Properties

Label 7400.2.a.o.1.4
Level $7400$
Weight $2$
Character 7400.1
Self dual yes
Analytic conductor $59.089$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7400,2,Mod(1,7400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7400, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7400.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7400 = 2^{3} \cdot 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7400.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,-1,0,0,0,2,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(59.0892974957\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.998068.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 6x^{3} + 10x^{2} + 3x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 1480)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(2.75031\) of defining polynomial
Character \(\chi\) \(=\) 7400.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.14266 q^{3} +3.63076 q^{7} -1.69433 q^{9} -1.42153 q^{11} +5.50061 q^{13} +3.01251 q^{17} +2.20924 q^{19} +4.14872 q^{21} -6.84305 q^{23} -5.36402 q^{27} +6.35495 q^{29} +7.54039 q^{31} -1.62432 q^{33} +1.00000 q^{37} +6.28531 q^{39} -8.54989 q^{41} -4.05751 q^{43} +10.4163 q^{47} +6.18244 q^{49} +3.44226 q^{51} +8.13744 q^{53} +2.52440 q^{57} +1.23303 q^{59} +2.91870 q^{61} -6.15173 q^{63} -7.81578 q^{67} -7.81926 q^{69} -0.806278 q^{71} -2.80628 q^{73} -5.16122 q^{77} +0.754853 q^{79} -1.04623 q^{81} -7.41508 q^{83} +7.26153 q^{87} +14.8681 q^{89} +19.9714 q^{91} +8.61609 q^{93} +5.94249 q^{97} +2.40854 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - q^{3} + 2 q^{7} + 6 q^{9} + 8 q^{11} + 4 q^{13} + q^{17} + 10 q^{19} + 5 q^{21} - 4 q^{23} - q^{27} + 11 q^{29} - 3 q^{31} + 3 q^{33} + 5 q^{37} + 18 q^{39} + 16 q^{41} - 31 q^{43} - 5 q^{47} + 7 q^{49}+ \cdots + 37 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.14266 0.659714 0.329857 0.944031i \(-0.393000\pi\)
0.329857 + 0.944031i \(0.393000\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 3.63076 1.37230 0.686150 0.727460i \(-0.259299\pi\)
0.686150 + 0.727460i \(0.259299\pi\)
\(8\) 0 0
\(9\) −1.69433 −0.564778
\(10\) 0 0
\(11\) −1.42153 −0.428606 −0.214303 0.976767i \(-0.568748\pi\)
−0.214303 + 0.976767i \(0.568748\pi\)
\(12\) 0 0
\(13\) 5.50061 1.52560 0.762798 0.646637i \(-0.223825\pi\)
0.762798 + 0.646637i \(0.223825\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.01251 0.730640 0.365320 0.930882i \(-0.380960\pi\)
0.365320 + 0.930882i \(0.380960\pi\)
\(18\) 0 0
\(19\) 2.20924 0.506834 0.253417 0.967357i \(-0.418446\pi\)
0.253417 + 0.967357i \(0.418446\pi\)
\(20\) 0 0
\(21\) 4.14872 0.905324
\(22\) 0 0
\(23\) −6.84305 −1.42688 −0.713438 0.700719i \(-0.752863\pi\)
−0.713438 + 0.700719i \(0.752863\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −5.36402 −1.03231
\(28\) 0 0
\(29\) 6.35495 1.18008 0.590042 0.807373i \(-0.299111\pi\)
0.590042 + 0.807373i \(0.299111\pi\)
\(30\) 0 0
\(31\) 7.54039 1.35429 0.677147 0.735847i \(-0.263216\pi\)
0.677147 + 0.735847i \(0.263216\pi\)
\(32\) 0 0
\(33\) −1.62432 −0.282757
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 1.00000 0.164399
\(38\) 0 0
\(39\) 6.28531 1.00646
\(40\) 0 0
\(41\) −8.54989 −1.33527 −0.667634 0.744489i \(-0.732693\pi\)
−0.667634 + 0.744489i \(0.732693\pi\)
\(42\) 0 0
\(43\) −4.05751 −0.618765 −0.309382 0.950938i \(-0.600122\pi\)
−0.309382 + 0.950938i \(0.600122\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 10.4163 1.51937 0.759687 0.650289i \(-0.225352\pi\)
0.759687 + 0.650289i \(0.225352\pi\)
\(48\) 0 0
\(49\) 6.18244 0.883206
\(50\) 0 0
\(51\) 3.44226 0.482013
\(52\) 0 0
\(53\) 8.13744 1.11776 0.558881 0.829248i \(-0.311231\pi\)
0.558881 + 0.829248i \(0.311231\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 2.52440 0.334365
\(58\) 0 0
\(59\) 1.23303 0.160526 0.0802631 0.996774i \(-0.474424\pi\)
0.0802631 + 0.996774i \(0.474424\pi\)
\(60\) 0 0
\(61\) 2.91870 0.373701 0.186851 0.982388i \(-0.440172\pi\)
0.186851 + 0.982388i \(0.440172\pi\)
\(62\) 0 0
\(63\) −6.15173 −0.775045
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −7.81578 −0.954849 −0.477424 0.878673i \(-0.658430\pi\)
−0.477424 + 0.878673i \(0.658430\pi\)
\(68\) 0 0
\(69\) −7.81926 −0.941329
\(70\) 0 0
\(71\) −0.806278 −0.0956876 −0.0478438 0.998855i \(-0.515235\pi\)
−0.0478438 + 0.998855i \(0.515235\pi\)
\(72\) 0 0
\(73\) −2.80628 −0.328450 −0.164225 0.986423i \(-0.552512\pi\)
−0.164225 + 0.986423i \(0.552512\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −5.16122 −0.588176
\(78\) 0 0
\(79\) 0.754853 0.0849276 0.0424638 0.999098i \(-0.486479\pi\)
0.0424638 + 0.999098i \(0.486479\pi\)
\(80\) 0 0
\(81\) −1.04623 −0.116248
\(82\) 0 0
\(83\) −7.41508 −0.813911 −0.406955 0.913448i \(-0.633410\pi\)
−0.406955 + 0.913448i \(0.633410\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 7.26153 0.778517
\(88\) 0 0
\(89\) 14.8681 1.57601 0.788006 0.615668i \(-0.211114\pi\)
0.788006 + 0.615668i \(0.211114\pi\)
\(90\) 0 0
\(91\) 19.9714 2.09357
\(92\) 0 0
\(93\) 8.61609 0.893447
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 5.94249 0.603368 0.301684 0.953408i \(-0.402451\pi\)
0.301684 + 0.953408i \(0.402451\pi\)
\(98\) 0 0
\(99\) 2.40854 0.242067
\(100\) 0 0
\(101\) −0.694334 −0.0690888 −0.0345444 0.999403i \(-0.510998\pi\)
−0.0345444 + 0.999403i \(0.510998\pi\)
\(102\) 0 0
\(103\) 11.9714 1.17958 0.589789 0.807557i \(-0.299211\pi\)
0.589789 + 0.807557i \(0.299211\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.31259 0.126893 0.0634465 0.997985i \(-0.479791\pi\)
0.0634465 + 0.997985i \(0.479791\pi\)
\(108\) 0 0
\(109\) 5.05873 0.484539 0.242269 0.970209i \(-0.422108\pi\)
0.242269 + 0.970209i \(0.422108\pi\)
\(110\) 0 0
\(111\) 1.14266 0.108456
\(112\) 0 0
\(113\) −12.4012 −1.16660 −0.583302 0.812255i \(-0.698240\pi\)
−0.583302 + 0.812255i \(0.698240\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −9.31988 −0.861623
\(118\) 0 0
\(119\) 10.9377 1.00266
\(120\) 0 0
\(121\) −8.97926 −0.816297
\(122\) 0 0
\(123\) −9.76960 −0.880895
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 6.59704 0.585393 0.292696 0.956205i \(-0.405447\pi\)
0.292696 + 0.956205i \(0.405447\pi\)
\(128\) 0 0
\(129\) −4.63634 −0.408207
\(130\) 0 0
\(131\) 3.43973 0.300531 0.150265 0.988646i \(-0.451987\pi\)
0.150265 + 0.988646i \(0.451987\pi\)
\(132\) 0 0
\(133\) 8.02122 0.695528
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −6.45561 −0.551540 −0.275770 0.961224i \(-0.588933\pi\)
−0.275770 + 0.961224i \(0.588933\pi\)
\(138\) 0 0
\(139\) −2.78554 −0.236267 −0.118133 0.992998i \(-0.537691\pi\)
−0.118133 + 0.992998i \(0.537691\pi\)
\(140\) 0 0
\(141\) 11.9023 1.00235
\(142\) 0 0
\(143\) −7.81926 −0.653880
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 7.06441 0.582663
\(148\) 0 0
\(149\) −5.55552 −0.455126 −0.227563 0.973763i \(-0.573076\pi\)
−0.227563 + 0.973763i \(0.573076\pi\)
\(150\) 0 0
\(151\) −4.41847 −0.359570 −0.179785 0.983706i \(-0.557540\pi\)
−0.179785 + 0.983706i \(0.557540\pi\)
\(152\) 0 0
\(153\) −5.10419 −0.412650
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 16.9555 1.35319 0.676597 0.736353i \(-0.263454\pi\)
0.676597 + 0.736353i \(0.263454\pi\)
\(158\) 0 0
\(159\) 9.29830 0.737403
\(160\) 0 0
\(161\) −24.8455 −1.95810
\(162\) 0 0
\(163\) −17.0709 −1.33709 −0.668546 0.743671i \(-0.733083\pi\)
−0.668546 + 0.743671i \(0.733083\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −0.418474 −0.0323825 −0.0161912 0.999869i \(-0.505154\pi\)
−0.0161912 + 0.999869i \(0.505154\pi\)
\(168\) 0 0
\(169\) 17.2567 1.32744
\(170\) 0 0
\(171\) −3.74319 −0.286249
\(172\) 0 0
\(173\) −14.9805 −1.13895 −0.569473 0.822010i \(-0.692853\pi\)
−0.569473 + 0.822010i \(0.692853\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 1.40893 0.105901
\(178\) 0 0
\(179\) 18.0656 1.35029 0.675144 0.737686i \(-0.264081\pi\)
0.675144 + 0.737686i \(0.264081\pi\)
\(180\) 0 0
\(181\) −16.9918 −1.26299 −0.631494 0.775381i \(-0.717558\pi\)
−0.631494 + 0.775381i \(0.717558\pi\)
\(182\) 0 0
\(183\) 3.33507 0.246536
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −4.28236 −0.313157
\(188\) 0 0
\(189\) −19.4755 −1.41663
\(190\) 0 0
\(191\) 14.4621 1.04644 0.523219 0.852198i \(-0.324731\pi\)
0.523219 + 0.852198i \(0.324731\pi\)
\(192\) 0 0
\(193\) 11.9524 0.860354 0.430177 0.902745i \(-0.358451\pi\)
0.430177 + 0.902745i \(0.358451\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2.44313 −0.174066 −0.0870328 0.996205i \(-0.527738\pi\)
−0.0870328 + 0.996205i \(0.527738\pi\)
\(198\) 0 0
\(199\) 16.4720 1.16767 0.583834 0.811873i \(-0.301552\pi\)
0.583834 + 0.811873i \(0.301552\pi\)
\(200\) 0 0
\(201\) −8.93075 −0.629927
\(202\) 0 0
\(203\) 23.0733 1.61943
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 11.5944 0.805868
\(208\) 0 0
\(209\) −3.14049 −0.217232
\(210\) 0 0
\(211\) 15.4526 1.06380 0.531899 0.846808i \(-0.321479\pi\)
0.531899 + 0.846808i \(0.321479\pi\)
\(212\) 0 0
\(213\) −0.921299 −0.0631264
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 27.3774 1.85850
\(218\) 0 0
\(219\) −3.20661 −0.216683
\(220\) 0 0
\(221\) 16.5706 1.11466
\(222\) 0 0
\(223\) 17.3298 1.16049 0.580243 0.814443i \(-0.302957\pi\)
0.580243 + 0.814443i \(0.302957\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −17.8421 −1.18422 −0.592111 0.805857i \(-0.701705\pi\)
−0.592111 + 0.805857i \(0.701705\pi\)
\(228\) 0 0
\(229\) 10.9455 0.723302 0.361651 0.932314i \(-0.382213\pi\)
0.361651 + 0.932314i \(0.382213\pi\)
\(230\) 0 0
\(231\) −5.89751 −0.388028
\(232\) 0 0
\(233\) −20.9787 −1.37436 −0.687179 0.726488i \(-0.741151\pi\)
−0.687179 + 0.726488i \(0.741151\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0.862539 0.0560279
\(238\) 0 0
\(239\) 13.2680 0.858234 0.429117 0.903249i \(-0.358825\pi\)
0.429117 + 0.903249i \(0.358825\pi\)
\(240\) 0 0
\(241\) 16.3960 1.05616 0.528080 0.849195i \(-0.322912\pi\)
0.528080 + 0.849195i \(0.322912\pi\)
\(242\) 0 0
\(243\) 14.8966 0.955615
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 12.1522 0.773223
\(248\) 0 0
\(249\) −8.47290 −0.536948
\(250\) 0 0
\(251\) −12.7989 −0.807857 −0.403929 0.914791i \(-0.632356\pi\)
−0.403929 + 0.914791i \(0.632356\pi\)
\(252\) 0 0
\(253\) 9.72758 0.611568
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 23.5992 1.47208 0.736038 0.676940i \(-0.236694\pi\)
0.736038 + 0.676940i \(0.236694\pi\)
\(258\) 0 0
\(259\) 3.63076 0.225605
\(260\) 0 0
\(261\) −10.7674 −0.666486
\(262\) 0 0
\(263\) 11.1300 0.686307 0.343153 0.939279i \(-0.388505\pi\)
0.343153 + 0.939279i \(0.388505\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 16.9891 1.03972
\(268\) 0 0
\(269\) 25.4780 1.55342 0.776712 0.629856i \(-0.216886\pi\)
0.776712 + 0.629856i \(0.216886\pi\)
\(270\) 0 0
\(271\) −11.0630 −0.672030 −0.336015 0.941857i \(-0.609079\pi\)
−0.336015 + 0.941857i \(0.609079\pi\)
\(272\) 0 0
\(273\) 22.8205 1.38116
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 11.0631 0.664720 0.332360 0.943153i \(-0.392155\pi\)
0.332360 + 0.943153i \(0.392155\pi\)
\(278\) 0 0
\(279\) −12.7759 −0.764876
\(280\) 0 0
\(281\) −23.3661 −1.39390 −0.696952 0.717117i \(-0.745461\pi\)
−0.696952 + 0.717117i \(0.745461\pi\)
\(282\) 0 0
\(283\) −18.9295 −1.12524 −0.562621 0.826715i \(-0.690207\pi\)
−0.562621 + 0.826715i \(0.690207\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −31.0426 −1.83239
\(288\) 0 0
\(289\) −7.92481 −0.466165
\(290\) 0 0
\(291\) 6.79023 0.398050
\(292\) 0 0
\(293\) −17.1019 −0.999103 −0.499551 0.866284i \(-0.666502\pi\)
−0.499551 + 0.866284i \(0.666502\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 7.62509 0.442452
\(298\) 0 0
\(299\) −37.6410 −2.17683
\(300\) 0 0
\(301\) −14.7319 −0.849130
\(302\) 0 0
\(303\) −0.793386 −0.0455788
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −11.6537 −0.665110 −0.332555 0.943084i \(-0.607911\pi\)
−0.332555 + 0.943084i \(0.607911\pi\)
\(308\) 0 0
\(309\) 13.6792 0.778184
\(310\) 0 0
\(311\) −29.8993 −1.69543 −0.847716 0.530451i \(-0.822023\pi\)
−0.847716 + 0.530451i \(0.822023\pi\)
\(312\) 0 0
\(313\) 31.1655 1.76158 0.880789 0.473509i \(-0.157013\pi\)
0.880789 + 0.473509i \(0.157013\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4.64628 −0.260961 −0.130480 0.991451i \(-0.541652\pi\)
−0.130480 + 0.991451i \(0.541652\pi\)
\(318\) 0 0
\(319\) −9.03372 −0.505791
\(320\) 0 0
\(321\) 1.49984 0.0837130
\(322\) 0 0
\(323\) 6.65534 0.370313
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 5.78040 0.319657
\(328\) 0 0
\(329\) 37.8191 2.08504
\(330\) 0 0
\(331\) 11.6576 0.640760 0.320380 0.947289i \(-0.396189\pi\)
0.320380 + 0.947289i \(0.396189\pi\)
\(332\) 0 0
\(333\) −1.69433 −0.0928489
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −6.83052 −0.372082 −0.186041 0.982542i \(-0.559566\pi\)
−0.186041 + 0.982542i \(0.559566\pi\)
\(338\) 0 0
\(339\) −14.1703 −0.769625
\(340\) 0 0
\(341\) −10.7189 −0.580459
\(342\) 0 0
\(343\) −2.96837 −0.160277
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −1.61256 −0.0865665 −0.0432833 0.999063i \(-0.513782\pi\)
−0.0432833 + 0.999063i \(0.513782\pi\)
\(348\) 0 0
\(349\) 7.20928 0.385904 0.192952 0.981208i \(-0.438194\pi\)
0.192952 + 0.981208i \(0.438194\pi\)
\(350\) 0 0
\(351\) −29.5054 −1.57488
\(352\) 0 0
\(353\) −30.6980 −1.63389 −0.816946 0.576715i \(-0.804334\pi\)
−0.816946 + 0.576715i \(0.804334\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 12.4980 0.661466
\(358\) 0 0
\(359\) −17.9589 −0.947834 −0.473917 0.880570i \(-0.657160\pi\)
−0.473917 + 0.880570i \(0.657160\pi\)
\(360\) 0 0
\(361\) −14.1193 −0.743120
\(362\) 0 0
\(363\) −10.2602 −0.538522
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 35.9363 1.87586 0.937930 0.346825i \(-0.112740\pi\)
0.937930 + 0.346825i \(0.112740\pi\)
\(368\) 0 0
\(369\) 14.4864 0.754131
\(370\) 0 0
\(371\) 29.5451 1.53391
\(372\) 0 0
\(373\) 19.7825 1.02430 0.512149 0.858896i \(-0.328849\pi\)
0.512149 + 0.858896i \(0.328849\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 34.9561 1.80033
\(378\) 0 0
\(379\) 10.7458 0.551975 0.275988 0.961161i \(-0.410995\pi\)
0.275988 + 0.961161i \(0.410995\pi\)
\(380\) 0 0
\(381\) 7.53816 0.386191
\(382\) 0 0
\(383\) −22.5473 −1.15211 −0.576056 0.817410i \(-0.695409\pi\)
−0.576056 + 0.817410i \(0.695409\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 6.87478 0.349465
\(388\) 0 0
\(389\) 32.8486 1.66549 0.832744 0.553658i \(-0.186769\pi\)
0.832744 + 0.553658i \(0.186769\pi\)
\(390\) 0 0
\(391\) −20.6147 −1.04253
\(392\) 0 0
\(393\) 3.93044 0.198264
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 9.15912 0.459683 0.229842 0.973228i \(-0.426179\pi\)
0.229842 + 0.973228i \(0.426179\pi\)
\(398\) 0 0
\(399\) 9.16550 0.458849
\(400\) 0 0
\(401\) 13.7457 0.686428 0.343214 0.939257i \(-0.388484\pi\)
0.343214 + 0.939257i \(0.388484\pi\)
\(402\) 0 0
\(403\) 41.4768 2.06611
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1.42153 −0.0704624
\(408\) 0 0
\(409\) 26.8879 1.32952 0.664761 0.747056i \(-0.268533\pi\)
0.664761 + 0.747056i \(0.268533\pi\)
\(410\) 0 0
\(411\) −7.37655 −0.363858
\(412\) 0 0
\(413\) 4.47682 0.220290
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −3.18292 −0.155868
\(418\) 0 0
\(419\) 3.93220 0.192100 0.0960502 0.995376i \(-0.469379\pi\)
0.0960502 + 0.995376i \(0.469379\pi\)
\(420\) 0 0
\(421\) 11.7293 0.571649 0.285824 0.958282i \(-0.407733\pi\)
0.285824 + 0.958282i \(0.407733\pi\)
\(422\) 0 0
\(423\) −17.6487 −0.858109
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 10.5971 0.512830
\(428\) 0 0
\(429\) −8.93474 −0.431373
\(430\) 0 0
\(431\) 15.7910 0.760627 0.380313 0.924858i \(-0.375816\pi\)
0.380313 + 0.924858i \(0.375816\pi\)
\(432\) 0 0
\(433\) −24.2648 −1.16609 −0.583047 0.812439i \(-0.698140\pi\)
−0.583047 + 0.812439i \(0.698140\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −15.1179 −0.723188
\(438\) 0 0
\(439\) −35.0198 −1.67140 −0.835702 0.549184i \(-0.814939\pi\)
−0.835702 + 0.549184i \(0.814939\pi\)
\(440\) 0 0
\(441\) −10.4751 −0.498815
\(442\) 0 0
\(443\) −39.3708 −1.87056 −0.935282 0.353904i \(-0.884854\pi\)
−0.935282 + 0.353904i \(0.884854\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −6.34806 −0.300253
\(448\) 0 0
\(449\) −17.3911 −0.820738 −0.410369 0.911920i \(-0.634600\pi\)
−0.410369 + 0.911920i \(0.634600\pi\)
\(450\) 0 0
\(451\) 12.1539 0.572305
\(452\) 0 0
\(453\) −5.04880 −0.237213
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 40.5649 1.89754 0.948772 0.315960i \(-0.102327\pi\)
0.948772 + 0.315960i \(0.102327\pi\)
\(458\) 0 0
\(459\) −16.1591 −0.754244
\(460\) 0 0
\(461\) 33.0855 1.54094 0.770472 0.637474i \(-0.220021\pi\)
0.770472 + 0.637474i \(0.220021\pi\)
\(462\) 0 0
\(463\) −26.4617 −1.22978 −0.614890 0.788613i \(-0.710800\pi\)
−0.614890 + 0.788613i \(0.710800\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −18.2121 −0.842756 −0.421378 0.906885i \(-0.638453\pi\)
−0.421378 + 0.906885i \(0.638453\pi\)
\(468\) 0 0
\(469\) −28.3772 −1.31034
\(470\) 0 0
\(471\) 19.3743 0.892721
\(472\) 0 0
\(473\) 5.76786 0.265206
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −13.7875 −0.631288
\(478\) 0 0
\(479\) −30.3881 −1.38847 −0.694235 0.719749i \(-0.744257\pi\)
−0.694235 + 0.719749i \(0.744257\pi\)
\(480\) 0 0
\(481\) 5.50061 0.250806
\(482\) 0 0
\(483\) −28.3899 −1.29178
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −35.7014 −1.61779 −0.808893 0.587955i \(-0.799933\pi\)
−0.808893 + 0.587955i \(0.799933\pi\)
\(488\) 0 0
\(489\) −19.5061 −0.882098
\(490\) 0 0
\(491\) 12.0000 0.541552 0.270776 0.962642i \(-0.412720\pi\)
0.270776 + 0.962642i \(0.412720\pi\)
\(492\) 0 0
\(493\) 19.1443 0.862217
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −2.92740 −0.131312
\(498\) 0 0
\(499\) 19.8175 0.887151 0.443576 0.896237i \(-0.353710\pi\)
0.443576 + 0.896237i \(0.353710\pi\)
\(500\) 0 0
\(501\) −0.478172 −0.0213632
\(502\) 0 0
\(503\) 18.8136 0.838858 0.419429 0.907788i \(-0.362230\pi\)
0.419429 + 0.907788i \(0.362230\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 19.7185 0.875731
\(508\) 0 0
\(509\) 21.1937 0.939395 0.469698 0.882827i \(-0.344363\pi\)
0.469698 + 0.882827i \(0.344363\pi\)
\(510\) 0 0
\(511\) −10.1889 −0.450732
\(512\) 0 0
\(513\) −11.8504 −0.523207
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −14.8070 −0.651213
\(518\) 0 0
\(519\) −17.1176 −0.751378
\(520\) 0 0
\(521\) 24.2087 1.06060 0.530301 0.847810i \(-0.322079\pi\)
0.530301 + 0.847810i \(0.322079\pi\)
\(522\) 0 0
\(523\) −36.9848 −1.61723 −0.808615 0.588338i \(-0.799783\pi\)
−0.808615 + 0.588338i \(0.799783\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 22.7155 0.989502
\(528\) 0 0
\(529\) 23.8274 1.03597
\(530\) 0 0
\(531\) −2.08916 −0.0906617
\(532\) 0 0
\(533\) −47.0296 −2.03708
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 20.6428 0.890804
\(538\) 0 0
\(539\) −8.78850 −0.378547
\(540\) 0 0
\(541\) 17.1110 0.735661 0.367831 0.929893i \(-0.380101\pi\)
0.367831 + 0.929893i \(0.380101\pi\)
\(542\) 0 0
\(543\) −19.4158 −0.833210
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 33.7522 1.44314 0.721569 0.692342i \(-0.243421\pi\)
0.721569 + 0.692342i \(0.243421\pi\)
\(548\) 0 0
\(549\) −4.94525 −0.211058
\(550\) 0 0
\(551\) 14.0396 0.598106
\(552\) 0 0
\(553\) 2.74069 0.116546
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −2.77792 −0.117704 −0.0588520 0.998267i \(-0.518744\pi\)
−0.0588520 + 0.998267i \(0.518744\pi\)
\(558\) 0 0
\(559\) −22.3188 −0.943984
\(560\) 0 0
\(561\) −4.89327 −0.206594
\(562\) 0 0
\(563\) 5.17299 0.218015 0.109008 0.994041i \(-0.465233\pi\)
0.109008 + 0.994041i \(0.465233\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −3.79861 −0.159527
\(568\) 0 0
\(569\) −45.7741 −1.91895 −0.959476 0.281791i \(-0.909071\pi\)
−0.959476 + 0.281791i \(0.909071\pi\)
\(570\) 0 0
\(571\) −12.2360 −0.512061 −0.256030 0.966669i \(-0.582415\pi\)
−0.256030 + 0.966669i \(0.582415\pi\)
\(572\) 0 0
\(573\) 16.5252 0.690349
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −43.7417 −1.82099 −0.910494 0.413521i \(-0.864299\pi\)
−0.910494 + 0.413521i \(0.864299\pi\)
\(578\) 0 0
\(579\) 13.6575 0.567587
\(580\) 0 0
\(581\) −26.9224 −1.11693
\(582\) 0 0
\(583\) −11.5676 −0.479080
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 32.3324 1.33450 0.667250 0.744834i \(-0.267471\pi\)
0.667250 + 0.744834i \(0.267471\pi\)
\(588\) 0 0
\(589\) 16.6585 0.686402
\(590\) 0 0
\(591\) −2.79166 −0.114833
\(592\) 0 0
\(593\) −17.4912 −0.718276 −0.359138 0.933285i \(-0.616929\pi\)
−0.359138 + 0.933285i \(0.616929\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 18.8218 0.770326
\(598\) 0 0
\(599\) −16.1914 −0.661562 −0.330781 0.943708i \(-0.607312\pi\)
−0.330781 + 0.943708i \(0.607312\pi\)
\(600\) 0 0
\(601\) −1.66627 −0.0679685 −0.0339843 0.999422i \(-0.510820\pi\)
−0.0339843 + 0.999422i \(0.510820\pi\)
\(602\) 0 0
\(603\) 13.2425 0.539278
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 36.6648 1.48818 0.744088 0.668081i \(-0.232884\pi\)
0.744088 + 0.668081i \(0.232884\pi\)
\(608\) 0 0
\(609\) 26.3649 1.06836
\(610\) 0 0
\(611\) 57.2961 2.31795
\(612\) 0 0
\(613\) 17.4611 0.705248 0.352624 0.935765i \(-0.385290\pi\)
0.352624 + 0.935765i \(0.385290\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 15.4269 0.621065 0.310532 0.950563i \(-0.399493\pi\)
0.310532 + 0.950563i \(0.399493\pi\)
\(618\) 0 0
\(619\) −6.66491 −0.267886 −0.133943 0.990989i \(-0.542764\pi\)
−0.133943 + 0.990989i \(0.542764\pi\)
\(620\) 0 0
\(621\) 36.7062 1.47297
\(622\) 0 0
\(623\) 53.9824 2.16276
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −3.58850 −0.143311
\(628\) 0 0
\(629\) 3.01251 0.120116
\(630\) 0 0
\(631\) 37.7713 1.50365 0.751827 0.659361i \(-0.229173\pi\)
0.751827 + 0.659361i \(0.229173\pi\)
\(632\) 0 0
\(633\) 17.6570 0.701802
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 34.0072 1.34741
\(638\) 0 0
\(639\) 1.36610 0.0540422
\(640\) 0 0
\(641\) 19.4063 0.766504 0.383252 0.923644i \(-0.374804\pi\)
0.383252 + 0.923644i \(0.374804\pi\)
\(642\) 0 0
\(643\) −39.3776 −1.55290 −0.776451 0.630178i \(-0.782982\pi\)
−0.776451 + 0.630178i \(0.782982\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −25.0461 −0.984664 −0.492332 0.870408i \(-0.663855\pi\)
−0.492332 + 0.870408i \(0.663855\pi\)
\(648\) 0 0
\(649\) −1.75278 −0.0688026
\(650\) 0 0
\(651\) 31.2830 1.22608
\(652\) 0 0
\(653\) −11.8911 −0.465334 −0.232667 0.972556i \(-0.574745\pi\)
−0.232667 + 0.972556i \(0.574745\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 4.75477 0.185501
\(658\) 0 0
\(659\) −26.4031 −1.02852 −0.514260 0.857634i \(-0.671933\pi\)
−0.514260 + 0.857634i \(0.671933\pi\)
\(660\) 0 0
\(661\) −26.2909 −1.02260 −0.511299 0.859403i \(-0.670835\pi\)
−0.511299 + 0.859403i \(0.670835\pi\)
\(662\) 0 0
\(663\) 18.9346 0.735357
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −43.4872 −1.68383
\(668\) 0 0
\(669\) 19.8020 0.765589
\(670\) 0 0
\(671\) −4.14901 −0.160171
\(672\) 0 0
\(673\) −1.12801 −0.0434815 −0.0217407 0.999764i \(-0.506921\pi\)
−0.0217407 + 0.999764i \(0.506921\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 34.9004 1.34133 0.670666 0.741760i \(-0.266008\pi\)
0.670666 + 0.741760i \(0.266008\pi\)
\(678\) 0 0
\(679\) 21.5758 0.828002
\(680\) 0 0
\(681\) −20.3874 −0.781247
\(682\) 0 0
\(683\) −27.7382 −1.06137 −0.530687 0.847568i \(-0.678066\pi\)
−0.530687 + 0.847568i \(0.678066\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 12.5070 0.477172
\(688\) 0 0
\(689\) 44.7609 1.70525
\(690\) 0 0
\(691\) −30.7533 −1.16991 −0.584955 0.811065i \(-0.698888\pi\)
−0.584955 + 0.811065i \(0.698888\pi\)
\(692\) 0 0
\(693\) 8.74484 0.332189
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −25.7566 −0.975601
\(698\) 0 0
\(699\) −23.9714 −0.906682
\(700\) 0 0
\(701\) 1.46049 0.0551619 0.0275809 0.999620i \(-0.491220\pi\)
0.0275809 + 0.999620i \(0.491220\pi\)
\(702\) 0 0
\(703\) 2.20924 0.0833229
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −2.52096 −0.0948106
\(708\) 0 0
\(709\) 23.4773 0.881708 0.440854 0.897579i \(-0.354676\pi\)
0.440854 + 0.897579i \(0.354676\pi\)
\(710\) 0 0
\(711\) −1.27897 −0.0479653
\(712\) 0 0
\(713\) −51.5993 −1.93241
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 15.1607 0.566188
\(718\) 0 0
\(719\) 25.7124 0.958912 0.479456 0.877566i \(-0.340834\pi\)
0.479456 + 0.877566i \(0.340834\pi\)
\(720\) 0 0
\(721\) 43.4654 1.61874
\(722\) 0 0
\(723\) 18.7350 0.696762
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −37.2155 −1.38025 −0.690124 0.723691i \(-0.742444\pi\)
−0.690124 + 0.723691i \(0.742444\pi\)
\(728\) 0 0
\(729\) 20.1604 0.746680
\(730\) 0 0
\(731\) −12.2233 −0.452094
\(732\) 0 0
\(733\) 45.9003 1.69537 0.847683 0.530503i \(-0.177997\pi\)
0.847683 + 0.530503i \(0.177997\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 11.1103 0.409254
\(738\) 0 0
\(739\) 26.7807 0.985142 0.492571 0.870272i \(-0.336057\pi\)
0.492571 + 0.870272i \(0.336057\pi\)
\(740\) 0 0
\(741\) 13.8857 0.510106
\(742\) 0 0
\(743\) −3.78292 −0.138782 −0.0693909 0.997590i \(-0.522106\pi\)
−0.0693909 + 0.997590i \(0.522106\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 12.5636 0.459679
\(748\) 0 0
\(749\) 4.76571 0.174135
\(750\) 0 0
\(751\) −28.5727 −1.04263 −0.521317 0.853363i \(-0.674559\pi\)
−0.521317 + 0.853363i \(0.674559\pi\)
\(752\) 0 0
\(753\) −14.6247 −0.532954
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −30.6449 −1.11381 −0.556904 0.830577i \(-0.688011\pi\)
−0.556904 + 0.830577i \(0.688011\pi\)
\(758\) 0 0
\(759\) 11.1153 0.403459
\(760\) 0 0
\(761\) 20.9555 0.759635 0.379818 0.925061i \(-0.375987\pi\)
0.379818 + 0.925061i \(0.375987\pi\)
\(762\) 0 0
\(763\) 18.3671 0.664932
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 6.78240 0.244898
\(768\) 0 0
\(769\) 18.3605 0.662095 0.331047 0.943614i \(-0.392598\pi\)
0.331047 + 0.943614i \(0.392598\pi\)
\(770\) 0 0
\(771\) 26.9658 0.971148
\(772\) 0 0
\(773\) 48.4623 1.74307 0.871534 0.490334i \(-0.163125\pi\)
0.871534 + 0.490334i \(0.163125\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 4.14872 0.148834
\(778\) 0 0
\(779\) −18.8887 −0.676759
\(780\) 0 0
\(781\) 1.14614 0.0410123
\(782\) 0 0
\(783\) −34.0880 −1.21821
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −1.54910 −0.0552194 −0.0276097 0.999619i \(-0.508790\pi\)
−0.0276097 + 0.999619i \(0.508790\pi\)
\(788\) 0 0
\(789\) 12.7178 0.452766
\(790\) 0 0
\(791\) −45.0257 −1.60093
\(792\) 0 0
\(793\) 16.0546 0.570117
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −49.0430 −1.73719 −0.868597 0.495520i \(-0.834978\pi\)
−0.868597 + 0.495520i \(0.834978\pi\)
\(798\) 0 0
\(799\) 31.3792 1.11012
\(800\) 0 0
\(801\) −25.1915 −0.890097
\(802\) 0 0
\(803\) 3.98920 0.140776
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 29.1127 1.02481
\(808\) 0 0
\(809\) −12.7273 −0.447468 −0.223734 0.974650i \(-0.571825\pi\)
−0.223734 + 0.974650i \(0.571825\pi\)
\(810\) 0 0
\(811\) −30.7930 −1.08129 −0.540645 0.841251i \(-0.681820\pi\)
−0.540645 + 0.841251i \(0.681820\pi\)
\(812\) 0 0
\(813\) −12.6412 −0.443347
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −8.96400 −0.313611
\(818\) 0 0
\(819\) −33.8383 −1.18240
\(820\) 0 0
\(821\) 28.0073 0.977463 0.488731 0.872434i \(-0.337460\pi\)
0.488731 + 0.872434i \(0.337460\pi\)
\(822\) 0 0
\(823\) −1.24000 −0.0432237 −0.0216119 0.999766i \(-0.506880\pi\)
−0.0216119 + 0.999766i \(0.506880\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 14.1170 0.490895 0.245447 0.969410i \(-0.421065\pi\)
0.245447 + 0.969410i \(0.421065\pi\)
\(828\) 0 0
\(829\) −14.1516 −0.491507 −0.245753 0.969332i \(-0.579035\pi\)
−0.245753 + 0.969332i \(0.579035\pi\)
\(830\) 0 0
\(831\) 12.6414 0.438525
\(832\) 0 0
\(833\) 18.6246 0.645306
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −40.4468 −1.39805
\(838\) 0 0
\(839\) 1.43182 0.0494319 0.0247159 0.999695i \(-0.492132\pi\)
0.0247159 + 0.999695i \(0.492132\pi\)
\(840\) 0 0
\(841\) 11.3853 0.392598
\(842\) 0 0
\(843\) −26.6994 −0.919578
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −32.6016 −1.12020
\(848\) 0 0
\(849\) −21.6299 −0.742337
\(850\) 0 0
\(851\) −6.84305 −0.234577
\(852\) 0 0
\(853\) 39.6167 1.35645 0.678226 0.734854i \(-0.262749\pi\)
0.678226 + 0.734854i \(0.262749\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −38.5710 −1.31756 −0.658780 0.752336i \(-0.728927\pi\)
−0.658780 + 0.752336i \(0.728927\pi\)
\(858\) 0 0
\(859\) −12.9737 −0.442656 −0.221328 0.975199i \(-0.571039\pi\)
−0.221328 + 0.975199i \(0.571039\pi\)
\(860\) 0 0
\(861\) −35.4711 −1.20885
\(862\) 0 0
\(863\) −20.3870 −0.693982 −0.346991 0.937868i \(-0.612797\pi\)
−0.346991 + 0.937868i \(0.612797\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −9.05534 −0.307535
\(868\) 0 0
\(869\) −1.07304 −0.0364005
\(870\) 0 0
\(871\) −42.9916 −1.45671
\(872\) 0 0
\(873\) −10.0686 −0.340769
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 15.4158 0.520554 0.260277 0.965534i \(-0.416186\pi\)
0.260277 + 0.965534i \(0.416186\pi\)
\(878\) 0 0
\(879\) −19.5416 −0.659122
\(880\) 0 0
\(881\) 19.1361 0.644711 0.322355 0.946619i \(-0.395525\pi\)
0.322355 + 0.946619i \(0.395525\pi\)
\(882\) 0 0
\(883\) −3.29325 −0.110827 −0.0554134 0.998463i \(-0.517648\pi\)
−0.0554134 + 0.998463i \(0.517648\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −53.8424 −1.80785 −0.903925 0.427691i \(-0.859327\pi\)
−0.903925 + 0.427691i \(0.859327\pi\)
\(888\) 0 0
\(889\) 23.9523 0.803334
\(890\) 0 0
\(891\) 1.48724 0.0498245
\(892\) 0 0
\(893\) 23.0121 0.770070
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −43.0107 −1.43609
\(898\) 0 0
\(899\) 47.9188 1.59818
\(900\) 0 0
\(901\) 24.5141 0.816682
\(902\) 0 0
\(903\) −16.8335 −0.560183
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 39.2250 1.30244 0.651222 0.758888i \(-0.274257\pi\)
0.651222 + 0.758888i \(0.274257\pi\)
\(908\) 0 0
\(909\) 1.17643 0.0390199
\(910\) 0 0
\(911\) −17.0376 −0.564479 −0.282240 0.959344i \(-0.591077\pi\)
−0.282240 + 0.959344i \(0.591077\pi\)
\(912\) 0 0
\(913\) 10.5407 0.348847
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 12.4889 0.412418
\(918\) 0 0
\(919\) −53.6082 −1.76837 −0.884185 0.467136i \(-0.845286\pi\)
−0.884185 + 0.467136i \(0.845286\pi\)
\(920\) 0 0
\(921\) −13.3162 −0.438782
\(922\) 0 0
\(923\) −4.43502 −0.145981
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −20.2836 −0.666200
\(928\) 0 0
\(929\) −18.7137 −0.613977 −0.306989 0.951713i \(-0.599321\pi\)
−0.306989 + 0.951713i \(0.599321\pi\)
\(930\) 0 0
\(931\) 13.6585 0.447638
\(932\) 0 0
\(933\) −34.1646 −1.11850
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −44.9946 −1.46991 −0.734955 0.678116i \(-0.762797\pi\)
−0.734955 + 0.678116i \(0.762797\pi\)
\(938\) 0 0
\(939\) 35.6115 1.16214
\(940\) 0 0
\(941\) −40.2103 −1.31082 −0.655408 0.755275i \(-0.727503\pi\)
−0.655408 + 0.755275i \(0.727503\pi\)
\(942\) 0 0
\(943\) 58.5074 1.90526
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 30.8063 1.00107 0.500535 0.865717i \(-0.333137\pi\)
0.500535 + 0.865717i \(0.333137\pi\)
\(948\) 0 0
\(949\) −15.4362 −0.501082
\(950\) 0 0
\(951\) −5.30910 −0.172159
\(952\) 0 0
\(953\) −28.5659 −0.925341 −0.462671 0.886530i \(-0.653109\pi\)
−0.462671 + 0.886530i \(0.653109\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −10.3224 −0.333677
\(958\) 0 0
\(959\) −23.4388 −0.756878
\(960\) 0 0
\(961\) 25.8576 0.834115
\(962\) 0 0
\(963\) −2.22397 −0.0716664
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −43.4628 −1.39767 −0.698835 0.715282i \(-0.746298\pi\)
−0.698835 + 0.715282i \(0.746298\pi\)
\(968\) 0 0
\(969\) 7.60477 0.244301
\(970\) 0 0
\(971\) −32.6988 −1.04935 −0.524676 0.851302i \(-0.675814\pi\)
−0.524676 + 0.851302i \(0.675814\pi\)
\(972\) 0 0
\(973\) −10.1136 −0.324228
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −58.9072 −1.88461 −0.942304 0.334758i \(-0.891345\pi\)
−0.942304 + 0.334758i \(0.891345\pi\)
\(978\) 0 0
\(979\) −21.1353 −0.675488
\(980\) 0 0
\(981\) −8.57119 −0.273657
\(982\) 0 0
\(983\) −27.4016 −0.873975 −0.436987 0.899468i \(-0.643955\pi\)
−0.436987 + 0.899468i \(0.643955\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 43.2143 1.37553
\(988\) 0 0
\(989\) 27.7658 0.882900
\(990\) 0 0
\(991\) −6.34631 −0.201597 −0.100799 0.994907i \(-0.532140\pi\)
−0.100799 + 0.994907i \(0.532140\pi\)
\(992\) 0 0
\(993\) 13.3206 0.422718
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −61.3970 −1.94446 −0.972231 0.234024i \(-0.924811\pi\)
−0.972231 + 0.234024i \(0.924811\pi\)
\(998\) 0 0
\(999\) −5.36402 −0.169710
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7400.2.a.o.1.4 5
5.4 even 2 1480.2.a.j.1.2 5
20.19 odd 2 2960.2.a.x.1.4 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1480.2.a.j.1.2 5 5.4 even 2
2960.2.a.x.1.4 5 20.19 odd 2
7400.2.a.o.1.4 5 1.1 even 1 trivial