0.288777 0.957396i \(-0.406751\pi\)
0.288777 + 0.957396i \(0.406751\pi\)
\(920\) −4.62772 −0.152571
\(921\) 3.08998 1.15183i 0.101818 0.0379541i
\(922\) 86.6148i 2.85251i
\(923\) 8.20734 46.8592i 0.270148 1.54239i
\(924\) −14.2349 38.1876i −0.468294 1.25628i
\(925\) 9.25129 0.304180
\(926\) −80.1881 −2.63514
\(927\) 15.4200 + 17.8094i 0.506460 + 0.584938i
\(928\) 32.3778i 1.06285i
\(929\) 26.7441 0.877446 0.438723 0.898622i \(-0.355431\pi\)
0.438723 + 0.898622i \(0.355431\pi\)
\(930\) −1.58883 4.26231i −0.0520998 0.139767i
\(931\) −2.19564 + 3.86137i −0.0719592 + 0.126551i
\(932\) 14.3454i 0.469899i
\(933\) −10.7445 28.8240i −0.351760 0.943657i
\(934\) −64.3579 −2.10586
\(935\) 2.33056i 0.0762174i
\(936\) −9.93975 16.5735i −0.324891 0.541722i
\(937\) 46.8435 1.53031 0.765156 0.643845i \(-0.222662\pi\)
0.765156 + 0.643845i \(0.222662\pi\)
\(938\) 30.5762 0.998348
\(939\) 46.5203 17.3410i 1.51813 0.565903i
\(940\) 52.0437 1.69748
\(941\) 17.6976i 0.576926i −0.957491 0.288463i \(-0.906856\pi\)
0.957491 0.288463i \(-0.0931442\pi\)
\(942\) 3.35011 + 8.98725i 0.109153 + 0.292820i
\(943\) −4.43161 −0.144313
\(944\) 18.6302i 0.606360i
\(945\) −19.8008 10.8268i −0.644121 0.352196i
\(946\) 19.8340i 0.644859i
\(947\) 47.4582 1.54218 0.771092 0.636724i \(-0.219711\pi\)
0.771092 + 0.636724i \(0.219711\pi\)
\(948\) 27.6352 + 74.1362i 0.897550 + 2.40783i
\(949\) −1.14665 + 6.54669i −0.0372217 + 0.212515i
\(950\) −15.3493 8.72788i −0.497998 0.283170i
\(951\) −1.42070 3.81127i −0.0460694 0.123589i
\(952\) 1.67729i 0.0543612i
\(953\) −21.2542 −0.688490 −0.344245 0.938880i \(-0.611865\pi\)
−0.344245 + 0.938880i \(0.611865\pi\)
\(954\) −36.5988 42.2699i −1.18493 1.36854i
\(955\) 2.15610i 0.0697697i
\(956\) 0.402257 0.0130099
\(957\) −24.5359 + 9.14607i −0.793133 + 0.295651i
\(958\) 4.14531i 0.133929i
\(959\) 16.3348i 0.527477i
\(960\) −36.4548 + 13.5890i −1.17657 + 0.438583i
\(961\) −30.5457 −0.985346
\(962\) 6.83921 39.0480i 0.220505 1.25896i
\(963\) −15.7092 + 13.6016i −0.506222 + 0.438305i
\(964\) −49.0234 −1.57894
\(965\) −9.60853 −0.309310
\(966\) −4.73479 12.7019i −0.152339 0.408676i
\(967\) 38.2279i 1.22933i −0.788790 0.614663i \(-0.789292\pi\)
0.788790 0.614663i \(-0.210708\pi\)
\(968\) 1.22841i 0.0394826i
\(969\) −2.86102 0.462342i −0.0919092 0.0148526i
\(970\) 34.9774i 1.12306i
\(971\) 40.8012 1.30937 0.654687 0.755901i \(-0.272801\pi\)
0.654687 + 0.755901i \(0.272801\pi\)
\(972\) −9.28432 42.8766i −0.297795 1.37527i
\(973\) 40.2159i 1.28926i
\(974\) 50.7610i 1.62649i
\(975\) −11.3362 + 2.10289i −0.363047 + 0.0673463i
\(976\) −7.30047 −0.233682
\(977\) 0.740787i 0.0236999i 0.999930 + 0.0118499i \(0.00377204\pi\)
−0.999930 + 0.0118499i \(0.996228\pi\)
\(978\) 1.53326 0.571541i 0.0490281 0.0182759i
\(979\) 19.8947i 0.635838i
\(980\) −5.09310 −0.162693
\(981\) −13.8659 + 12.0056i −0.442703 + 0.383308i
\(982\) 20.3572 0.649623
\(983\) 24.6087i 0.784896i −0.919774 0.392448i \(-0.871628\pi\)
0.919774 0.392448i \(-0.128372\pi\)
\(984\) 8.81051 3.28423i 0.280869 0.104697i
\(985\) −15.0539 −0.479657
\(986\) 3.72460 0.118615
\(987\) 15.4067 + 41.3310i 0.490400 + 1.31558i
\(988\) −28.1681 + 34.1005i −0.896146 + 1.08488i
\(989\) 3.85649i 0.122629i
\(990\) 26.1591 + 30.2125i 0.831391 + 0.960218i
\(991\) 7.68871i 0.244240i −0.992515 0.122120i \(-0.961031\pi\)
0.992515 0.122120i \(-0.0389693\pi\)
\(992\) 4.93480i 0.156680i
\(993\) −31.0768 + 11.5843i −0.986191 + 0.367615i
\(994\) 70.8003i 2.24565i
\(995\) −12.7584 −0.404468
\(996\) −56.5963 + 21.0970i −1.79332 + 0.668484i
\(997\) −3.16934 −0.100374 −0.0501870 0.998740i \(-0.515982\pi\)
−0.0501870 + 0.998740i \(0.515982\pi\)
\(998\) 23.8399 0.754640
\(999\) 12.4917 22.8457i 0.395220 0.722805i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 741.2.d.a.740.10 yes 88
3.2 odd 2 inner 741.2.d.a.740.80 yes 88
13.12 even 2 inner 741.2.d.a.740.78 yes 88
19.18 odd 2 inner 741.2.d.a.740.79 yes 88
39.38 odd 2 inner 741.2.d.a.740.12 yes 88
57.56 even 2 inner 741.2.d.a.740.9 88
247.246 odd 2 inner 741.2.d.a.740.11 yes 88
741.740 even 2 inner 741.2.d.a.740.77 yes 88
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
741.2.d.a.740.9 88 57.56 even 2 inner
741.2.d.a.740.10 yes 88 1.1 even 1 trivial
741.2.d.a.740.11 yes 88 247.246 odd 2 inner
741.2.d.a.740.12 yes 88 39.38 odd 2 inner
741.2.d.a.740.77 yes 88 741.740 even 2 inner
741.2.d.a.740.78 yes 88 13.12 even 2 inner
741.2.d.a.740.79 yes 88 19.18 odd 2 inner
741.2.d.a.740.80 yes 88 3.2 odd 2 inner