Defining parameters
Level: | \( N \) | \(=\) | \( 7400 = 2^{3} \cdot 5^{2} \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 7400.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 31 \) | ||
Sturm bound: | \(2280\) | ||
Trace bound: | \(9\) | ||
Distinguishing \(T_p\): | \(3\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(7400))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1164 | 171 | 993 |
Cusp forms | 1117 | 171 | 946 |
Eisenstein series | 47 | 0 | 47 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(5\) | \(37\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(19\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(23\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(25\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(19\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(20\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(19\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(21\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(25\) |
Plus space | \(+\) | \(78\) | ||
Minus space | \(-\) | \(93\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(7400))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(7400))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(7400)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(37))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(74))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(100))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(148))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(185))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(200))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(296))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(370))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(740))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(925))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1480))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1850))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3700))\)\(^{\oplus 2}\)