Properties

Label 740.2.i.b.121.6
Level $740$
Weight $2$
Character 740.121
Analytic conductor $5.909$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [740,2,Mod(121,740)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(740, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("740.121"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 740 = 2^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 740.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,0,0,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.90892974957\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 13 x^{12} - 6 x^{11} + 130 x^{10} - 44 x^{9} + 466 x^{8} - 4 x^{7} + 1211 x^{6} - 162 x^{5} + \cdots + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{37}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 121.6
Root \(-0.743604 - 1.28796i\) of defining polynomial
Character \(\chi\) \(=\) 740.121
Dual form 740.2.i.b.581.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.743604 + 1.28796i) q^{3} +(0.500000 + 0.866025i) q^{5} +(1.37759 + 2.38605i) q^{7} +(0.394106 - 0.682612i) q^{9} +0.532549 q^{11} +(1.80515 + 3.12662i) q^{13} +(-0.743604 + 1.28796i) q^{15} +(-0.777065 + 1.34592i) q^{17} +(-2.21268 - 3.83247i) q^{19} +(-2.04876 + 3.54855i) q^{21} -0.557928 q^{23} +(-0.500000 + 0.866025i) q^{25} +5.63386 q^{27} +6.32906 q^{29} -8.41061 q^{31} +(0.396005 + 0.685901i) q^{33} +(-1.37759 + 2.38605i) q^{35} +(-1.59156 + 5.87085i) q^{37} +(-2.68464 + 4.64993i) q^{39} +(1.28258 + 2.22149i) q^{41} -3.84565 q^{43} +0.788212 q^{45} +0.809982 q^{47} +(-0.295484 + 0.511794i) q^{49} -2.31131 q^{51} +(0.278334 - 0.482089i) q^{53} +(0.266274 + 0.461201i) q^{55} +(3.29072 - 5.69969i) q^{57} +(0.122204 - 0.211664i) q^{59} +(-2.85766 - 4.94962i) q^{61} +2.17166 q^{63} +(-1.80515 + 3.12662i) q^{65} +(-1.28609 - 2.22758i) q^{67} +(-0.414877 - 0.718588i) q^{69} +(3.87967 + 6.71979i) q^{71} +1.48847 q^{73} -1.48721 q^{75} +(0.733631 + 1.27069i) q^{77} +(-0.440351 - 0.762710i) q^{79} +(3.00704 + 5.20835i) q^{81} +(0.671903 - 1.16377i) q^{83} -1.55413 q^{85} +(4.70631 + 8.15157i) q^{87} +(5.35327 - 9.27214i) q^{89} +(-4.97350 + 8.61436i) q^{91} +(-6.25416 - 10.8325i) q^{93} +(2.21268 - 3.83247i) q^{95} +9.38181 q^{97} +(0.209881 - 0.363524i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 7 q^{5} - 2 q^{7} - 5 q^{9} - 10 q^{11} - 2 q^{13} - 5 q^{17} - 8 q^{19} + 9 q^{21} + 8 q^{23} - 7 q^{25} - 18 q^{27} - 4 q^{29} + 16 q^{31} - 7 q^{33} + 2 q^{35} + 4 q^{37} + 13 q^{39} + 9 q^{41}+ \cdots + 26 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/740\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(297\) \(371\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.743604 + 1.28796i 0.429320 + 0.743604i 0.996813 0.0797742i \(-0.0254199\pi\)
−0.567493 + 0.823378i \(0.692087\pi\)
\(4\) 0 0
\(5\) 0.500000 + 0.866025i 0.223607 + 0.387298i
\(6\) 0 0
\(7\) 1.37759 + 2.38605i 0.520678 + 0.901841i 0.999711 + 0.0240443i \(0.00765428\pi\)
−0.479032 + 0.877797i \(0.659012\pi\)
\(8\) 0 0
\(9\) 0.394106 0.682612i 0.131369 0.227537i
\(10\) 0 0
\(11\) 0.532549 0.160569 0.0802847 0.996772i \(-0.474417\pi\)
0.0802847 + 0.996772i \(0.474417\pi\)
\(12\) 0 0
\(13\) 1.80515 + 3.12662i 0.500659 + 0.867167i 1.00000 0.000761341i \(0.000242342\pi\)
−0.499341 + 0.866406i \(0.666424\pi\)
\(14\) 0 0
\(15\) −0.743604 + 1.28796i −0.191998 + 0.332550i
\(16\) 0 0
\(17\) −0.777065 + 1.34592i −0.188466 + 0.326432i −0.944739 0.327824i \(-0.893685\pi\)
0.756273 + 0.654256i \(0.227018\pi\)
\(18\) 0 0
\(19\) −2.21268 3.83247i −0.507624 0.879230i −0.999961 0.00882557i \(-0.997191\pi\)
0.492337 0.870404i \(-0.336143\pi\)
\(20\) 0 0
\(21\) −2.04876 + 3.54855i −0.447075 + 0.774357i
\(22\) 0 0
\(23\) −0.557928 −0.116336 −0.0581680 0.998307i \(-0.518526\pi\)
−0.0581680 + 0.998307i \(0.518526\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 0 0
\(27\) 5.63386 1.08424
\(28\) 0 0
\(29\) 6.32906 1.17528 0.587638 0.809124i \(-0.300058\pi\)
0.587638 + 0.809124i \(0.300058\pi\)
\(30\) 0 0
\(31\) −8.41061 −1.51059 −0.755295 0.655385i \(-0.772507\pi\)
−0.755295 + 0.655385i \(0.772507\pi\)
\(32\) 0 0
\(33\) 0.396005 + 0.685901i 0.0689357 + 0.119400i
\(34\) 0 0
\(35\) −1.37759 + 2.38605i −0.232854 + 0.403316i
\(36\) 0 0
\(37\) −1.59156 + 5.87085i −0.261651 + 0.965163i
\(38\) 0 0
\(39\) −2.68464 + 4.64993i −0.429886 + 0.744584i
\(40\) 0 0
\(41\) 1.28258 + 2.22149i 0.200305 + 0.346938i 0.948627 0.316398i \(-0.102473\pi\)
−0.748322 + 0.663336i \(0.769140\pi\)
\(42\) 0 0
\(43\) −3.84565 −0.586456 −0.293228 0.956043i \(-0.594729\pi\)
−0.293228 + 0.956043i \(0.594729\pi\)
\(44\) 0 0
\(45\) 0.788212 0.117500
\(46\) 0 0
\(47\) 0.809982 0.118148 0.0590740 0.998254i \(-0.481185\pi\)
0.0590740 + 0.998254i \(0.481185\pi\)
\(48\) 0 0
\(49\) −0.295484 + 0.511794i −0.0422120 + 0.0731134i
\(50\) 0 0
\(51\) −2.31131 −0.323649
\(52\) 0 0
\(53\) 0.278334 0.482089i 0.0382321 0.0662199i −0.846276 0.532744i \(-0.821161\pi\)
0.884508 + 0.466524i \(0.154494\pi\)
\(54\) 0 0
\(55\) 0.266274 + 0.461201i 0.0359044 + 0.0621883i
\(56\) 0 0
\(57\) 3.29072 5.69969i 0.435866 0.754942i
\(58\) 0 0
\(59\) 0.122204 0.211664i 0.0159096 0.0275563i −0.857961 0.513715i \(-0.828269\pi\)
0.873871 + 0.486159i \(0.161602\pi\)
\(60\) 0 0
\(61\) −2.85766 4.94962i −0.365886 0.633733i 0.623032 0.782197i \(-0.285901\pi\)
−0.988918 + 0.148463i \(0.952567\pi\)
\(62\) 0 0
\(63\) 2.17166 0.273603
\(64\) 0 0
\(65\) −1.80515 + 3.12662i −0.223902 + 0.387809i
\(66\) 0 0
\(67\) −1.28609 2.22758i −0.157121 0.272142i 0.776708 0.629861i \(-0.216888\pi\)
−0.933829 + 0.357718i \(0.883555\pi\)
\(68\) 0 0
\(69\) −0.414877 0.718588i −0.0499454 0.0865079i
\(70\) 0 0
\(71\) 3.87967 + 6.71979i 0.460432 + 0.797492i 0.998982 0.0451016i \(-0.0143611\pi\)
−0.538550 + 0.842593i \(0.681028\pi\)
\(72\) 0 0
\(73\) 1.48847 0.174212 0.0871060 0.996199i \(-0.472238\pi\)
0.0871060 + 0.996199i \(0.472238\pi\)
\(74\) 0 0
\(75\) −1.48721 −0.171728
\(76\) 0 0
\(77\) 0.733631 + 1.27069i 0.0836050 + 0.144808i
\(78\) 0 0
\(79\) −0.440351 0.762710i −0.0495433 0.0858116i 0.840190 0.542292i \(-0.182443\pi\)
−0.889734 + 0.456480i \(0.849110\pi\)
\(80\) 0 0
\(81\) 3.00704 + 5.20835i 0.334116 + 0.578706i
\(82\) 0 0
\(83\) 0.671903 1.16377i 0.0737509 0.127740i −0.826791 0.562509i \(-0.809836\pi\)
0.900542 + 0.434768i \(0.143170\pi\)
\(84\) 0 0
\(85\) −1.55413 −0.168569
\(86\) 0 0
\(87\) 4.70631 + 8.15157i 0.504570 + 0.873940i
\(88\) 0 0
\(89\) 5.35327 9.27214i 0.567446 0.982845i −0.429372 0.903128i \(-0.641265\pi\)
0.996818 0.0797168i \(-0.0254016\pi\)
\(90\) 0 0
\(91\) −4.97350 + 8.61436i −0.521365 + 0.903030i
\(92\) 0 0
\(93\) −6.25416 10.8325i −0.648527 1.12328i
\(94\) 0 0
\(95\) 2.21268 3.83247i 0.227016 0.393204i
\(96\) 0 0
\(97\) 9.38181 0.952578 0.476289 0.879289i \(-0.341982\pi\)
0.476289 + 0.879289i \(0.341982\pi\)
\(98\) 0 0
\(99\) 0.209881 0.363524i 0.0210938 0.0365355i
\(100\) 0 0
\(101\) −1.01126 −0.100624 −0.0503118 0.998734i \(-0.516022\pi\)
−0.0503118 + 0.998734i \(0.516022\pi\)
\(102\) 0 0
\(103\) −0.873194 −0.0860384 −0.0430192 0.999074i \(-0.513698\pi\)
−0.0430192 + 0.999074i \(0.513698\pi\)
\(104\) 0 0
\(105\) −4.09751 −0.399876
\(106\) 0 0
\(107\) −6.67557 11.5624i −0.645352 1.11778i −0.984220 0.176949i \(-0.943377\pi\)
0.338868 0.940834i \(-0.389956\pi\)
\(108\) 0 0
\(109\) 5.75416 9.96649i 0.551148 0.954617i −0.447044 0.894512i \(-0.647523\pi\)
0.998192 0.0601047i \(-0.0191435\pi\)
\(110\) 0 0
\(111\) −8.74492 + 2.31573i −0.830031 + 0.219799i
\(112\) 0 0
\(113\) 3.06426 5.30746i 0.288262 0.499284i −0.685133 0.728418i \(-0.740256\pi\)
0.973395 + 0.229134i \(0.0735894\pi\)
\(114\) 0 0
\(115\) −0.278964 0.483180i −0.0260135 0.0450567i
\(116\) 0 0
\(117\) 2.84569 0.263084
\(118\) 0 0
\(119\) −4.28189 −0.392520
\(120\) 0 0
\(121\) −10.7164 −0.974217
\(122\) 0 0
\(123\) −1.90746 + 3.30381i −0.171990 + 0.297895i
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 4.18816 7.25410i 0.371639 0.643697i −0.618179 0.786037i \(-0.712129\pi\)
0.989818 + 0.142340i \(0.0454627\pi\)
\(128\) 0 0
\(129\) −2.85964 4.95304i −0.251777 0.436091i
\(130\) 0 0
\(131\) −9.08367 + 15.7334i −0.793644 + 1.37463i 0.130053 + 0.991507i \(0.458485\pi\)
−0.923697 + 0.383124i \(0.874848\pi\)
\(132\) 0 0
\(133\) 6.09631 10.5591i 0.528617 0.915592i
\(134\) 0 0
\(135\) 2.81693 + 4.87907i 0.242443 + 0.419923i
\(136\) 0 0
\(137\) 9.83174 0.839982 0.419991 0.907528i \(-0.362033\pi\)
0.419991 + 0.907528i \(0.362033\pi\)
\(138\) 0 0
\(139\) 4.19432 7.26477i 0.355757 0.616190i −0.631490 0.775384i \(-0.717556\pi\)
0.987247 + 0.159194i \(0.0508896\pi\)
\(140\) 0 0
\(141\) 0.602306 + 1.04322i 0.0507233 + 0.0878553i
\(142\) 0 0
\(143\) 0.961331 + 1.66507i 0.0803906 + 0.139241i
\(144\) 0 0
\(145\) 3.16453 + 5.48112i 0.262800 + 0.455183i
\(146\) 0 0
\(147\) −0.878893 −0.0724899
\(148\) 0 0
\(149\) 20.5908 1.68686 0.843432 0.537236i \(-0.180532\pi\)
0.843432 + 0.537236i \(0.180532\pi\)
\(150\) 0 0
\(151\) −4.20755 7.28770i −0.342406 0.593065i 0.642473 0.766308i \(-0.277908\pi\)
−0.984879 + 0.173244i \(0.944575\pi\)
\(152\) 0 0
\(153\) 0.612492 + 1.06087i 0.0495170 + 0.0857660i
\(154\) 0 0
\(155\) −4.20531 7.28380i −0.337778 0.585049i
\(156\) 0 0
\(157\) 5.44075 9.42365i 0.434219 0.752089i −0.563013 0.826448i \(-0.690358\pi\)
0.997232 + 0.0743593i \(0.0236912\pi\)
\(158\) 0 0
\(159\) 0.827881 0.0656552
\(160\) 0 0
\(161\) −0.768593 1.33124i −0.0605736 0.104917i
\(162\) 0 0
\(163\) 10.6839 18.5051i 0.836831 1.44943i −0.0556992 0.998448i \(-0.517739\pi\)
0.892531 0.450987i \(-0.148928\pi\)
\(164\) 0 0
\(165\) −0.396005 + 0.685901i −0.0308290 + 0.0533973i
\(166\) 0 0
\(167\) 4.33649 + 7.51102i 0.335568 + 0.581220i 0.983594 0.180398i \(-0.0577386\pi\)
−0.648026 + 0.761618i \(0.724405\pi\)
\(168\) 0 0
\(169\) −0.0171504 + 0.0297053i −0.00131926 + 0.00228503i
\(170\) 0 0
\(171\) −3.48812 −0.266743
\(172\) 0 0
\(173\) 0.974870 1.68853i 0.0741180 0.128376i −0.826584 0.562813i \(-0.809719\pi\)
0.900702 + 0.434437i \(0.143053\pi\)
\(174\) 0 0
\(175\) −2.75517 −0.208271
\(176\) 0 0
\(177\) 0.363486 0.0273213
\(178\) 0 0
\(179\) −15.4970 −1.15830 −0.579150 0.815221i \(-0.696616\pi\)
−0.579150 + 0.815221i \(0.696616\pi\)
\(180\) 0 0
\(181\) −6.49867 11.2560i −0.483043 0.836654i 0.516768 0.856126i \(-0.327135\pi\)
−0.999810 + 0.0194713i \(0.993802\pi\)
\(182\) 0 0
\(183\) 4.24994 7.36111i 0.314165 0.544149i
\(184\) 0 0
\(185\) −5.88009 + 1.55710i −0.432313 + 0.114480i
\(186\) 0 0
\(187\) −0.413825 + 0.716765i −0.0302619 + 0.0524151i
\(188\) 0 0
\(189\) 7.76112 + 13.4427i 0.564539 + 0.977810i
\(190\) 0 0
\(191\) 18.6562 1.34992 0.674959 0.737855i \(-0.264161\pi\)
0.674959 + 0.737855i \(0.264161\pi\)
\(192\) 0 0
\(193\) −23.7136 −1.70694 −0.853472 0.521139i \(-0.825507\pi\)
−0.853472 + 0.521139i \(0.825507\pi\)
\(194\) 0 0
\(195\) −5.36927 −0.384502
\(196\) 0 0
\(197\) 12.5686 21.7695i 0.895476 1.55101i 0.0622610 0.998060i \(-0.480169\pi\)
0.833215 0.552950i \(-0.186498\pi\)
\(198\) 0 0
\(199\) −11.3006 −0.801077 −0.400539 0.916280i \(-0.631177\pi\)
−0.400539 + 0.916280i \(0.631177\pi\)
\(200\) 0 0
\(201\) 1.91269 3.31288i 0.134911 0.233672i
\(202\) 0 0
\(203\) 8.71882 + 15.1014i 0.611941 + 1.05991i
\(204\) 0 0
\(205\) −1.28258 + 2.22149i −0.0895790 + 0.155155i
\(206\) 0 0
\(207\) −0.219883 + 0.380848i −0.0152829 + 0.0264708i
\(208\) 0 0
\(209\) −1.17836 2.04098i −0.0815089 0.141177i
\(210\) 0 0
\(211\) −14.1121 −0.971517 −0.485758 0.874093i \(-0.661457\pi\)
−0.485758 + 0.874093i \(0.661457\pi\)
\(212\) 0 0
\(213\) −5.76988 + 9.99372i −0.395345 + 0.684758i
\(214\) 0 0
\(215\) −1.92282 3.33043i −0.131135 0.227133i
\(216\) 0 0
\(217\) −11.5863 20.0681i −0.786532 1.36231i
\(218\) 0 0
\(219\) 1.10683 + 1.91709i 0.0747927 + 0.129545i
\(220\) 0 0
\(221\) −5.61088 −0.377429
\(222\) 0 0
\(223\) −1.70027 −0.113859 −0.0569293 0.998378i \(-0.518131\pi\)
−0.0569293 + 0.998378i \(0.518131\pi\)
\(224\) 0 0
\(225\) 0.394106 + 0.682612i 0.0262737 + 0.0455075i
\(226\) 0 0
\(227\) −7.67530 13.2940i −0.509428 0.882354i −0.999940 0.0109204i \(-0.996524\pi\)
0.490513 0.871434i \(-0.336809\pi\)
\(228\) 0 0
\(229\) −2.33166 4.03855i −0.154080 0.266875i 0.778643 0.627467i \(-0.215908\pi\)
−0.932724 + 0.360592i \(0.882575\pi\)
\(230\) 0 0
\(231\) −1.09106 + 1.88978i −0.0717866 + 0.124338i
\(232\) 0 0
\(233\) −7.58843 −0.497135 −0.248567 0.968615i \(-0.579960\pi\)
−0.248567 + 0.968615i \(0.579960\pi\)
\(234\) 0 0
\(235\) 0.404991 + 0.701465i 0.0264187 + 0.0457585i
\(236\) 0 0
\(237\) 0.654893 1.13431i 0.0425399 0.0736812i
\(238\) 0 0
\(239\) 2.29314 3.97183i 0.148331 0.256916i −0.782280 0.622927i \(-0.785943\pi\)
0.930611 + 0.366011i \(0.119277\pi\)
\(240\) 0 0
\(241\) 6.46329 + 11.1948i 0.416337 + 0.721117i 0.995568 0.0940464i \(-0.0299802\pi\)
−0.579230 + 0.815164i \(0.696647\pi\)
\(242\) 0 0
\(243\) 3.97869 6.89130i 0.255233 0.442077i
\(244\) 0 0
\(245\) −0.590969 −0.0377556
\(246\) 0 0
\(247\) 7.98845 13.8364i 0.508293 0.880389i
\(248\) 0 0
\(249\) 1.99852 0.126651
\(250\) 0 0
\(251\) −26.0756 −1.64588 −0.822939 0.568129i \(-0.807667\pi\)
−0.822939 + 0.568129i \(0.807667\pi\)
\(252\) 0 0
\(253\) −0.297124 −0.0186800
\(254\) 0 0
\(255\) −1.15566 2.00166i −0.0723700 0.125349i
\(256\) 0 0
\(257\) 4.54317 7.86901i 0.283395 0.490855i −0.688823 0.724929i \(-0.741872\pi\)
0.972219 + 0.234074i \(0.0752058\pi\)
\(258\) 0 0
\(259\) −16.2007 + 4.29007i −1.00666 + 0.266572i
\(260\) 0 0
\(261\) 2.49432 4.32029i 0.154395 0.267419i
\(262\) 0 0
\(263\) 11.7821 + 20.4071i 0.726513 + 1.25836i 0.958348 + 0.285603i \(0.0921938\pi\)
−0.231835 + 0.972755i \(0.574473\pi\)
\(264\) 0 0
\(265\) 0.556668 0.0341958
\(266\) 0 0
\(267\) 15.9229 0.974463
\(268\) 0 0
\(269\) 29.3900 1.79194 0.895971 0.444112i \(-0.146481\pi\)
0.895971 + 0.444112i \(0.146481\pi\)
\(270\) 0 0
\(271\) −9.48625 + 16.4307i −0.576248 + 0.998092i 0.419656 + 0.907683i \(0.362151\pi\)
−0.995905 + 0.0904085i \(0.971183\pi\)
\(272\) 0 0
\(273\) −14.7933 −0.895329
\(274\) 0 0
\(275\) −0.266274 + 0.461201i −0.0160569 + 0.0278114i
\(276\) 0 0
\(277\) −13.5048 23.3910i −0.811423 1.40543i −0.911868 0.410483i \(-0.865360\pi\)
0.100445 0.994943i \(-0.467973\pi\)
\(278\) 0 0
\(279\) −3.31467 + 5.74118i −0.198444 + 0.343716i
\(280\) 0 0
\(281\) −5.11518 + 8.85975i −0.305146 + 0.528528i −0.977294 0.211889i \(-0.932039\pi\)
0.672148 + 0.740417i \(0.265372\pi\)
\(282\) 0 0
\(283\) 10.8775 + 18.8404i 0.646601 + 1.11995i 0.983929 + 0.178559i \(0.0571435\pi\)
−0.337328 + 0.941387i \(0.609523\pi\)
\(284\) 0 0
\(285\) 6.58143 0.389850
\(286\) 0 0
\(287\) −3.53372 + 6.12058i −0.208589 + 0.361286i
\(288\) 0 0
\(289\) 7.29234 + 12.6307i 0.428961 + 0.742983i
\(290\) 0 0
\(291\) 6.97635 + 12.0834i 0.408961 + 0.708341i
\(292\) 0 0
\(293\) 11.7512 + 20.3536i 0.686511 + 1.18907i 0.972959 + 0.230976i \(0.0741919\pi\)
−0.286449 + 0.958096i \(0.592475\pi\)
\(294\) 0 0
\(295\) 0.244408 0.0142300
\(296\) 0 0
\(297\) 3.00030 0.174095
\(298\) 0 0
\(299\) −1.00714 1.74443i −0.0582447 0.100883i
\(300\) 0 0
\(301\) −5.29771 9.17590i −0.305355 0.528890i
\(302\) 0 0
\(303\) −0.751974 1.30246i −0.0431998 0.0748242i
\(304\) 0 0
\(305\) 2.85766 4.94962i 0.163629 0.283414i
\(306\) 0 0
\(307\) −21.3250 −1.21708 −0.608541 0.793522i \(-0.708245\pi\)
−0.608541 + 0.793522i \(0.708245\pi\)
\(308\) 0 0
\(309\) −0.649311 1.12464i −0.0369380 0.0639785i
\(310\) 0 0
\(311\) 2.85790 4.95002i 0.162057 0.280690i −0.773550 0.633736i \(-0.781521\pi\)
0.935606 + 0.353046i \(0.114854\pi\)
\(312\) 0 0
\(313\) −6.99192 + 12.1104i −0.395207 + 0.684518i −0.993128 0.117037i \(-0.962660\pi\)
0.597921 + 0.801555i \(0.295994\pi\)
\(314\) 0 0
\(315\) 1.08583 + 1.88071i 0.0611796 + 0.105966i
\(316\) 0 0
\(317\) −2.32903 + 4.03400i −0.130811 + 0.226572i −0.923990 0.382418i \(-0.875092\pi\)
0.793178 + 0.608990i \(0.208425\pi\)
\(318\) 0 0
\(319\) 3.37053 0.188713
\(320\) 0 0
\(321\) 9.92797 17.1957i 0.554125 0.959773i
\(322\) 0 0
\(323\) 6.87758 0.382679
\(324\) 0 0
\(325\) −3.61030 −0.200264
\(326\) 0 0
\(327\) 17.1153 0.946476
\(328\) 0 0
\(329\) 1.11582 + 1.93266i 0.0615171 + 0.106551i
\(330\) 0 0
\(331\) −0.944646 + 1.63617i −0.0519224 + 0.0899323i −0.890818 0.454359i \(-0.849868\pi\)
0.838896 + 0.544292i \(0.183202\pi\)
\(332\) 0 0
\(333\) 3.38027 + 3.40016i 0.185238 + 0.186327i
\(334\) 0 0
\(335\) 1.28609 2.22758i 0.0702669 0.121706i
\(336\) 0 0
\(337\) 12.6922 + 21.9835i 0.691386 + 1.19752i 0.971384 + 0.237515i \(0.0763330\pi\)
−0.279998 + 0.960001i \(0.590334\pi\)
\(338\) 0 0
\(339\) 9.11439 0.495026
\(340\) 0 0
\(341\) −4.47906 −0.242555
\(342\) 0 0
\(343\) 17.6580 0.953441
\(344\) 0 0
\(345\) 0.414877 0.718588i 0.0223362 0.0386875i
\(346\) 0 0
\(347\) −8.96851 −0.481455 −0.240727 0.970593i \(-0.577386\pi\)
−0.240727 + 0.970593i \(0.577386\pi\)
\(348\) 0 0
\(349\) −15.8757 + 27.4974i −0.849805 + 1.47190i 0.0315779 + 0.999501i \(0.489947\pi\)
−0.881382 + 0.472403i \(0.843387\pi\)
\(350\) 0 0
\(351\) 10.1700 + 17.6149i 0.542833 + 0.940215i
\(352\) 0 0
\(353\) 3.53206 6.11771i 0.187993 0.325613i −0.756588 0.653892i \(-0.773135\pi\)
0.944581 + 0.328279i \(0.106469\pi\)
\(354\) 0 0
\(355\) −3.87967 + 6.71979i −0.205911 + 0.356649i
\(356\) 0 0
\(357\) −3.18403 5.51491i −0.168517 0.291880i
\(358\) 0 0
\(359\) 6.16400 0.325323 0.162662 0.986682i \(-0.447992\pi\)
0.162662 + 0.986682i \(0.447992\pi\)
\(360\) 0 0
\(361\) −0.291909 + 0.505601i −0.0153636 + 0.0266106i
\(362\) 0 0
\(363\) −7.96875 13.8023i −0.418251 0.724432i
\(364\) 0 0
\(365\) 0.744234 + 1.28905i 0.0389550 + 0.0674720i
\(366\) 0 0
\(367\) 7.49348 + 12.9791i 0.391157 + 0.677503i 0.992602 0.121410i \(-0.0387417\pi\)
−0.601446 + 0.798914i \(0.705408\pi\)
\(368\) 0 0
\(369\) 2.02189 0.105255
\(370\) 0 0
\(371\) 1.53372 0.0796265
\(372\) 0 0
\(373\) 1.12859 + 1.95477i 0.0584361 + 0.101214i 0.893764 0.448538i \(-0.148055\pi\)
−0.835327 + 0.549753i \(0.814722\pi\)
\(374\) 0 0
\(375\) −0.743604 1.28796i −0.0383995 0.0665100i
\(376\) 0 0
\(377\) 11.4249 + 19.7885i 0.588413 + 1.01916i
\(378\) 0 0
\(379\) −7.10203 + 12.3011i −0.364807 + 0.631864i −0.988745 0.149610i \(-0.952198\pi\)
0.623939 + 0.781473i \(0.285532\pi\)
\(380\) 0 0
\(381\) 12.4573 0.638208
\(382\) 0 0
\(383\) 16.3185 + 28.2644i 0.833834 + 1.44424i 0.894976 + 0.446114i \(0.147192\pi\)
−0.0611419 + 0.998129i \(0.519474\pi\)
\(384\) 0 0
\(385\) −0.733631 + 1.27069i −0.0373893 + 0.0647602i
\(386\) 0 0
\(387\) −1.51559 + 2.62508i −0.0770419 + 0.133441i
\(388\) 0 0
\(389\) −4.19304 7.26255i −0.212595 0.368226i 0.739931 0.672683i \(-0.234858\pi\)
−0.952526 + 0.304457i \(0.901525\pi\)
\(390\) 0 0
\(391\) 0.433546 0.750923i 0.0219254 0.0379758i
\(392\) 0 0
\(393\) −27.0186 −1.36291
\(394\) 0 0
\(395\) 0.440351 0.762710i 0.0221565 0.0383761i
\(396\) 0 0
\(397\) −18.7023 −0.938642 −0.469321 0.883028i \(-0.655501\pi\)
−0.469321 + 0.883028i \(0.655501\pi\)
\(398\) 0 0
\(399\) 18.1330 0.907784
\(400\) 0 0
\(401\) 2.24569 0.112144 0.0560721 0.998427i \(-0.482142\pi\)
0.0560721 + 0.998427i \(0.482142\pi\)
\(402\) 0 0
\(403\) −15.1824 26.2968i −0.756291 1.30993i
\(404\) 0 0
\(405\) −3.00704 + 5.20835i −0.149421 + 0.258805i
\(406\) 0 0
\(407\) −0.847583 + 3.12652i −0.0420131 + 0.154976i
\(408\) 0 0
\(409\) −7.92186 + 13.7211i −0.391711 + 0.678463i −0.992675 0.120813i \(-0.961450\pi\)
0.600965 + 0.799276i \(0.294783\pi\)
\(410\) 0 0
\(411\) 7.31092 + 12.6629i 0.360621 + 0.624614i
\(412\) 0 0
\(413\) 0.673387 0.0331352
\(414\) 0 0
\(415\) 1.34381 0.0659649
\(416\) 0 0
\(417\) 12.4756 0.610935
\(418\) 0 0
\(419\) −1.93603 + 3.35330i −0.0945813 + 0.163820i −0.909434 0.415849i \(-0.863485\pi\)
0.814852 + 0.579668i \(0.196818\pi\)
\(420\) 0 0
\(421\) −3.37150 −0.164317 −0.0821583 0.996619i \(-0.526181\pi\)
−0.0821583 + 0.996619i \(0.526181\pi\)
\(422\) 0 0
\(423\) 0.319219 0.552903i 0.0155210 0.0268831i
\(424\) 0 0
\(425\) −0.777065 1.34592i −0.0376932 0.0652865i
\(426\) 0 0
\(427\) 7.87335 13.6370i 0.381018 0.659943i
\(428\) 0 0
\(429\) −1.42970 + 2.47631i −0.0690266 + 0.119557i
\(430\) 0 0
\(431\) −6.46990 11.2062i −0.311644 0.539783i 0.667074 0.744991i \(-0.267546\pi\)
−0.978718 + 0.205208i \(0.934213\pi\)
\(432\) 0 0
\(433\) −19.0716 −0.916525 −0.458262 0.888817i \(-0.651528\pi\)
−0.458262 + 0.888817i \(0.651528\pi\)
\(434\) 0 0
\(435\) −4.70631 + 8.15157i −0.225650 + 0.390838i
\(436\) 0 0
\(437\) 1.23452 + 2.13824i 0.0590549 + 0.102286i
\(438\) 0 0
\(439\) −3.18406 5.51495i −0.151967 0.263214i 0.779984 0.625800i \(-0.215227\pi\)
−0.931950 + 0.362586i \(0.881894\pi\)
\(440\) 0 0
\(441\) 0.232904 + 0.403402i 0.0110907 + 0.0192096i
\(442\) 0 0
\(443\) 22.2323 1.05629 0.528144 0.849155i \(-0.322888\pi\)
0.528144 + 0.849155i \(0.322888\pi\)
\(444\) 0 0
\(445\) 10.7065 0.507539
\(446\) 0 0
\(447\) 15.3114 + 26.5201i 0.724204 + 1.25436i
\(448\) 0 0
\(449\) 4.93804 + 8.55294i 0.233041 + 0.403638i 0.958701 0.284414i \(-0.0917992\pi\)
−0.725661 + 0.688053i \(0.758466\pi\)
\(450\) 0 0
\(451\) 0.683034 + 1.18305i 0.0321628 + 0.0557077i
\(452\) 0 0
\(453\) 6.25751 10.8383i 0.294003 0.509229i
\(454\) 0 0
\(455\) −9.94701 −0.466323
\(456\) 0 0
\(457\) 14.4178 + 24.9723i 0.674435 + 1.16816i 0.976634 + 0.214911i \(0.0689462\pi\)
−0.302198 + 0.953245i \(0.597720\pi\)
\(458\) 0 0
\(459\) −4.37787 + 7.58270i −0.204342 + 0.353930i
\(460\) 0 0
\(461\) −10.2900 + 17.8229i −0.479255 + 0.830094i −0.999717 0.0237906i \(-0.992427\pi\)
0.520462 + 0.853885i \(0.325760\pi\)
\(462\) 0 0
\(463\) −6.74227 11.6780i −0.313340 0.542721i 0.665743 0.746181i \(-0.268115\pi\)
−0.979083 + 0.203460i \(0.934781\pi\)
\(464\) 0 0
\(465\) 6.25416 10.8325i 0.290030 0.502347i
\(466\) 0 0
\(467\) −26.2189 −1.21326 −0.606632 0.794983i \(-0.707480\pi\)
−0.606632 + 0.794983i \(0.707480\pi\)
\(468\) 0 0
\(469\) 3.54341 6.13737i 0.163620 0.283397i
\(470\) 0 0
\(471\) 16.1830 0.745675
\(472\) 0 0
\(473\) −2.04799 −0.0941669
\(474\) 0 0
\(475\) 4.42536 0.203049
\(476\) 0 0
\(477\) −0.219386 0.379988i −0.0100450 0.0173985i
\(478\) 0 0
\(479\) 6.78843 11.7579i 0.310171 0.537233i −0.668228 0.743957i \(-0.732947\pi\)
0.978399 + 0.206724i \(0.0662802\pi\)
\(480\) 0 0
\(481\) −21.2289 + 5.62159i −0.967955 + 0.256323i
\(482\) 0 0
\(483\) 1.14306 1.97983i 0.0520109 0.0900856i
\(484\) 0 0
\(485\) 4.69090 + 8.12488i 0.213003 + 0.368932i
\(486\) 0 0
\(487\) −12.7123 −0.576050 −0.288025 0.957623i \(-0.592999\pi\)
−0.288025 + 0.957623i \(0.592999\pi\)
\(488\) 0 0
\(489\) 31.7785 1.43707
\(490\) 0 0
\(491\) 28.2438 1.27463 0.637313 0.770605i \(-0.280046\pi\)
0.637313 + 0.770605i \(0.280046\pi\)
\(492\) 0 0
\(493\) −4.91809 + 8.51838i −0.221499 + 0.383648i
\(494\) 0 0
\(495\) 0.419761 0.0188669
\(496\) 0 0
\(497\) −10.6892 + 18.5142i −0.479474 + 0.830474i
\(498\) 0 0
\(499\) −19.1879 33.2345i −0.858970 1.48778i −0.872913 0.487877i \(-0.837772\pi\)
0.0139426 0.999903i \(-0.495562\pi\)
\(500\) 0 0
\(501\) −6.44926 + 11.1704i −0.288132 + 0.499059i
\(502\) 0 0
\(503\) −0.925795 + 1.60352i −0.0412792 + 0.0714976i −0.885927 0.463825i \(-0.846477\pi\)
0.844648 + 0.535323i \(0.179810\pi\)
\(504\) 0 0
\(505\) −0.505628 0.875773i −0.0225001 0.0389714i
\(506\) 0 0
\(507\) −0.0510124 −0.00226554
\(508\) 0 0
\(509\) −1.04809 + 1.81534i −0.0464557 + 0.0804636i −0.888318 0.459228i \(-0.848126\pi\)
0.841863 + 0.539692i \(0.181459\pi\)
\(510\) 0 0
\(511\) 2.05049 + 3.55156i 0.0907084 + 0.157112i
\(512\) 0 0
\(513\) −12.4659 21.5916i −0.550384 0.953294i
\(514\) 0 0
\(515\) −0.436597 0.756208i −0.0192388 0.0333225i
\(516\) 0 0
\(517\) 0.431355 0.0189710
\(518\) 0 0
\(519\) 2.89967 0.127281
\(520\) 0 0
\(521\) −0.0876407 0.151798i −0.00383961 0.00665039i 0.864099 0.503322i \(-0.167889\pi\)
−0.867939 + 0.496671i \(0.834556\pi\)
\(522\) 0 0
\(523\) −10.6646 18.4716i −0.466329 0.807705i 0.532932 0.846158i \(-0.321090\pi\)
−0.999260 + 0.0384533i \(0.987757\pi\)
\(524\) 0 0
\(525\) −2.04876 3.54855i −0.0894151 0.154871i
\(526\) 0 0
\(527\) 6.53559 11.3200i 0.284695 0.493106i
\(528\) 0 0
\(529\) −22.6887 −0.986466
\(530\) 0 0
\(531\) −0.0963228 0.166836i −0.00418005 0.00724007i
\(532\) 0 0
\(533\) −4.63049 + 8.02025i −0.200569 + 0.347396i
\(534\) 0 0
\(535\) 6.67557 11.5624i 0.288610 0.499888i
\(536\) 0 0
\(537\) −11.5236 19.9595i −0.497282 0.861317i
\(538\) 0 0
\(539\) −0.157360 + 0.272555i −0.00677796 + 0.0117398i
\(540\) 0 0
\(541\) 19.0690 0.819840 0.409920 0.912122i \(-0.365557\pi\)
0.409920 + 0.912122i \(0.365557\pi\)
\(542\) 0 0
\(543\) 9.66488 16.7401i 0.414760 0.718385i
\(544\) 0 0
\(545\) 11.5083 0.492962
\(546\) 0 0
\(547\) −17.9793 −0.768738 −0.384369 0.923180i \(-0.625581\pi\)
−0.384369 + 0.923180i \(0.625581\pi\)
\(548\) 0 0
\(549\) −4.50489 −0.192264
\(550\) 0 0
\(551\) −14.0042 24.2560i −0.596598 1.03334i
\(552\) 0 0
\(553\) 1.21324 2.10140i 0.0515923 0.0893605i
\(554\) 0 0
\(555\) −6.37794 6.41546i −0.270728 0.272321i
\(556\) 0 0
\(557\) −16.9417 + 29.3439i −0.717843 + 1.24334i 0.244009 + 0.969773i \(0.421537\pi\)
−0.961853 + 0.273568i \(0.911796\pi\)
\(558\) 0 0
\(559\) −6.94198 12.0239i −0.293614 0.508555i
\(560\) 0 0
\(561\) −1.23089 −0.0519681
\(562\) 0 0
\(563\) 8.29519 0.349601 0.174800 0.984604i \(-0.444072\pi\)
0.174800 + 0.984604i \(0.444072\pi\)
\(564\) 0 0
\(565\) 6.12852 0.257829
\(566\) 0 0
\(567\) −8.28492 + 14.3499i −0.347934 + 0.602639i
\(568\) 0 0
\(569\) −29.9439 −1.25531 −0.627657 0.778490i \(-0.715986\pi\)
−0.627657 + 0.778490i \(0.715986\pi\)
\(570\) 0 0
\(571\) 14.2517 24.6846i 0.596413 1.03302i −0.396933 0.917848i \(-0.629925\pi\)
0.993346 0.115170i \(-0.0367414\pi\)
\(572\) 0 0
\(573\) 13.8729 + 24.0285i 0.579547 + 1.00380i
\(574\) 0 0
\(575\) 0.278964 0.483180i 0.0116336 0.0201500i
\(576\) 0 0
\(577\) −15.7109 + 27.2120i −0.654052 + 1.13285i 0.328079 + 0.944650i \(0.393599\pi\)
−0.982131 + 0.188200i \(0.939735\pi\)
\(578\) 0 0
\(579\) −17.6335 30.5422i −0.732825 1.26929i
\(580\) 0 0
\(581\) 3.70242 0.153602
\(582\) 0 0
\(583\) 0.148226 0.256736i 0.00613891 0.0106329i
\(584\) 0 0
\(585\) 1.42284 + 2.46444i 0.0588273 + 0.101892i
\(586\) 0 0
\(587\) −0.353254 0.611854i −0.0145803 0.0252539i 0.858643 0.512574i \(-0.171308\pi\)
−0.873224 + 0.487320i \(0.837975\pi\)
\(588\) 0 0
\(589\) 18.6100 + 32.2335i 0.766812 + 1.32816i
\(590\) 0 0
\(591\) 37.3842 1.53778
\(592\) 0 0
\(593\) −1.81282 −0.0744437 −0.0372219 0.999307i \(-0.511851\pi\)
−0.0372219 + 0.999307i \(0.511851\pi\)
\(594\) 0 0
\(595\) −2.14095 3.70823i −0.0877702 0.152023i
\(596\) 0 0
\(597\) −8.40316 14.5547i −0.343918 0.595684i
\(598\) 0 0
\(599\) −20.1816 34.9556i −0.824599 1.42825i −0.902225 0.431265i \(-0.858067\pi\)
0.0776257 0.996983i \(-0.475266\pi\)
\(600\) 0 0
\(601\) −2.08464 + 3.61071i −0.0850344 + 0.147284i −0.905406 0.424547i \(-0.860433\pi\)
0.820371 + 0.571831i \(0.193767\pi\)
\(602\) 0 0
\(603\) −2.02743 −0.0825634
\(604\) 0 0
\(605\) −5.35820 9.28067i −0.217842 0.377313i
\(606\) 0 0
\(607\) −4.99052 + 8.64384i −0.202559 + 0.350843i −0.949352 0.314214i \(-0.898259\pi\)
0.746793 + 0.665056i \(0.231592\pi\)
\(608\) 0 0
\(609\) −12.9667 + 22.4590i −0.525437 + 0.910084i
\(610\) 0 0
\(611\) 1.46214 + 2.53250i 0.0591519 + 0.102454i
\(612\) 0 0
\(613\) −0.103824 + 0.179829i −0.00419343 + 0.00726323i −0.868115 0.496364i \(-0.834668\pi\)
0.863921 + 0.503627i \(0.168001\pi\)
\(614\) 0 0
\(615\) −3.81492 −0.153832
\(616\) 0 0
\(617\) 10.0538 17.4137i 0.404752 0.701051i −0.589541 0.807739i \(-0.700691\pi\)
0.994293 + 0.106688i \(0.0340246\pi\)
\(618\) 0 0
\(619\) 9.42980 0.379016 0.189508 0.981879i \(-0.439311\pi\)
0.189508 + 0.981879i \(0.439311\pi\)
\(620\) 0 0
\(621\) −3.14329 −0.126136
\(622\) 0 0
\(623\) 29.4984 1.18183
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) 1.75247 3.03536i 0.0699868 0.121221i
\(628\) 0 0
\(629\) −6.66493 6.70414i −0.265748 0.267312i
\(630\) 0 0
\(631\) 22.5649 39.0836i 0.898295 1.55589i 0.0686221 0.997643i \(-0.478140\pi\)
0.829673 0.558250i \(-0.188527\pi\)
\(632\) 0 0
\(633\) −10.4938 18.1758i −0.417092 0.722424i
\(634\) 0 0
\(635\) 8.37631 0.332404
\(636\) 0 0
\(637\) −2.13358 −0.0845354
\(638\) 0 0
\(639\) 6.11601 0.241945
\(640\) 0 0
\(641\) −10.7043 + 18.5404i −0.422794 + 0.732300i −0.996212 0.0869627i \(-0.972284\pi\)
0.573418 + 0.819263i \(0.305617\pi\)
\(642\) 0 0
\(643\) −19.9523 −0.786843 −0.393422 0.919358i \(-0.628709\pi\)
−0.393422 + 0.919358i \(0.628709\pi\)
\(644\) 0 0
\(645\) 2.85964 4.95304i 0.112598 0.195026i
\(646\) 0 0
\(647\) 8.62787 + 14.9439i 0.339197 + 0.587506i 0.984282 0.176605i \(-0.0565115\pi\)
−0.645085 + 0.764111i \(0.723178\pi\)
\(648\) 0 0
\(649\) 0.0650796 0.112721i 0.00255460 0.00442470i
\(650\) 0 0
\(651\) 17.2313 29.8455i 0.675348 1.16974i
\(652\) 0 0
\(653\) −22.5889 39.1251i −0.883972 1.53108i −0.846888 0.531772i \(-0.821526\pi\)
−0.0370839 0.999312i \(-0.511807\pi\)
\(654\) 0 0
\(655\) −18.1673 −0.709857
\(656\) 0 0
\(657\) 0.586614 1.01605i 0.0228860 0.0396397i
\(658\) 0 0
\(659\) −15.1337 26.2123i −0.589524 1.02109i −0.994295 0.106668i \(-0.965982\pi\)
0.404770 0.914418i \(-0.367351\pi\)
\(660\) 0 0
\(661\) −24.0536 41.6620i −0.935575 1.62046i −0.773606 0.633667i \(-0.781549\pi\)
−0.161969 0.986796i \(-0.551784\pi\)
\(662\) 0 0
\(663\) −4.17227 7.22659i −0.162038 0.280657i
\(664\) 0 0
\(665\) 12.1926 0.472810
\(666\) 0 0
\(667\) −3.53116 −0.136727
\(668\) 0 0
\(669\) −1.26433 2.18988i −0.0488818 0.0846657i
\(670\) 0 0
\(671\) −1.52184 2.63591i −0.0587501 0.101758i
\(672\) 0 0
\(673\) 2.28202 + 3.95257i 0.0879653 + 0.152360i 0.906651 0.421882i \(-0.138630\pi\)
−0.818686 + 0.574242i \(0.805297\pi\)
\(674\) 0 0
\(675\) −2.81693 + 4.87907i −0.108424 + 0.187795i
\(676\) 0 0
\(677\) −7.78474 −0.299192 −0.149596 0.988747i \(-0.547797\pi\)
−0.149596 + 0.988747i \(0.547797\pi\)
\(678\) 0 0
\(679\) 12.9242 + 22.3854i 0.495987 + 0.859074i
\(680\) 0 0
\(681\) 11.4148 19.7710i 0.437415 0.757625i
\(682\) 0 0
\(683\) −22.2606 + 38.5565i −0.851779 + 1.47533i 0.0278216 + 0.999613i \(0.491143\pi\)
−0.879601 + 0.475712i \(0.842190\pi\)
\(684\) 0 0
\(685\) 4.91587 + 8.51453i 0.187826 + 0.325324i
\(686\) 0 0
\(687\) 3.46766 6.00617i 0.132300 0.229150i
\(688\) 0 0
\(689\) 2.00974 0.0765650
\(690\) 0 0
\(691\) 12.9870 22.4941i 0.494049 0.855717i −0.505928 0.862576i \(-0.668850\pi\)
0.999976 + 0.00685862i \(0.00218318\pi\)
\(692\) 0 0
\(693\) 1.15651 0.0439323
\(694\) 0 0
\(695\) 8.38864 0.318199
\(696\) 0 0
\(697\) −3.98658 −0.151002
\(698\) 0 0
\(699\) −5.64279 9.77359i −0.213430 0.369671i
\(700\) 0 0
\(701\) −12.0701 + 20.9060i −0.455881 + 0.789608i −0.998738 0.0502162i \(-0.984009\pi\)
0.542858 + 0.839825i \(0.317342\pi\)
\(702\) 0 0
\(703\) 26.0215 6.89071i 0.981420 0.259888i
\(704\) 0 0
\(705\) −0.602306 + 1.04322i −0.0226841 + 0.0392901i
\(706\) 0 0
\(707\) −1.39309 2.41290i −0.0523926 0.0907466i
\(708\) 0 0
\(709\) −3.16910 −0.119018 −0.0595089 0.998228i \(-0.518953\pi\)
−0.0595089 + 0.998228i \(0.518953\pi\)
\(710\) 0 0
\(711\) −0.694180 −0.0260338
\(712\) 0 0
\(713\) 4.69251 0.175736
\(714\) 0 0
\(715\) −0.961331 + 1.66507i −0.0359518 + 0.0622703i
\(716\) 0 0
\(717\) 6.82074 0.254725
\(718\) 0 0
\(719\) −7.37079 + 12.7666i −0.274884 + 0.476113i −0.970106 0.242682i \(-0.921973\pi\)
0.695222 + 0.718795i \(0.255306\pi\)
\(720\) 0 0
\(721\) −1.20290 2.08348i −0.0447983 0.0775930i
\(722\) 0 0
\(723\) −9.61226 + 16.6489i −0.357484 + 0.619180i
\(724\) 0 0
\(725\) −3.16453 + 5.48112i −0.117528 + 0.203564i
\(726\) 0 0
\(727\) −3.38535 5.86359i −0.125556 0.217469i 0.796394 0.604778i \(-0.206738\pi\)
−0.921950 + 0.387309i \(0.873405\pi\)
\(728\) 0 0
\(729\) 29.8765 1.10654
\(730\) 0 0
\(731\) 2.98832 5.17592i 0.110527 0.191438i
\(732\) 0 0
\(733\) 9.04625 + 15.6686i 0.334131 + 0.578732i 0.983317 0.181897i \(-0.0582239\pi\)
−0.649187 + 0.760629i \(0.724891\pi\)
\(734\) 0 0
\(735\) −0.439447 0.761144i −0.0162092 0.0280752i
\(736\) 0 0
\(737\) −0.684908 1.18630i −0.0252289 0.0436978i
\(738\) 0 0
\(739\) −12.1902 −0.448424 −0.224212 0.974540i \(-0.571981\pi\)
−0.224212 + 0.974540i \(0.571981\pi\)
\(740\) 0 0
\(741\) 23.7610 0.872881
\(742\) 0 0
\(743\) 12.8437 + 22.2459i 0.471189 + 0.816124i 0.999457 0.0329541i \(-0.0104915\pi\)
−0.528268 + 0.849078i \(0.677158\pi\)
\(744\) 0 0
\(745\) 10.2954 + 17.8322i 0.377194 + 0.653320i
\(746\) 0 0
\(747\) −0.529602 0.917298i −0.0193771 0.0335622i
\(748\) 0 0
\(749\) 18.3923 31.8565i 0.672042 1.16401i
\(750\) 0 0
\(751\) −11.1484 −0.406811 −0.203406 0.979095i \(-0.565201\pi\)
−0.203406 + 0.979095i \(0.565201\pi\)
\(752\) 0 0
\(753\) −19.3899 33.5844i −0.706609 1.22388i
\(754\) 0 0
\(755\) 4.20755 7.28770i 0.153129 0.265227i
\(756\) 0 0
\(757\) −10.6550 + 18.4550i −0.387262 + 0.670758i −0.992080 0.125606i \(-0.959913\pi\)
0.604818 + 0.796364i \(0.293246\pi\)
\(758\) 0 0
\(759\) −0.220942 0.382683i −0.00801970 0.0138905i
\(760\) 0 0
\(761\) 26.4013 45.7284i 0.957047 1.65765i 0.227435 0.973793i \(-0.426966\pi\)
0.729612 0.683861i \(-0.239700\pi\)
\(762\) 0 0
\(763\) 31.7074 1.14788
\(764\) 0 0
\(765\) −0.612492 + 1.06087i −0.0221447 + 0.0383557i
\(766\) 0 0
\(767\) 0.882388 0.0318612
\(768\) 0 0
\(769\) 36.8968 1.33053 0.665266 0.746606i \(-0.268318\pi\)
0.665266 + 0.746606i \(0.268318\pi\)
\(770\) 0 0
\(771\) 13.5133 0.486669
\(772\) 0 0
\(773\) −3.41338 5.91215i −0.122771 0.212645i 0.798089 0.602540i \(-0.205845\pi\)
−0.920859 + 0.389895i \(0.872511\pi\)
\(774\) 0 0
\(775\) 4.20531 7.28380i 0.151059 0.261642i
\(776\) 0 0
\(777\) −17.5723 17.6757i −0.630403 0.634112i
\(778\) 0 0
\(779\) 5.67586 9.83088i 0.203359 0.352228i
\(780\) 0 0
\(781\) 2.06611 + 3.57861i 0.0739313 + 0.128053i
\(782\) 0 0
\(783\) 35.6570 1.27428
\(784\) 0 0
\(785\) 10.8815 0.388377
\(786\) 0 0
\(787\) 23.6229 0.842066 0.421033 0.907045i \(-0.361668\pi\)
0.421033 + 0.907045i \(0.361668\pi\)
\(788\) 0 0
\(789\) −17.5224 + 30.3497i −0.623813 + 1.08048i
\(790\) 0 0
\(791\) 16.8851 0.600366
\(792\) 0 0
\(793\) 10.3170 17.8696i 0.366369 0.634569i
\(794\) 0 0
\(795\) 0.413940 + 0.716966i 0.0146810 + 0.0254282i
\(796\) 0 0
\(797\) −23.0434 + 39.9124i −0.816240 + 1.41377i 0.0921936 + 0.995741i \(0.470612\pi\)
−0.908434 + 0.418029i \(0.862721\pi\)
\(798\) 0 0
\(799\) −0.629408 + 1.09017i −0.0222669 + 0.0385673i
\(800\) 0 0
\(801\) −4.21951 7.30841i −0.149089 0.258230i
\(802\) 0 0
\(803\) 0.792681 0.0279731
\(804\) 0 0
\(805\) 0.768593 1.33124i 0.0270893 0.0469201i
\(806\) 0 0
\(807\) 21.8545 + 37.8532i 0.769317 + 1.33250i
\(808\) 0 0
\(809\) −19.9827 34.6111i −0.702555 1.21686i −0.967567 0.252616i \(-0.918709\pi\)
0.265012 0.964245i \(-0.414624\pi\)
\(810\) 0 0
\(811\) 9.47937 + 16.4187i 0.332866 + 0.576540i 0.983072 0.183217i \(-0.0586511\pi\)
−0.650207 + 0.759757i \(0.725318\pi\)
\(812\) 0 0
\(813\) −28.2160 −0.989580
\(814\) 0 0
\(815\) 21.3679 0.748485
\(816\) 0 0
\(817\) 8.50919 + 14.7383i 0.297699 + 0.515629i
\(818\) 0 0
\(819\) 3.92018 + 6.78995i 0.136982 + 0.237260i
\(820\) 0 0
\(821\) −22.9765 39.7964i −0.801885 1.38890i −0.918374 0.395713i \(-0.870498\pi\)
0.116490 0.993192i \(-0.462836\pi\)
\(822\) 0 0
\(823\) −3.31567 + 5.74290i −0.115577 + 0.200185i −0.918010 0.396557i \(-0.870205\pi\)
0.802433 + 0.596742i \(0.203538\pi\)
\(824\) 0 0
\(825\) −0.792011 −0.0275743
\(826\) 0 0
\(827\) 9.02881 + 15.6384i 0.313963 + 0.543799i 0.979216 0.202818i \(-0.0650100\pi\)
−0.665254 + 0.746617i \(0.731677\pi\)
\(828\) 0 0
\(829\) 6.16996 10.6867i 0.214292 0.371164i −0.738762 0.673967i \(-0.764589\pi\)
0.953053 + 0.302803i \(0.0979224\pi\)
\(830\) 0 0
\(831\) 20.0844 34.7872i 0.696720 1.20676i
\(832\) 0 0
\(833\) −0.459221 0.795394i −0.0159111 0.0275588i
\(834\) 0 0
\(835\) −4.33649 + 7.51102i −0.150070 + 0.259930i
\(836\) 0 0
\(837\) −47.3842 −1.63784
\(838\) 0 0
\(839\) 8.63379 14.9542i 0.298072 0.516275i −0.677623 0.735409i \(-0.736990\pi\)
0.975695 + 0.219134i \(0.0703232\pi\)
\(840\) 0 0
\(841\) 11.0570 0.381275
\(842\) 0 0
\(843\) −15.2147 −0.524021
\(844\) 0 0
\(845\) −0.0343008 −0.00117998
\(846\) 0 0
\(847\) −14.7627 25.5698i −0.507254 0.878590i
\(848\) 0 0
\(849\) −16.1771 + 28.0196i −0.555198 + 0.961630i
\(850\) 0 0
\(851\) 0.887975 3.27551i 0.0304394 0.112283i
\(852\) 0 0
\(853\) −9.46567 + 16.3950i −0.324098 + 0.561355i −0.981329 0.192334i \(-0.938394\pi\)
0.657231 + 0.753689i \(0.271728\pi\)
\(854\) 0 0
\(855\) −1.74406 3.02080i −0.0596457 0.103309i
\(856\) 0 0
\(857\) 27.3289 0.933538 0.466769 0.884379i \(-0.345418\pi\)
0.466769 + 0.884379i \(0.345418\pi\)
\(858\) 0 0
\(859\) −28.4402 −0.970366 −0.485183 0.874413i \(-0.661247\pi\)
−0.485183 + 0.874413i \(0.661247\pi\)
\(860\) 0 0
\(861\) −10.5107 −0.358205
\(862\) 0 0
\(863\) −25.5767 + 44.3001i −0.870640 + 1.50799i −0.00930361 + 0.999957i \(0.502961\pi\)
−0.861336 + 0.508036i \(0.830372\pi\)
\(864\) 0 0
\(865\) 1.94974 0.0662932
\(866\) 0 0
\(867\) −10.8452 + 18.7845i −0.368323 + 0.637955i
\(868\) 0 0
\(869\) −0.234508 0.406180i −0.00795514 0.0137787i
\(870\) 0 0
\(871\) 4.64319 8.04225i 0.157329 0.272501i
\(872\) 0 0
\(873\) 3.69743 6.40413i 0.125139 0.216747i
\(874\) 0 0
\(875\) −1.37759 2.38605i −0.0465709 0.0806632i
\(876\) 0 0
\(877\) −38.5983 −1.30337 −0.651687 0.758488i \(-0.725938\pi\)
−0.651687 + 0.758488i \(0.725938\pi\)
\(878\) 0 0
\(879\) −17.4764 + 30.2701i −0.589466 + 1.02098i
\(880\) 0 0
\(881\) 18.7027 + 32.3940i 0.630109 + 1.09138i 0.987529 + 0.157437i \(0.0503230\pi\)
−0.357420 + 0.933944i \(0.616344\pi\)
\(882\) 0 0
\(883\) −24.7260 42.8268i −0.832098 1.44124i −0.896372 0.443303i \(-0.853807\pi\)
0.0642743 0.997932i \(-0.479527\pi\)
\(884\) 0 0
\(885\) 0.181743 + 0.314788i 0.00610922 + 0.0105815i
\(886\) 0 0
\(887\) −13.4328 −0.451029 −0.225515 0.974240i \(-0.572406\pi\)
−0.225515 + 0.974240i \(0.572406\pi\)
\(888\) 0 0
\(889\) 23.0782 0.774017
\(890\) 0 0
\(891\) 1.60140 + 2.77370i 0.0536488 + 0.0929224i
\(892\) 0 0
\(893\) −1.79223 3.10424i −0.0599747 0.103879i
\(894\) 0 0
\(895\) −7.74850 13.4208i −0.259004 0.448608i
\(896\) 0 0
\(897\) 1.49783 2.59432i 0.0500112 0.0866219i
\(898\) 0 0
\(899\) −53.2312 −1.77536
\(900\) 0 0
\(901\) 0.432567 + 0.749228i 0.0144109 + 0.0249604i
\(902\) 0 0
\(903\) 7.87879 13.6465i 0.262190 0.454126i
\(904\) 0 0
\(905\) 6.49867 11.2560i 0.216023 0.374163i
\(906\) 0 0
\(907\) −21.6660 37.5266i −0.719408 1.24605i −0.961235 0.275731i \(-0.911080\pi\)
0.241827 0.970319i \(-0.422253\pi\)
\(908\) 0 0
\(909\) −0.398542 + 0.690295i −0.0132188 + 0.0228956i
\(910\) 0 0
\(911\) 54.7024 1.81237 0.906186 0.422879i \(-0.138981\pi\)
0.906186 + 0.422879i \(0.138981\pi\)
\(912\) 0 0
\(913\) 0.357821 0.619764i 0.0118421 0.0205112i
\(914\) 0 0
\(915\) 8.49988 0.280997
\(916\) 0 0
\(917\) −50.0541 −1.65293
\(918\) 0 0
\(919\) −3.06950 −0.101253 −0.0506267 0.998718i \(-0.516122\pi\)
−0.0506267 + 0.998718i \(0.516122\pi\)
\(920\) 0 0
\(921\) −15.8574 27.4658i −0.522518 0.905028i
\(922\) 0 0
\(923\) −14.0068 + 24.2605i −0.461039 + 0.798543i
\(924\) 0 0
\(925\) −4.28853 4.31376i −0.141006 0.141836i
\(926\) 0 0
\(927\) −0.344131 + 0.596053i −0.0113027 + 0.0195769i
\(928\) 0 0
\(929\) −26.6828 46.2159i −0.875433 1.51629i −0.856301 0.516478i \(-0.827243\pi\)
−0.0191327 0.999817i \(-0.506091\pi\)
\(930\) 0 0
\(931\) 2.61525 0.0857113
\(932\) 0 0
\(933\) 8.50058 0.278296
\(934\) 0 0
\(935\) −0.827649 −0.0270670
\(936\) 0 0
\(937\) −8.36237 + 14.4840i −0.273187 + 0.473173i −0.969676 0.244394i \(-0.921411\pi\)
0.696489 + 0.717567i \(0.254744\pi\)
\(938\) 0 0
\(939\) −20.7969 −0.678680
\(940\) 0 0
\(941\) −9.98159 + 17.2886i −0.325390 + 0.563593i −0.981591 0.190994i \(-0.938829\pi\)
0.656201 + 0.754586i \(0.272162\pi\)
\(942\) 0 0
\(943\) −0.715585 1.23943i −0.0233027 0.0403614i
\(944\) 0 0
\(945\) −7.76112 + 13.4427i −0.252469 + 0.437290i
\(946\) 0 0
\(947\) 12.3504 21.3916i 0.401335 0.695133i −0.592552 0.805532i \(-0.701880\pi\)
0.993887 + 0.110399i \(0.0352130\pi\)
\(948\) 0 0
\(949\) 2.68691 + 4.65387i 0.0872208 + 0.151071i
\(950\) 0 0
\(951\) −6.92751 −0.224640
\(952\) 0 0
\(953\) 0.913614 1.58243i 0.0295949 0.0512598i −0.850849 0.525411i \(-0.823912\pi\)
0.880443 + 0.474151i \(0.157245\pi\)
\(954\) 0 0
\(955\) 9.32812 + 16.1568i 0.301851 + 0.522821i
\(956\) 0 0
\(957\) 2.50634 + 4.34111i 0.0810185 + 0.140328i
\(958\) 0 0
\(959\) 13.5441 + 23.4590i 0.437361 + 0.757531i
\(960\) 0 0
\(961\) 39.7384 1.28188
\(962\) 0 0
\(963\) −10.5235 −0.339116
\(964\) 0 0
\(965\) −11.8568 20.5366i −0.381684 0.661097i
\(966\) 0 0
\(967\) 27.5895 + 47.7865i 0.887220 + 1.53671i 0.843148 + 0.537682i \(0.180700\pi\)
0.0440723 + 0.999028i \(0.485967\pi\)
\(968\) 0 0
\(969\) 5.11420 + 8.85805i 0.164292 + 0.284562i
\(970\) 0 0
\(971\) −8.98288 + 15.5588i −0.288274 + 0.499306i −0.973398 0.229121i \(-0.926415\pi\)
0.685124 + 0.728427i \(0.259748\pi\)
\(972\) 0 0
\(973\) 23.1121 0.740941
\(974\) 0 0
\(975\) −2.68464 4.64993i −0.0859772 0.148917i
\(976\) 0 0
\(977\) 4.65436 8.06159i 0.148906 0.257913i −0.781917 0.623382i \(-0.785758\pi\)
0.930823 + 0.365469i \(0.119091\pi\)
\(978\) 0 0
\(979\) 2.85088 4.93786i 0.0911144 0.157815i
\(980\) 0 0
\(981\) −4.53550 7.85571i −0.144807 0.250814i
\(982\) 0 0
\(983\) −11.7749 + 20.3947i −0.375560 + 0.650489i −0.990411 0.138155i \(-0.955883\pi\)
0.614851 + 0.788643i \(0.289216\pi\)
\(984\) 0 0
\(985\) 25.1372 0.800938
\(986\) 0 0
\(987\) −1.65946 + 2.87426i −0.0528211 + 0.0914888i
\(988\) 0 0
\(989\) 2.14559 0.0682259
\(990\) 0 0
\(991\) −25.6234 −0.813954 −0.406977 0.913438i \(-0.633417\pi\)
−0.406977 + 0.913438i \(0.633417\pi\)
\(992\) 0 0
\(993\) −2.80977 −0.0891654
\(994\) 0 0
\(995\) −5.65029 9.78659i −0.179126 0.310256i
\(996\) 0 0
\(997\) 12.4780 21.6125i 0.395181 0.684473i −0.597943 0.801538i \(-0.704015\pi\)
0.993124 + 0.117065i \(0.0373486\pi\)
\(998\) 0 0
\(999\) −8.96663 + 33.0756i −0.283691 + 1.04646i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 740.2.i.b.121.6 14
37.26 even 3 inner 740.2.i.b.581.6 yes 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
740.2.i.b.121.6 14 1.1 even 1 trivial
740.2.i.b.581.6 yes 14 37.26 even 3 inner