Properties

Label 740.2.i.a.121.6
Level $740$
Weight $2$
Character 740.121
Analytic conductor $5.909$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [740,2,Mod(121,740)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(740, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("740.121"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 740 = 2^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 740.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,0,0,-7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.90892974957\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 24x^{12} + 204x^{10} + 727x^{8} + 1008x^{6} + 426x^{4} + 64x^{2} + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 121.6
Root \(-1.39878i\) of defining polynomial
Character \(\chi\) \(=\) 740.121
Dual form 740.2.i.a.581.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.13042 + 1.95795i) q^{3} +(-0.500000 - 0.866025i) q^{5} +(-1.38845 - 2.40487i) q^{7} +(-1.05570 + 1.82853i) q^{9} +3.65006 q^{11} +(2.34673 + 4.06465i) q^{13} +(1.13042 - 1.95795i) q^{15} +(-2.27125 + 3.93392i) q^{17} +(3.55811 + 6.16283i) q^{19} +(3.13907 - 5.43704i) q^{21} +3.14495 q^{23} +(-0.500000 + 0.866025i) q^{25} +2.00898 q^{27} +5.45368 q^{29} -1.74599 q^{31} +(4.12610 + 7.14661i) q^{33} +(-1.38845 + 2.40487i) q^{35} +(3.90987 - 4.65971i) q^{37} +(-5.30558 + 9.18954i) q^{39} +(-0.109792 - 0.190166i) q^{41} -6.03476 q^{43} +2.11140 q^{45} -8.40286 q^{47} +(-0.355611 + 0.615937i) q^{49} -10.2699 q^{51} +(3.45545 - 5.98501i) q^{53} +(-1.82503 - 3.16104i) q^{55} +(-8.04433 + 13.9332i) q^{57} +(0.792524 - 1.37269i) q^{59} +(-0.338386 - 0.586103i) q^{61} +5.86317 q^{63} +(2.34673 - 4.06465i) q^{65} +(-6.11900 - 10.5984i) q^{67} +(3.55512 + 6.15765i) q^{69} +(-0.433892 - 0.751522i) q^{71} -7.79501 q^{73} -2.26084 q^{75} +(-5.06794 - 8.77792i) q^{77} +(-1.52587 - 2.64288i) q^{79} +(5.43809 + 9.41905i) q^{81} +(-8.03468 + 13.9165i) q^{83} +4.54250 q^{85} +(6.16495 + 10.6780i) q^{87} +(1.38304 - 2.39549i) q^{89} +(6.51665 - 11.2872i) q^{91} +(-1.97371 - 3.41856i) q^{93} +(3.55811 - 6.16283i) q^{95} +12.3102 q^{97} +(-3.85337 + 6.67423i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 7 q^{5} + 4 q^{7} - 13 q^{9} + 14 q^{11} + 4 q^{13} + q^{17} + 4 q^{19} - 3 q^{21} + 12 q^{23} - 7 q^{25} - 6 q^{27} - 4 q^{29} - 24 q^{31} + 13 q^{33} + 4 q^{35} + 10 q^{37} + 21 q^{39} + 5 q^{41}+ \cdots - 58 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/740\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(297\) \(371\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.13042 + 1.95795i 0.652649 + 1.13042i 0.982478 + 0.186380i \(0.0596755\pi\)
−0.329829 + 0.944041i \(0.606991\pi\)
\(4\) 0 0
\(5\) −0.500000 0.866025i −0.223607 0.387298i
\(6\) 0 0
\(7\) −1.38845 2.40487i −0.524786 0.908957i −0.999583 0.0288614i \(-0.990812\pi\)
0.474797 0.880095i \(-0.342521\pi\)
\(8\) 0 0
\(9\) −1.05570 + 1.82853i −0.351900 + 0.609509i
\(10\) 0 0
\(11\) 3.65006 1.10053 0.550267 0.834989i \(-0.314526\pi\)
0.550267 + 0.834989i \(0.314526\pi\)
\(12\) 0 0
\(13\) 2.34673 + 4.06465i 0.650866 + 1.12733i 0.982913 + 0.184070i \(0.0589272\pi\)
−0.332048 + 0.943263i \(0.607739\pi\)
\(14\) 0 0
\(15\) 1.13042 1.95795i 0.291873 0.505539i
\(16\) 0 0
\(17\) −2.27125 + 3.93392i −0.550859 + 0.954115i 0.447354 + 0.894357i \(0.352366\pi\)
−0.998213 + 0.0597583i \(0.980967\pi\)
\(18\) 0 0
\(19\) 3.55811 + 6.16283i 0.816287 + 1.41385i 0.908400 + 0.418102i \(0.137304\pi\)
−0.0921133 + 0.995749i \(0.529362\pi\)
\(20\) 0 0
\(21\) 3.13907 5.43704i 0.685002 1.18646i
\(22\) 0 0
\(23\) 3.14495 0.655768 0.327884 0.944718i \(-0.393665\pi\)
0.327884 + 0.944718i \(0.393665\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 0 0
\(27\) 2.00898 0.386628
\(28\) 0 0
\(29\) 5.45368 1.01272 0.506362 0.862321i \(-0.330990\pi\)
0.506362 + 0.862321i \(0.330990\pi\)
\(30\) 0 0
\(31\) −1.74599 −0.313590 −0.156795 0.987631i \(-0.550116\pi\)
−0.156795 + 0.987631i \(0.550116\pi\)
\(32\) 0 0
\(33\) 4.12610 + 7.14661i 0.718262 + 1.24407i
\(34\) 0 0
\(35\) −1.38845 + 2.40487i −0.234692 + 0.406498i
\(36\) 0 0
\(37\) 3.90987 4.65971i 0.642779 0.766052i
\(38\) 0 0
\(39\) −5.30558 + 9.18954i −0.849573 + 1.47150i
\(40\) 0 0
\(41\) −0.109792 0.190166i −0.0171467 0.0296989i 0.857325 0.514776i \(-0.172125\pi\)
−0.874471 + 0.485077i \(0.838792\pi\)
\(42\) 0 0
\(43\) −6.03476 −0.920292 −0.460146 0.887843i \(-0.652203\pi\)
−0.460146 + 0.887843i \(0.652203\pi\)
\(44\) 0 0
\(45\) 2.11140 0.314749
\(46\) 0 0
\(47\) −8.40286 −1.22568 −0.612841 0.790206i \(-0.709974\pi\)
−0.612841 + 0.790206i \(0.709974\pi\)
\(48\) 0 0
\(49\) −0.355611 + 0.615937i −0.0508016 + 0.0879910i
\(50\) 0 0
\(51\) −10.2699 −1.43807
\(52\) 0 0
\(53\) 3.45545 5.98501i 0.474642 0.822105i −0.524936 0.851142i \(-0.675911\pi\)
0.999578 + 0.0290370i \(0.00924407\pi\)
\(54\) 0 0
\(55\) −1.82503 3.16104i −0.246087 0.426235i
\(56\) 0 0
\(57\) −8.04433 + 13.9332i −1.06550 + 1.84549i
\(58\) 0 0
\(59\) 0.792524 1.37269i 0.103178 0.178709i −0.809814 0.586686i \(-0.800432\pi\)
0.912992 + 0.407977i \(0.133766\pi\)
\(60\) 0 0
\(61\) −0.338386 0.586103i −0.0433259 0.0750427i 0.843549 0.537052i \(-0.180462\pi\)
−0.886875 + 0.462009i \(0.847129\pi\)
\(62\) 0 0
\(63\) 5.86317 0.738690
\(64\) 0 0
\(65\) 2.34673 4.06465i 0.291076 0.504158i
\(66\) 0 0
\(67\) −6.11900 10.5984i −0.747555 1.29480i −0.948991 0.315302i \(-0.897894\pi\)
0.201436 0.979502i \(-0.435439\pi\)
\(68\) 0 0
\(69\) 3.55512 + 6.15765i 0.427986 + 0.741293i
\(70\) 0 0
\(71\) −0.433892 0.751522i −0.0514935 0.0891893i 0.839130 0.543931i \(-0.183065\pi\)
−0.890623 + 0.454742i \(0.849731\pi\)
\(72\) 0 0
\(73\) −7.79501 −0.912337 −0.456168 0.889893i \(-0.650779\pi\)
−0.456168 + 0.889893i \(0.650779\pi\)
\(74\) 0 0
\(75\) −2.26084 −0.261059
\(76\) 0 0
\(77\) −5.06794 8.77792i −0.577545 1.00034i
\(78\) 0 0
\(79\) −1.52587 2.64288i −0.171673 0.297347i 0.767332 0.641250i \(-0.221584\pi\)
−0.939005 + 0.343904i \(0.888251\pi\)
\(80\) 0 0
\(81\) 5.43809 + 9.41905i 0.604233 + 1.04656i
\(82\) 0 0
\(83\) −8.03468 + 13.9165i −0.881921 + 1.52753i −0.0327177 + 0.999465i \(0.510416\pi\)
−0.849203 + 0.528067i \(0.822917\pi\)
\(84\) 0 0
\(85\) 4.54250 0.492703
\(86\) 0 0
\(87\) 6.16495 + 10.6780i 0.660952 + 1.14480i
\(88\) 0 0
\(89\) 1.38304 2.39549i 0.146602 0.253922i −0.783368 0.621559i \(-0.786500\pi\)
0.929969 + 0.367637i \(0.119833\pi\)
\(90\) 0 0
\(91\) 6.51665 11.2872i 0.683131 1.18322i
\(92\) 0 0
\(93\) −1.97371 3.41856i −0.204664 0.354488i
\(94\) 0 0
\(95\) 3.55811 6.16283i 0.365055 0.632293i
\(96\) 0 0
\(97\) 12.3102 1.24992 0.624958 0.780658i \(-0.285116\pi\)
0.624958 + 0.780658i \(0.285116\pi\)
\(98\) 0 0
\(99\) −3.85337 + 6.67423i −0.387278 + 0.670785i
\(100\) 0 0
\(101\) 13.2686 1.32027 0.660136 0.751146i \(-0.270499\pi\)
0.660136 + 0.751146i \(0.270499\pi\)
\(102\) 0 0
\(103\) −15.6115 −1.53825 −0.769123 0.639100i \(-0.779307\pi\)
−0.769123 + 0.639100i \(0.779307\pi\)
\(104\) 0 0
\(105\) −6.27815 −0.612685
\(106\) 0 0
\(107\) 3.72624 + 6.45404i 0.360230 + 0.623936i 0.987998 0.154464i \(-0.0493650\pi\)
−0.627769 + 0.778400i \(0.716032\pi\)
\(108\) 0 0
\(109\) 2.58823 4.48295i 0.247908 0.429389i −0.715037 0.699086i \(-0.753590\pi\)
0.962945 + 0.269697i \(0.0869237\pi\)
\(110\) 0 0
\(111\) 13.5433 + 2.38788i 1.28547 + 0.226648i
\(112\) 0 0
\(113\) 7.84140 13.5817i 0.737657 1.27766i −0.215891 0.976418i \(-0.569266\pi\)
0.953548 0.301242i \(-0.0974012\pi\)
\(114\) 0 0
\(115\) −1.57248 2.72361i −0.146634 0.253978i
\(116\) 0 0
\(117\) −9.90978 −0.916159
\(118\) 0 0
\(119\) 12.6141 1.15633
\(120\) 0 0
\(121\) 2.32291 0.211174
\(122\) 0 0
\(123\) 0.248223 0.429935i 0.0223815 0.0387659i
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 1.50667 2.60962i 0.133695 0.231567i −0.791403 0.611295i \(-0.790649\pi\)
0.925098 + 0.379728i \(0.123982\pi\)
\(128\) 0 0
\(129\) −6.82181 11.8157i −0.600627 1.04032i
\(130\) 0 0
\(131\) 9.98041 17.2866i 0.871992 1.51034i 0.0120599 0.999927i \(-0.496161\pi\)
0.859932 0.510408i \(-0.170506\pi\)
\(132\) 0 0
\(133\) 9.88055 17.1136i 0.856753 1.48394i
\(134\) 0 0
\(135\) −1.00449 1.73983i −0.0864527 0.149740i
\(136\) 0 0
\(137\) −14.7473 −1.25995 −0.629973 0.776617i \(-0.716934\pi\)
−0.629973 + 0.776617i \(0.716934\pi\)
\(138\) 0 0
\(139\) −9.11621 + 15.7897i −0.773226 + 1.33927i 0.162559 + 0.986699i \(0.448025\pi\)
−0.935786 + 0.352569i \(0.885308\pi\)
\(140\) 0 0
\(141\) −9.49876 16.4523i −0.799940 1.38554i
\(142\) 0 0
\(143\) 8.56569 + 14.8362i 0.716299 + 1.24067i
\(144\) 0 0
\(145\) −2.72684 4.72303i −0.226452 0.392226i
\(146\) 0 0
\(147\) −1.60796 −0.132622
\(148\) 0 0
\(149\) −5.36500 −0.439518 −0.219759 0.975554i \(-0.570527\pi\)
−0.219759 + 0.975554i \(0.570527\pi\)
\(150\) 0 0
\(151\) −5.66740 9.81623i −0.461207 0.798833i 0.537815 0.843063i \(-0.319250\pi\)
−0.999021 + 0.0442299i \(0.985917\pi\)
\(152\) 0 0
\(153\) −4.79552 8.30608i −0.387695 0.671507i
\(154\) 0 0
\(155\) 0.872997 + 1.51207i 0.0701208 + 0.121453i
\(156\) 0 0
\(157\) −7.38331 + 12.7883i −0.589252 + 1.02061i 0.405078 + 0.914282i \(0.367244\pi\)
−0.994331 + 0.106333i \(0.966089\pi\)
\(158\) 0 0
\(159\) 15.6244 1.23910
\(160\) 0 0
\(161\) −4.36662 7.56321i −0.344138 0.596065i
\(162\) 0 0
\(163\) −5.99463 + 10.3830i −0.469536 + 0.813260i −0.999393 0.0348268i \(-0.988912\pi\)
0.529858 + 0.848087i \(0.322245\pi\)
\(164\) 0 0
\(165\) 4.12610 7.14661i 0.321216 0.556363i
\(166\) 0 0
\(167\) 0.943988 + 1.63503i 0.0730480 + 0.126523i 0.900236 0.435403i \(-0.143394\pi\)
−0.827188 + 0.561926i \(0.810061\pi\)
\(168\) 0 0
\(169\) −4.51427 + 7.81895i −0.347252 + 0.601458i
\(170\) 0 0
\(171\) −15.0252 −1.14901
\(172\) 0 0
\(173\) 5.40886 9.36842i 0.411228 0.712268i −0.583796 0.811900i \(-0.698433\pi\)
0.995024 + 0.0996322i \(0.0317666\pi\)
\(174\) 0 0
\(175\) 2.77691 0.209915
\(176\) 0 0
\(177\) 3.58354 0.269356
\(178\) 0 0
\(179\) −8.66609 −0.647734 −0.323867 0.946103i \(-0.604983\pi\)
−0.323867 + 0.946103i \(0.604983\pi\)
\(180\) 0 0
\(181\) 4.96194 + 8.59433i 0.368818 + 0.638811i 0.989381 0.145345i \(-0.0464293\pi\)
−0.620563 + 0.784156i \(0.713096\pi\)
\(182\) 0 0
\(183\) 0.765038 1.32508i 0.0565532 0.0979531i
\(184\) 0 0
\(185\) −5.99036 1.05619i −0.440420 0.0776527i
\(186\) 0 0
\(187\) −8.29018 + 14.3590i −0.606238 + 1.05004i
\(188\) 0 0
\(189\) −2.78938 4.83134i −0.202897 0.351428i
\(190\) 0 0
\(191\) 15.6920 1.13543 0.567716 0.823224i \(-0.307827\pi\)
0.567716 + 0.823224i \(0.307827\pi\)
\(192\) 0 0
\(193\) −13.9344 −1.00302 −0.501510 0.865152i \(-0.667222\pi\)
−0.501510 + 0.865152i \(0.667222\pi\)
\(194\) 0 0
\(195\) 10.6112 0.759881
\(196\) 0 0
\(197\) 4.92470 8.52983i 0.350870 0.607725i −0.635532 0.772075i \(-0.719219\pi\)
0.986402 + 0.164350i \(0.0525525\pi\)
\(198\) 0 0
\(199\) −15.2654 −1.08213 −0.541067 0.840980i \(-0.681979\pi\)
−0.541067 + 0.840980i \(0.681979\pi\)
\(200\) 0 0
\(201\) 13.8341 23.9614i 0.975782 1.69010i
\(202\) 0 0
\(203\) −7.57219 13.1154i −0.531463 0.920522i
\(204\) 0 0
\(205\) −0.109792 + 0.190166i −0.00766823 + 0.0132818i
\(206\) 0 0
\(207\) −3.32013 + 5.75063i −0.230765 + 0.399697i
\(208\) 0 0
\(209\) 12.9873 + 22.4947i 0.898351 + 1.55599i
\(210\) 0 0
\(211\) −19.5301 −1.34451 −0.672254 0.740321i \(-0.734674\pi\)
−0.672254 + 0.740321i \(0.734674\pi\)
\(212\) 0 0
\(213\) 0.980960 1.69907i 0.0672143 0.116419i
\(214\) 0 0
\(215\) 3.01738 + 5.22625i 0.205784 + 0.356428i
\(216\) 0 0
\(217\) 2.42423 + 4.19889i 0.164568 + 0.285039i
\(218\) 0 0
\(219\) −8.81164 15.2622i −0.595435 1.03132i
\(220\) 0 0
\(221\) −21.3200 −1.43414
\(222\) 0 0
\(223\) −22.7756 −1.52517 −0.762584 0.646890i \(-0.776069\pi\)
−0.762584 + 0.646890i \(0.776069\pi\)
\(224\) 0 0
\(225\) −1.05570 1.82853i −0.0703801 0.121902i
\(226\) 0 0
\(227\) 7.35119 + 12.7326i 0.487915 + 0.845094i 0.999903 0.0138984i \(-0.00442413\pi\)
−0.511988 + 0.858993i \(0.671091\pi\)
\(228\) 0 0
\(229\) −12.6769 21.9570i −0.837711 1.45096i −0.891804 0.452423i \(-0.850560\pi\)
0.0540924 0.998536i \(-0.482773\pi\)
\(230\) 0 0
\(231\) 11.4578 19.8455i 0.753868 1.30574i
\(232\) 0 0
\(233\) 19.2556 1.26148 0.630738 0.775996i \(-0.282752\pi\)
0.630738 + 0.775996i \(0.282752\pi\)
\(234\) 0 0
\(235\) 4.20143 + 7.27709i 0.274071 + 0.474705i
\(236\) 0 0
\(237\) 3.44974 5.97512i 0.224085 0.388126i
\(238\) 0 0
\(239\) 13.4323 23.2654i 0.868864 1.50492i 0.00570533 0.999984i \(-0.498184\pi\)
0.863159 0.504933i \(-0.168483\pi\)
\(240\) 0 0
\(241\) −5.47133 9.47663i −0.352440 0.610443i 0.634237 0.773139i \(-0.281314\pi\)
−0.986676 + 0.162696i \(0.947981\pi\)
\(242\) 0 0
\(243\) −9.28120 + 16.0755i −0.595389 + 1.03124i
\(244\) 0 0
\(245\) 0.711223 0.0454383
\(246\) 0 0
\(247\) −16.6998 + 28.9250i −1.06259 + 1.84045i
\(248\) 0 0
\(249\) −36.3303 −2.30234
\(250\) 0 0
\(251\) 1.98639 0.125380 0.0626898 0.998033i \(-0.480032\pi\)
0.0626898 + 0.998033i \(0.480032\pi\)
\(252\) 0 0
\(253\) 11.4793 0.721694
\(254\) 0 0
\(255\) 5.13493 + 8.89396i 0.321562 + 0.556961i
\(256\) 0 0
\(257\) −9.12955 + 15.8128i −0.569486 + 0.986378i 0.427131 + 0.904190i \(0.359524\pi\)
−0.996617 + 0.0821885i \(0.973809\pi\)
\(258\) 0 0
\(259\) −16.6347 2.93295i −1.03363 0.182244i
\(260\) 0 0
\(261\) −5.75746 + 9.97221i −0.356378 + 0.617264i
\(262\) 0 0
\(263\) 6.14097 + 10.6365i 0.378668 + 0.655873i 0.990869 0.134830i \(-0.0430488\pi\)
−0.612200 + 0.790703i \(0.709715\pi\)
\(264\) 0 0
\(265\) −6.91090 −0.424533
\(266\) 0 0
\(267\) 6.25366 0.382718
\(268\) 0 0
\(269\) −19.6819 −1.20003 −0.600014 0.799990i \(-0.704838\pi\)
−0.600014 + 0.799990i \(0.704838\pi\)
\(270\) 0 0
\(271\) 11.0364 19.1157i 0.670416 1.16119i −0.307371 0.951590i \(-0.599449\pi\)
0.977786 0.209604i \(-0.0672175\pi\)
\(272\) 0 0
\(273\) 29.4662 1.78338
\(274\) 0 0
\(275\) −1.82503 + 3.16104i −0.110053 + 0.190618i
\(276\) 0 0
\(277\) 6.33743 + 10.9767i 0.380779 + 0.659529i 0.991174 0.132569i \(-0.0423225\pi\)
−0.610395 + 0.792097i \(0.708989\pi\)
\(278\) 0 0
\(279\) 1.84325 3.19260i 0.110352 0.191136i
\(280\) 0 0
\(281\) 11.7500 20.3516i 0.700948 1.21408i −0.267186 0.963645i \(-0.586094\pi\)
0.968134 0.250433i \(-0.0805728\pi\)
\(282\) 0 0
\(283\) −2.99288 5.18382i −0.177908 0.308146i 0.763256 0.646097i \(-0.223600\pi\)
−0.941164 + 0.337951i \(0.890266\pi\)
\(284\) 0 0
\(285\) 16.0887 0.953009
\(286\) 0 0
\(287\) −0.304883 + 0.528073i −0.0179967 + 0.0311712i
\(288\) 0 0
\(289\) −1.81714 3.14738i −0.106890 0.185140i
\(290\) 0 0
\(291\) 13.9158 + 24.1028i 0.815756 + 1.41293i
\(292\) 0 0
\(293\) −10.7917 18.6917i −0.630456 1.09198i −0.987459 0.157878i \(-0.949535\pi\)
0.357003 0.934103i \(-0.383799\pi\)
\(294\) 0 0
\(295\) −1.58505 −0.0922851
\(296\) 0 0
\(297\) 7.33289 0.425497
\(298\) 0 0
\(299\) 7.38035 + 12.7831i 0.426817 + 0.739268i
\(300\) 0 0
\(301\) 8.37899 + 14.5128i 0.482957 + 0.836506i
\(302\) 0 0
\(303\) 14.9991 + 25.9791i 0.861673 + 1.49246i
\(304\) 0 0
\(305\) −0.338386 + 0.586103i −0.0193760 + 0.0335601i
\(306\) 0 0
\(307\) 13.8693 0.791561 0.395781 0.918345i \(-0.370474\pi\)
0.395781 + 0.918345i \(0.370474\pi\)
\(308\) 0 0
\(309\) −17.6476 30.5665i −1.00393 1.73887i
\(310\) 0 0
\(311\) −6.87157 + 11.9019i −0.389651 + 0.674895i −0.992402 0.123034i \(-0.960738\pi\)
0.602752 + 0.797929i \(0.294071\pi\)
\(312\) 0 0
\(313\) 3.19093 5.52686i 0.180362 0.312397i −0.761642 0.647998i \(-0.775606\pi\)
0.942004 + 0.335602i \(0.108940\pi\)
\(314\) 0 0
\(315\) −2.93159 5.07765i −0.165176 0.286093i
\(316\) 0 0
\(317\) 5.41315 9.37585i 0.304033 0.526600i −0.673013 0.739631i \(-0.735000\pi\)
0.977045 + 0.213031i \(0.0683335\pi\)
\(318\) 0 0
\(319\) 19.9062 1.11454
\(320\) 0 0
\(321\) −8.42445 + 14.5916i −0.470207 + 0.814422i
\(322\) 0 0
\(323\) −32.3254 −1.79863
\(324\) 0 0
\(325\) −4.69346 −0.260346
\(326\) 0 0
\(327\) 11.7032 0.647186
\(328\) 0 0
\(329\) 11.6670 + 20.2078i 0.643222 + 1.11409i
\(330\) 0 0
\(331\) 13.4748 23.3391i 0.740644 1.28283i −0.211558 0.977365i \(-0.567854\pi\)
0.952202 0.305468i \(-0.0988129\pi\)
\(332\) 0 0
\(333\) 4.39276 + 12.0686i 0.240722 + 0.661353i
\(334\) 0 0
\(335\) −6.11900 + 10.5984i −0.334317 + 0.579054i
\(336\) 0 0
\(337\) 6.14610 + 10.6454i 0.334799 + 0.579890i 0.983446 0.181200i \(-0.0579981\pi\)
−0.648647 + 0.761089i \(0.724665\pi\)
\(338\) 0 0
\(339\) 35.4563 1.92572
\(340\) 0 0
\(341\) −6.37297 −0.345116
\(342\) 0 0
\(343\) −17.4634 −0.942933
\(344\) 0 0
\(345\) 3.55512 6.15765i 0.191401 0.331517i
\(346\) 0 0
\(347\) −1.34170 −0.0720265 −0.0360132 0.999351i \(-0.511466\pi\)
−0.0360132 + 0.999351i \(0.511466\pi\)
\(348\) 0 0
\(349\) −2.42263 + 4.19613i −0.129681 + 0.224614i −0.923553 0.383471i \(-0.874729\pi\)
0.793872 + 0.608085i \(0.208062\pi\)
\(350\) 0 0
\(351\) 4.71453 + 8.16581i 0.251643 + 0.435858i
\(352\) 0 0
\(353\) −6.60495 + 11.4401i −0.351546 + 0.608896i −0.986521 0.163637i \(-0.947677\pi\)
0.634974 + 0.772533i \(0.281011\pi\)
\(354\) 0 0
\(355\) −0.433892 + 0.751522i −0.0230286 + 0.0398867i
\(356\) 0 0
\(357\) 14.2592 + 24.6977i 0.754679 + 1.30714i
\(358\) 0 0
\(359\) 19.8008 1.04505 0.522523 0.852625i \(-0.324991\pi\)
0.522523 + 0.852625i \(0.324991\pi\)
\(360\) 0 0
\(361\) −15.8203 + 27.4016i −0.832649 + 1.44219i
\(362\) 0 0
\(363\) 2.62587 + 4.54814i 0.137822 + 0.238715i
\(364\) 0 0
\(365\) 3.89750 + 6.75068i 0.204005 + 0.353347i
\(366\) 0 0
\(367\) −16.4486 28.4898i −0.858610 1.48716i −0.873255 0.487263i \(-0.837995\pi\)
0.0146450 0.999893i \(-0.495338\pi\)
\(368\) 0 0
\(369\) 0.463631 0.0241357
\(370\) 0 0
\(371\) −19.1909 −0.996344
\(372\) 0 0
\(373\) 11.4751 + 19.8755i 0.594160 + 1.02912i 0.993665 + 0.112385i \(0.0358489\pi\)
−0.399504 + 0.916731i \(0.630818\pi\)
\(374\) 0 0
\(375\) 1.13042 + 1.95795i 0.0583747 + 0.101108i
\(376\) 0 0
\(377\) 12.7983 + 22.1673i 0.659147 + 1.14168i
\(378\) 0 0
\(379\) −10.4292 + 18.0639i −0.535711 + 0.927878i 0.463418 + 0.886140i \(0.346623\pi\)
−0.999129 + 0.0417381i \(0.986710\pi\)
\(380\) 0 0
\(381\) 6.81267 0.349023
\(382\) 0 0
\(383\) −10.6319 18.4150i −0.543264 0.940961i −0.998714 0.0506995i \(-0.983855\pi\)
0.455450 0.890261i \(-0.349478\pi\)
\(384\) 0 0
\(385\) −5.06794 + 8.77792i −0.258286 + 0.447364i
\(386\) 0 0
\(387\) 6.37090 11.0347i 0.323851 0.560926i
\(388\) 0 0
\(389\) 1.43253 + 2.48122i 0.0726324 + 0.125803i 0.900054 0.435778i \(-0.143527\pi\)
−0.827422 + 0.561581i \(0.810193\pi\)
\(390\) 0 0
\(391\) −7.14297 + 12.3720i −0.361235 + 0.625678i
\(392\) 0 0
\(393\) 45.1282 2.27642
\(394\) 0 0
\(395\) −1.52587 + 2.64288i −0.0767746 + 0.132978i
\(396\) 0 0
\(397\) 25.5205 1.28084 0.640418 0.768026i \(-0.278761\pi\)
0.640418 + 0.768026i \(0.278761\pi\)
\(398\) 0 0
\(399\) 44.6767 2.23663
\(400\) 0 0
\(401\) 28.0354 1.40002 0.700010 0.714133i \(-0.253179\pi\)
0.700010 + 0.714133i \(0.253179\pi\)
\(402\) 0 0
\(403\) −4.09737 7.09686i −0.204105 0.353520i
\(404\) 0 0
\(405\) 5.43809 9.41905i 0.270221 0.468037i
\(406\) 0 0
\(407\) 14.2712 17.0082i 0.707399 0.843066i
\(408\) 0 0
\(409\) 17.3809 30.1047i 0.859433 1.48858i −0.0130384 0.999915i \(-0.504150\pi\)
0.872471 0.488666i \(-0.162516\pi\)
\(410\) 0 0
\(411\) −16.6706 28.8744i −0.822302 1.42427i
\(412\) 0 0
\(413\) −4.40153 −0.216585
\(414\) 0 0
\(415\) 16.0694 0.788814
\(416\) 0 0
\(417\) −41.2206 −2.01858
\(418\) 0 0
\(419\) 11.9408 20.6821i 0.583346 1.01038i −0.411734 0.911304i \(-0.635077\pi\)
0.995079 0.0990802i \(-0.0315900\pi\)
\(420\) 0 0
\(421\) 27.5876 1.34454 0.672269 0.740307i \(-0.265320\pi\)
0.672269 + 0.740307i \(0.265320\pi\)
\(422\) 0 0
\(423\) 8.87090 15.3649i 0.431318 0.747065i
\(424\) 0 0
\(425\) −2.27125 3.93392i −0.110172 0.190823i
\(426\) 0 0
\(427\) −0.939668 + 1.62755i −0.0454737 + 0.0787628i
\(428\) 0 0
\(429\) −19.3657 + 33.5423i −0.934983 + 1.61944i
\(430\) 0 0
\(431\) 6.56065 + 11.3634i 0.316016 + 0.547355i 0.979653 0.200700i \(-0.0643215\pi\)
−0.663637 + 0.748054i \(0.730988\pi\)
\(432\) 0 0
\(433\) −11.2730 −0.541748 −0.270874 0.962615i \(-0.587313\pi\)
−0.270874 + 0.962615i \(0.587313\pi\)
\(434\) 0 0
\(435\) 6.16495 10.6780i 0.295587 0.511972i
\(436\) 0 0
\(437\) 11.1901 + 19.3818i 0.535295 + 0.927158i
\(438\) 0 0
\(439\) 3.57967 + 6.20017i 0.170848 + 0.295918i 0.938717 0.344690i \(-0.112016\pi\)
−0.767868 + 0.640608i \(0.778683\pi\)
\(440\) 0 0
\(441\) −0.750838 1.30049i −0.0357542 0.0619281i
\(442\) 0 0
\(443\) −15.5675 −0.739636 −0.369818 0.929104i \(-0.620580\pi\)
−0.369818 + 0.929104i \(0.620580\pi\)
\(444\) 0 0
\(445\) −2.76608 −0.131125
\(446\) 0 0
\(447\) −6.06470 10.5044i −0.286851 0.496840i
\(448\) 0 0
\(449\) 20.2874 + 35.1388i 0.957421 + 1.65830i 0.728727 + 0.684804i \(0.240112\pi\)
0.228695 + 0.973498i \(0.426554\pi\)
\(450\) 0 0
\(451\) −0.400748 0.694116i −0.0188705 0.0326846i
\(452\) 0 0
\(453\) 12.8131 22.1929i 0.602012 1.04271i
\(454\) 0 0
\(455\) −13.0333 −0.611011
\(456\) 0 0
\(457\) −10.0301 17.3726i −0.469187 0.812656i 0.530192 0.847878i \(-0.322120\pi\)
−0.999380 + 0.0352211i \(0.988786\pi\)
\(458\) 0 0
\(459\) −4.56289 + 7.90316i −0.212978 + 0.368888i
\(460\) 0 0
\(461\) −10.7214 + 18.5701i −0.499347 + 0.864895i −1.00000 0.000753292i \(-0.999760\pi\)
0.500652 + 0.865649i \(0.333094\pi\)
\(462\) 0 0
\(463\) 8.85955 + 15.3452i 0.411738 + 0.713152i 0.995080 0.0990751i \(-0.0315884\pi\)
−0.583342 + 0.812227i \(0.698255\pi\)
\(464\) 0 0
\(465\) −1.97371 + 3.41856i −0.0915284 + 0.158532i
\(466\) 0 0
\(467\) 4.34021 0.200841 0.100420 0.994945i \(-0.467981\pi\)
0.100420 + 0.994945i \(0.467981\pi\)
\(468\) 0 0
\(469\) −16.9919 + 29.4309i −0.784614 + 1.35899i
\(470\) 0 0
\(471\) −33.3850 −1.53830
\(472\) 0 0
\(473\) −22.0272 −1.01281
\(474\) 0 0
\(475\) −7.11622 −0.326515
\(476\) 0 0
\(477\) 7.29584 + 12.6368i 0.334054 + 0.578598i
\(478\) 0 0
\(479\) −10.3402 + 17.9097i −0.472455 + 0.818315i −0.999503 0.0315198i \(-0.989965\pi\)
0.527048 + 0.849835i \(0.323299\pi\)
\(480\) 0 0
\(481\) 28.1155 + 4.95719i 1.28196 + 0.226028i
\(482\) 0 0
\(483\) 9.87224 17.0992i 0.449202 0.778041i
\(484\) 0 0
\(485\) −6.15512 10.6610i −0.279490 0.484090i
\(486\) 0 0
\(487\) −28.8185 −1.30589 −0.652945 0.757406i \(-0.726467\pi\)
−0.652945 + 0.757406i \(0.726467\pi\)
\(488\) 0 0
\(489\) −27.1058 −1.22577
\(490\) 0 0
\(491\) −6.07413 −0.274122 −0.137061 0.990563i \(-0.543766\pi\)
−0.137061 + 0.990563i \(0.543766\pi\)
\(492\) 0 0
\(493\) −12.3867 + 21.4543i −0.557867 + 0.966255i
\(494\) 0 0
\(495\) 7.70674 0.346392
\(496\) 0 0
\(497\) −1.20488 + 2.08691i −0.0540462 + 0.0936107i
\(498\) 0 0
\(499\) −19.9278 34.5159i −0.892089 1.54514i −0.837366 0.546642i \(-0.815906\pi\)
−0.0547225 0.998502i \(-0.517427\pi\)
\(500\) 0 0
\(501\) −2.13421 + 3.69655i −0.0953493 + 0.165150i
\(502\) 0 0
\(503\) 9.88028 17.1131i 0.440540 0.763038i −0.557190 0.830385i \(-0.688120\pi\)
0.997730 + 0.0673477i \(0.0214537\pi\)
\(504\) 0 0
\(505\) −6.63428 11.4909i −0.295222 0.511339i
\(506\) 0 0
\(507\) −20.4121 −0.906534
\(508\) 0 0
\(509\) −16.5275 + 28.6265i −0.732568 + 1.26885i 0.223214 + 0.974770i \(0.428345\pi\)
−0.955782 + 0.294076i \(0.904988\pi\)
\(510\) 0 0
\(511\) 10.8230 + 18.7460i 0.478782 + 0.829275i
\(512\) 0 0
\(513\) 7.14817 + 12.3810i 0.315600 + 0.546634i
\(514\) 0 0
\(515\) 7.80575 + 13.5200i 0.343962 + 0.595760i
\(516\) 0 0
\(517\) −30.6709 −1.34890
\(518\) 0 0
\(519\) 24.4572 1.07355
\(520\) 0 0
\(521\) −1.27784 2.21328i −0.0559832 0.0969657i 0.836676 0.547699i \(-0.184496\pi\)
−0.892659 + 0.450733i \(0.851163\pi\)
\(522\) 0 0
\(523\) −9.22576 15.9795i −0.403415 0.698734i 0.590721 0.806876i \(-0.298843\pi\)
−0.994136 + 0.108141i \(0.965510\pi\)
\(524\) 0 0
\(525\) 3.13907 + 5.43704i 0.137000 + 0.237292i
\(526\) 0 0
\(527\) 3.96558 6.86859i 0.172744 0.299201i
\(528\) 0 0
\(529\) −13.1093 −0.569968
\(530\) 0 0
\(531\) 1.67334 + 2.89830i 0.0726166 + 0.125776i
\(532\) 0 0
\(533\) 0.515305 0.892535i 0.0223204 0.0386600i
\(534\) 0 0
\(535\) 3.72624 6.45404i 0.161100 0.279033i
\(536\) 0 0
\(537\) −9.79633 16.9677i −0.422743 0.732212i
\(538\) 0 0
\(539\) −1.29800 + 2.24820i −0.0559089 + 0.0968370i
\(540\) 0 0
\(541\) −33.7309 −1.45020 −0.725102 0.688641i \(-0.758207\pi\)
−0.725102 + 0.688641i \(0.758207\pi\)
\(542\) 0 0
\(543\) −11.2181 + 19.4304i −0.481417 + 0.833838i
\(544\) 0 0
\(545\) −5.17646 −0.221735
\(546\) 0 0
\(547\) −0.515707 −0.0220501 −0.0110250 0.999939i \(-0.503509\pi\)
−0.0110250 + 0.999939i \(0.503509\pi\)
\(548\) 0 0
\(549\) 1.42894 0.0609857
\(550\) 0 0
\(551\) 19.4048 + 33.6101i 0.826673 + 1.43184i
\(552\) 0 0
\(553\) −4.23719 + 7.33903i −0.180184 + 0.312087i
\(554\) 0 0
\(555\) −4.70366 12.9227i −0.199659 0.548540i
\(556\) 0 0
\(557\) 18.5543 32.1370i 0.786171 1.36169i −0.142127 0.989848i \(-0.545394\pi\)
0.928297 0.371839i \(-0.121273\pi\)
\(558\) 0 0
\(559\) −14.1619 24.5292i −0.598986 1.03747i
\(560\) 0 0
\(561\) −37.4856 −1.58264
\(562\) 0 0
\(563\) 4.86469 0.205022 0.102511 0.994732i \(-0.467312\pi\)
0.102511 + 0.994732i \(0.467312\pi\)
\(564\) 0 0
\(565\) −15.6828 −0.659780
\(566\) 0 0
\(567\) 15.1011 26.1559i 0.634186 1.09844i
\(568\) 0 0
\(569\) 21.1284 0.885747 0.442873 0.896584i \(-0.353959\pi\)
0.442873 + 0.896584i \(0.353959\pi\)
\(570\) 0 0
\(571\) −1.12931 + 1.95602i −0.0472601 + 0.0818569i −0.888688 0.458513i \(-0.848382\pi\)
0.841428 + 0.540370i \(0.181716\pi\)
\(572\) 0 0
\(573\) 17.7385 + 30.7241i 0.741038 + 1.28352i
\(574\) 0 0
\(575\) −1.57248 + 2.72361i −0.0655768 + 0.113582i
\(576\) 0 0
\(577\) 1.87251 3.24329i 0.0779538 0.135020i −0.824413 0.565988i \(-0.808495\pi\)
0.902367 + 0.430969i \(0.141828\pi\)
\(578\) 0 0
\(579\) −15.7517 27.2828i −0.654619 1.13383i
\(580\) 0 0
\(581\) 44.6231 1.85128
\(582\) 0 0
\(583\) 12.6126 21.8456i 0.522360 0.904754i
\(584\) 0 0
\(585\) 4.95489 + 8.58212i 0.204859 + 0.354827i
\(586\) 0 0
\(587\) −4.08936 7.08298i −0.168786 0.292346i 0.769207 0.638999i \(-0.220651\pi\)
−0.937993 + 0.346653i \(0.887318\pi\)
\(588\) 0 0
\(589\) −6.21244 10.7603i −0.255979 0.443369i
\(590\) 0 0
\(591\) 22.2679 0.915980
\(592\) 0 0
\(593\) −41.7565 −1.71473 −0.857367 0.514706i \(-0.827901\pi\)
−0.857367 + 0.514706i \(0.827901\pi\)
\(594\) 0 0
\(595\) −6.30705 10.9241i −0.258564 0.447846i
\(596\) 0 0
\(597\) −17.2563 29.8888i −0.706253 1.22327i
\(598\) 0 0
\(599\) −5.73506 9.93342i −0.234328 0.405869i 0.724749 0.689013i \(-0.241956\pi\)
−0.959077 + 0.283144i \(0.908622\pi\)
\(600\) 0 0
\(601\) −0.891974 + 1.54494i −0.0363844 + 0.0630196i −0.883644 0.468159i \(-0.844917\pi\)
0.847260 + 0.531179i \(0.178251\pi\)
\(602\) 0 0
\(603\) 25.8394 1.05226
\(604\) 0 0
\(605\) −1.16146 2.01170i −0.0472199 0.0817873i
\(606\) 0 0
\(607\) 7.87875 13.6464i 0.319789 0.553890i −0.660655 0.750690i \(-0.729721\pi\)
0.980444 + 0.196799i \(0.0630547\pi\)
\(608\) 0 0
\(609\) 17.1195 29.6519i 0.693718 1.20155i
\(610\) 0 0
\(611\) −19.7192 34.1547i −0.797755 1.38175i
\(612\) 0 0
\(613\) −5.13544 + 8.89485i −0.207419 + 0.359260i −0.950901 0.309496i \(-0.899840\pi\)
0.743482 + 0.668756i \(0.233173\pi\)
\(614\) 0 0
\(615\) −0.496446 −0.0200186
\(616\) 0 0
\(617\) 21.4101 37.0833i 0.861936 1.49292i −0.00812097 0.999967i \(-0.502585\pi\)
0.870057 0.492951i \(-0.164082\pi\)
\(618\) 0 0
\(619\) 44.3120 1.78105 0.890525 0.454935i \(-0.150338\pi\)
0.890525 + 0.454935i \(0.150338\pi\)
\(620\) 0 0
\(621\) 6.31814 0.253538
\(622\) 0 0
\(623\) −7.68114 −0.307739
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) −29.3622 + 50.8569i −1.17261 + 2.03103i
\(628\) 0 0
\(629\) 9.45064 + 25.9645i 0.376821 + 1.03527i
\(630\) 0 0
\(631\) −21.1310 + 36.6000i −0.841212 + 1.45702i 0.0476592 + 0.998864i \(0.484824\pi\)
−0.888871 + 0.458158i \(0.848509\pi\)
\(632\) 0 0
\(633\) −22.0772 38.2389i −0.877491 1.51986i
\(634\) 0 0
\(635\) −3.01333 −0.119580
\(636\) 0 0
\(637\) −3.33809 −0.132260
\(638\) 0 0
\(639\) 1.83224 0.0724823
\(640\) 0 0
\(641\) 12.0462 20.8647i 0.475797 0.824105i −0.523818 0.851830i \(-0.675493\pi\)
0.999616 + 0.0277248i \(0.00882620\pi\)
\(642\) 0 0
\(643\) 15.1998 0.599423 0.299712 0.954030i \(-0.403110\pi\)
0.299712 + 0.954030i \(0.403110\pi\)
\(644\) 0 0
\(645\) −6.82181 + 11.8157i −0.268609 + 0.465244i
\(646\) 0 0
\(647\) 17.8360 + 30.8928i 0.701205 + 1.21452i 0.968044 + 0.250781i \(0.0806875\pi\)
−0.266839 + 0.963741i \(0.585979\pi\)
\(648\) 0 0
\(649\) 2.89276 5.01040i 0.113551 0.196676i
\(650\) 0 0
\(651\) −5.48080 + 9.49303i −0.214810 + 0.372061i
\(652\) 0 0
\(653\) 1.19633 + 2.07211i 0.0468162 + 0.0810880i 0.888484 0.458908i \(-0.151759\pi\)
−0.841668 + 0.539996i \(0.818426\pi\)
\(654\) 0 0
\(655\) −19.9608 −0.779934
\(656\) 0 0
\(657\) 8.22920 14.2534i 0.321052 0.556078i
\(658\) 0 0
\(659\) 3.97523 + 6.88531i 0.154853 + 0.268213i 0.933006 0.359862i \(-0.117176\pi\)
−0.778152 + 0.628075i \(0.783843\pi\)
\(660\) 0 0
\(661\) −11.4734 19.8726i −0.446265 0.772954i 0.551874 0.833927i \(-0.313913\pi\)
−0.998139 + 0.0609732i \(0.980580\pi\)
\(662\) 0 0
\(663\) −24.1006 41.7434i −0.935989 1.62118i
\(664\) 0 0
\(665\) −19.7611 −0.766303
\(666\) 0 0
\(667\) 17.1516 0.664111
\(668\) 0 0
\(669\) −25.7460 44.5934i −0.995398 1.72408i
\(670\) 0 0
\(671\) −1.23513 2.13931i −0.0476817 0.0825870i
\(672\) 0 0
\(673\) 15.2397 + 26.3960i 0.587448 + 1.01749i 0.994565 + 0.104114i \(0.0332006\pi\)
−0.407118 + 0.913376i \(0.633466\pi\)
\(674\) 0 0
\(675\) −1.00449 + 1.73983i −0.0386628 + 0.0669660i
\(676\) 0 0
\(677\) −4.51190 −0.173406 −0.0867031 0.996234i \(-0.527633\pi\)
−0.0867031 + 0.996234i \(0.527633\pi\)
\(678\) 0 0
\(679\) −17.0922 29.6046i −0.655939 1.13612i
\(680\) 0 0
\(681\) −16.6199 + 28.7864i −0.636875 + 1.10310i
\(682\) 0 0
\(683\) −6.36019 + 11.0162i −0.243366 + 0.421522i −0.961671 0.274206i \(-0.911585\pi\)
0.718305 + 0.695728i \(0.244918\pi\)
\(684\) 0 0
\(685\) 7.37365 + 12.7715i 0.281733 + 0.487975i
\(686\) 0 0
\(687\) 28.6604 49.6413i 1.09346 1.89393i
\(688\) 0 0
\(689\) 32.4360 1.23571
\(690\) 0 0
\(691\) −19.9602 + 34.5721i −0.759322 + 1.31518i 0.183875 + 0.982950i \(0.441136\pi\)
−0.943197 + 0.332234i \(0.892198\pi\)
\(692\) 0 0
\(693\) 21.4009 0.812953
\(694\) 0 0
\(695\) 18.2324 0.691595
\(696\) 0 0
\(697\) 0.997462 0.0377816
\(698\) 0 0
\(699\) 21.7669 + 37.7014i 0.823300 + 1.42600i
\(700\) 0 0
\(701\) −9.80816 + 16.9882i −0.370449 + 0.641637i −0.989635 0.143608i \(-0.954130\pi\)
0.619186 + 0.785245i \(0.287463\pi\)
\(702\) 0 0
\(703\) 42.6288 + 7.51609i 1.60777 + 0.283475i
\(704\) 0 0
\(705\) −9.49876 + 16.4523i −0.357744 + 0.619631i
\(706\) 0 0
\(707\) −18.4228 31.9092i −0.692861 1.20007i
\(708\) 0 0
\(709\) −29.4664 −1.10663 −0.553316 0.832971i \(-0.686638\pi\)
−0.553316 + 0.832971i \(0.686638\pi\)
\(710\) 0 0
\(711\) 6.44343 0.241647
\(712\) 0 0
\(713\) −5.49106 −0.205642
\(714\) 0 0
\(715\) 8.56569 14.8362i 0.320339 0.554843i
\(716\) 0 0
\(717\) 60.7366 2.26825
\(718\) 0 0
\(719\) −11.7425 + 20.3386i −0.437921 + 0.758502i −0.997529 0.0702556i \(-0.977619\pi\)
0.559608 + 0.828758i \(0.310952\pi\)
\(720\) 0 0
\(721\) 21.6759 + 37.5437i 0.807251 + 1.39820i
\(722\) 0 0
\(723\) 12.3698 21.4251i 0.460038 0.796810i
\(724\) 0 0
\(725\) −2.72684 + 4.72303i −0.101272 + 0.175409i
\(726\) 0 0
\(727\) 0.686889 + 1.18973i 0.0254753 + 0.0441245i 0.878482 0.477775i \(-0.158557\pi\)
−0.853007 + 0.521900i \(0.825223\pi\)
\(728\) 0 0
\(729\) −9.33805 −0.345854
\(730\) 0 0
\(731\) 13.7064 23.7402i 0.506951 0.878064i
\(732\) 0 0
\(733\) 8.97826 + 15.5508i 0.331619 + 0.574382i 0.982830 0.184516i \(-0.0590717\pi\)
−0.651210 + 0.758897i \(0.725738\pi\)
\(734\) 0 0
\(735\) 0.803981 + 1.39254i 0.0296553 + 0.0513644i
\(736\) 0 0
\(737\) −22.3347 38.6849i −0.822710 1.42497i
\(738\) 0 0
\(739\) −16.6087 −0.610960 −0.305480 0.952198i \(-0.598817\pi\)
−0.305480 + 0.952198i \(0.598817\pi\)
\(740\) 0 0
\(741\) −75.5114 −2.77398
\(742\) 0 0
\(743\) −10.6914 18.5180i −0.392228 0.679359i 0.600515 0.799614i \(-0.294962\pi\)
−0.992743 + 0.120254i \(0.961629\pi\)
\(744\) 0 0
\(745\) 2.68250 + 4.64623i 0.0982792 + 0.170225i
\(746\) 0 0
\(747\) −16.9644 29.3833i −0.620696 1.07508i
\(748\) 0 0
\(749\) 10.3474 17.9223i 0.378087 0.654866i
\(750\) 0 0
\(751\) 18.8974 0.689575 0.344788 0.938681i \(-0.387951\pi\)
0.344788 + 0.938681i \(0.387951\pi\)
\(752\) 0 0
\(753\) 2.24545 + 3.88924i 0.0818288 + 0.141732i
\(754\) 0 0
\(755\) −5.66740 + 9.81623i −0.206258 + 0.357249i
\(756\) 0 0
\(757\) 13.3448 23.1138i 0.485024 0.840086i −0.514828 0.857294i \(-0.672144\pi\)
0.999852 + 0.0172073i \(0.00547752\pi\)
\(758\) 0 0
\(759\) 12.9764 + 22.4758i 0.471013 + 0.815818i
\(760\) 0 0
\(761\) 4.73204 8.19614i 0.171536 0.297110i −0.767421 0.641144i \(-0.778460\pi\)
0.938957 + 0.344034i \(0.111794\pi\)
\(762\) 0 0
\(763\) −14.3746 −0.520394
\(764\) 0 0
\(765\) −4.79552 + 8.30608i −0.173382 + 0.300307i
\(766\) 0 0
\(767\) 7.43936 0.268620
\(768\) 0 0
\(769\) 42.4913 1.53227 0.766137 0.642677i \(-0.222176\pi\)
0.766137 + 0.642677i \(0.222176\pi\)
\(770\) 0 0
\(771\) −41.2809 −1.48670
\(772\) 0 0
\(773\) −1.92974 3.34240i −0.0694079 0.120218i 0.829233 0.558903i \(-0.188778\pi\)
−0.898641 + 0.438685i \(0.855444\pi\)
\(774\) 0 0
\(775\) 0.872997 1.51207i 0.0313590 0.0543153i
\(776\) 0 0
\(777\) −13.0616 35.8853i −0.468584 1.28738i
\(778\) 0 0
\(779\) 0.781306 1.35326i 0.0279932 0.0484857i
\(780\) 0 0
\(781\) −1.58373 2.74310i −0.0566703 0.0981558i
\(782\) 0 0
\(783\) 10.9563 0.391547
\(784\) 0 0
\(785\) 14.7666 0.527043
\(786\) 0 0
\(787\) −15.7883 −0.562791 −0.281396 0.959592i \(-0.590797\pi\)
−0.281396 + 0.959592i \(0.590797\pi\)
\(788\) 0 0
\(789\) −13.8838 + 24.0474i −0.494275 + 0.856109i
\(790\) 0 0
\(791\) −43.5497 −1.54845
\(792\) 0 0
\(793\) 1.58820 2.75085i 0.0563987 0.0976855i
\(794\) 0 0
\(795\) −7.81222 13.5312i −0.277071 0.479901i
\(796\) 0 0
\(797\) 0.829269 1.43634i 0.0293742 0.0508776i −0.850965 0.525223i \(-0.823982\pi\)
0.880339 + 0.474345i \(0.157315\pi\)
\(798\) 0 0
\(799\) 19.0850 33.0561i 0.675178 1.16944i
\(800\) 0 0
\(801\) 2.92015 + 5.05785i 0.103178 + 0.178710i
\(802\) 0 0
\(803\) −28.4522 −1.00406
\(804\) 0 0
\(805\) −4.36662 + 7.56321i −0.153903 + 0.266568i
\(806\) 0 0
\(807\) −22.2488 38.5361i −0.783196 1.35654i
\(808\) 0 0
\(809\) 18.2006 + 31.5243i 0.639898 + 1.10834i 0.985455 + 0.169938i \(0.0543568\pi\)
−0.345557 + 0.938398i \(0.612310\pi\)
\(810\) 0 0
\(811\) −13.6686 23.6747i −0.479970 0.831333i 0.519766 0.854309i \(-0.326019\pi\)
−0.999736 + 0.0229759i \(0.992686\pi\)
\(812\) 0 0
\(813\) 49.9032 1.75018
\(814\) 0 0
\(815\) 11.9893 0.419966
\(816\) 0 0
\(817\) −21.4723 37.1912i −0.751222 1.30116i
\(818\) 0 0
\(819\) 13.7593 + 23.8318i 0.480788 + 0.832749i
\(820\) 0 0
\(821\) −2.36628 4.09851i −0.0825836 0.143039i 0.821775 0.569812i \(-0.192984\pi\)
−0.904359 + 0.426773i \(0.859650\pi\)
\(822\) 0 0
\(823\) −12.1070 + 20.9700i −0.422024 + 0.730968i −0.996137 0.0878083i \(-0.972014\pi\)
0.574113 + 0.818776i \(0.305347\pi\)
\(824\) 0 0
\(825\) −8.25220 −0.287305
\(826\) 0 0
\(827\) −12.8973 22.3388i −0.448484 0.776797i 0.549803 0.835294i \(-0.314703\pi\)
−0.998288 + 0.0584967i \(0.981369\pi\)
\(828\) 0 0
\(829\) −20.8250 + 36.0700i −0.723282 + 1.25276i 0.236395 + 0.971657i \(0.424034\pi\)
−0.959677 + 0.281105i \(0.909299\pi\)
\(830\) 0 0
\(831\) −14.3279 + 24.8167i −0.497030 + 0.860881i
\(832\) 0 0
\(833\) −1.61536 2.79789i −0.0559690 0.0969412i
\(834\) 0 0
\(835\) 0.943988 1.63503i 0.0326680 0.0565827i
\(836\) 0 0
\(837\) −3.50766 −0.121243
\(838\) 0 0
\(839\) 11.8045 20.4460i 0.407537 0.705876i −0.587076 0.809532i \(-0.699721\pi\)
0.994613 + 0.103656i \(0.0330542\pi\)
\(840\) 0 0
\(841\) 0.742645 0.0256084
\(842\) 0 0
\(843\) 53.1299 1.82989
\(844\) 0 0
\(845\) 9.02855 0.310592
\(846\) 0 0
\(847\) −3.22526 5.58631i −0.110821 0.191948i
\(848\) 0 0
\(849\) 6.76642 11.7198i 0.232223 0.402222i
\(850\) 0 0
\(851\) 12.2964 14.6546i 0.421514 0.502352i
\(852\) 0 0
\(853\) −14.2378 + 24.6606i −0.487493 + 0.844363i −0.999897 0.0143819i \(-0.995422\pi\)
0.512403 + 0.858745i \(0.328755\pi\)
\(854\) 0 0
\(855\) 7.51260 + 13.0122i 0.256926 + 0.445008i
\(856\) 0 0
\(857\) −23.8806 −0.815746 −0.407873 0.913039i \(-0.633729\pi\)
−0.407873 + 0.913039i \(0.633729\pi\)
\(858\) 0 0
\(859\) 41.8254 1.42707 0.713533 0.700622i \(-0.247094\pi\)
0.713533 + 0.700622i \(0.247094\pi\)
\(860\) 0 0
\(861\) −1.37858 −0.0469820
\(862\) 0 0
\(863\) −6.20954 + 10.7552i −0.211375 + 0.366113i −0.952145 0.305646i \(-0.901128\pi\)
0.740770 + 0.671759i \(0.234461\pi\)
\(864\) 0 0
\(865\) −10.8177 −0.367814
\(866\) 0 0
\(867\) 4.10826 7.11572i 0.139524 0.241662i
\(868\) 0 0
\(869\) −5.56949 9.64665i −0.188932 0.327240i
\(870\) 0 0
\(871\) 28.7193 49.7433i 0.973116 1.68549i
\(872\) 0 0
\(873\) −12.9959 + 22.5096i −0.439846 + 0.761835i
\(874\) 0 0
\(875\) −1.38845 2.40487i −0.0469383 0.0812996i
\(876\) 0 0
\(877\) 28.4409 0.960381 0.480190 0.877164i \(-0.340568\pi\)
0.480190 + 0.877164i \(0.340568\pi\)
\(878\) 0 0
\(879\) 24.3982 42.2590i 0.822932 1.42536i
\(880\) 0 0
\(881\) 15.5464 + 26.9271i 0.523770 + 0.907197i 0.999617 + 0.0276684i \(0.00880826\pi\)
−0.475847 + 0.879528i \(0.657858\pi\)
\(882\) 0 0
\(883\) −4.05168 7.01772i −0.136350 0.236165i 0.789762 0.613413i \(-0.210204\pi\)
−0.926112 + 0.377248i \(0.876870\pi\)
\(884\) 0 0
\(885\) −1.79177 3.10344i −0.0602297 0.104321i
\(886\) 0 0
\(887\) 31.6730 1.06348 0.531738 0.846909i \(-0.321539\pi\)
0.531738 + 0.846909i \(0.321539\pi\)
\(888\) 0 0
\(889\) −8.36775 −0.280645
\(890\) 0 0
\(891\) 19.8493 + 34.3801i 0.664978 + 1.15178i
\(892\) 0 0
\(893\) −29.8983 51.7854i −1.00051 1.73293i
\(894\) 0 0
\(895\) 4.33305 + 7.50506i 0.144838 + 0.250866i
\(896\) 0 0
\(897\) −16.6858 + 28.9007i −0.557123 + 0.964965i
\(898\) 0 0
\(899\) −9.52209 −0.317579
\(900\) 0 0
\(901\) 15.6964 + 27.1869i 0.522922 + 0.905727i
\(902\) 0 0
\(903\) −18.9436 + 32.8112i −0.630402 + 1.09189i
\(904\) 0 0
\(905\) 4.96194 8.59433i 0.164940 0.285685i
\(906\) 0 0
\(907\) 29.9710 + 51.9113i 0.995171 + 1.72369i 0.582591 + 0.812766i \(0.302039\pi\)
0.412580 + 0.910921i \(0.364628\pi\)
\(908\) 0 0
\(909\) −14.0076 + 24.2619i −0.464604 + 0.804718i
\(910\) 0 0
\(911\) −27.4317 −0.908852 −0.454426 0.890784i \(-0.650156\pi\)
−0.454426 + 0.890784i \(0.650156\pi\)
\(912\) 0 0
\(913\) −29.3270 + 50.7959i −0.970583 + 1.68110i
\(914\) 0 0
\(915\) −1.53008 −0.0505828
\(916\) 0 0
\(917\) −55.4294 −1.83044
\(918\) 0 0
\(919\) −26.0316 −0.858704 −0.429352 0.903137i \(-0.641258\pi\)
−0.429352 + 0.903137i \(0.641258\pi\)
\(920\) 0 0
\(921\) 15.6781 + 27.1553i 0.516611 + 0.894797i
\(922\) 0 0
\(923\) 2.03645 3.52724i 0.0670307 0.116100i
\(924\) 0 0
\(925\) 2.08049 + 5.71590i 0.0684062 + 0.187938i
\(926\) 0 0
\(927\) 16.4811 28.5461i 0.541309 0.937575i
\(928\) 0 0
\(929\) −26.1923 45.3664i −0.859342 1.48842i −0.872557 0.488512i \(-0.837540\pi\)
0.0132152 0.999913i \(-0.495793\pi\)
\(930\) 0 0
\(931\) −5.06122 −0.165875
\(932\) 0 0
\(933\) −31.0710 −1.01722
\(934\) 0 0
\(935\) 16.5804 0.542236
\(936\) 0 0
\(937\) 1.12548 1.94938i 0.0367678 0.0636836i −0.847056 0.531504i \(-0.821627\pi\)
0.883824 + 0.467820i \(0.154960\pi\)
\(938\) 0 0
\(939\) 14.4284 0.470853
\(940\) 0 0
\(941\) −3.87789 + 6.71670i −0.126416 + 0.218958i −0.922285 0.386510i \(-0.873681\pi\)
0.795870 + 0.605468i \(0.207014\pi\)
\(942\) 0 0
\(943\) −0.345291 0.598062i −0.0112442 0.0194756i
\(944\) 0 0
\(945\) −2.78938 + 4.83134i −0.0907384 + 0.157164i
\(946\) 0 0
\(947\) −23.1800 + 40.1489i −0.753248 + 1.30466i 0.192993 + 0.981200i \(0.438181\pi\)
−0.946241 + 0.323463i \(0.895153\pi\)
\(948\) 0 0
\(949\) −18.2928 31.6840i −0.593809 1.02851i
\(950\) 0 0
\(951\) 24.4765 0.793706
\(952\) 0 0
\(953\) 24.7015 42.7842i 0.800160 1.38592i −0.119351 0.992852i \(-0.538081\pi\)
0.919511 0.393065i \(-0.128585\pi\)
\(954\) 0 0
\(955\) −7.84599 13.5897i −0.253890 0.439751i
\(956\) 0 0
\(957\) 22.5024 + 38.9753i 0.727400 + 1.25989i
\(958\) 0 0
\(959\) 20.4759 + 35.4654i 0.661203 + 1.14524i
\(960\) 0 0
\(961\) −27.9515 −0.901662
\(962\) 0 0
\(963\) −15.7352 −0.507060
\(964\) 0 0
\(965\) 6.96719 + 12.0675i 0.224282 + 0.388468i
\(966\) 0 0
\(967\) 17.5533 + 30.4032i 0.564476 + 0.977701i 0.997098 + 0.0761257i \(0.0242550\pi\)
−0.432622 + 0.901575i \(0.642412\pi\)
\(968\) 0 0
\(969\) −36.5413 63.2914i −1.17388 2.03321i
\(970\) 0 0
\(971\) −24.8907 + 43.1119i −0.798780 + 1.38353i 0.121631 + 0.992575i \(0.461188\pi\)
−0.920411 + 0.390952i \(0.872146\pi\)
\(972\) 0 0
\(973\) 50.6297 1.62311
\(974\) 0 0
\(975\) −5.30558 9.18954i −0.169915 0.294301i
\(976\) 0 0
\(977\) −1.87383 + 3.24557i −0.0599491 + 0.103835i −0.894442 0.447183i \(-0.852427\pi\)
0.834493 + 0.551018i \(0.185761\pi\)
\(978\) 0 0
\(979\) 5.04817 8.74369i 0.161340 0.279449i
\(980\) 0 0
\(981\) 5.46480 + 9.46531i 0.174478 + 0.302204i
\(982\) 0 0
\(983\) 12.2054 21.1403i 0.389291 0.674272i −0.603063 0.797693i \(-0.706053\pi\)
0.992354 + 0.123421i \(0.0393867\pi\)
\(984\) 0 0
\(985\) −9.84940 −0.313828
\(986\) 0 0
\(987\) −26.3772 + 45.6866i −0.839595 + 1.45422i
\(988\) 0 0
\(989\) −18.9790 −0.603498
\(990\) 0 0
\(991\) −21.9021 −0.695742 −0.347871 0.937542i \(-0.613095\pi\)
−0.347871 + 0.937542i \(0.613095\pi\)
\(992\) 0 0
\(993\) 60.9289 1.93352
\(994\) 0 0
\(995\) 7.63269 + 13.2202i 0.241972 + 0.419109i
\(996\) 0 0
\(997\) 23.3426 40.4306i 0.739267 1.28045i −0.213558 0.976930i \(-0.568505\pi\)
0.952826 0.303518i \(-0.0981614\pi\)
\(998\) 0 0
\(999\) 7.85485 9.36126i 0.248516 0.296177i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 740.2.i.a.121.6 14
37.26 even 3 inner 740.2.i.a.581.6 yes 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
740.2.i.a.121.6 14 1.1 even 1 trivial
740.2.i.a.581.6 yes 14 37.26 even 3 inner