Properties

Label 740.2.i.a.581.7
Level $740$
Weight $2$
Character 740.581
Analytic conductor $5.909$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [740,2,Mod(121,740)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(740, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("740.121"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 740 = 2^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 740.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,0,0,-7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.90892974957\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 24x^{12} + 204x^{10} + 727x^{8} + 1008x^{6} + 426x^{4} + 64x^{2} + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 581.7
Root \(-2.88103i\) of defining polynomial
Character \(\chi\) \(=\) 740.581
Dual form 740.2.i.a.121.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.64482 - 2.84891i) q^{3} +(-0.500000 + 0.866025i) q^{5} +(2.43427 - 4.21628i) q^{7} +(-3.91088 - 6.77384i) q^{9} +3.55441 q^{11} +(-0.872967 + 1.51202i) q^{13} +(1.64482 + 2.84891i) q^{15} +(1.30594 + 2.26196i) q^{17} +(-3.36801 + 5.83357i) q^{19} +(-8.00788 - 13.8701i) q^{21} +2.56690 q^{23} +(-0.500000 - 0.866025i) q^{25} -15.8619 q^{27} -4.54281 q^{29} +3.31582 q^{31} +(5.84636 - 10.1262i) q^{33} +(2.43427 + 4.21628i) q^{35} +(-1.91177 + 5.77453i) q^{37} +(2.87175 + 4.97402i) q^{39} +(3.12285 - 5.40893i) q^{41} -2.10275 q^{43} +7.82175 q^{45} +7.60303 q^{47} +(-8.35134 - 14.4649i) q^{49} +8.59218 q^{51} +(3.92202 + 6.79315i) q^{53} +(-1.77720 + 3.07821i) q^{55} +(11.0796 + 19.1904i) q^{57} +(-6.62467 - 11.4743i) q^{59} +(0.837134 - 1.44996i) q^{61} -38.0805 q^{63} +(-0.872967 - 1.51202i) q^{65} +(-6.07691 + 10.5255i) q^{67} +(4.22209 - 7.31288i) q^{69} +(-2.18471 + 3.78403i) q^{71} -7.12131 q^{73} -3.28964 q^{75} +(8.65238 - 14.9864i) q^{77} +(4.37194 - 7.57243i) q^{79} +(-14.3573 + 24.8676i) q^{81} +(3.78494 + 6.55571i) q^{83} -2.61189 q^{85} +(-7.47211 + 12.9421i) q^{87} +(6.69509 + 11.5962i) q^{89} +(4.25007 + 7.36134i) q^{91} +(5.45394 - 9.44650i) q^{93} +(-3.36801 - 5.83357i) q^{95} -16.8732 q^{97} +(-13.9008 - 24.0770i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 7 q^{5} + 4 q^{7} - 13 q^{9} + 14 q^{11} + 4 q^{13} + q^{17} + 4 q^{19} - 3 q^{21} + 12 q^{23} - 7 q^{25} - 6 q^{27} - 4 q^{29} - 24 q^{31} + 13 q^{33} + 4 q^{35} + 10 q^{37} + 21 q^{39} + 5 q^{41}+ \cdots - 58 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/740\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(297\) \(371\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.64482 2.84891i 0.949638 1.64482i 0.203452 0.979085i \(-0.434784\pi\)
0.746187 0.665737i \(-0.231883\pi\)
\(4\) 0 0
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i
\(6\) 0 0
\(7\) 2.43427 4.21628i 0.920068 1.59360i 0.120760 0.992682i \(-0.461467\pi\)
0.799308 0.600922i \(-0.205200\pi\)
\(8\) 0 0
\(9\) −3.91088 6.77384i −1.30363 2.25795i
\(10\) 0 0
\(11\) 3.55441 1.07169 0.535847 0.844315i \(-0.319992\pi\)
0.535847 + 0.844315i \(0.319992\pi\)
\(12\) 0 0
\(13\) −0.872967 + 1.51202i −0.242117 + 0.419360i −0.961317 0.275444i \(-0.911175\pi\)
0.719200 + 0.694803i \(0.244509\pi\)
\(14\) 0 0
\(15\) 1.64482 + 2.84891i 0.424691 + 0.735587i
\(16\) 0 0
\(17\) 1.30594 + 2.26196i 0.316738 + 0.548606i 0.979805 0.199954i \(-0.0640791\pi\)
−0.663068 + 0.748560i \(0.730746\pi\)
\(18\) 0 0
\(19\) −3.36801 + 5.83357i −0.772675 + 1.33831i 0.163417 + 0.986557i \(0.447748\pi\)
−0.936092 + 0.351755i \(0.885585\pi\)
\(20\) 0 0
\(21\) −8.00788 13.8701i −1.74746 3.02669i
\(22\) 0 0
\(23\) 2.56690 0.535236 0.267618 0.963525i \(-0.413764\pi\)
0.267618 + 0.963525i \(0.413764\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 0 0
\(27\) −15.8619 −3.05262
\(28\) 0 0
\(29\) −4.54281 −0.843578 −0.421789 0.906694i \(-0.638598\pi\)
−0.421789 + 0.906694i \(0.638598\pi\)
\(30\) 0 0
\(31\) 3.31582 0.595540 0.297770 0.954638i \(-0.403757\pi\)
0.297770 + 0.954638i \(0.403757\pi\)
\(32\) 0 0
\(33\) 5.84636 10.1262i 1.01772 1.76275i
\(34\) 0 0
\(35\) 2.43427 + 4.21628i 0.411467 + 0.712681i
\(36\) 0 0
\(37\) −1.91177 + 5.77453i −0.314292 + 0.949326i
\(38\) 0 0
\(39\) 2.87175 + 4.97402i 0.459848 + 0.796480i
\(40\) 0 0
\(41\) 3.12285 5.40893i 0.487706 0.844732i −0.512194 0.858870i \(-0.671167\pi\)
0.999900 + 0.0141376i \(0.00450030\pi\)
\(42\) 0 0
\(43\) −2.10275 −0.320666 −0.160333 0.987063i \(-0.551257\pi\)
−0.160333 + 0.987063i \(0.551257\pi\)
\(44\) 0 0
\(45\) 7.82175 1.16600
\(46\) 0 0
\(47\) 7.60303 1.10902 0.554508 0.832178i \(-0.312906\pi\)
0.554508 + 0.832178i \(0.312906\pi\)
\(48\) 0 0
\(49\) −8.35134 14.4649i −1.19305 2.06642i
\(50\) 0 0
\(51\) 8.59218 1.20315
\(52\) 0 0
\(53\) 3.92202 + 6.79315i 0.538732 + 0.933110i 0.998973 + 0.0453165i \(0.0144296\pi\)
−0.460241 + 0.887794i \(0.652237\pi\)
\(54\) 0 0
\(55\) −1.77720 + 3.07821i −0.239638 + 0.415065i
\(56\) 0 0
\(57\) 11.0796 + 19.1904i 1.46752 + 2.54183i
\(58\) 0 0
\(59\) −6.62467 11.4743i −0.862458 1.49382i −0.869549 0.493846i \(-0.835591\pi\)
0.00709131 0.999975i \(-0.497743\pi\)
\(60\) 0 0
\(61\) 0.837134 1.44996i 0.107184 0.185648i −0.807444 0.589944i \(-0.799150\pi\)
0.914628 + 0.404296i \(0.132483\pi\)
\(62\) 0 0
\(63\) −38.0805 −4.79770
\(64\) 0 0
\(65\) −0.872967 1.51202i −0.108278 0.187543i
\(66\) 0 0
\(67\) −6.07691 + 10.5255i −0.742412 + 1.28590i 0.208982 + 0.977919i \(0.432985\pi\)
−0.951394 + 0.307976i \(0.900348\pi\)
\(68\) 0 0
\(69\) 4.22209 7.31288i 0.508280 0.880367i
\(70\) 0 0
\(71\) −2.18471 + 3.78403i −0.259277 + 0.449082i −0.966049 0.258361i \(-0.916818\pi\)
0.706771 + 0.707442i \(0.250151\pi\)
\(72\) 0 0
\(73\) −7.12131 −0.833486 −0.416743 0.909024i \(-0.636828\pi\)
−0.416743 + 0.909024i \(0.636828\pi\)
\(74\) 0 0
\(75\) −3.28964 −0.379855
\(76\) 0 0
\(77\) 8.65238 14.9864i 0.986031 1.70786i
\(78\) 0 0
\(79\) 4.37194 7.57243i 0.491882 0.851965i −0.508074 0.861313i \(-0.669642\pi\)
0.999956 + 0.00934836i \(0.00297572\pi\)
\(80\) 0 0
\(81\) −14.3573 + 24.8676i −1.59525 + 2.76306i
\(82\) 0 0
\(83\) 3.78494 + 6.55571i 0.415451 + 0.719583i 0.995476 0.0950163i \(-0.0302903\pi\)
−0.580024 + 0.814599i \(0.696957\pi\)
\(84\) 0 0
\(85\) −2.61189 −0.283299
\(86\) 0 0
\(87\) −7.47211 + 12.9421i −0.801094 + 1.38754i
\(88\) 0 0
\(89\) 6.69509 + 11.5962i 0.709678 + 1.22920i 0.964976 + 0.262337i \(0.0844931\pi\)
−0.255298 + 0.966862i \(0.582174\pi\)
\(90\) 0 0
\(91\) 4.25007 + 7.36134i 0.445529 + 0.771678i
\(92\) 0 0
\(93\) 5.45394 9.44650i 0.565547 0.979557i
\(94\) 0 0
\(95\) −3.36801 5.83357i −0.345551 0.598512i
\(96\) 0 0
\(97\) −16.8732 −1.71322 −0.856608 0.515968i \(-0.827432\pi\)
−0.856608 + 0.515968i \(0.827432\pi\)
\(98\) 0 0
\(99\) −13.9008 24.0770i −1.39709 2.41983i
\(100\) 0 0
\(101\) 9.58060 0.953305 0.476653 0.879092i \(-0.341850\pi\)
0.476653 + 0.879092i \(0.341850\pi\)
\(102\) 0 0
\(103\) 16.2023 1.59646 0.798228 0.602355i \(-0.205771\pi\)
0.798228 + 0.602355i \(0.205771\pi\)
\(104\) 0 0
\(105\) 16.0158 1.56298
\(106\) 0 0
\(107\) 9.51814 16.4859i 0.920153 1.59375i 0.120977 0.992655i \(-0.461397\pi\)
0.799176 0.601097i \(-0.205269\pi\)
\(108\) 0 0
\(109\) 3.24214 + 5.61554i 0.310540 + 0.537872i 0.978479 0.206344i \(-0.0661567\pi\)
−0.667939 + 0.744216i \(0.732823\pi\)
\(110\) 0 0
\(111\) 13.3066 + 14.9445i 1.26301 + 1.41847i
\(112\) 0 0
\(113\) −1.93722 3.35537i −0.182239 0.315647i 0.760404 0.649450i \(-0.225001\pi\)
−0.942643 + 0.333804i \(0.891668\pi\)
\(114\) 0 0
\(115\) −1.28345 + 2.22300i −0.119682 + 0.207296i
\(116\) 0 0
\(117\) 13.6563 1.26252
\(118\) 0 0
\(119\) 12.7161 1.16568
\(120\) 0 0
\(121\) 1.63380 0.148528
\(122\) 0 0
\(123\) −10.2730 17.7934i −0.926289 1.60438i
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 5.20320 + 9.01221i 0.461710 + 0.799705i 0.999046 0.0436633i \(-0.0139029\pi\)
−0.537337 + 0.843368i \(0.680570\pi\)
\(128\) 0 0
\(129\) −3.45864 + 5.99054i −0.304516 + 0.527438i
\(130\) 0 0
\(131\) 3.73853 + 6.47533i 0.326637 + 0.565752i 0.981842 0.189699i \(-0.0607512\pi\)
−0.655205 + 0.755451i \(0.727418\pi\)
\(132\) 0 0
\(133\) 16.3973 + 28.4010i 1.42183 + 2.46268i
\(134\) 0 0
\(135\) 7.93093 13.7368i 0.682586 1.18227i
\(136\) 0 0
\(137\) 6.86658 0.586652 0.293326 0.956013i \(-0.405238\pi\)
0.293326 + 0.956013i \(0.405238\pi\)
\(138\) 0 0
\(139\) −0.493431 0.854648i −0.0418523 0.0724903i 0.844340 0.535807i \(-0.179993\pi\)
−0.886193 + 0.463317i \(0.846659\pi\)
\(140\) 0 0
\(141\) 12.5056 21.6604i 1.05316 1.82413i
\(142\) 0 0
\(143\) −3.10288 + 5.37434i −0.259476 + 0.449425i
\(144\) 0 0
\(145\) 2.27140 3.93419i 0.188630 0.326716i
\(146\) 0 0
\(147\) −54.9459 −4.53186
\(148\) 0 0
\(149\) −1.63931 −0.134298 −0.0671488 0.997743i \(-0.521390\pi\)
−0.0671488 + 0.997743i \(0.521390\pi\)
\(150\) 0 0
\(151\) −1.20805 + 2.09240i −0.0983094 + 0.170277i −0.910985 0.412440i \(-0.864677\pi\)
0.812676 + 0.582716i \(0.198010\pi\)
\(152\) 0 0
\(153\) 10.2148 17.6925i 0.825815 1.43035i
\(154\) 0 0
\(155\) −1.65791 + 2.87159i −0.133167 + 0.230652i
\(156\) 0 0
\(157\) 7.32019 + 12.6789i 0.584215 + 1.01189i 0.994973 + 0.100146i \(0.0319309\pi\)
−0.410758 + 0.911745i \(0.634736\pi\)
\(158\) 0 0
\(159\) 25.8041 2.04640
\(160\) 0 0
\(161\) 6.24853 10.8228i 0.492453 0.852954i
\(162\) 0 0
\(163\) −5.67518 9.82971i −0.444515 0.769922i 0.553504 0.832847i \(-0.313291\pi\)
−0.998018 + 0.0629247i \(0.979957\pi\)
\(164\) 0 0
\(165\) 5.84636 + 10.1262i 0.455139 + 0.788324i
\(166\) 0 0
\(167\) 7.70599 13.3472i 0.596308 1.03283i −0.397053 0.917796i \(-0.629967\pi\)
0.993361 0.115039i \(-0.0366995\pi\)
\(168\) 0 0
\(169\) 4.97586 + 8.61844i 0.382758 + 0.662957i
\(170\) 0 0
\(171\) 52.6875 4.02912
\(172\) 0 0
\(173\) −5.57527 9.65665i −0.423880 0.734182i 0.572435 0.819950i \(-0.305999\pi\)
−0.996315 + 0.0857684i \(0.972665\pi\)
\(174\) 0 0
\(175\) −4.86854 −0.368027
\(176\) 0 0
\(177\) −43.5856 −3.27609
\(178\) 0 0
\(179\) −16.9010 −1.26324 −0.631622 0.775277i \(-0.717610\pi\)
−0.631622 + 0.775277i \(0.717610\pi\)
\(180\) 0 0
\(181\) 8.61498 14.9216i 0.640346 1.10911i −0.345009 0.938599i \(-0.612124\pi\)
0.985355 0.170513i \(-0.0545425\pi\)
\(182\) 0 0
\(183\) −2.75387 4.76985i −0.203572 0.352597i
\(184\) 0 0
\(185\) −4.04500 4.54290i −0.297395 0.334001i
\(186\) 0 0
\(187\) 4.64185 + 8.03993i 0.339446 + 0.587938i
\(188\) 0 0
\(189\) −38.6120 + 66.8780i −2.80861 + 4.86466i
\(190\) 0 0
\(191\) −7.82780 −0.566400 −0.283200 0.959061i \(-0.591396\pi\)
−0.283200 + 0.959061i \(0.591396\pi\)
\(192\) 0 0
\(193\) 0.0692318 0.00498341 0.00249171 0.999997i \(-0.499207\pi\)
0.00249171 + 0.999997i \(0.499207\pi\)
\(194\) 0 0
\(195\) −5.74350 −0.411301
\(196\) 0 0
\(197\) 5.07727 + 8.79409i 0.361741 + 0.626553i 0.988247 0.152863i \(-0.0488493\pi\)
−0.626507 + 0.779416i \(0.715516\pi\)
\(198\) 0 0
\(199\) −0.506833 −0.0359284 −0.0179642 0.999839i \(-0.505718\pi\)
−0.0179642 + 0.999839i \(0.505718\pi\)
\(200\) 0 0
\(201\) 19.9909 + 34.6252i 1.41005 + 2.44227i
\(202\) 0 0
\(203\) −11.0584 + 19.1537i −0.776149 + 1.34433i
\(204\) 0 0
\(205\) 3.12285 + 5.40893i 0.218109 + 0.377776i
\(206\) 0 0
\(207\) −10.0388 17.3878i −0.697747 1.20853i
\(208\) 0 0
\(209\) −11.9713 + 20.7349i −0.828071 + 1.43426i
\(210\) 0 0
\(211\) 2.77262 0.190875 0.0954376 0.995435i \(-0.469575\pi\)
0.0954376 + 0.995435i \(0.469575\pi\)
\(212\) 0 0
\(213\) 7.18692 + 12.4481i 0.492439 + 0.852930i
\(214\) 0 0
\(215\) 1.05137 1.82103i 0.0717030 0.124193i
\(216\) 0 0
\(217\) 8.07161 13.9804i 0.547937 0.949054i
\(218\) 0 0
\(219\) −11.7133 + 20.2880i −0.791510 + 1.37094i
\(220\) 0 0
\(221\) −4.56018 −0.306751
\(222\) 0 0
\(223\) −9.09828 −0.609266 −0.304633 0.952470i \(-0.598534\pi\)
−0.304633 + 0.952470i \(0.598534\pi\)
\(224\) 0 0
\(225\) −3.91088 + 6.77384i −0.260725 + 0.451589i
\(226\) 0 0
\(227\) −2.98215 + 5.16524i −0.197933 + 0.342829i −0.947858 0.318693i \(-0.896756\pi\)
0.749925 + 0.661522i \(0.230089\pi\)
\(228\) 0 0
\(229\) −0.642125 + 1.11219i −0.0424328 + 0.0734958i −0.886462 0.462802i \(-0.846844\pi\)
0.844029 + 0.536298i \(0.180178\pi\)
\(230\) 0 0
\(231\) −28.4633 49.2998i −1.87275 3.24369i
\(232\) 0 0
\(233\) 9.34778 0.612394 0.306197 0.951968i \(-0.400943\pi\)
0.306197 + 0.951968i \(0.400943\pi\)
\(234\) 0 0
\(235\) −3.80152 + 6.58442i −0.247984 + 0.429520i
\(236\) 0 0
\(237\) −14.3821 24.9106i −0.934220 1.61812i
\(238\) 0 0
\(239\) −0.214233 0.371062i −0.0138576 0.0240020i 0.859013 0.511953i \(-0.171078\pi\)
−0.872871 + 0.487951i \(0.837744\pi\)
\(240\) 0 0
\(241\) −5.39077 + 9.33708i −0.347250 + 0.601454i −0.985760 0.168159i \(-0.946218\pi\)
0.638510 + 0.769613i \(0.279551\pi\)
\(242\) 0 0
\(243\) 23.4376 + 40.5951i 1.50352 + 2.60418i
\(244\) 0 0
\(245\) 16.7027 1.06710
\(246\) 0 0
\(247\) −5.88033 10.1850i −0.374156 0.648058i
\(248\) 0 0
\(249\) 24.9022 1.57811
\(250\) 0 0
\(251\) −9.08886 −0.573684 −0.286842 0.957978i \(-0.592605\pi\)
−0.286842 + 0.957978i \(0.592605\pi\)
\(252\) 0 0
\(253\) 9.12381 0.573609
\(254\) 0 0
\(255\) −4.29609 + 7.44105i −0.269032 + 0.465976i
\(256\) 0 0
\(257\) −11.2310 19.4527i −0.700571 1.21342i −0.968266 0.249921i \(-0.919595\pi\)
0.267695 0.963504i \(-0.413738\pi\)
\(258\) 0 0
\(259\) 19.6933 + 22.1173i 1.22368 + 1.37430i
\(260\) 0 0
\(261\) 17.7664 + 30.7722i 1.09971 + 1.90475i
\(262\) 0 0
\(263\) −12.4190 + 21.5104i −0.765791 + 1.32639i 0.174037 + 0.984739i \(0.444319\pi\)
−0.939828 + 0.341649i \(0.889015\pi\)
\(264\) 0 0
\(265\) −7.84405 −0.481856
\(266\) 0 0
\(267\) 44.0489 2.69575
\(268\) 0 0
\(269\) 2.82239 0.172084 0.0860422 0.996291i \(-0.472578\pi\)
0.0860422 + 0.996291i \(0.472578\pi\)
\(270\) 0 0
\(271\) 6.27217 + 10.8637i 0.381007 + 0.659924i 0.991207 0.132324i \(-0.0422439\pi\)
−0.610199 + 0.792248i \(0.708911\pi\)
\(272\) 0 0
\(273\) 27.9625 1.69236
\(274\) 0 0
\(275\) −1.77720 3.07821i −0.107169 0.185623i
\(276\) 0 0
\(277\) 3.20252 5.54692i 0.192421 0.333282i −0.753631 0.657297i \(-0.771700\pi\)
0.946052 + 0.324015i \(0.105033\pi\)
\(278\) 0 0
\(279\) −12.9678 22.4609i −0.776361 1.34470i
\(280\) 0 0
\(281\) −1.78255 3.08748i −0.106338 0.184183i 0.807946 0.589257i \(-0.200579\pi\)
−0.914284 + 0.405073i \(0.867246\pi\)
\(282\) 0 0
\(283\) −10.8012 + 18.7081i −0.642062 + 1.11208i 0.342910 + 0.939368i \(0.388587\pi\)
−0.984972 + 0.172715i \(0.944746\pi\)
\(284\) 0 0
\(285\) −22.1591 −1.31259
\(286\) 0 0
\(287\) −15.2037 26.3336i −0.897446 1.55442i
\(288\) 0 0
\(289\) 5.08902 8.81444i 0.299354 0.518497i
\(290\) 0 0
\(291\) −27.7534 + 48.0704i −1.62693 + 2.81793i
\(292\) 0 0
\(293\) 6.89039 11.9345i 0.402541 0.697222i −0.591491 0.806312i \(-0.701460\pi\)
0.994032 + 0.109090i \(0.0347937\pi\)
\(294\) 0 0
\(295\) 13.2493 0.771406
\(296\) 0 0
\(297\) −56.3795 −3.27147
\(298\) 0 0
\(299\) −2.24082 + 3.88121i −0.129590 + 0.224456i
\(300\) 0 0
\(301\) −5.11865 + 8.86576i −0.295034 + 0.511014i
\(302\) 0 0
\(303\) 15.7584 27.2943i 0.905295 1.56802i
\(304\) 0 0
\(305\) 0.837134 + 1.44996i 0.0479341 + 0.0830244i
\(306\) 0 0
\(307\) −9.20952 −0.525615 −0.262808 0.964848i \(-0.584648\pi\)
−0.262808 + 0.964848i \(0.584648\pi\)
\(308\) 0 0
\(309\) 26.6498 46.1589i 1.51606 2.62589i
\(310\) 0 0
\(311\) −14.4589 25.0436i −0.819889 1.42009i −0.905764 0.423784i \(-0.860702\pi\)
0.0858745 0.996306i \(-0.472632\pi\)
\(312\) 0 0
\(313\) −3.75246 6.49946i −0.212102 0.367371i 0.740270 0.672309i \(-0.234698\pi\)
−0.952372 + 0.304938i \(0.901364\pi\)
\(314\) 0 0
\(315\) 19.0403 32.9787i 1.07280 1.85814i
\(316\) 0 0
\(317\) −4.26608 7.38907i −0.239607 0.415012i 0.720995 0.692941i \(-0.243685\pi\)
−0.960602 + 0.277929i \(0.910352\pi\)
\(318\) 0 0
\(319\) −16.1470 −0.904057
\(320\) 0 0
\(321\) −31.3113 54.2327i −1.74763 3.02698i
\(322\) 0 0
\(323\) −17.5937 −0.978942
\(324\) 0 0
\(325\) 1.74593 0.0968470
\(326\) 0 0
\(327\) 21.3309 1.17960
\(328\) 0 0
\(329\) 18.5078 32.0565i 1.02037 1.76733i
\(330\) 0 0
\(331\) −10.3508 17.9281i −0.568933 0.985420i −0.996672 0.0815180i \(-0.974023\pi\)
0.427739 0.903902i \(-0.359310\pi\)
\(332\) 0 0
\(333\) 46.5924 9.63347i 2.55325 0.527911i
\(334\) 0 0
\(335\) −6.07691 10.5255i −0.332017 0.575070i
\(336\) 0 0
\(337\) −5.19264 + 8.99392i −0.282861 + 0.489930i −0.972088 0.234615i \(-0.924617\pi\)
0.689227 + 0.724546i \(0.257950\pi\)
\(338\) 0 0
\(339\) −12.7456 −0.692243
\(340\) 0 0
\(341\) 11.7858 0.638236
\(342\) 0 0
\(343\) −47.2379 −2.55061
\(344\) 0 0
\(345\) 4.22209 + 7.31288i 0.227310 + 0.393712i
\(346\) 0 0
\(347\) 6.81462 0.365828 0.182914 0.983129i \(-0.441447\pi\)
0.182914 + 0.983129i \(0.441447\pi\)
\(348\) 0 0
\(349\) −0.228562 0.395881i −0.0122346 0.0211910i 0.859843 0.510558i \(-0.170561\pi\)
−0.872078 + 0.489367i \(0.837228\pi\)
\(350\) 0 0
\(351\) 13.8469 23.9835i 0.739091 1.28014i
\(352\) 0 0
\(353\) 9.69143 + 16.7860i 0.515823 + 0.893431i 0.999831 + 0.0183678i \(0.00584697\pi\)
−0.484009 + 0.875063i \(0.660820\pi\)
\(354\) 0 0
\(355\) −2.18471 3.78403i −0.115952 0.200835i
\(356\) 0 0
\(357\) 20.9157 36.2270i 1.10698 1.91734i
\(358\) 0 0
\(359\) −1.52846 −0.0806692 −0.0403346 0.999186i \(-0.512842\pi\)
−0.0403346 + 0.999186i \(0.512842\pi\)
\(360\) 0 0
\(361\) −13.1870 22.8406i −0.694054 1.20214i
\(362\) 0 0
\(363\) 2.68731 4.65457i 0.141047 0.244301i
\(364\) 0 0
\(365\) 3.56065 6.16723i 0.186373 0.322808i
\(366\) 0 0
\(367\) −0.127787 + 0.221334i −0.00667043 + 0.0115535i −0.869341 0.494212i \(-0.835457\pi\)
0.862671 + 0.505766i \(0.168790\pi\)
\(368\) 0 0
\(369\) −48.8523 −2.54315
\(370\) 0 0
\(371\) 38.1891 1.98268
\(372\) 0 0
\(373\) −7.37219 + 12.7690i −0.381717 + 0.661154i −0.991308 0.131563i \(-0.958001\pi\)
0.609590 + 0.792716i \(0.291334\pi\)
\(374\) 0 0
\(375\) 1.64482 2.84891i 0.0849382 0.147117i
\(376\) 0 0
\(377\) 3.96572 6.86883i 0.204245 0.353763i
\(378\) 0 0
\(379\) 14.3422 + 24.8413i 0.736707 + 1.27601i 0.953970 + 0.299901i \(0.0969537\pi\)
−0.217263 + 0.976113i \(0.569713\pi\)
\(380\) 0 0
\(381\) 34.2334 1.75383
\(382\) 0 0
\(383\) −6.79382 + 11.7672i −0.347148 + 0.601278i −0.985742 0.168266i \(-0.946183\pi\)
0.638593 + 0.769544i \(0.279517\pi\)
\(384\) 0 0
\(385\) 8.65238 + 14.9864i 0.440966 + 0.763776i
\(386\) 0 0
\(387\) 8.22358 + 14.2437i 0.418028 + 0.724046i
\(388\) 0 0
\(389\) −14.1622 + 24.5297i −0.718053 + 1.24370i 0.243718 + 0.969846i \(0.421633\pi\)
−0.961770 + 0.273858i \(0.911700\pi\)
\(390\) 0 0
\(391\) 3.35223 + 5.80623i 0.169529 + 0.293634i
\(392\) 0 0
\(393\) 24.5969 1.24075
\(394\) 0 0
\(395\) 4.37194 + 7.57243i 0.219976 + 0.381010i
\(396\) 0 0
\(397\) −26.4002 −1.32499 −0.662493 0.749068i \(-0.730502\pi\)
−0.662493 + 0.749068i \(0.730502\pi\)
\(398\) 0 0
\(399\) 107.883 5.40088
\(400\) 0 0
\(401\) 30.5823 1.52721 0.763604 0.645685i \(-0.223428\pi\)
0.763604 + 0.645685i \(0.223428\pi\)
\(402\) 0 0
\(403\) −2.89460 + 5.01360i −0.144191 + 0.249745i
\(404\) 0 0
\(405\) −14.3573 24.8676i −0.713420 1.23568i
\(406\) 0 0
\(407\) −6.79519 + 20.5250i −0.336825 + 1.01739i
\(408\) 0 0
\(409\) −19.3399 33.4976i −0.956294 1.65635i −0.731378 0.681973i \(-0.761122\pi\)
−0.224917 0.974378i \(-0.572211\pi\)
\(410\) 0 0
\(411\) 11.2943 19.5623i 0.557107 0.964938i
\(412\) 0 0
\(413\) −64.5049 −3.17408
\(414\) 0 0
\(415\) −7.56988 −0.371591
\(416\) 0 0
\(417\) −3.24643 −0.158978
\(418\) 0 0
\(419\) −1.29640 2.24543i −0.0633332 0.109696i 0.832620 0.553844i \(-0.186840\pi\)
−0.895953 + 0.444148i \(0.853506\pi\)
\(420\) 0 0
\(421\) −20.5837 −1.00319 −0.501594 0.865103i \(-0.667253\pi\)
−0.501594 + 0.865103i \(0.667253\pi\)
\(422\) 0 0
\(423\) −29.7345 51.5017i −1.44574 2.50410i
\(424\) 0 0
\(425\) 1.30594 2.26196i 0.0633476 0.109721i
\(426\) 0 0
\(427\) −4.07562 7.05918i −0.197233 0.341618i
\(428\) 0 0
\(429\) 10.2074 + 17.6797i 0.492816 + 0.853583i
\(430\) 0 0
\(431\) 0.943939 1.63495i 0.0454680 0.0787528i −0.842396 0.538859i \(-0.818855\pi\)
0.887864 + 0.460106i \(0.152189\pi\)
\(432\) 0 0
\(433\) −20.7559 −0.997467 −0.498733 0.866756i \(-0.666201\pi\)
−0.498733 + 0.866756i \(0.666201\pi\)
\(434\) 0 0
\(435\) −7.47211 12.9421i −0.358260 0.620525i
\(436\) 0 0
\(437\) −8.64535 + 14.9742i −0.413563 + 0.716313i
\(438\) 0 0
\(439\) 16.8391 29.1661i 0.803685 1.39202i −0.113490 0.993539i \(-0.536203\pi\)
0.917175 0.398485i \(-0.130464\pi\)
\(440\) 0 0
\(441\) −65.3221 + 113.141i −3.11058 + 5.38768i
\(442\) 0 0
\(443\) 24.8309 1.17975 0.589877 0.807493i \(-0.299176\pi\)
0.589877 + 0.807493i \(0.299176\pi\)
\(444\) 0 0
\(445\) −13.3902 −0.634756
\(446\) 0 0
\(447\) −2.69637 + 4.67025i −0.127534 + 0.220895i
\(448\) 0 0
\(449\) 8.92761 15.4631i 0.421320 0.729748i −0.574749 0.818330i \(-0.694900\pi\)
0.996069 + 0.0885822i \(0.0282336\pi\)
\(450\) 0 0
\(451\) 11.0999 19.2255i 0.522672 0.905294i
\(452\) 0 0
\(453\) 3.97404 + 6.88324i 0.186717 + 0.323403i
\(454\) 0 0
\(455\) −8.50015 −0.398493
\(456\) 0 0
\(457\) −11.4312 + 19.7994i −0.534729 + 0.926178i 0.464447 + 0.885601i \(0.346253\pi\)
−0.999176 + 0.0405773i \(0.987080\pi\)
\(458\) 0 0
\(459\) −20.7147 35.8789i −0.966879 1.67468i
\(460\) 0 0
\(461\) 2.71334 + 4.69963i 0.126373 + 0.218884i 0.922269 0.386550i \(-0.126333\pi\)
−0.795896 + 0.605433i \(0.793000\pi\)
\(462\) 0 0
\(463\) −17.3081 + 29.9785i −0.804374 + 1.39322i 0.112338 + 0.993670i \(0.464166\pi\)
−0.916713 + 0.399547i \(0.869167\pi\)
\(464\) 0 0
\(465\) 5.45394 + 9.44650i 0.252920 + 0.438071i
\(466\) 0 0
\(467\) −2.39725 −0.110932 −0.0554658 0.998461i \(-0.517664\pi\)
−0.0554658 + 0.998461i \(0.517664\pi\)
\(468\) 0 0
\(469\) 29.5857 + 51.2439i 1.36614 + 2.36622i
\(470\) 0 0
\(471\) 48.1617 2.21917
\(472\) 0 0
\(473\) −7.47401 −0.343655
\(474\) 0 0
\(475\) 6.73603 0.309070
\(476\) 0 0
\(477\) 30.6771 53.1343i 1.40461 2.43285i
\(478\) 0 0
\(479\) −0.00205067 0.00355186i −9.36975e−5 0.000162289i 0.865979 0.500081i \(-0.166696\pi\)
−0.866072 + 0.499919i \(0.833363\pi\)
\(480\) 0 0
\(481\) −7.06231 7.93160i −0.322013 0.361650i
\(482\) 0 0
\(483\) −20.5554 35.6030i −0.935304 1.61999i
\(484\) 0 0
\(485\) 8.43661 14.6126i 0.383087 0.663525i
\(486\) 0 0
\(487\) 14.8134 0.671258 0.335629 0.941994i \(-0.391051\pi\)
0.335629 + 0.941994i \(0.391051\pi\)
\(488\) 0 0
\(489\) −37.3387 −1.68851
\(490\) 0 0
\(491\) −40.4508 −1.82552 −0.912761 0.408495i \(-0.866054\pi\)
−0.912761 + 0.408495i \(0.866054\pi\)
\(492\) 0 0
\(493\) −5.93265 10.2757i −0.267193 0.462792i
\(494\) 0 0
\(495\) 27.8017 1.24959
\(496\) 0 0
\(497\) 10.6363 + 18.4227i 0.477105 + 0.826371i
\(498\) 0 0
\(499\) −9.97119 + 17.2706i −0.446372 + 0.773138i −0.998147 0.0608547i \(-0.980617\pi\)
0.551775 + 0.833993i \(0.313951\pi\)
\(500\) 0 0
\(501\) −25.3500 43.9074i −1.13255 1.96164i
\(502\) 0 0
\(503\) 20.9777 + 36.3344i 0.935349 + 1.62007i 0.774010 + 0.633173i \(0.218248\pi\)
0.161339 + 0.986899i \(0.448419\pi\)
\(504\) 0 0
\(505\) −4.79030 + 8.29704i −0.213166 + 0.369214i
\(506\) 0 0
\(507\) 32.7376 1.45393
\(508\) 0 0
\(509\) −11.4043 19.7529i −0.505488 0.875530i −0.999980 0.00634819i \(-0.997979\pi\)
0.494492 0.869182i \(-0.335354\pi\)
\(510\) 0 0
\(511\) −17.3352 + 30.0254i −0.766863 + 1.32825i
\(512\) 0 0
\(513\) 53.4229 92.5312i 2.35868 4.08535i
\(514\) 0 0
\(515\) −8.10113 + 14.0316i −0.356979 + 0.618305i
\(516\) 0 0
\(517\) 27.0243 1.18853
\(518\) 0 0
\(519\) −36.6813 −1.61013
\(520\) 0 0
\(521\) −1.18189 + 2.04710i −0.0517797 + 0.0896851i −0.890754 0.454487i \(-0.849823\pi\)
0.838974 + 0.544172i \(0.183156\pi\)
\(522\) 0 0
\(523\) −14.8751 + 25.7645i −0.650445 + 1.12660i 0.332570 + 0.943078i \(0.392084\pi\)
−0.983015 + 0.183525i \(0.941249\pi\)
\(524\) 0 0
\(525\) −8.00788 + 13.8701i −0.349493 + 0.605339i
\(526\) 0 0
\(527\) 4.33028 + 7.50027i 0.188630 + 0.326717i
\(528\) 0 0
\(529\) −16.4110 −0.713523
\(530\) 0 0
\(531\) −51.8165 + 89.7488i −2.24864 + 3.89477i
\(532\) 0 0
\(533\) 5.45228 + 9.44363i 0.236164 + 0.409049i
\(534\) 0 0
\(535\) 9.51814 + 16.4859i 0.411505 + 0.712748i
\(536\) 0 0
\(537\) −27.7992 + 48.1496i −1.19962 + 2.07781i
\(538\) 0 0
\(539\) −29.6841 51.4143i −1.27858 2.21457i
\(540\) 0 0
\(541\) −22.8393 −0.981938 −0.490969 0.871177i \(-0.663357\pi\)
−0.490969 + 0.871177i \(0.663357\pi\)
\(542\) 0 0
\(543\) −28.3402 49.0867i −1.21619 2.10651i
\(544\) 0 0
\(545\) −6.48427 −0.277756
\(546\) 0 0
\(547\) −0.638247 −0.0272895 −0.0136447 0.999907i \(-0.504343\pi\)
−0.0136447 + 0.999907i \(0.504343\pi\)
\(548\) 0 0
\(549\) −13.0957 −0.558911
\(550\) 0 0
\(551\) 15.3002 26.5008i 0.651812 1.12897i
\(552\) 0 0
\(553\) −21.2850 36.8667i −0.905130 1.56773i
\(554\) 0 0
\(555\) −19.5956 + 4.05161i −0.831789 + 0.171981i
\(556\) 0 0
\(557\) −11.4810 19.8857i −0.486467 0.842586i 0.513412 0.858142i \(-0.328381\pi\)
−0.999879 + 0.0155565i \(0.995048\pi\)
\(558\) 0 0
\(559\) 1.83563 3.17940i 0.0776388 0.134474i
\(560\) 0 0
\(561\) 30.5401 1.28940
\(562\) 0 0
\(563\) 4.79785 0.202205 0.101103 0.994876i \(-0.467763\pi\)
0.101103 + 0.994876i \(0.467763\pi\)
\(564\) 0 0
\(565\) 3.87445 0.162999
\(566\) 0 0
\(567\) 69.8991 + 121.069i 2.93548 + 5.08441i
\(568\) 0 0
\(569\) 20.7517 0.869958 0.434979 0.900441i \(-0.356756\pi\)
0.434979 + 0.900441i \(0.356756\pi\)
\(570\) 0 0
\(571\) 4.43806 + 7.68694i 0.185727 + 0.321688i 0.943821 0.330457i \(-0.107203\pi\)
−0.758094 + 0.652145i \(0.773869\pi\)
\(572\) 0 0
\(573\) −12.8753 + 22.3007i −0.537875 + 0.931626i
\(574\) 0 0
\(575\) −1.28345 2.22300i −0.0535236 0.0927055i
\(576\) 0 0
\(577\) −14.0062 24.2594i −0.583085 1.00993i −0.995111 0.0987610i \(-0.968512\pi\)
0.412026 0.911172i \(-0.364821\pi\)
\(578\) 0 0
\(579\) 0.113874 0.197235i 0.00473244 0.00819683i
\(580\) 0 0
\(581\) 36.8543 1.52897
\(582\) 0 0
\(583\) 13.9405 + 24.1456i 0.577355 + 1.00001i
\(584\) 0 0
\(585\) −6.82813 + 11.8267i −0.282309 + 0.488973i
\(586\) 0 0
\(587\) −0.338463 + 0.586235i −0.0139699 + 0.0241965i −0.872926 0.487853i \(-0.837780\pi\)
0.858956 + 0.512049i \(0.171114\pi\)
\(588\) 0 0
\(589\) −11.1677 + 19.3431i −0.460159 + 0.797018i
\(590\) 0 0
\(591\) 33.4048 1.37409
\(592\) 0 0
\(593\) 2.31917 0.0952368 0.0476184 0.998866i \(-0.484837\pi\)
0.0476184 + 0.998866i \(0.484837\pi\)
\(594\) 0 0
\(595\) −6.35804 + 11.0124i −0.260654 + 0.451466i
\(596\) 0 0
\(597\) −0.833649 + 1.44392i −0.0341190 + 0.0590958i
\(598\) 0 0
\(599\) 2.95548 5.11905i 0.120758 0.209159i −0.799309 0.600920i \(-0.794801\pi\)
0.920067 + 0.391762i \(0.128134\pi\)
\(600\) 0 0
\(601\) −15.7141 27.2176i −0.640991 1.11023i −0.985212 0.171341i \(-0.945190\pi\)
0.344221 0.938889i \(-0.388143\pi\)
\(602\) 0 0
\(603\) 95.0641 3.87131
\(604\) 0 0
\(605\) −0.816901 + 1.41491i −0.0332118 + 0.0575245i
\(606\) 0 0
\(607\) −21.0614 36.4795i −0.854858 1.48066i −0.876777 0.480898i \(-0.840311\pi\)
0.0219189 0.999760i \(-0.493022\pi\)
\(608\) 0 0
\(609\) 36.3783 + 63.0090i 1.47412 + 2.55325i
\(610\) 0 0
\(611\) −6.63720 + 11.4960i −0.268512 + 0.465077i
\(612\) 0 0
\(613\) 1.83191 + 3.17296i 0.0739901 + 0.128155i 0.900647 0.434552i \(-0.143093\pi\)
−0.826657 + 0.562707i \(0.809760\pi\)
\(614\) 0 0
\(615\) 20.5461 0.828499
\(616\) 0 0
\(617\) 17.3993 + 30.1365i 0.700471 + 1.21325i 0.968301 + 0.249786i \(0.0803601\pi\)
−0.267830 + 0.963466i \(0.586307\pi\)
\(618\) 0 0
\(619\) −9.38055 −0.377036 −0.188518 0.982070i \(-0.560368\pi\)
−0.188518 + 0.982070i \(0.560368\pi\)
\(620\) 0 0
\(621\) −40.7158 −1.63387
\(622\) 0 0
\(623\) 65.1907 2.61181
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) 39.3813 + 68.2103i 1.57274 + 2.72406i
\(628\) 0 0
\(629\) −15.5584 + 3.21687i −0.620354 + 0.128265i
\(630\) 0 0
\(631\) 17.9658 + 31.1177i 0.715208 + 1.23878i 0.962879 + 0.269933i \(0.0870015\pi\)
−0.247671 + 0.968844i \(0.579665\pi\)
\(632\) 0 0
\(633\) 4.56047 7.89896i 0.181262 0.313956i
\(634\) 0 0
\(635\) −10.4064 −0.412966
\(636\) 0 0
\(637\) 29.1618 1.15543
\(638\) 0 0
\(639\) 34.1765 1.35200
\(640\) 0 0
\(641\) −12.7002 21.9974i −0.501627 0.868843i −0.999998 0.00187955i \(-0.999402\pi\)
0.498371 0.866964i \(-0.333932\pi\)
\(642\) 0 0
\(643\) −34.4802 −1.35977 −0.679884 0.733320i \(-0.737970\pi\)
−0.679884 + 0.733320i \(0.737970\pi\)
\(644\) 0 0
\(645\) −3.45864 5.99054i −0.136184 0.235877i
\(646\) 0 0
\(647\) 3.23312 5.59994i 0.127107 0.220156i −0.795447 0.606023i \(-0.792764\pi\)
0.922555 + 0.385866i \(0.126097\pi\)
\(648\) 0 0
\(649\) −23.5468 40.7842i −0.924291 1.60092i
\(650\) 0 0
\(651\) −26.5527 45.9907i −1.04068 1.80252i
\(652\) 0 0
\(653\) 0.874062 1.51392i 0.0342047 0.0592443i −0.848416 0.529330i \(-0.822444\pi\)
0.882621 + 0.470085i \(0.155777\pi\)
\(654\) 0 0
\(655\) −7.47706 −0.292153
\(656\) 0 0
\(657\) 27.8506 + 48.2386i 1.08655 + 1.88197i
\(658\) 0 0
\(659\) 16.5148 28.6044i 0.643324 1.11427i −0.341362 0.939932i \(-0.610888\pi\)
0.984686 0.174338i \(-0.0557784\pi\)
\(660\) 0 0
\(661\) 23.2194 40.2171i 0.903128 1.56426i 0.0797181 0.996817i \(-0.474598\pi\)
0.823410 0.567447i \(-0.192069\pi\)
\(662\) 0 0
\(663\) −7.50069 + 12.9916i −0.291303 + 0.504551i
\(664\) 0 0
\(665\) −32.7946 −1.27172
\(666\) 0 0
\(667\) −11.6609 −0.451513
\(668\) 0 0
\(669\) −14.9650 + 25.9202i −0.578582 + 1.00213i
\(670\) 0 0
\(671\) 2.97551 5.15374i 0.114868 0.198958i
\(672\) 0 0
\(673\) 21.8279 37.8071i 0.841404 1.45735i −0.0473036 0.998881i \(-0.515063\pi\)
0.888708 0.458474i \(-0.151604\pi\)
\(674\) 0 0
\(675\) 7.93093 + 13.7368i 0.305262 + 0.528728i
\(676\) 0 0
\(677\) −2.98129 −0.114580 −0.0572902 0.998358i \(-0.518246\pi\)
−0.0572902 + 0.998358i \(0.518246\pi\)
\(678\) 0 0
\(679\) −41.0740 + 71.1422i −1.57627 + 2.73019i
\(680\) 0 0
\(681\) 9.81022 + 16.9918i 0.375929 + 0.651127i
\(682\) 0 0
\(683\) 12.7990 + 22.1684i 0.489738 + 0.848252i 0.999930 0.0118088i \(-0.00375895\pi\)
−0.510192 + 0.860061i \(0.670426\pi\)
\(684\) 0 0
\(685\) −3.43329 + 5.94664i −0.131179 + 0.227209i
\(686\) 0 0
\(687\) 2.11236 + 3.65872i 0.0805917 + 0.139589i
\(688\) 0 0
\(689\) −13.6952 −0.521745
\(690\) 0 0
\(691\) 11.8554 + 20.5341i 0.450999 + 0.781153i 0.998448 0.0556855i \(-0.0177344\pi\)
−0.547449 + 0.836839i \(0.684401\pi\)
\(692\) 0 0
\(693\) −135.354 −5.14166
\(694\) 0 0
\(695\) 0.986863 0.0374338
\(696\) 0 0
\(697\) 16.3130 0.617900
\(698\) 0 0
\(699\) 15.3754 26.6310i 0.581553 1.00728i
\(700\) 0 0
\(701\) −0.429472 0.743867i −0.0162209 0.0280955i 0.857801 0.513982i \(-0.171830\pi\)
−0.874022 + 0.485886i \(0.838497\pi\)
\(702\) 0 0
\(703\) −27.2472 30.6011i −1.02765 1.15414i
\(704\) 0 0
\(705\) 12.5056 + 21.6604i 0.470989 + 0.815778i
\(706\) 0 0
\(707\) 23.3218 40.3945i 0.877105 1.51919i
\(708\) 0 0
\(709\) −16.3732 −0.614907 −0.307453 0.951563i \(-0.599477\pi\)
−0.307453 + 0.951563i \(0.599477\pi\)
\(710\) 0 0
\(711\) −68.3926 −2.56492
\(712\) 0 0
\(713\) 8.51139 0.318754
\(714\) 0 0
\(715\) −3.10288 5.37434i −0.116041 0.200989i
\(716\) 0 0
\(717\) −1.40950 −0.0526386
\(718\) 0 0
\(719\) −0.120587 0.208864i −0.00449715 0.00778930i 0.863768 0.503890i \(-0.168098\pi\)
−0.868265 + 0.496100i \(0.834765\pi\)
\(720\) 0 0
\(721\) 39.4407 68.3133i 1.46885 2.54412i
\(722\) 0 0
\(723\) 17.7337 + 30.7157i 0.659523 + 1.14233i
\(724\) 0 0
\(725\) 2.27140 + 3.93419i 0.0843578 + 0.146112i
\(726\) 0 0
\(727\) −18.1919 + 31.5094i −0.674702 + 1.16862i 0.301854 + 0.953354i \(0.402394\pi\)
−0.976556 + 0.215263i \(0.930939\pi\)
\(728\) 0 0
\(729\) 68.0589 2.52070
\(730\) 0 0
\(731\) −2.74607 4.75633i −0.101567 0.175919i
\(732\) 0 0
\(733\) 20.9919 36.3590i 0.775354 1.34295i −0.159242 0.987240i \(-0.550905\pi\)
0.934595 0.355712i \(-0.115762\pi\)
\(734\) 0 0
\(735\) 27.4729 47.5845i 1.01335 1.75518i
\(736\) 0 0
\(737\) −21.5998 + 37.4119i −0.795638 + 1.37809i
\(738\) 0 0
\(739\) 10.4791 0.385478 0.192739 0.981250i \(-0.438263\pi\)
0.192739 + 0.981250i \(0.438263\pi\)
\(740\) 0 0
\(741\) −38.6884 −1.42125
\(742\) 0 0
\(743\) −7.74726 + 13.4186i −0.284219 + 0.492282i −0.972420 0.233239i \(-0.925068\pi\)
0.688200 + 0.725521i \(0.258401\pi\)
\(744\) 0 0
\(745\) 0.819655 1.41968i 0.0300298 0.0520132i
\(746\) 0 0
\(747\) 29.6049 51.2772i 1.08319 1.87613i
\(748\) 0 0
\(749\) −46.3394 80.2623i −1.69321 2.93272i
\(750\) 0 0
\(751\) −10.1532 −0.370494 −0.185247 0.982692i \(-0.559309\pi\)
−0.185247 + 0.982692i \(0.559309\pi\)
\(752\) 0 0
\(753\) −14.9496 + 25.8934i −0.544792 + 0.943607i
\(754\) 0 0
\(755\) −1.20805 2.09240i −0.0439653 0.0761501i
\(756\) 0 0
\(757\) 8.40157 + 14.5519i 0.305360 + 0.528899i 0.977341 0.211669i \(-0.0678898\pi\)
−0.671981 + 0.740568i \(0.734556\pi\)
\(758\) 0 0
\(759\) 15.0070 25.9929i 0.544721 0.943484i
\(760\) 0 0
\(761\) 7.09381 + 12.2868i 0.257150 + 0.445397i 0.965477 0.260487i \(-0.0838831\pi\)
−0.708327 + 0.705884i \(0.750550\pi\)
\(762\) 0 0
\(763\) 31.5689 1.14287
\(764\) 0 0
\(765\) 10.2148 + 17.6925i 0.369316 + 0.639674i
\(766\) 0 0
\(767\) 23.1325 0.835264
\(768\) 0 0
\(769\) 18.5419 0.668637 0.334318 0.942460i \(-0.391494\pi\)
0.334318 + 0.942460i \(0.391494\pi\)
\(770\) 0 0
\(771\) −73.8920 −2.66116
\(772\) 0 0
\(773\) −17.6858 + 30.6328i −0.636115 + 1.10178i 0.350162 + 0.936689i \(0.386126\pi\)
−0.986278 + 0.165095i \(0.947207\pi\)
\(774\) 0 0
\(775\) −1.65791 2.87159i −0.0595540 0.103151i
\(776\) 0 0
\(777\) 95.4022 19.7254i 3.42253 0.707645i
\(778\) 0 0
\(779\) 21.0356 + 36.4347i 0.753677 + 1.30541i
\(780\) 0 0
\(781\) −7.76535 + 13.4500i −0.277866 + 0.481278i
\(782\) 0 0
\(783\) 72.0574 2.57512
\(784\) 0 0
\(785\) −14.6404 −0.522538
\(786\) 0 0
\(787\) 7.21829 0.257304 0.128652 0.991690i \(-0.458935\pi\)
0.128652 + 0.991690i \(0.458935\pi\)
\(788\) 0 0
\(789\) 40.8542 + 70.7616i 1.45445 + 2.51918i
\(790\) 0 0
\(791\) −18.8629 −0.670688
\(792\) 0 0
\(793\) 1.46158 + 2.53153i 0.0519022 + 0.0898973i
\(794\) 0 0
\(795\) −12.9021 + 22.3470i −0.457589 + 0.792567i
\(796\) 0 0
\(797\) 11.9780 + 20.7465i 0.424282 + 0.734879i 0.996353 0.0853257i \(-0.0271931\pi\)
−0.572071 + 0.820204i \(0.693860\pi\)
\(798\) 0 0
\(799\) 9.92913 + 17.1978i 0.351268 + 0.608413i
\(800\) 0 0
\(801\) 52.3674 90.7030i 1.85031 3.20483i
\(802\) 0 0
\(803\) −25.3120 −0.893242
\(804\) 0 0
\(805\) 6.24853 + 10.8228i 0.220232 + 0.381452i
\(806\) 0 0
\(807\) 4.64233 8.04076i 0.163418 0.283048i
\(808\) 0 0
\(809\) 17.9360 31.0660i 0.630595 1.09222i −0.356835 0.934167i \(-0.616144\pi\)
0.987430 0.158056i \(-0.0505226\pi\)
\(810\) 0 0
\(811\) 4.19024 7.25772i 0.147139 0.254853i −0.783030 0.621984i \(-0.786327\pi\)
0.930169 + 0.367131i \(0.119660\pi\)
\(812\) 0 0
\(813\) 41.2664 1.44728
\(814\) 0 0
\(815\) 11.3504 0.397586
\(816\) 0 0
\(817\) 7.08208 12.2665i 0.247770 0.429151i
\(818\) 0 0
\(819\) 33.2430 57.5786i 1.16161 2.01196i
\(820\) 0 0
\(821\) −14.1537 + 24.5149i −0.493967 + 0.855576i −0.999976 0.00695214i \(-0.997787\pi\)
0.506009 + 0.862528i \(0.331120\pi\)
\(822\) 0 0
\(823\) 13.6946 + 23.7198i 0.477365 + 0.826820i 0.999663 0.0259426i \(-0.00825870\pi\)
−0.522299 + 0.852763i \(0.674925\pi\)
\(824\) 0 0
\(825\) −11.6927 −0.407089
\(826\) 0 0
\(827\) 4.87153 8.43775i 0.169400 0.293409i −0.768809 0.639478i \(-0.779150\pi\)
0.938209 + 0.346069i \(0.112484\pi\)
\(828\) 0 0
\(829\) −7.39100 12.8016i −0.256700 0.444617i 0.708656 0.705554i \(-0.249302\pi\)
−0.965356 + 0.260937i \(0.915969\pi\)
\(830\) 0 0
\(831\) −10.5351 18.2474i −0.365460 0.632995i
\(832\) 0 0
\(833\) 21.8128 37.7808i 0.755767 1.30903i
\(834\) 0 0
\(835\) 7.70599 + 13.3472i 0.266677 + 0.461898i
\(836\) 0 0
\(837\) −52.5951 −1.81795
\(838\) 0 0
\(839\) −25.3013 43.8232i −0.873500 1.51295i −0.858353 0.513060i \(-0.828512\pi\)
−0.0151470 0.999885i \(-0.504822\pi\)
\(840\) 0 0
\(841\) −8.36290 −0.288376
\(842\) 0 0
\(843\) −11.7279 −0.403932
\(844\) 0 0
\(845\) −9.95172 −0.342349
\(846\) 0 0
\(847\) 3.97712 6.88857i 0.136655 0.236694i
\(848\) 0 0
\(849\) 35.5319 + 61.5431i 1.21945 + 2.11215i
\(850\) 0 0
\(851\) −4.90731 + 14.8226i −0.168221 + 0.508113i
\(852\) 0 0
\(853\) −1.99621 3.45754i −0.0683490 0.118384i 0.829826 0.558023i \(-0.188440\pi\)
−0.898175 + 0.439639i \(0.855106\pi\)
\(854\) 0 0
\(855\) −26.3438 + 45.6287i −0.900938 + 1.56047i
\(856\) 0 0
\(857\) −41.7635 −1.42662 −0.713308 0.700851i \(-0.752804\pi\)
−0.713308 + 0.700851i \(0.752804\pi\)
\(858\) 0 0
\(859\) −0.204229 −0.00696822 −0.00348411 0.999994i \(-0.501109\pi\)
−0.00348411 + 0.999994i \(0.501109\pi\)
\(860\) 0 0
\(861\) −100.029 −3.40900
\(862\) 0 0
\(863\) 6.10884 + 10.5808i 0.207947 + 0.360176i 0.951068 0.308982i \(-0.0999884\pi\)
−0.743120 + 0.669158i \(0.766655\pi\)
\(864\) 0 0
\(865\) 11.1505 0.379130
\(866\) 0 0
\(867\) −16.7411 28.9964i −0.568556 0.984769i
\(868\) 0 0
\(869\) 15.5397 26.9155i 0.527147 0.913046i
\(870\) 0 0
\(871\) −10.6099 18.3768i −0.359502 0.622675i
\(872\) 0 0
\(873\) 65.9891 + 114.296i 2.23339 + 3.86835i
\(874\) 0 0
\(875\) 2.43427 4.21628i 0.0822933 0.142536i
\(876\) 0 0
\(877\) 45.3539 1.53149 0.765746 0.643144i \(-0.222370\pi\)
0.765746 + 0.643144i \(0.222370\pi\)
\(878\) 0 0
\(879\) −22.6669 39.2603i −0.764537 1.32422i
\(880\) 0 0
\(881\) −25.7108 + 44.5324i −0.866219 + 1.50034i −0.000387265 1.00000i \(0.500123\pi\)
−0.865832 + 0.500335i \(0.833210\pi\)
\(882\) 0 0
\(883\) 0.616145 1.06719i 0.0207349 0.0359140i −0.855472 0.517849i \(-0.826733\pi\)
0.876207 + 0.481936i \(0.160066\pi\)
\(884\) 0 0
\(885\) 21.7928 37.7462i 0.732557 1.26883i
\(886\) 0 0
\(887\) −3.78556 −0.127107 −0.0635533 0.997978i \(-0.520243\pi\)
−0.0635533 + 0.997978i \(0.520243\pi\)
\(888\) 0 0
\(889\) 50.6640 1.69922
\(890\) 0 0
\(891\) −51.0316 + 88.3894i −1.70962 + 2.96116i
\(892\) 0 0
\(893\) −25.6071 + 44.3528i −0.856909 + 1.48421i
\(894\) 0 0
\(895\) 8.45052 14.6367i 0.282470 0.489252i
\(896\) 0 0
\(897\) 7.37149 + 12.7678i 0.246127 + 0.426305i
\(898\) 0 0
\(899\) −15.0632 −0.502384
\(900\) 0 0
\(901\) −10.2439 + 17.7429i −0.341273 + 0.591103i
\(902\) 0 0
\(903\) 16.8385 + 29.1652i 0.560351 + 0.970557i
\(904\) 0 0
\(905\) 8.61498 + 14.9216i 0.286372 + 0.496010i
\(906\) 0 0
\(907\) 2.46357 4.26703i 0.0818016 0.141685i −0.822222 0.569167i \(-0.807266\pi\)
0.904024 + 0.427482i \(0.140599\pi\)
\(908\) 0 0
\(909\) −37.4685 64.8974i −1.24275 2.15251i
\(910\) 0 0
\(911\) −32.6800 −1.08274 −0.541368 0.840786i \(-0.682093\pi\)
−0.541368 + 0.840786i \(0.682093\pi\)
\(912\) 0 0
\(913\) 13.4532 + 23.3017i 0.445237 + 0.771172i
\(914\) 0 0
\(915\) 5.50774 0.182080
\(916\) 0 0
\(917\) 36.4024 1.20211
\(918\) 0 0
\(919\) 4.87789 0.160907 0.0804533 0.996758i \(-0.474363\pi\)
0.0804533 + 0.996758i \(0.474363\pi\)
\(920\) 0 0
\(921\) −15.1480 + 26.2371i −0.499144 + 0.864543i
\(922\) 0 0
\(923\) −3.81436 6.60666i −0.125551 0.217461i
\(924\) 0 0
\(925\) 5.95677 1.23162i 0.195857 0.0404956i
\(926\) 0 0
\(927\) −63.3651 109.752i −2.08118 3.60471i
\(928\) 0 0
\(929\) −13.8306 + 23.9553i −0.453768 + 0.785949i −0.998616 0.0525854i \(-0.983254\pi\)
0.544849 + 0.838534i \(0.316587\pi\)
\(930\) 0 0
\(931\) 112.510 3.68736
\(932\) 0 0
\(933\) −95.1293 −3.11439
\(934\) 0 0
\(935\) −9.28371 −0.303610
\(936\) 0 0
\(937\) 10.3499 + 17.9265i 0.338116 + 0.585633i 0.984078 0.177736i \(-0.0568772\pi\)
−0.645963 + 0.763369i \(0.723544\pi\)
\(938\) 0 0
\(939\) −24.6885 −0.805680
\(940\) 0 0
\(941\) 23.4228 + 40.5694i 0.763560 + 1.32253i 0.941004 + 0.338394i \(0.109884\pi\)
−0.177444 + 0.984131i \(0.556783\pi\)
\(942\) 0 0
\(943\) 8.01603 13.8842i 0.261038 0.452131i
\(944\) 0 0
\(945\) −38.6120 66.8780i −1.25605 2.17554i
\(946\) 0 0
\(947\) 29.2629 + 50.6847i 0.950915 + 1.64703i 0.743451 + 0.668790i \(0.233188\pi\)
0.207464 + 0.978243i \(0.433479\pi\)
\(948\) 0 0
\(949\) 6.21666 10.7676i 0.201801 0.349530i
\(950\) 0 0
\(951\) −28.0678 −0.910160
\(952\) 0 0
\(953\) −2.00531 3.47330i −0.0649585 0.112511i 0.831717 0.555200i \(-0.187358\pi\)
−0.896676 + 0.442688i \(0.854025\pi\)
\(954\) 0 0
\(955\) 3.91390 6.77907i 0.126651 0.219366i
\(956\) 0 0
\(957\) −26.5589 + 46.0014i −0.858528 + 1.48701i
\(958\) 0 0
\(959\) 16.7151 28.9514i 0.539759 0.934891i
\(960\) 0 0
\(961\) −20.0053 −0.645332
\(962\) 0 0
\(963\) −148.897 −4.79814
\(964\) 0 0
\(965\) −0.0346159 + 0.0599565i −0.00111433 + 0.00193007i
\(966\) 0 0
\(967\) 13.1913 22.8480i 0.424203 0.734741i −0.572143 0.820154i \(-0.693888\pi\)
0.996346 + 0.0854130i \(0.0272210\pi\)
\(968\) 0 0
\(969\) −28.9386 + 50.1231i −0.929641 + 1.61019i
\(970\) 0 0
\(971\) 5.34730 + 9.26179i 0.171603 + 0.297225i 0.938980 0.343971i \(-0.111772\pi\)
−0.767378 + 0.641196i \(0.778439\pi\)
\(972\) 0 0
\(973\) −4.80458 −0.154028
\(974\) 0 0
\(975\) 2.87175 4.97402i 0.0919696 0.159296i
\(976\) 0 0
\(977\) 21.2797 + 36.8575i 0.680798 + 1.17918i 0.974738 + 0.223352i \(0.0717000\pi\)
−0.293940 + 0.955824i \(0.594967\pi\)
\(978\) 0 0
\(979\) 23.7971 + 41.2178i 0.760558 + 1.31733i
\(980\) 0 0
\(981\) 25.3592 43.9234i 0.809657 1.40237i
\(982\) 0 0
\(983\) 23.1419 + 40.0829i 0.738112 + 1.27845i 0.953344 + 0.301885i \(0.0976158\pi\)
−0.215232 + 0.976563i \(0.569051\pi\)
\(984\) 0 0
\(985\) −10.1545 −0.323551
\(986\) 0 0
\(987\) −60.8842 105.455i −1.93797 3.35665i
\(988\) 0 0
\(989\) −5.39754 −0.171632
\(990\) 0 0
\(991\) 30.6194 0.972657 0.486329 0.873776i \(-0.338336\pi\)
0.486329 + 0.873776i \(0.338336\pi\)
\(992\) 0 0
\(993\) −68.1010 −2.16112
\(994\) 0 0
\(995\) 0.253416 0.438930i 0.00803384 0.0139150i
\(996\) 0 0
\(997\) −19.2317 33.3103i −0.609075 1.05495i −0.991393 0.130918i \(-0.958207\pi\)
0.382318 0.924031i \(-0.375126\pi\)
\(998\) 0 0
\(999\) 30.3242 91.5947i 0.959414 2.89793i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 740.2.i.a.581.7 yes 14
37.10 even 3 inner 740.2.i.a.121.7 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
740.2.i.a.121.7 14 37.10 even 3 inner
740.2.i.a.581.7 yes 14 1.1 even 1 trivial