Properties

Label 740.2.i.b.121.1
Level $740$
Weight $2$
Character 740.121
Analytic conductor $5.909$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [740,2,Mod(121,740)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(740, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("740.121"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 740 = 2^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 740.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,0,0,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.90892974957\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 13 x^{12} - 6 x^{11} + 130 x^{10} - 44 x^{9} + 466 x^{8} - 4 x^{7} + 1211 x^{6} - 162 x^{5} + \cdots + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{37}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 121.1
Root \(1.32457 + 2.29422i\) of defining polynomial
Character \(\chi\) \(=\) 740.121
Dual form 740.2.i.b.581.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.32457 - 2.29422i) q^{3} +(0.500000 + 0.866025i) q^{5} +(1.42866 + 2.47451i) q^{7} +(-2.00895 + 3.47961i) q^{9} -3.18233 q^{11} +(-1.96014 - 3.39506i) q^{13} +(1.32457 - 2.29422i) q^{15} +(2.70441 - 4.68418i) q^{17} +(-3.80196 - 6.58519i) q^{19} +(3.78471 - 6.55531i) q^{21} -6.03949 q^{23} +(-0.500000 + 0.866025i) q^{25} +2.69657 q^{27} -8.38297 q^{29} -2.32739 q^{31} +(4.21521 + 7.30095i) q^{33} +(-1.42866 + 2.47451i) q^{35} +(6.06458 + 0.469912i) q^{37} +(-5.19268 + 8.99398i) q^{39} +(4.44408 + 7.69737i) q^{41} -5.71448 q^{43} -4.01791 q^{45} +7.03084 q^{47} +(-0.582133 + 1.00828i) q^{49} -14.3287 q^{51} +(-0.602178 + 1.04300i) q^{53} +(-1.59116 - 2.75598i) q^{55} +(-10.0719 + 17.4450i) q^{57} +(-0.0552032 + 0.0956147i) q^{59} +(-5.06848 - 8.77887i) q^{61} -11.4804 q^{63} +(1.96014 - 3.39506i) q^{65} +(2.26921 + 3.93039i) q^{67} +(7.99971 + 13.8559i) q^{69} +(-8.12072 - 14.0655i) q^{71} +4.59471 q^{73} +2.64913 q^{75} +(-4.54646 - 7.87470i) q^{77} +(-8.35973 - 14.4795i) q^{79} +(2.45507 + 4.25230i) q^{81} +(-2.05322 + 3.55628i) q^{83} +5.40883 q^{85} +(11.1038 + 19.2324i) q^{87} +(-0.267372 + 0.463102i) q^{89} +(5.60075 - 9.70078i) q^{91} +(3.08279 + 5.33955i) q^{93} +(3.80196 - 6.58519i) q^{95} +5.70522 q^{97} +(6.39315 - 11.0733i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 7 q^{5} - 2 q^{7} - 5 q^{9} - 10 q^{11} - 2 q^{13} - 5 q^{17} - 8 q^{19} + 9 q^{21} + 8 q^{23} - 7 q^{25} - 18 q^{27} - 4 q^{29} + 16 q^{31} - 7 q^{33} + 2 q^{35} + 4 q^{37} + 13 q^{39} + 9 q^{41}+ \cdots + 26 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/740\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(297\) \(371\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.32457 2.29422i −0.764739 1.32457i −0.940384 0.340113i \(-0.889535\pi\)
0.175646 0.984453i \(-0.443799\pi\)
\(4\) 0 0
\(5\) 0.500000 + 0.866025i 0.223607 + 0.387298i
\(6\) 0 0
\(7\) 1.42866 + 2.47451i 0.539982 + 0.935277i 0.998904 + 0.0468003i \(0.0149024\pi\)
−0.458922 + 0.888477i \(0.651764\pi\)
\(8\) 0 0
\(9\) −2.00895 + 3.47961i −0.669651 + 1.15987i
\(10\) 0 0
\(11\) −3.18233 −0.959508 −0.479754 0.877403i \(-0.659274\pi\)
−0.479754 + 0.877403i \(0.659274\pi\)
\(12\) 0 0
\(13\) −1.96014 3.39506i −0.543645 0.941622i −0.998691 0.0511533i \(-0.983710\pi\)
0.455045 0.890468i \(-0.349623\pi\)
\(14\) 0 0
\(15\) 1.32457 2.29422i 0.342002 0.592364i
\(16\) 0 0
\(17\) 2.70441 4.68418i 0.655917 1.13608i −0.325747 0.945457i \(-0.605616\pi\)
0.981663 0.190624i \(-0.0610510\pi\)
\(18\) 0 0
\(19\) −3.80196 6.58519i −0.872230 1.51075i −0.859685 0.510825i \(-0.829340\pi\)
−0.0125451 0.999921i \(-0.503993\pi\)
\(20\) 0 0
\(21\) 3.78471 6.55531i 0.825891 1.43049i
\(22\) 0 0
\(23\) −6.03949 −1.25932 −0.629661 0.776870i \(-0.716806\pi\)
−0.629661 + 0.776870i \(0.716806\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 0 0
\(27\) 2.69657 0.518956
\(28\) 0 0
\(29\) −8.38297 −1.55668 −0.778339 0.627844i \(-0.783938\pi\)
−0.778339 + 0.627844i \(0.783938\pi\)
\(30\) 0 0
\(31\) −2.32739 −0.418012 −0.209006 0.977914i \(-0.567023\pi\)
−0.209006 + 0.977914i \(0.567023\pi\)
\(32\) 0 0
\(33\) 4.21521 + 7.30095i 0.733773 + 1.27093i
\(34\) 0 0
\(35\) −1.42866 + 2.47451i −0.241487 + 0.418269i
\(36\) 0 0
\(37\) 6.06458 + 0.469912i 0.997012 + 0.0772531i
\(38\) 0 0
\(39\) −5.19268 + 8.99398i −0.831494 + 1.44019i
\(40\) 0 0
\(41\) 4.44408 + 7.69737i 0.694049 + 1.20213i 0.970500 + 0.241100i \(0.0775081\pi\)
−0.276452 + 0.961028i \(0.589159\pi\)
\(42\) 0 0
\(43\) −5.71448 −0.871450 −0.435725 0.900080i \(-0.643508\pi\)
−0.435725 + 0.900080i \(0.643508\pi\)
\(44\) 0 0
\(45\) −4.01791 −0.598954
\(46\) 0 0
\(47\) 7.03084 1.02555 0.512777 0.858522i \(-0.328617\pi\)
0.512777 + 0.858522i \(0.328617\pi\)
\(48\) 0 0
\(49\) −0.582133 + 1.00828i −0.0831619 + 0.144041i
\(50\) 0 0
\(51\) −14.3287 −2.00642
\(52\) 0 0
\(53\) −0.602178 + 1.04300i −0.0827154 + 0.143267i −0.904415 0.426653i \(-0.859693\pi\)
0.821700 + 0.569920i \(0.193026\pi\)
\(54\) 0 0
\(55\) −1.59116 2.75598i −0.214552 0.371616i
\(56\) 0 0
\(57\) −10.0719 + 17.4450i −1.33406 + 2.31065i
\(58\) 0 0
\(59\) −0.0552032 + 0.0956147i −0.00718684 + 0.0124480i −0.869596 0.493763i \(-0.835621\pi\)
0.862410 + 0.506211i \(0.168954\pi\)
\(60\) 0 0
\(61\) −5.06848 8.77887i −0.648953 1.12402i −0.983373 0.181595i \(-0.941874\pi\)
0.334421 0.942424i \(-0.391459\pi\)
\(62\) 0 0
\(63\) −11.4804 −1.44640
\(64\) 0 0
\(65\) 1.96014 3.39506i 0.243126 0.421106i
\(66\) 0 0
\(67\) 2.26921 + 3.93039i 0.277228 + 0.480173i 0.970695 0.240315i \(-0.0772509\pi\)
−0.693467 + 0.720489i \(0.743918\pi\)
\(68\) 0 0
\(69\) 7.99971 + 13.8559i 0.963052 + 1.66805i
\(70\) 0 0
\(71\) −8.12072 14.0655i −0.963752 1.66927i −0.712932 0.701233i \(-0.752633\pi\)
−0.250819 0.968034i \(-0.580700\pi\)
\(72\) 0 0
\(73\) 4.59471 0.537771 0.268885 0.963172i \(-0.413345\pi\)
0.268885 + 0.963172i \(0.413345\pi\)
\(74\) 0 0
\(75\) 2.64913 0.305896
\(76\) 0 0
\(77\) −4.54646 7.87470i −0.518117 0.897406i
\(78\) 0 0
\(79\) −8.35973 14.4795i −0.940544 1.62907i −0.764437 0.644698i \(-0.776983\pi\)
−0.176106 0.984371i \(-0.556350\pi\)
\(80\) 0 0
\(81\) 2.45507 + 4.25230i 0.272785 + 0.472478i
\(82\) 0 0
\(83\) −2.05322 + 3.55628i −0.225370 + 0.390353i −0.956430 0.291960i \(-0.905692\pi\)
0.731060 + 0.682313i \(0.239026\pi\)
\(84\) 0 0
\(85\) 5.40883 0.586670
\(86\) 0 0
\(87\) 11.1038 + 19.2324i 1.19045 + 2.06192i
\(88\) 0 0
\(89\) −0.267372 + 0.463102i −0.0283414 + 0.0490887i −0.879848 0.475255i \(-0.842356\pi\)
0.851507 + 0.524344i \(0.175689\pi\)
\(90\) 0 0
\(91\) 5.60075 9.70078i 0.587118 1.01692i
\(92\) 0 0
\(93\) 3.08279 + 5.33955i 0.319670 + 0.553685i
\(94\) 0 0
\(95\) 3.80196 6.58519i 0.390073 0.675626i
\(96\) 0 0
\(97\) 5.70522 0.579278 0.289639 0.957136i \(-0.406465\pi\)
0.289639 + 0.957136i \(0.406465\pi\)
\(98\) 0 0
\(99\) 6.39315 11.0733i 0.642536 1.11290i
\(100\) 0 0
\(101\) −0.274826 −0.0273462 −0.0136731 0.999907i \(-0.504352\pi\)
−0.0136731 + 0.999907i \(0.504352\pi\)
\(102\) 0 0
\(103\) 6.90720 0.680586 0.340293 0.940319i \(-0.389474\pi\)
0.340293 + 0.940319i \(0.389474\pi\)
\(104\) 0 0
\(105\) 7.56942 0.738699
\(106\) 0 0
\(107\) 1.54320 + 2.67291i 0.149187 + 0.258400i 0.930927 0.365205i \(-0.119001\pi\)
−0.781740 + 0.623604i \(0.785668\pi\)
\(108\) 0 0
\(109\) 4.01661 6.95698i 0.384722 0.666358i −0.607009 0.794695i \(-0.707631\pi\)
0.991731 + 0.128337i \(0.0409641\pi\)
\(110\) 0 0
\(111\) −6.95487 14.5359i −0.660127 1.37969i
\(112\) 0 0
\(113\) −7.06303 + 12.2335i −0.664434 + 1.15083i 0.315005 + 0.949090i \(0.397994\pi\)
−0.979439 + 0.201743i \(0.935340\pi\)
\(114\) 0 0
\(115\) −3.01975 5.23035i −0.281593 0.487733i
\(116\) 0 0
\(117\) 15.7513 1.45621
\(118\) 0 0
\(119\) 15.4547 1.41673
\(120\) 0 0
\(121\) −0.872790 −0.0793446
\(122\) 0 0
\(123\) 11.7730 20.3914i 1.06153 1.83863i
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −0.0206138 + 0.0357042i −0.00182918 + 0.00316824i −0.866939 0.498415i \(-0.833916\pi\)
0.865109 + 0.501583i \(0.167249\pi\)
\(128\) 0 0
\(129\) 7.56921 + 13.1103i 0.666432 + 1.15429i
\(130\) 0 0
\(131\) −9.88749 + 17.1256i −0.863874 + 1.49627i 0.00428686 + 0.999991i \(0.498635\pi\)
−0.868161 + 0.496283i \(0.834698\pi\)
\(132\) 0 0
\(133\) 10.8634 18.8160i 0.941977 1.63155i
\(134\) 0 0
\(135\) 1.34829 + 2.33530i 0.116042 + 0.200991i
\(136\) 0 0
\(137\) 9.42871 0.805549 0.402775 0.915299i \(-0.368046\pi\)
0.402775 + 0.915299i \(0.368046\pi\)
\(138\) 0 0
\(139\) −3.89890 + 6.75310i −0.330701 + 0.572790i −0.982649 0.185473i \(-0.940618\pi\)
0.651949 + 0.758263i \(0.273952\pi\)
\(140\) 0 0
\(141\) −9.31282 16.1303i −0.784281 1.35841i
\(142\) 0 0
\(143\) 6.23781 + 10.8042i 0.521632 + 0.903493i
\(144\) 0 0
\(145\) −4.19148 7.25986i −0.348084 0.602899i
\(146\) 0 0
\(147\) 3.08430 0.254389
\(148\) 0 0
\(149\) −19.3579 −1.58586 −0.792932 0.609310i \(-0.791447\pi\)
−0.792932 + 0.609310i \(0.791447\pi\)
\(150\) 0 0
\(151\) 8.15183 + 14.1194i 0.663386 + 1.14902i 0.979720 + 0.200371i \(0.0642148\pi\)
−0.316334 + 0.948648i \(0.602452\pi\)
\(152\) 0 0
\(153\) 10.8661 + 18.8206i 0.878471 + 1.52156i
\(154\) 0 0
\(155\) −1.16370 2.01558i −0.0934704 0.161895i
\(156\) 0 0
\(157\) −1.54496 + 2.67596i −0.123302 + 0.213565i −0.921068 0.389402i \(-0.872682\pi\)
0.797766 + 0.602967i \(0.206015\pi\)
\(158\) 0 0
\(159\) 3.19050 0.253023
\(160\) 0 0
\(161\) −8.62838 14.9448i −0.680011 1.17781i
\(162\) 0 0
\(163\) 7.70973 13.3536i 0.603872 1.04594i −0.388356 0.921509i \(-0.626957\pi\)
0.992229 0.124428i \(-0.0397097\pi\)
\(164\) 0 0
\(165\) −4.21521 + 7.30095i −0.328153 + 0.568378i
\(166\) 0 0
\(167\) −11.6590 20.1940i −0.902202 1.56266i −0.824629 0.565673i \(-0.808616\pi\)
−0.0775729 0.996987i \(-0.524717\pi\)
\(168\) 0 0
\(169\) −1.18431 + 2.05129i −0.0911008 + 0.157791i
\(170\) 0 0
\(171\) 30.5519 2.33636
\(172\) 0 0
\(173\) 9.95558 17.2436i 0.756909 1.31100i −0.187511 0.982262i \(-0.560042\pi\)
0.944420 0.328742i \(-0.106625\pi\)
\(174\) 0 0
\(175\) −2.85732 −0.215993
\(176\) 0 0
\(177\) 0.292481 0.0219842
\(178\) 0 0
\(179\) 24.0418 1.79697 0.898483 0.439009i \(-0.144670\pi\)
0.898483 + 0.439009i \(0.144670\pi\)
\(180\) 0 0
\(181\) −4.99453 8.65078i −0.371240 0.643007i 0.618516 0.785772i \(-0.287734\pi\)
−0.989757 + 0.142765i \(0.954401\pi\)
\(182\) 0 0
\(183\) −13.4271 + 23.2564i −0.992559 + 1.71916i
\(184\) 0 0
\(185\) 2.62534 + 5.48704i 0.193019 + 0.403415i
\(186\) 0 0
\(187\) −8.60633 + 14.9066i −0.629357 + 1.09008i
\(188\) 0 0
\(189\) 3.85249 + 6.67270i 0.280227 + 0.485368i
\(190\) 0 0
\(191\) 8.42398 0.609538 0.304769 0.952426i \(-0.401421\pi\)
0.304769 + 0.952426i \(0.401421\pi\)
\(192\) 0 0
\(193\) 16.6438 1.19805 0.599023 0.800732i \(-0.295556\pi\)
0.599023 + 0.800732i \(0.295556\pi\)
\(194\) 0 0
\(195\) −10.3854 −0.743711
\(196\) 0 0
\(197\) −2.80399 + 4.85665i −0.199776 + 0.346022i −0.948456 0.316910i \(-0.897355\pi\)
0.748680 + 0.662932i \(0.230688\pi\)
\(198\) 0 0
\(199\) −10.3781 −0.735687 −0.367843 0.929888i \(-0.619904\pi\)
−0.367843 + 0.929888i \(0.619904\pi\)
\(200\) 0 0
\(201\) 6.01144 10.4121i 0.424014 0.734414i
\(202\) 0 0
\(203\) −11.9764 20.7437i −0.840579 1.45593i
\(204\) 0 0
\(205\) −4.44408 + 7.69737i −0.310388 + 0.537608i
\(206\) 0 0
\(207\) 12.1331 21.0151i 0.843306 1.46065i
\(208\) 0 0
\(209\) 12.0991 + 20.9562i 0.836911 + 1.44957i
\(210\) 0 0
\(211\) 22.8995 1.57647 0.788234 0.615376i \(-0.210996\pi\)
0.788234 + 0.615376i \(0.210996\pi\)
\(212\) 0 0
\(213\) −21.5129 + 37.2614i −1.47404 + 2.55311i
\(214\) 0 0
\(215\) −2.85724 4.94889i −0.194862 0.337511i
\(216\) 0 0
\(217\) −3.32505 5.75916i −0.225719 0.390957i
\(218\) 0 0
\(219\) −6.08601 10.5413i −0.411254 0.712313i
\(220\) 0 0
\(221\) −21.2041 −1.42634
\(222\) 0 0
\(223\) 5.58618 0.374078 0.187039 0.982352i \(-0.440111\pi\)
0.187039 + 0.982352i \(0.440111\pi\)
\(224\) 0 0
\(225\) −2.00895 3.47961i −0.133930 0.231974i
\(226\) 0 0
\(227\) 6.82316 + 11.8181i 0.452869 + 0.784392i 0.998563 0.0535923i \(-0.0170671\pi\)
−0.545694 + 0.837985i \(0.683734\pi\)
\(228\) 0 0
\(229\) 7.22516 + 12.5144i 0.477452 + 0.826972i 0.999666 0.0258430i \(-0.00822700\pi\)
−0.522214 + 0.852815i \(0.674894\pi\)
\(230\) 0 0
\(231\) −12.0442 + 20.8611i −0.792449 + 1.37256i
\(232\) 0 0
\(233\) −2.95979 −0.193903 −0.0969513 0.995289i \(-0.530909\pi\)
−0.0969513 + 0.995289i \(0.530909\pi\)
\(234\) 0 0
\(235\) 3.51542 + 6.08889i 0.229321 + 0.397195i
\(236\) 0 0
\(237\) −22.1461 + 38.3581i −1.43854 + 2.49163i
\(238\) 0 0
\(239\) −1.81414 + 3.14218i −0.117347 + 0.203251i −0.918716 0.394920i \(-0.870772\pi\)
0.801368 + 0.598171i \(0.204106\pi\)
\(240\) 0 0
\(241\) −5.36821 9.29802i −0.345797 0.598938i 0.639701 0.768624i \(-0.279058\pi\)
−0.985498 + 0.169686i \(0.945725\pi\)
\(242\) 0 0
\(243\) 10.5487 18.2708i 0.676697 1.17207i
\(244\) 0 0
\(245\) −1.16427 −0.0743822
\(246\) 0 0
\(247\) −14.9048 + 25.8158i −0.948368 + 1.64262i
\(248\) 0 0
\(249\) 10.8785 0.689397
\(250\) 0 0
\(251\) 0.340221 0.0214745 0.0107373 0.999942i \(-0.496582\pi\)
0.0107373 + 0.999942i \(0.496582\pi\)
\(252\) 0 0
\(253\) 19.2196 1.20833
\(254\) 0 0
\(255\) −7.16435 12.4090i −0.448649 0.777083i
\(256\) 0 0
\(257\) −0.287134 + 0.497331i −0.0179109 + 0.0310227i −0.874842 0.484408i \(-0.839035\pi\)
0.856931 + 0.515431i \(0.172368\pi\)
\(258\) 0 0
\(259\) 7.50142 + 15.6782i 0.466116 + 0.974197i
\(260\) 0 0
\(261\) 16.8410 29.1695i 1.04243 1.80554i
\(262\) 0 0
\(263\) −1.21300 2.10098i −0.0747969 0.129552i 0.826201 0.563375i \(-0.190498\pi\)
−0.900998 + 0.433823i \(0.857164\pi\)
\(264\) 0 0
\(265\) −1.20436 −0.0739829
\(266\) 0 0
\(267\) 1.41661 0.0866951
\(268\) 0 0
\(269\) −2.07886 −0.126751 −0.0633753 0.997990i \(-0.520187\pi\)
−0.0633753 + 0.997990i \(0.520187\pi\)
\(270\) 0 0
\(271\) 3.45425 5.98294i 0.209831 0.363438i −0.741830 0.670588i \(-0.766042\pi\)
0.951661 + 0.307150i \(0.0993753\pi\)
\(272\) 0 0
\(273\) −29.6743 −1.79597
\(274\) 0 0
\(275\) 1.59116 2.75598i 0.0959508 0.166192i
\(276\) 0 0
\(277\) −8.16291 14.1386i −0.490461 0.849504i 0.509478 0.860484i \(-0.329838\pi\)
−0.999940 + 0.0109793i \(0.996505\pi\)
\(278\) 0 0
\(279\) 4.67563 8.09842i 0.279922 0.484840i
\(280\) 0 0
\(281\) −5.24790 + 9.08963i −0.313063 + 0.542242i −0.979024 0.203745i \(-0.934689\pi\)
0.665961 + 0.745987i \(0.268022\pi\)
\(282\) 0 0
\(283\) −4.05020 7.01515i −0.240759 0.417007i 0.720172 0.693796i \(-0.244063\pi\)
−0.960931 + 0.276789i \(0.910730\pi\)
\(284\) 0 0
\(285\) −20.1438 −1.19322
\(286\) 0 0
\(287\) −12.6982 + 21.9938i −0.749548 + 1.29826i
\(288\) 0 0
\(289\) −6.12770 10.6135i −0.360453 0.624323i
\(290\) 0 0
\(291\) −7.55695 13.0890i −0.442996 0.767292i
\(292\) 0 0
\(293\) 13.2142 + 22.8877i 0.771982 + 1.33711i 0.936475 + 0.350734i \(0.114068\pi\)
−0.164493 + 0.986378i \(0.552599\pi\)
\(294\) 0 0
\(295\) −0.110406 −0.00642811
\(296\) 0 0
\(297\) −8.58138 −0.497942
\(298\) 0 0
\(299\) 11.8383 + 20.5045i 0.684624 + 1.18580i
\(300\) 0 0
\(301\) −8.16405 14.1405i −0.470568 0.815047i
\(302\) 0 0
\(303\) 0.364025 + 0.630510i 0.0209127 + 0.0362219i
\(304\) 0 0
\(305\) 5.06848 8.77887i 0.290220 0.502677i
\(306\) 0 0
\(307\) 15.9446 0.910006 0.455003 0.890490i \(-0.349638\pi\)
0.455003 + 0.890490i \(0.349638\pi\)
\(308\) 0 0
\(309\) −9.14904 15.8466i −0.520471 0.901482i
\(310\) 0 0
\(311\) −0.502333 + 0.870067i −0.0284847 + 0.0493370i −0.879916 0.475129i \(-0.842402\pi\)
0.851432 + 0.524466i \(0.175735\pi\)
\(312\) 0 0
\(313\) 12.6959 21.9899i 0.717612 1.24294i −0.244331 0.969692i \(-0.578568\pi\)
0.961943 0.273249i \(-0.0880982\pi\)
\(314\) 0 0
\(315\) −5.74022 9.94235i −0.323425 0.560188i
\(316\) 0 0
\(317\) 0.485529 0.840961i 0.0272700 0.0472331i −0.852068 0.523431i \(-0.824652\pi\)
0.879338 + 0.476198i \(0.157985\pi\)
\(318\) 0 0
\(319\) 26.6774 1.49365
\(320\) 0 0
\(321\) 4.08815 7.08089i 0.228178 0.395216i
\(322\) 0 0
\(323\) −41.1283 −2.28844
\(324\) 0 0
\(325\) 3.92028 0.217458
\(326\) 0 0
\(327\) −21.2811 −1.17685
\(328\) 0 0
\(329\) 10.0447 + 17.3979i 0.553781 + 0.959177i
\(330\) 0 0
\(331\) −5.94158 + 10.2911i −0.326579 + 0.565651i −0.981831 0.189760i \(-0.939229\pi\)
0.655252 + 0.755410i \(0.272562\pi\)
\(332\) 0 0
\(333\) −13.8186 + 20.1584i −0.757254 + 1.10467i
\(334\) 0 0
\(335\) −2.26921 + 3.93039i −0.123980 + 0.214740i
\(336\) 0 0
\(337\) −12.2011 21.1329i −0.664634 1.15118i −0.979384 0.202005i \(-0.935254\pi\)
0.314750 0.949175i \(-0.398079\pi\)
\(338\) 0 0
\(339\) 37.4218 2.03247
\(340\) 0 0
\(341\) 7.40653 0.401086
\(342\) 0 0
\(343\) 16.6745 0.900341
\(344\) 0 0
\(345\) −7.99971 + 13.8559i −0.430690 + 0.745977i
\(346\) 0 0
\(347\) −21.4655 −1.15233 −0.576164 0.817334i \(-0.695451\pi\)
−0.576164 + 0.817334i \(0.695451\pi\)
\(348\) 0 0
\(349\) 16.4709 28.5285i 0.881668 1.52709i 0.0321829 0.999482i \(-0.489754\pi\)
0.849485 0.527612i \(-0.176913\pi\)
\(350\) 0 0
\(351\) −5.28567 9.15505i −0.282128 0.488660i
\(352\) 0 0
\(353\) 2.06067 3.56918i 0.109678 0.189968i −0.805962 0.591968i \(-0.798351\pi\)
0.915640 + 0.401999i \(0.131685\pi\)
\(354\) 0 0
\(355\) 8.12072 14.0655i 0.431003 0.746519i
\(356\) 0 0
\(357\) −20.4708 35.4565i −1.08343 1.87656i
\(358\) 0 0
\(359\) 6.61660 0.349211 0.174606 0.984638i \(-0.444135\pi\)
0.174606 + 0.984638i \(0.444135\pi\)
\(360\) 0 0
\(361\) −19.4098 + 33.6188i −1.02157 + 1.76941i
\(362\) 0 0
\(363\) 1.15607 + 2.00237i 0.0606779 + 0.105097i
\(364\) 0 0
\(365\) 2.29736 + 3.97914i 0.120249 + 0.208278i
\(366\) 0 0
\(367\) −11.1549 19.3208i −0.582280 1.00854i −0.995208 0.0977756i \(-0.968827\pi\)
0.412928 0.910764i \(-0.364506\pi\)
\(368\) 0 0
\(369\) −35.7118 −1.85908
\(370\) 0 0
\(371\) −3.44123 −0.178660
\(372\) 0 0
\(373\) −8.15508 14.1250i −0.422254 0.731366i 0.573905 0.818922i \(-0.305428\pi\)
−0.996160 + 0.0875558i \(0.972094\pi\)
\(374\) 0 0
\(375\) 1.32457 + 2.29422i 0.0684003 + 0.118473i
\(376\) 0 0
\(377\) 16.4318 + 28.4607i 0.846281 + 1.46580i
\(378\) 0 0
\(379\) 14.9604 25.9122i 0.768466 1.33102i −0.169929 0.985456i \(-0.554354\pi\)
0.938395 0.345565i \(-0.112313\pi\)
\(380\) 0 0
\(381\) 0.109218 0.00559539
\(382\) 0 0
\(383\) −10.7509 18.6210i −0.549344 0.951491i −0.998320 0.0579472i \(-0.981544\pi\)
0.448976 0.893544i \(-0.351789\pi\)
\(384\) 0 0
\(385\) 4.54646 7.87470i 0.231709 0.401332i
\(386\) 0 0
\(387\) 11.4801 19.8842i 0.583568 1.01077i
\(388\) 0 0
\(389\) −3.00596 5.20647i −0.152408 0.263978i 0.779704 0.626148i \(-0.215369\pi\)
−0.932112 + 0.362170i \(0.882036\pi\)
\(390\) 0 0
\(391\) −16.3333 + 28.2901i −0.826010 + 1.43069i
\(392\) 0 0
\(393\) 52.3866 2.64255
\(394\) 0 0
\(395\) 8.35973 14.4795i 0.420624 0.728542i
\(396\) 0 0
\(397\) 29.3716 1.47412 0.737060 0.675828i \(-0.236214\pi\)
0.737060 + 0.675828i \(0.236214\pi\)
\(398\) 0 0
\(399\) −57.5573 −2.88147
\(400\) 0 0
\(401\) −0.149782 −0.00747977 −0.00373989 0.999993i \(-0.501190\pi\)
−0.00373989 + 0.999993i \(0.501190\pi\)
\(402\) 0 0
\(403\) 4.56202 + 7.90165i 0.227250 + 0.393609i
\(404\) 0 0
\(405\) −2.45507 + 4.25230i −0.121993 + 0.211299i
\(406\) 0 0
\(407\) −19.2995 1.49541i −0.956640 0.0741249i
\(408\) 0 0
\(409\) −17.4680 + 30.2554i −0.863737 + 1.49604i 0.00455971 + 0.999990i \(0.498549\pi\)
−0.868296 + 0.496046i \(0.834785\pi\)
\(410\) 0 0
\(411\) −12.4890 21.6315i −0.616035 1.06700i
\(412\) 0 0
\(413\) −0.315466 −0.0155231
\(414\) 0 0
\(415\) −4.10644 −0.201577
\(416\) 0 0
\(417\) 20.6574 1.01160
\(418\) 0 0
\(419\) −6.20937 + 10.7549i −0.303347 + 0.525413i −0.976892 0.213733i \(-0.931438\pi\)
0.673545 + 0.739147i \(0.264771\pi\)
\(420\) 0 0
\(421\) 27.0203 1.31689 0.658443 0.752630i \(-0.271215\pi\)
0.658443 + 0.752630i \(0.271215\pi\)
\(422\) 0 0
\(423\) −14.1246 + 24.4646i −0.686764 + 1.18951i
\(424\) 0 0
\(425\) 2.70441 + 4.68418i 0.131183 + 0.227216i
\(426\) 0 0
\(427\) 14.4823 25.0840i 0.700846 1.21390i
\(428\) 0 0
\(429\) 16.5248 28.6218i 0.797825 1.38187i
\(430\) 0 0
\(431\) 12.1245 + 21.0002i 0.584016 + 1.01155i 0.994997 + 0.0999014i \(0.0318527\pi\)
−0.410981 + 0.911644i \(0.634814\pi\)
\(432\) 0 0
\(433\) −31.0338 −1.49139 −0.745694 0.666288i \(-0.767882\pi\)
−0.745694 + 0.666288i \(0.767882\pi\)
\(434\) 0 0
\(435\) −11.1038 + 19.2324i −0.532387 + 0.922121i
\(436\) 0 0
\(437\) 22.9619 + 39.7712i 1.09842 + 1.90251i
\(438\) 0 0
\(439\) −18.3899 31.8522i −0.877700 1.52022i −0.853858 0.520505i \(-0.825744\pi\)
−0.0238416 0.999716i \(-0.507590\pi\)
\(440\) 0 0
\(441\) −2.33896 4.05119i −0.111379 0.192914i
\(442\) 0 0
\(443\) −19.5596 −0.929305 −0.464653 0.885493i \(-0.653821\pi\)
−0.464653 + 0.885493i \(0.653821\pi\)
\(444\) 0 0
\(445\) −0.534744 −0.0253493
\(446\) 0 0
\(447\) 25.6409 + 44.4113i 1.21277 + 2.10058i
\(448\) 0 0
\(449\) −9.98328 17.2916i −0.471140 0.816039i 0.528315 0.849049i \(-0.322824\pi\)
−0.999455 + 0.0330096i \(0.989491\pi\)
\(450\) 0 0
\(451\) −14.1425 24.4956i −0.665945 1.15345i
\(452\) 0 0
\(453\) 21.5953 37.4041i 1.01463 1.75740i
\(454\) 0 0
\(455\) 11.2015 0.525134
\(456\) 0 0
\(457\) −4.57675 7.92717i −0.214092 0.370817i 0.738900 0.673816i \(-0.235346\pi\)
−0.952991 + 0.302998i \(0.902012\pi\)
\(458\) 0 0
\(459\) 7.29265 12.6312i 0.340392 0.589576i
\(460\) 0 0
\(461\) 3.03643 5.25924i 0.141420 0.244947i −0.786611 0.617449i \(-0.788166\pi\)
0.928032 + 0.372501i \(0.121500\pi\)
\(462\) 0 0
\(463\) 1.12243 + 1.94410i 0.0521636 + 0.0903501i 0.890928 0.454144i \(-0.150055\pi\)
−0.838765 + 0.544494i \(0.816722\pi\)
\(464\) 0 0
\(465\) −3.08279 + 5.33955i −0.142961 + 0.247616i
\(466\) 0 0
\(467\) −31.6080 −1.46264 −0.731322 0.682032i \(-0.761097\pi\)
−0.731322 + 0.682032i \(0.761097\pi\)
\(468\) 0 0
\(469\) −6.48386 + 11.2304i −0.299397 + 0.518570i
\(470\) 0 0
\(471\) 8.18563 0.377174
\(472\) 0 0
\(473\) 18.1854 0.836164
\(474\) 0 0
\(475\) 7.60392 0.348892
\(476\) 0 0
\(477\) −2.41949 4.19069i −0.110781 0.191878i
\(478\) 0 0
\(479\) −11.0148 + 19.0783i −0.503281 + 0.871708i 0.496712 + 0.867916i \(0.334541\pi\)
−0.999993 + 0.00379279i \(0.998793\pi\)
\(480\) 0 0
\(481\) −10.2921 21.5108i −0.469278 0.980806i
\(482\) 0 0
\(483\) −22.8577 + 39.5907i −1.04006 + 1.80144i
\(484\) 0 0
\(485\) 2.85261 + 4.94087i 0.129530 + 0.224353i
\(486\) 0 0
\(487\) −15.8414 −0.717840 −0.358920 0.933368i \(-0.616855\pi\)
−0.358920 + 0.933368i \(0.616855\pi\)
\(488\) 0 0
\(489\) −40.8482 −1.84722
\(490\) 0 0
\(491\) −19.3703 −0.874169 −0.437084 0.899420i \(-0.643989\pi\)
−0.437084 + 0.899420i \(0.643989\pi\)
\(492\) 0 0
\(493\) −22.6710 + 39.2674i −1.02105 + 1.76851i
\(494\) 0 0
\(495\) 12.7863 0.574701
\(496\) 0 0
\(497\) 23.2035 40.1896i 1.04082 1.80275i
\(498\) 0 0
\(499\) 6.74686 + 11.6859i 0.302031 + 0.523133i 0.976596 0.215083i \(-0.0690021\pi\)
−0.674565 + 0.738215i \(0.735669\pi\)
\(500\) 0 0
\(501\) −30.8863 + 53.4967i −1.37990 + 2.39005i
\(502\) 0 0
\(503\) −4.00779 + 6.94169i −0.178698 + 0.309515i −0.941435 0.337195i \(-0.890522\pi\)
0.762737 + 0.646709i \(0.223855\pi\)
\(504\) 0 0
\(505\) −0.137413 0.238006i −0.00611480 0.0105911i
\(506\) 0 0
\(507\) 6.27479 0.278673
\(508\) 0 0
\(509\) −3.84003 + 6.65113i −0.170206 + 0.294806i −0.938492 0.345301i \(-0.887777\pi\)
0.768286 + 0.640107i \(0.221110\pi\)
\(510\) 0 0
\(511\) 6.56428 + 11.3697i 0.290387 + 0.502964i
\(512\) 0 0
\(513\) −10.2523 17.7575i −0.452649 0.784011i
\(514\) 0 0
\(515\) 3.45360 + 5.98181i 0.152184 + 0.263590i
\(516\) 0 0
\(517\) −22.3744 −0.984027
\(518\) 0 0
\(519\) −52.7473 −2.31535
\(520\) 0 0
\(521\) −4.41405 7.64535i −0.193383 0.334949i 0.752986 0.658036i \(-0.228613\pi\)
−0.946369 + 0.323087i \(0.895279\pi\)
\(522\) 0 0
\(523\) 21.0059 + 36.3833i 0.918523 + 1.59093i 0.801660 + 0.597781i \(0.203951\pi\)
0.116863 + 0.993148i \(0.462716\pi\)
\(524\) 0 0
\(525\) 3.78471 + 6.55531i 0.165178 + 0.286097i
\(526\) 0 0
\(527\) −6.29423 + 10.9019i −0.274181 + 0.474896i
\(528\) 0 0
\(529\) 13.4755 0.585890
\(530\) 0 0
\(531\) −0.221801 0.384171i −0.00962536 0.0166716i
\(532\) 0 0
\(533\) 17.4221 30.1759i 0.754633 1.30706i
\(534\) 0 0
\(535\) −1.54320 + 2.67291i −0.0667185 + 0.115560i
\(536\) 0 0
\(537\) −31.8449 55.1570i −1.37421 2.38020i
\(538\) 0 0
\(539\) 1.85254 3.20869i 0.0797945 0.138208i
\(540\) 0 0
\(541\) 31.8382 1.36883 0.684416 0.729092i \(-0.260057\pi\)
0.684416 + 0.729092i \(0.260057\pi\)
\(542\) 0 0
\(543\) −13.2312 + 22.9171i −0.567804 + 0.983465i
\(544\) 0 0
\(545\) 8.03323 0.344106
\(546\) 0 0
\(547\) 6.61448 0.282815 0.141407 0.989951i \(-0.454837\pi\)
0.141407 + 0.989951i \(0.454837\pi\)
\(548\) 0 0
\(549\) 40.7294 1.73829
\(550\) 0 0
\(551\) 31.8717 + 55.2035i 1.35778 + 2.35175i
\(552\) 0 0
\(553\) 23.8864 41.3725i 1.01575 1.75934i
\(554\) 0 0
\(555\) 9.11103 13.2910i 0.386742 0.564173i
\(556\) 0 0
\(557\) −8.35829 + 14.4770i −0.354152 + 0.613409i −0.986972 0.160889i \(-0.948564\pi\)
0.632821 + 0.774299i \(0.281897\pi\)
\(558\) 0 0
\(559\) 11.2012 + 19.4010i 0.473760 + 0.820577i
\(560\) 0 0
\(561\) 45.5986 1.92518
\(562\) 0 0
\(563\) 29.6650 1.25023 0.625115 0.780533i \(-0.285052\pi\)
0.625115 + 0.780533i \(0.285052\pi\)
\(564\) 0 0
\(565\) −14.1261 −0.594287
\(566\) 0 0
\(567\) −7.01491 + 12.1502i −0.294599 + 0.510260i
\(568\) 0 0
\(569\) −5.54577 −0.232491 −0.116245 0.993221i \(-0.537086\pi\)
−0.116245 + 0.993221i \(0.537086\pi\)
\(570\) 0 0
\(571\) −0.878312 + 1.52128i −0.0367562 + 0.0636636i −0.883818 0.467830i \(-0.845036\pi\)
0.847062 + 0.531494i \(0.178369\pi\)
\(572\) 0 0
\(573\) −11.1581 19.3264i −0.466137 0.807373i
\(574\) 0 0
\(575\) 3.01975 5.23035i 0.125932 0.218121i
\(576\) 0 0
\(577\) −16.9894 + 29.4265i −0.707277 + 1.22504i 0.258586 + 0.965988i \(0.416744\pi\)
−0.965863 + 0.259052i \(0.916590\pi\)
\(578\) 0 0
\(579\) −22.0458 38.1845i −0.916192 1.58689i
\(580\) 0 0
\(581\) −11.7334 −0.486784
\(582\) 0 0
\(583\) 1.91633 3.31917i 0.0793661 0.137466i
\(584\) 0 0
\(585\) 7.87567 + 13.6411i 0.325619 + 0.563988i
\(586\) 0 0
\(587\) 7.98333 + 13.8275i 0.329507 + 0.570724i 0.982414 0.186715i \(-0.0597840\pi\)
−0.652907 + 0.757438i \(0.726451\pi\)
\(588\) 0 0
\(589\) 8.84866 + 15.3263i 0.364603 + 0.631510i
\(590\) 0 0
\(591\) 14.8563 0.611105
\(592\) 0 0
\(593\) −22.1665 −0.910270 −0.455135 0.890423i \(-0.650409\pi\)
−0.455135 + 0.890423i \(0.650409\pi\)
\(594\) 0 0
\(595\) 7.72737 + 13.3842i 0.316791 + 0.548699i
\(596\) 0 0
\(597\) 13.7465 + 23.8097i 0.562608 + 0.974466i
\(598\) 0 0
\(599\) 5.63329 + 9.75715i 0.230170 + 0.398666i 0.957858 0.287242i \(-0.0927384\pi\)
−0.727688 + 0.685908i \(0.759405\pi\)
\(600\) 0 0
\(601\) −16.9749 + 29.4013i −0.692419 + 1.19930i 0.278624 + 0.960400i \(0.410122\pi\)
−0.971043 + 0.238905i \(0.923212\pi\)
\(602\) 0 0
\(603\) −18.2350 −0.742585
\(604\) 0 0
\(605\) −0.436395 0.755858i −0.0177420 0.0307300i
\(606\) 0 0
\(607\) 13.5884 23.5357i 0.551535 0.955287i −0.446629 0.894719i \(-0.647376\pi\)
0.998164 0.0605674i \(-0.0192910\pi\)
\(608\) 0 0
\(609\) −31.7271 + 54.9529i −1.28565 + 2.22681i
\(610\) 0 0
\(611\) −13.7814 23.8702i −0.557538 0.965684i
\(612\) 0 0
\(613\) 7.49915 12.9889i 0.302888 0.524617i −0.673901 0.738822i \(-0.735383\pi\)
0.976789 + 0.214205i \(0.0687159\pi\)
\(614\) 0 0
\(615\) 23.5459 0.949463
\(616\) 0 0
\(617\) 19.2658 33.3694i 0.775614 1.34340i −0.158835 0.987305i \(-0.550774\pi\)
0.934449 0.356097i \(-0.115893\pi\)
\(618\) 0 0
\(619\) −20.3957 −0.819773 −0.409886 0.912137i \(-0.634432\pi\)
−0.409886 + 0.912137i \(0.634432\pi\)
\(620\) 0 0
\(621\) −16.2859 −0.653532
\(622\) 0 0
\(623\) −1.52793 −0.0612154
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) 32.0521 55.5159i 1.28004 2.21709i
\(628\) 0 0
\(629\) 18.6023 27.1368i 0.741722 1.08201i
\(630\) 0 0
\(631\) −3.98798 + 6.90739i −0.158759 + 0.274979i −0.934421 0.356169i \(-0.884083\pi\)
0.775662 + 0.631148i \(0.217416\pi\)
\(632\) 0 0
\(633\) −30.3319 52.5365i −1.20559 2.08814i
\(634\) 0 0
\(635\) −0.0412277 −0.00163607
\(636\) 0 0
\(637\) 4.56425 0.180842
\(638\) 0 0
\(639\) 65.2566 2.58151
\(640\) 0 0
\(641\) −4.77289 + 8.26690i −0.188518 + 0.326523i −0.944756 0.327773i \(-0.893702\pi\)
0.756238 + 0.654296i \(0.227035\pi\)
\(642\) 0 0
\(643\) 20.0135 0.789256 0.394628 0.918841i \(-0.370873\pi\)
0.394628 + 0.918841i \(0.370873\pi\)
\(644\) 0 0
\(645\) −7.56921 + 13.1103i −0.298037 + 0.516216i
\(646\) 0 0
\(647\) −4.05706 7.02703i −0.159499 0.276261i 0.775189 0.631730i \(-0.217655\pi\)
−0.934688 + 0.355468i \(0.884321\pi\)
\(648\) 0 0
\(649\) 0.175675 0.304277i 0.00689583 0.0119439i
\(650\) 0 0
\(651\) −8.80851 + 15.2568i −0.345233 + 0.597960i
\(652\) 0 0
\(653\) 4.15115 + 7.19000i 0.162447 + 0.281366i 0.935746 0.352675i \(-0.114728\pi\)
−0.773299 + 0.634042i \(0.781395\pi\)
\(654\) 0 0
\(655\) −19.7750 −0.772672
\(656\) 0 0
\(657\) −9.23057 + 15.9878i −0.360119 + 0.623744i
\(658\) 0 0
\(659\) −1.22269 2.11776i −0.0476291 0.0824961i 0.841228 0.540681i \(-0.181833\pi\)
−0.888857 + 0.458185i \(0.848500\pi\)
\(660\) 0 0
\(661\) −21.4618 37.1729i −0.834768 1.44586i −0.894219 0.447629i \(-0.852269\pi\)
0.0594518 0.998231i \(-0.481065\pi\)
\(662\) 0 0
\(663\) 28.0863 + 48.6469i 1.09078 + 1.88929i
\(664\) 0 0
\(665\) 21.7268 0.842530
\(666\) 0 0
\(667\) 50.6289 1.96036
\(668\) 0 0
\(669\) −7.39927 12.8159i −0.286072 0.495492i
\(670\) 0 0
\(671\) 16.1296 + 27.9372i 0.622675 + 1.07851i
\(672\) 0 0
\(673\) −2.58162 4.47150i −0.0995141 0.172364i 0.811970 0.583700i \(-0.198396\pi\)
−0.911484 + 0.411336i \(0.865062\pi\)
\(674\) 0 0
\(675\) −1.34829 + 2.33530i −0.0518956 + 0.0898858i
\(676\) 0 0
\(677\) 17.7159 0.680877 0.340438 0.940267i \(-0.389425\pi\)
0.340438 + 0.940267i \(0.389425\pi\)
\(678\) 0 0
\(679\) 8.15082 + 14.1176i 0.312800 + 0.541785i
\(680\) 0 0
\(681\) 18.0755 31.3076i 0.692653 1.19971i
\(682\) 0 0
\(683\) 21.7698 37.7063i 0.832997 1.44279i −0.0626537 0.998035i \(-0.519956\pi\)
0.895651 0.444758i \(-0.146710\pi\)
\(684\) 0 0
\(685\) 4.71436 + 8.16550i 0.180126 + 0.311988i
\(686\) 0 0
\(687\) 19.1404 33.1522i 0.730253 1.26483i
\(688\) 0 0
\(689\) 4.72141 0.179872
\(690\) 0 0
\(691\) −0.385620 + 0.667913i −0.0146697 + 0.0254086i −0.873267 0.487242i \(-0.838003\pi\)
0.858597 + 0.512651i \(0.171336\pi\)
\(692\) 0 0
\(693\) 36.5345 1.38783
\(694\) 0 0
\(695\) −7.79780 −0.295788
\(696\) 0 0
\(697\) 48.0745 1.82095
\(698\) 0 0
\(699\) 3.92045 + 6.79041i 0.148285 + 0.256837i
\(700\) 0 0
\(701\) −5.62488 + 9.74257i −0.212449 + 0.367972i −0.952480 0.304600i \(-0.901477\pi\)
0.740032 + 0.672572i \(0.234810\pi\)
\(702\) 0 0
\(703\) −19.9629 41.7230i −0.752913 1.57361i
\(704\) 0 0
\(705\) 9.31282 16.1303i 0.350741 0.607501i
\(706\) 0 0
\(707\) −0.392633 0.680060i −0.0147665 0.0255763i
\(708\) 0 0
\(709\) −48.3736 −1.81671 −0.908355 0.418200i \(-0.862661\pi\)
−0.908355 + 0.418200i \(0.862661\pi\)
\(710\) 0 0
\(711\) 67.1773 2.51935
\(712\) 0 0
\(713\) 14.0563 0.526412
\(714\) 0 0
\(715\) −6.23781 + 10.8042i −0.233281 + 0.404055i
\(716\) 0 0
\(717\) 9.61180 0.358959
\(718\) 0 0
\(719\) 4.38271 7.59107i 0.163447 0.283099i −0.772655 0.634826i \(-0.781072\pi\)
0.936103 + 0.351726i \(0.114405\pi\)
\(720\) 0 0
\(721\) 9.86803 + 17.0919i 0.367505 + 0.636536i
\(722\) 0 0
\(723\) −14.2211 + 24.6317i −0.528889 + 0.916062i
\(724\) 0 0
\(725\) 4.19148 7.25986i 0.155668 0.269625i
\(726\) 0 0
\(727\) −0.761626 1.31918i −0.0282472 0.0489255i 0.851556 0.524263i \(-0.175659\pi\)
−0.879803 + 0.475338i \(0.842326\pi\)
\(728\) 0 0
\(729\) −41.1592 −1.52442
\(730\) 0 0
\(731\) −15.4543 + 26.7677i −0.571599 + 0.990038i
\(732\) 0 0
\(733\) −14.4720 25.0663i −0.534536 0.925844i −0.999186 0.0403493i \(-0.987153\pi\)
0.464649 0.885495i \(-0.346180\pi\)
\(734\) 0 0
\(735\) 1.54215 + 2.67108i 0.0568830 + 0.0985242i
\(736\) 0 0
\(737\) −7.22137 12.5078i −0.266003 0.460730i
\(738\) 0 0
\(739\) −15.1118 −0.555898 −0.277949 0.960596i \(-0.589655\pi\)
−0.277949 + 0.960596i \(0.589655\pi\)
\(740\) 0 0
\(741\) 78.9694 2.90101
\(742\) 0 0
\(743\) 9.58709 + 16.6053i 0.351716 + 0.609190i 0.986550 0.163458i \(-0.0522649\pi\)
−0.634834 + 0.772648i \(0.718932\pi\)
\(744\) 0 0
\(745\) −9.67897 16.7645i −0.354610 0.614203i
\(746\) 0 0
\(747\) −8.24965 14.2888i −0.301839 0.522800i
\(748\) 0 0
\(749\) −4.40942 + 7.63734i −0.161117 + 0.279062i
\(750\) 0 0
\(751\) 28.4343 1.03758 0.518791 0.854901i \(-0.326382\pi\)
0.518791 + 0.854901i \(0.326382\pi\)
\(752\) 0 0
\(753\) −0.450645 0.780540i −0.0164224 0.0284444i
\(754\) 0 0
\(755\) −8.15183 + 14.1194i −0.296675 + 0.513857i
\(756\) 0 0
\(757\) −9.25575 + 16.0314i −0.336406 + 0.582672i −0.983754 0.179522i \(-0.942545\pi\)
0.647348 + 0.762195i \(0.275878\pi\)
\(758\) 0 0
\(759\) −25.4577 44.0940i −0.924056 1.60051i
\(760\) 0 0
\(761\) −1.57754 + 2.73237i −0.0571857 + 0.0990485i −0.893201 0.449658i \(-0.851546\pi\)
0.836015 + 0.548706i \(0.184879\pi\)
\(762\) 0 0
\(763\) 22.9535 0.830972
\(764\) 0 0
\(765\) −10.8661 + 18.8206i −0.392864 + 0.680461i
\(766\) 0 0
\(767\) 0.432824 0.0156284
\(768\) 0 0
\(769\) −40.4676 −1.45930 −0.729650 0.683821i \(-0.760317\pi\)
−0.729650 + 0.683821i \(0.760317\pi\)
\(770\) 0 0
\(771\) 1.52131 0.0547888
\(772\) 0 0
\(773\) −17.0506 29.5325i −0.613267 1.06221i −0.990686 0.136168i \(-0.956521\pi\)
0.377418 0.926043i \(-0.376812\pi\)
\(774\) 0 0
\(775\) 1.16370 2.01558i 0.0418012 0.0724018i
\(776\) 0 0
\(777\) 26.0331 37.9767i 0.933932 1.36241i
\(778\) 0 0
\(779\) 33.7924 58.5302i 1.21074 2.09706i
\(780\) 0 0
\(781\) 25.8428 + 44.7610i 0.924727 + 1.60167i
\(782\) 0 0
\(783\) −22.6053 −0.807848
\(784\) 0 0
\(785\) −3.08993 −0.110284
\(786\) 0 0
\(787\) 10.7200 0.382127 0.191064 0.981578i \(-0.438806\pi\)
0.191064 + 0.981578i \(0.438806\pi\)
\(788\) 0 0
\(789\) −3.21340 + 5.56578i −0.114400 + 0.198147i
\(790\) 0 0
\(791\) −40.3626 −1.43513
\(792\) 0 0
\(793\) −19.8699 + 34.4157i −0.705600 + 1.22214i
\(794\) 0 0
\(795\) 1.59525 + 2.76305i 0.0565776 + 0.0979953i
\(796\) 0 0
\(797\) −9.23112 + 15.9888i −0.326983 + 0.566351i −0.981912 0.189339i \(-0.939365\pi\)
0.654929 + 0.755691i \(0.272699\pi\)
\(798\) 0 0
\(799\) 19.0143 32.9337i 0.672678 1.16511i
\(800\) 0 0
\(801\) −1.07428 1.86070i −0.0379577 0.0657447i
\(802\) 0 0
\(803\) −14.6219 −0.515995
\(804\) 0 0
\(805\) 8.62838 14.9448i 0.304110 0.526734i
\(806\) 0 0
\(807\) 2.75359 + 4.76936i 0.0969311 + 0.167890i
\(808\) 0 0
\(809\) −24.6007 42.6097i −0.864916 1.49808i −0.867131 0.498080i \(-0.834038\pi\)
0.00221527 0.999998i \(-0.499295\pi\)
\(810\) 0 0
\(811\) −0.175474 0.303929i −0.00616171 0.0106724i 0.862928 0.505327i \(-0.168628\pi\)
−0.869090 + 0.494654i \(0.835295\pi\)
\(812\) 0 0
\(813\) −18.3016 −0.641863
\(814\) 0 0
\(815\) 15.4195 0.540120
\(816\) 0 0
\(817\) 21.7262 + 37.6310i 0.760105 + 1.31654i
\(818\) 0 0
\(819\) 22.5033 + 38.9768i 0.786329 + 1.36196i
\(820\) 0 0
\(821\) −19.2820 33.3974i −0.672947 1.16558i −0.977064 0.212944i \(-0.931695\pi\)
0.304118 0.952634i \(-0.401638\pi\)
\(822\) 0 0
\(823\) −11.3138 + 19.5960i −0.394374 + 0.683075i −0.993021 0.117937i \(-0.962372\pi\)
0.598647 + 0.801013i \(0.295705\pi\)
\(824\) 0 0
\(825\) −8.43041 −0.293509
\(826\) 0 0
\(827\) −0.977232 1.69262i −0.0339817 0.0588580i 0.848534 0.529140i \(-0.177485\pi\)
−0.882516 + 0.470282i \(0.844152\pi\)
\(828\) 0 0
\(829\) −0.454577 + 0.787350i −0.0157881 + 0.0273458i −0.873812 0.486265i \(-0.838359\pi\)
0.858023 + 0.513611i \(0.171692\pi\)
\(830\) 0 0
\(831\) −21.6246 + 37.4550i −0.750150 + 1.29930i
\(832\) 0 0
\(833\) 3.14866 + 5.45363i 0.109095 + 0.188957i
\(834\) 0 0
\(835\) 11.6590 20.1940i 0.403477 0.698843i
\(836\) 0 0
\(837\) −6.27599 −0.216930
\(838\) 0 0
\(839\) 7.37874 12.7804i 0.254742 0.441227i −0.710083 0.704118i \(-0.751343\pi\)
0.964826 + 0.262891i \(0.0846760\pi\)
\(840\) 0 0
\(841\) 41.2742 1.42325
\(842\) 0 0
\(843\) 27.8048 0.957647
\(844\) 0 0
\(845\) −2.36862 −0.0814831
\(846\) 0 0
\(847\) −1.24692 2.15973i −0.0428447 0.0742091i
\(848\) 0 0
\(849\) −10.7295 + 18.5841i −0.368236 + 0.637803i
\(850\) 0 0
\(851\) −36.6270 2.83803i −1.25556 0.0972864i
\(852\) 0 0
\(853\) −20.4281 + 35.3826i −0.699446 + 1.21148i 0.269213 + 0.963081i \(0.413237\pi\)
−0.968659 + 0.248396i \(0.920097\pi\)
\(854\) 0 0
\(855\) 15.2759 + 26.4587i 0.522426 + 0.904868i
\(856\) 0 0
\(857\) 11.0065 0.375974 0.187987 0.982172i \(-0.439804\pi\)
0.187987 + 0.982172i \(0.439804\pi\)
\(858\) 0 0
\(859\) 33.2969 1.13607 0.568037 0.823003i \(-0.307703\pi\)
0.568037 + 0.823003i \(0.307703\pi\)
\(860\) 0 0
\(861\) 67.2782 2.29283
\(862\) 0 0
\(863\) −12.5419 + 21.7232i −0.426931 + 0.739466i −0.996599 0.0824093i \(-0.973739\pi\)
0.569668 + 0.821875i \(0.307072\pi\)
\(864\) 0 0
\(865\) 19.9112 0.677000
\(866\) 0 0
\(867\) −16.2331 + 28.1166i −0.551305 + 0.954888i
\(868\) 0 0
\(869\) 26.6034 + 46.0785i 0.902459 + 1.56310i
\(870\) 0 0
\(871\) 8.89595 15.4082i 0.301428 0.522088i
\(872\) 0 0
\(873\) −11.4615 + 19.8520i −0.387914 + 0.671887i
\(874\) 0 0
\(875\) −1.42866 2.47451i −0.0482975 0.0836537i
\(876\) 0 0
\(877\) −47.3336 −1.59834 −0.799171 0.601104i \(-0.794728\pi\)
−0.799171 + 0.601104i \(0.794728\pi\)
\(878\) 0 0
\(879\) 35.0062 60.6325i 1.18073 2.04508i
\(880\) 0 0
\(881\) 14.3186 + 24.8006i 0.482406 + 0.835552i 0.999796 0.0201975i \(-0.00642951\pi\)
−0.517390 + 0.855750i \(0.673096\pi\)
\(882\) 0 0
\(883\) 21.3690 + 37.0123i 0.719126 + 1.24556i 0.961347 + 0.275341i \(0.0887908\pi\)
−0.242221 + 0.970221i \(0.577876\pi\)
\(884\) 0 0
\(885\) 0.146241 + 0.253296i 0.00491582 + 0.00851446i
\(886\) 0 0
\(887\) −26.7417 −0.897897 −0.448948 0.893558i \(-0.648201\pi\)
−0.448948 + 0.893558i \(0.648201\pi\)
\(888\) 0 0
\(889\) −0.117801 −0.00395091
\(890\) 0 0
\(891\) −7.81284 13.5322i −0.261740 0.453347i
\(892\) 0 0
\(893\) −26.7310 46.2994i −0.894519 1.54935i
\(894\) 0 0
\(895\) 12.0209 + 20.8208i 0.401814 + 0.695962i
\(896\) 0 0
\(897\) 31.3611 54.3191i 1.04712 1.81366i
\(898\) 0 0
\(899\) 19.5105 0.650711
\(900\) 0 0
\(901\) 3.25707 + 5.64142i 0.108509 + 0.187943i
\(902\) 0 0
\(903\) −21.6277 + 37.4602i −0.719723 + 1.24660i
\(904\) 0 0
\(905\) 4.99453 8.65078i 0.166024 0.287562i
\(906\) 0 0
\(907\) 4.66980 + 8.08832i 0.155058 + 0.268568i 0.933080 0.359668i \(-0.117110\pi\)
−0.778022 + 0.628237i \(0.783777\pi\)
\(908\) 0 0
\(909\) 0.552113 0.956287i 0.0183124 0.0317180i
\(910\) 0 0
\(911\) 22.6135 0.749219 0.374609 0.927183i \(-0.377777\pi\)
0.374609 + 0.927183i \(0.377777\pi\)
\(912\) 0 0
\(913\) 6.53402 11.3173i 0.216244 0.374546i
\(914\) 0 0
\(915\) −26.8542 −0.887771
\(916\) 0 0
\(917\) −56.5034 −1.86591
\(918\) 0 0
\(919\) −24.5941 −0.811283 −0.405641 0.914032i \(-0.632952\pi\)
−0.405641 + 0.914032i \(0.632952\pi\)
\(920\) 0 0
\(921\) −21.1197 36.5804i −0.695917 1.20536i
\(922\) 0 0
\(923\) −31.8355 + 55.1407i −1.04788 + 1.81498i
\(924\) 0 0
\(925\) −3.43925 + 5.01713i −0.113082 + 0.164962i
\(926\) 0 0
\(927\) −13.8762 + 24.0343i −0.455755 + 0.789392i
\(928\) 0 0
\(929\) −10.6533 18.4521i −0.349524 0.605393i 0.636641 0.771160i \(-0.280323\pi\)
−0.986165 + 0.165767i \(0.946990\pi\)
\(930\) 0 0
\(931\) 8.85299 0.290145
\(932\) 0 0
\(933\) 2.66150 0.0871335
\(934\) 0 0
\(935\) −17.2127 −0.562914
\(936\) 0 0
\(937\) 13.8037 23.9087i 0.450946 0.781062i −0.547499 0.836807i \(-0.684420\pi\)
0.998445 + 0.0557444i \(0.0177532\pi\)
\(938\) 0 0
\(939\) −67.2660 −2.19514
\(940\) 0 0
\(941\) −14.2776 + 24.7294i −0.465435 + 0.806157i −0.999221 0.0394627i \(-0.987435\pi\)
0.533786 + 0.845619i \(0.320769\pi\)
\(942\) 0 0
\(943\) −26.8400 46.4882i −0.874030 1.51386i
\(944\) 0 0
\(945\) −3.85249 + 6.67270i −0.125321 + 0.217063i
\(946\) 0 0
\(947\) 4.89437 8.47730i 0.159046 0.275475i −0.775479 0.631373i \(-0.782492\pi\)
0.934525 + 0.355898i \(0.115825\pi\)
\(948\) 0 0
\(949\) −9.00629 15.5994i −0.292357 0.506376i
\(950\) 0 0
\(951\) −2.57246 −0.0834179
\(952\) 0 0
\(953\) 21.2457 36.7986i 0.688215 1.19202i −0.284200 0.958765i \(-0.591728\pi\)
0.972415 0.233258i \(-0.0749387\pi\)
\(954\) 0 0
\(955\) 4.21199 + 7.29538i 0.136297 + 0.236073i
\(956\) 0 0
\(957\) −35.3359 61.2036i −1.14225 1.97843i
\(958\) 0 0
\(959\) 13.4704 + 23.3314i 0.434982 + 0.753412i
\(960\) 0 0
\(961\) −25.5832 −0.825266
\(962\) 0 0
\(963\) −12.4009 −0.399613
\(964\) 0 0
\(965\) 8.32189 + 14.4139i 0.267891 + 0.464001i
\(966\) 0 0
\(967\) −9.28643 16.0846i −0.298631 0.517245i 0.677192 0.735807i \(-0.263197\pi\)
−0.975823 + 0.218562i \(0.929863\pi\)
\(968\) 0 0
\(969\) 54.4772 + 94.3572i 1.75006 + 3.03119i
\(970\) 0 0
\(971\) −7.22464 + 12.5134i −0.231850 + 0.401575i −0.958352 0.285588i \(-0.907811\pi\)
0.726503 + 0.687163i \(0.241144\pi\)
\(972\) 0 0
\(973\) −22.2808 −0.714290
\(974\) 0 0
\(975\) −5.19268 8.99398i −0.166299 0.288038i
\(976\) 0 0
\(977\) −0.757674 + 1.31233i −0.0242402 + 0.0419852i −0.877891 0.478860i \(-0.841050\pi\)
0.853651 + 0.520846i \(0.174383\pi\)
\(978\) 0 0
\(979\) 0.850866 1.47374i 0.0271938 0.0471010i
\(980\) 0 0
\(981\) 16.1384 + 27.9525i 0.515259 + 0.892455i
\(982\) 0 0
\(983\) 0.0864348 0.149710i 0.00275684 0.00477499i −0.864644 0.502386i \(-0.832456\pi\)
0.867401 + 0.497611i \(0.165789\pi\)
\(984\) 0 0
\(985\) −5.60797 −0.178685
\(986\) 0 0
\(987\) 26.6097 46.0893i 0.846996 1.46704i
\(988\) 0 0
\(989\) 34.5126 1.09744
\(990\) 0 0
\(991\) −14.2431 −0.452446 −0.226223 0.974076i \(-0.572638\pi\)
−0.226223 + 0.974076i \(0.572638\pi\)
\(992\) 0 0
\(993\) 31.4801 0.998990
\(994\) 0 0
\(995\) −5.18907 8.98773i −0.164505 0.284930i
\(996\) 0 0
\(997\) −4.15271 + 7.19270i −0.131518 + 0.227795i −0.924262 0.381759i \(-0.875318\pi\)
0.792744 + 0.609554i \(0.208652\pi\)
\(998\) 0 0
\(999\) 16.3536 + 1.26715i 0.517405 + 0.0400910i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 740.2.i.b.121.1 14
37.26 even 3 inner 740.2.i.b.581.1 yes 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
740.2.i.b.121.1 14 1.1 even 1 trivial
740.2.i.b.581.1 yes 14 37.26 even 3 inner