Properties

Label 740.2.i.a.121.5
Level $740$
Weight $2$
Character 740.121
Analytic conductor $5.909$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [740,2,Mod(121,740)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(740, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("740.121"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 740 = 2^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 740.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,0,0,-7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.90892974957\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 24x^{12} + 204x^{10} + 727x^{8} + 1008x^{6} + 426x^{4} + 64x^{2} + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 121.5
Root \(-2.93925i\) of defining polynomial
Character \(\chi\) \(=\) 740.121
Dual form 740.2.i.a.581.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.627876 + 1.08751i) q^{3} +(-0.500000 - 0.866025i) q^{5} +(-0.536763 - 0.929701i) q^{7} +(0.711543 - 1.23243i) q^{9} -0.938843 q^{11} +(-3.28901 - 5.69673i) q^{13} +(0.627876 - 1.08751i) q^{15} +(1.89707 - 3.28581i) q^{17} +(-0.743544 - 1.28786i) q^{19} +(0.674042 - 1.16747i) q^{21} +5.86243 q^{23} +(-0.500000 + 0.866025i) q^{25} +5.55430 q^{27} +0.295422 q^{29} -7.86903 q^{31} +(-0.589477 - 1.02100i) q^{33} +(-0.536763 + 0.929701i) q^{35} +(2.00979 + 5.74114i) q^{37} +(4.13018 - 7.15368i) q^{39} +(-2.16222 - 3.74508i) q^{41} +9.07388 q^{43} -1.42309 q^{45} -7.93093 q^{47} +(2.92377 - 5.06412i) q^{49} +4.76449 q^{51} +(0.658455 - 1.14048i) q^{53} +(0.469422 + 0.813062i) q^{55} +(0.933707 - 1.61723i) q^{57} +(3.12411 - 5.41112i) q^{59} +(1.38905 + 2.40591i) q^{61} -1.52772 q^{63} +(-3.28901 + 5.69673i) q^{65} +(7.37895 + 12.7807i) q^{67} +(3.68088 + 6.37548i) q^{69} +(-5.36436 - 9.29135i) q^{71} -5.92359 q^{73} -1.25575 q^{75} +(0.503937 + 0.872844i) q^{77} +(5.55057 + 9.61387i) q^{79} +(1.35278 + 2.34309i) q^{81} +(0.512248 - 0.887239i) q^{83} -3.79413 q^{85} +(0.185489 + 0.321276i) q^{87} +(5.89192 - 10.2051i) q^{89} +(-3.53083 + 6.11558i) q^{91} +(-4.94078 - 8.55767i) q^{93} +(-0.743544 + 1.28786i) q^{95} +8.64581 q^{97} +(-0.668027 + 1.15706i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 7 q^{5} + 4 q^{7} - 13 q^{9} + 14 q^{11} + 4 q^{13} + q^{17} + 4 q^{19} - 3 q^{21} + 12 q^{23} - 7 q^{25} - 6 q^{27} - 4 q^{29} - 24 q^{31} + 13 q^{33} + 4 q^{35} + 10 q^{37} + 21 q^{39} + 5 q^{41}+ \cdots - 58 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/740\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(297\) \(371\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.627876 + 1.08751i 0.362505 + 0.627876i 0.988372 0.152053i \(-0.0485884\pi\)
−0.625868 + 0.779929i \(0.715255\pi\)
\(4\) 0 0
\(5\) −0.500000 0.866025i −0.223607 0.387298i
\(6\) 0 0
\(7\) −0.536763 0.929701i −0.202877 0.351394i 0.746577 0.665299i \(-0.231696\pi\)
−0.949454 + 0.313905i \(0.898363\pi\)
\(8\) 0 0
\(9\) 0.711543 1.23243i 0.237181 0.410809i
\(10\) 0 0
\(11\) −0.938843 −0.283072 −0.141536 0.989933i \(-0.545204\pi\)
−0.141536 + 0.989933i \(0.545204\pi\)
\(12\) 0 0
\(13\) −3.28901 5.69673i −0.912206 1.57999i −0.810941 0.585128i \(-0.801044\pi\)
−0.101265 0.994859i \(-0.532289\pi\)
\(14\) 0 0
\(15\) 0.627876 1.08751i 0.162117 0.280795i
\(16\) 0 0
\(17\) 1.89707 3.28581i 0.460106 0.796927i −0.538860 0.842396i \(-0.681145\pi\)
0.998966 + 0.0454684i \(0.0144780\pi\)
\(18\) 0 0
\(19\) −0.743544 1.28786i −0.170581 0.295454i 0.768042 0.640399i \(-0.221231\pi\)
−0.938623 + 0.344945i \(0.887898\pi\)
\(20\) 0 0
\(21\) 0.674042 1.16747i 0.147088 0.254764i
\(22\) 0 0
\(23\) 5.86243 1.22240 0.611201 0.791475i \(-0.290687\pi\)
0.611201 + 0.791475i \(0.290687\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 0 0
\(27\) 5.55430 1.06893
\(28\) 0 0
\(29\) 0.295422 0.0548586 0.0274293 0.999624i \(-0.491268\pi\)
0.0274293 + 0.999624i \(0.491268\pi\)
\(30\) 0 0
\(31\) −7.86903 −1.41332 −0.706660 0.707554i \(-0.749799\pi\)
−0.706660 + 0.707554i \(0.749799\pi\)
\(32\) 0 0
\(33\) −0.589477 1.02100i −0.102615 0.177734i
\(34\) 0 0
\(35\) −0.536763 + 0.929701i −0.0907295 + 0.157148i
\(36\) 0 0
\(37\) 2.00979 + 5.74114i 0.330407 + 0.943838i
\(38\) 0 0
\(39\) 4.13018 7.15368i 0.661358 1.14551i
\(40\) 0 0
\(41\) −2.16222 3.74508i −0.337682 0.584883i 0.646314 0.763071i \(-0.276310\pi\)
−0.983996 + 0.178189i \(0.942976\pi\)
\(42\) 0 0
\(43\) 9.07388 1.38375 0.691877 0.722016i \(-0.256784\pi\)
0.691877 + 0.722016i \(0.256784\pi\)
\(44\) 0 0
\(45\) −1.42309 −0.212141
\(46\) 0 0
\(47\) −7.93093 −1.15685 −0.578423 0.815737i \(-0.696332\pi\)
−0.578423 + 0.815737i \(0.696332\pi\)
\(48\) 0 0
\(49\) 2.92377 5.06412i 0.417682 0.723446i
\(50\) 0 0
\(51\) 4.76449 0.667162
\(52\) 0 0
\(53\) 0.658455 1.14048i 0.0904457 0.156657i −0.817253 0.576279i \(-0.804504\pi\)
0.907699 + 0.419622i \(0.137838\pi\)
\(54\) 0 0
\(55\) 0.469422 + 0.813062i 0.0632968 + 0.109633i
\(56\) 0 0
\(57\) 0.933707 1.61723i 0.123673 0.214207i
\(58\) 0 0
\(59\) 3.12411 5.41112i 0.406725 0.704468i −0.587796 0.809010i \(-0.700004\pi\)
0.994521 + 0.104541i \(0.0333374\pi\)
\(60\) 0 0
\(61\) 1.38905 + 2.40591i 0.177850 + 0.308045i 0.941144 0.338006i \(-0.109753\pi\)
−0.763294 + 0.646051i \(0.776419\pi\)
\(62\) 0 0
\(63\) −1.52772 −0.192475
\(64\) 0 0
\(65\) −3.28901 + 5.69673i −0.407951 + 0.706592i
\(66\) 0 0
\(67\) 7.37895 + 12.7807i 0.901483 + 1.56141i 0.825570 + 0.564299i \(0.190853\pi\)
0.0759120 + 0.997115i \(0.475813\pi\)
\(68\) 0 0
\(69\) 3.68088 + 6.37548i 0.443126 + 0.767517i
\(70\) 0 0
\(71\) −5.36436 9.29135i −0.636633 1.10268i −0.986167 0.165756i \(-0.946993\pi\)
0.349534 0.936924i \(-0.386340\pi\)
\(72\) 0 0
\(73\) −5.92359 −0.693304 −0.346652 0.937994i \(-0.612681\pi\)
−0.346652 + 0.937994i \(0.612681\pi\)
\(74\) 0 0
\(75\) −1.25575 −0.145002
\(76\) 0 0
\(77\) 0.503937 + 0.872844i 0.0574289 + 0.0994698i
\(78\) 0 0
\(79\) 5.55057 + 9.61387i 0.624488 + 1.08164i 0.988640 + 0.150305i \(0.0480256\pi\)
−0.364152 + 0.931340i \(0.618641\pi\)
\(80\) 0 0
\(81\) 1.35278 + 2.34309i 0.150309 + 0.260344i
\(82\) 0 0
\(83\) 0.512248 0.887239i 0.0562265 0.0973872i −0.836542 0.547903i \(-0.815426\pi\)
0.892769 + 0.450515i \(0.148760\pi\)
\(84\) 0 0
\(85\) −3.79413 −0.411531
\(86\) 0 0
\(87\) 0.185489 + 0.321276i 0.0198865 + 0.0344444i
\(88\) 0 0
\(89\) 5.89192 10.2051i 0.624542 1.08174i −0.364087 0.931365i \(-0.618619\pi\)
0.988629 0.150374i \(-0.0480478\pi\)
\(90\) 0 0
\(91\) −3.53083 + 6.11558i −0.370132 + 0.641087i
\(92\) 0 0
\(93\) −4.94078 8.55767i −0.512335 0.887389i
\(94\) 0 0
\(95\) −0.743544 + 1.28786i −0.0762860 + 0.132131i
\(96\) 0 0
\(97\) 8.64581 0.877849 0.438924 0.898524i \(-0.355360\pi\)
0.438924 + 0.898524i \(0.355360\pi\)
\(98\) 0 0
\(99\) −0.668027 + 1.15706i −0.0671393 + 0.116289i
\(100\) 0 0
\(101\) −19.8755 −1.97769 −0.988845 0.148948i \(-0.952411\pi\)
−0.988845 + 0.148948i \(0.952411\pi\)
\(102\) 0 0
\(103\) 8.14076 0.802133 0.401067 0.916049i \(-0.368640\pi\)
0.401067 + 0.916049i \(0.368640\pi\)
\(104\) 0 0
\(105\) −1.34808 −0.131559
\(106\) 0 0
\(107\) 1.49420 + 2.58803i 0.144450 + 0.250195i 0.929168 0.369659i \(-0.120525\pi\)
−0.784718 + 0.619853i \(0.787192\pi\)
\(108\) 0 0
\(109\) 1.30287 2.25664i 0.124792 0.216147i −0.796859 0.604165i \(-0.793507\pi\)
0.921652 + 0.388018i \(0.126840\pi\)
\(110\) 0 0
\(111\) −4.98167 + 5.79040i −0.472840 + 0.549601i
\(112\) 0 0
\(113\) −7.10075 + 12.2989i −0.667982 + 1.15698i 0.310485 + 0.950578i \(0.399509\pi\)
−0.978467 + 0.206401i \(0.933825\pi\)
\(114\) 0 0
\(115\) −2.93122 5.07702i −0.273337 0.473434i
\(116\) 0 0
\(117\) −9.36107 −0.865432
\(118\) 0 0
\(119\) −4.07310 −0.373381
\(120\) 0 0
\(121\) −10.1186 −0.919870
\(122\) 0 0
\(123\) 2.71521 4.70289i 0.244823 0.424045i
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 9.06498 15.7010i 0.804387 1.39324i −0.112317 0.993672i \(-0.535827\pi\)
0.916704 0.399567i \(-0.130840\pi\)
\(128\) 0 0
\(129\) 5.69727 + 9.86796i 0.501617 + 0.868826i
\(130\) 0 0
\(131\) −1.54708 + 2.67962i −0.135169 + 0.234119i −0.925662 0.378352i \(-0.876491\pi\)
0.790493 + 0.612471i \(0.209824\pi\)
\(132\) 0 0
\(133\) −0.798214 + 1.38255i −0.0692139 + 0.119882i
\(134\) 0 0
\(135\) −2.77715 4.81017i −0.239019 0.413993i
\(136\) 0 0
\(137\) 9.58745 0.819111 0.409556 0.912285i \(-0.365684\pi\)
0.409556 + 0.912285i \(0.365684\pi\)
\(138\) 0 0
\(139\) −1.84400 + 3.19390i −0.156406 + 0.270903i −0.933570 0.358395i \(-0.883324\pi\)
0.777164 + 0.629298i \(0.216658\pi\)
\(140\) 0 0
\(141\) −4.97964 8.62500i −0.419362 0.726356i
\(142\) 0 0
\(143\) 3.08786 + 5.34833i 0.258220 + 0.447250i
\(144\) 0 0
\(145\) −0.147711 0.255843i −0.0122667 0.0212466i
\(146\) 0 0
\(147\) 7.34306 0.605646
\(148\) 0 0
\(149\) −20.7143 −1.69699 −0.848493 0.529207i \(-0.822489\pi\)
−0.848493 + 0.529207i \(0.822489\pi\)
\(150\) 0 0
\(151\) 1.25053 + 2.16597i 0.101766 + 0.176264i 0.912412 0.409272i \(-0.134217\pi\)
−0.810646 + 0.585536i \(0.800884\pi\)
\(152\) 0 0
\(153\) −2.69969 4.67600i −0.218257 0.378032i
\(154\) 0 0
\(155\) 3.93451 + 6.81478i 0.316028 + 0.547376i
\(156\) 0 0
\(157\) 1.65317 2.86337i 0.131937 0.228522i −0.792486 0.609890i \(-0.791214\pi\)
0.924423 + 0.381368i \(0.124547\pi\)
\(158\) 0 0
\(159\) 1.65371 0.131148
\(160\) 0 0
\(161\) −3.14674 5.45031i −0.247998 0.429545i
\(162\) 0 0
\(163\) −6.80662 + 11.7894i −0.533135 + 0.923417i 0.466116 + 0.884724i \(0.345653\pi\)
−0.999251 + 0.0386937i \(0.987680\pi\)
\(164\) 0 0
\(165\) −0.589477 + 1.02100i −0.0458908 + 0.0794851i
\(166\) 0 0
\(167\) 0.765424 + 1.32575i 0.0592303 + 0.102590i 0.894120 0.447827i \(-0.147802\pi\)
−0.834890 + 0.550417i \(0.814469\pi\)
\(168\) 0 0
\(169\) −15.1351 + 26.2148i −1.16424 + 2.01652i
\(170\) 0 0
\(171\) −2.11625 −0.161834
\(172\) 0 0
\(173\) −12.6499 + 21.9102i −0.961751 + 1.66580i −0.243649 + 0.969864i \(0.578344\pi\)
−0.718102 + 0.695938i \(0.754989\pi\)
\(174\) 0 0
\(175\) 1.07353 0.0811510
\(176\) 0 0
\(177\) 7.84623 0.589759
\(178\) 0 0
\(179\) 14.7550 1.10284 0.551421 0.834227i \(-0.314086\pi\)
0.551421 + 0.834227i \(0.314086\pi\)
\(180\) 0 0
\(181\) 10.5624 + 18.2946i 0.785095 + 1.35982i 0.928942 + 0.370224i \(0.120719\pi\)
−0.143847 + 0.989600i \(0.545947\pi\)
\(182\) 0 0
\(183\) −1.74431 + 3.02123i −0.128943 + 0.223335i
\(184\) 0 0
\(185\) 3.96708 4.61110i 0.291666 0.339015i
\(186\) 0 0
\(187\) −1.78105 + 3.08487i −0.130243 + 0.225588i
\(188\) 0 0
\(189\) −2.98134 5.16384i −0.216861 0.375614i
\(190\) 0 0
\(191\) −3.76835 −0.272668 −0.136334 0.990663i \(-0.543532\pi\)
−0.136334 + 0.990663i \(0.543532\pi\)
\(192\) 0 0
\(193\) 1.48225 0.106695 0.0533474 0.998576i \(-0.483011\pi\)
0.0533474 + 0.998576i \(0.483011\pi\)
\(194\) 0 0
\(195\) −8.26035 −0.591536
\(196\) 0 0
\(197\) 5.55301 9.61809i 0.395635 0.685261i −0.597547 0.801834i \(-0.703858\pi\)
0.993182 + 0.116574i \(0.0371911\pi\)
\(198\) 0 0
\(199\) −0.419105 −0.0297096 −0.0148548 0.999890i \(-0.504729\pi\)
−0.0148548 + 0.999890i \(0.504729\pi\)
\(200\) 0 0
\(201\) −9.26614 + 16.0494i −0.653583 + 1.13204i
\(202\) 0 0
\(203\) −0.158572 0.274655i −0.0111296 0.0192770i
\(204\) 0 0
\(205\) −2.16222 + 3.74508i −0.151016 + 0.261567i
\(206\) 0 0
\(207\) 4.17137 7.22503i 0.289930 0.502174i
\(208\) 0 0
\(209\) 0.698071 + 1.20909i 0.0482866 + 0.0836348i
\(210\) 0 0
\(211\) −0.952451 −0.0655695 −0.0327847 0.999462i \(-0.510438\pi\)
−0.0327847 + 0.999462i \(0.510438\pi\)
\(212\) 0 0
\(213\) 6.73631 11.6676i 0.461564 0.799453i
\(214\) 0 0
\(215\) −4.53694 7.85821i −0.309417 0.535925i
\(216\) 0 0
\(217\) 4.22380 + 7.31584i 0.286731 + 0.496632i
\(218\) 0 0
\(219\) −3.71928 6.44198i −0.251326 0.435309i
\(220\) 0 0
\(221\) −24.9578 −1.67885
\(222\) 0 0
\(223\) 16.3399 1.09420 0.547102 0.837066i \(-0.315731\pi\)
0.547102 + 0.837066i \(0.315731\pi\)
\(224\) 0 0
\(225\) 0.711543 + 1.23243i 0.0474362 + 0.0821619i
\(226\) 0 0
\(227\) 1.25722 + 2.17756i 0.0834445 + 0.144530i 0.904727 0.425991i \(-0.140075\pi\)
−0.821283 + 0.570521i \(0.806741\pi\)
\(228\) 0 0
\(229\) 12.9482 + 22.4270i 0.855644 + 1.48202i 0.876046 + 0.482227i \(0.160172\pi\)
−0.0204019 + 0.999792i \(0.506495\pi\)
\(230\) 0 0
\(231\) −0.632820 + 1.09608i −0.0416365 + 0.0721165i
\(232\) 0 0
\(233\) 6.89328 0.451594 0.225797 0.974174i \(-0.427501\pi\)
0.225797 + 0.974174i \(0.427501\pi\)
\(234\) 0 0
\(235\) 3.96547 + 6.86839i 0.258679 + 0.448044i
\(236\) 0 0
\(237\) −6.97014 + 12.0726i −0.452759 + 0.784202i
\(238\) 0 0
\(239\) 11.6277 20.1398i 0.752134 1.30273i −0.194653 0.980872i \(-0.562358\pi\)
0.946787 0.321862i \(-0.104309\pi\)
\(240\) 0 0
\(241\) −7.70827 13.3511i −0.496533 0.860021i 0.503459 0.864019i \(-0.332061\pi\)
−0.999992 + 0.00399859i \(0.998727\pi\)
\(242\) 0 0
\(243\) 6.63269 11.4882i 0.425487 0.736965i
\(244\) 0 0
\(245\) −5.84754 −0.373586
\(246\) 0 0
\(247\) −4.89104 + 8.47153i −0.311209 + 0.539031i
\(248\) 0 0
\(249\) 1.28651 0.0815294
\(250\) 0 0
\(251\) 1.96634 0.124114 0.0620571 0.998073i \(-0.480234\pi\)
0.0620571 + 0.998073i \(0.480234\pi\)
\(252\) 0 0
\(253\) −5.50391 −0.346028
\(254\) 0 0
\(255\) −2.38225 4.12617i −0.149182 0.258391i
\(256\) 0 0
\(257\) −1.74766 + 3.02703i −0.109016 + 0.188821i −0.915372 0.402610i \(-0.868103\pi\)
0.806356 + 0.591430i \(0.201437\pi\)
\(258\) 0 0
\(259\) 4.25877 4.95014i 0.264627 0.307587i
\(260\) 0 0
\(261\) 0.210206 0.364087i 0.0130114 0.0225364i
\(262\) 0 0
\(263\) 11.6991 + 20.2635i 0.721400 + 1.24950i 0.960439 + 0.278492i \(0.0898346\pi\)
−0.239038 + 0.971010i \(0.576832\pi\)
\(264\) 0 0
\(265\) −1.31691 −0.0808971
\(266\) 0 0
\(267\) 14.7976 0.905598
\(268\) 0 0
\(269\) 19.7745 1.20567 0.602837 0.797865i \(-0.294037\pi\)
0.602837 + 0.797865i \(0.294037\pi\)
\(270\) 0 0
\(271\) 1.28877 2.23221i 0.0782871 0.135597i −0.824224 0.566264i \(-0.808388\pi\)
0.902511 + 0.430667i \(0.141722\pi\)
\(272\) 0 0
\(273\) −8.86771 −0.536698
\(274\) 0 0
\(275\) 0.469422 0.813062i 0.0283072 0.0490295i
\(276\) 0 0
\(277\) −2.14668 3.71816i −0.128982 0.223403i 0.794301 0.607525i \(-0.207838\pi\)
−0.923282 + 0.384122i \(0.874504\pi\)
\(278\) 0 0
\(279\) −5.59915 + 9.69801i −0.335212 + 0.580605i
\(280\) 0 0
\(281\) 2.97225 5.14809i 0.177310 0.307109i −0.763648 0.645632i \(-0.776594\pi\)
0.940958 + 0.338523i \(0.109927\pi\)
\(282\) 0 0
\(283\) 10.8974 + 18.8749i 0.647785 + 1.12200i 0.983651 + 0.180086i \(0.0576377\pi\)
−0.335866 + 0.941910i \(0.609029\pi\)
\(284\) 0 0
\(285\) −1.86741 −0.110616
\(286\) 0 0
\(287\) −2.32120 + 4.02044i −0.137016 + 0.237319i
\(288\) 0 0
\(289\) 1.30228 + 2.25562i 0.0766048 + 0.132683i
\(290\) 0 0
\(291\) 5.42850 + 9.40243i 0.318224 + 0.551180i
\(292\) 0 0
\(293\) −6.92061 11.9868i −0.404306 0.700279i 0.589934 0.807451i \(-0.299154\pi\)
−0.994240 + 0.107172i \(0.965820\pi\)
\(294\) 0 0
\(295\) −6.24823 −0.363786
\(296\) 0 0
\(297\) −5.21462 −0.302583
\(298\) 0 0
\(299\) −19.2816 33.3967i −1.11508 1.93138i
\(300\) 0 0
\(301\) −4.87052 8.43599i −0.280732 0.486243i
\(302\) 0 0
\(303\) −12.4794 21.6149i −0.716922 1.24174i
\(304\) 0 0
\(305\) 1.38905 2.40591i 0.0795369 0.137762i
\(306\) 0 0
\(307\) 20.8175 1.18812 0.594059 0.804421i \(-0.297525\pi\)
0.594059 + 0.804421i \(0.297525\pi\)
\(308\) 0 0
\(309\) 5.11139 + 8.85319i 0.290777 + 0.503640i
\(310\) 0 0
\(311\) −4.94144 + 8.55882i −0.280203 + 0.485326i −0.971435 0.237307i \(-0.923735\pi\)
0.691231 + 0.722633i \(0.257069\pi\)
\(312\) 0 0
\(313\) 6.24087 10.8095i 0.352755 0.610990i −0.633976 0.773353i \(-0.718578\pi\)
0.986731 + 0.162363i \(0.0519116\pi\)
\(314\) 0 0
\(315\) 0.763860 + 1.32304i 0.0430386 + 0.0745451i
\(316\) 0 0
\(317\) 13.6203 23.5911i 0.764994 1.32501i −0.175256 0.984523i \(-0.556075\pi\)
0.940250 0.340486i \(-0.110592\pi\)
\(318\) 0 0
\(319\) −0.277355 −0.0155289
\(320\) 0 0
\(321\) −1.87635 + 3.24993i −0.104728 + 0.181393i
\(322\) 0 0
\(323\) −5.64221 −0.313941
\(324\) 0 0
\(325\) 6.57801 0.364882
\(326\) 0 0
\(327\) 3.27217 0.180951
\(328\) 0 0
\(329\) 4.25703 + 7.37340i 0.234698 + 0.406509i
\(330\) 0 0
\(331\) −12.3546 + 21.3988i −0.679071 + 1.17618i 0.296191 + 0.955129i \(0.404284\pi\)
−0.975261 + 0.221056i \(0.929050\pi\)
\(332\) 0 0
\(333\) 8.50560 + 1.60815i 0.466104 + 0.0881260i
\(334\) 0 0
\(335\) 7.37895 12.7807i 0.403155 0.698285i
\(336\) 0 0
\(337\) −7.26642 12.5858i −0.395827 0.685593i 0.597379 0.801959i \(-0.296209\pi\)
−0.993206 + 0.116366i \(0.962875\pi\)
\(338\) 0 0
\(339\) −17.8336 −0.968587
\(340\) 0 0
\(341\) 7.38778 0.400071
\(342\) 0 0
\(343\) −13.7922 −0.744707
\(344\) 0 0
\(345\) 3.68088 6.37548i 0.198172 0.343244i
\(346\) 0 0
\(347\) 17.8268 0.956992 0.478496 0.878090i \(-0.341182\pi\)
0.478496 + 0.878090i \(0.341182\pi\)
\(348\) 0 0
\(349\) 14.5217 25.1523i 0.777329 1.34637i −0.156147 0.987734i \(-0.549907\pi\)
0.933476 0.358640i \(-0.116759\pi\)
\(350\) 0 0
\(351\) −18.2681 31.6413i −0.975081 1.68889i
\(352\) 0 0
\(353\) 10.6076 18.3729i 0.564585 0.977890i −0.432503 0.901633i \(-0.642369\pi\)
0.997088 0.0762578i \(-0.0242972\pi\)
\(354\) 0 0
\(355\) −5.36436 + 9.29135i −0.284711 + 0.493133i
\(356\) 0 0
\(357\) −2.55740 4.42955i −0.135352 0.234437i
\(358\) 0 0
\(359\) −12.7165 −0.671150 −0.335575 0.942013i \(-0.608931\pi\)
−0.335575 + 0.942013i \(0.608931\pi\)
\(360\) 0 0
\(361\) 8.39428 14.5393i 0.441804 0.765228i
\(362\) 0 0
\(363\) −6.35321 11.0041i −0.333457 0.577565i
\(364\) 0 0
\(365\) 2.96180 + 5.12998i 0.155027 + 0.268515i
\(366\) 0 0
\(367\) −11.7702 20.3865i −0.614398 1.06417i −0.990490 0.137586i \(-0.956066\pi\)
0.376092 0.926582i \(-0.377268\pi\)
\(368\) 0 0
\(369\) −6.15405 −0.320367
\(370\) 0 0
\(371\) −1.41374 −0.0733976
\(372\) 0 0
\(373\) −10.3453 17.9187i −0.535662 0.927794i −0.999131 0.0416805i \(-0.986729\pi\)
0.463469 0.886113i \(-0.346604\pi\)
\(374\) 0 0
\(375\) 0.627876 + 1.08751i 0.0324234 + 0.0561590i
\(376\) 0 0
\(377\) −0.971646 1.68294i −0.0500423 0.0866758i
\(378\) 0 0
\(379\) −14.1059 + 24.4322i −0.724572 + 1.25500i 0.234578 + 0.972097i \(0.424629\pi\)
−0.959150 + 0.282898i \(0.908704\pi\)
\(380\) 0 0
\(381\) 22.7668 1.16638
\(382\) 0 0
\(383\) −16.0593 27.8155i −0.820590 1.42130i −0.905243 0.424894i \(-0.860311\pi\)
0.0846527 0.996411i \(-0.473022\pi\)
\(384\) 0 0
\(385\) 0.503937 0.872844i 0.0256830 0.0444842i
\(386\) 0 0
\(387\) 6.45645 11.1829i 0.328200 0.568459i
\(388\) 0 0
\(389\) 16.8431 + 29.1730i 0.853977 + 1.47913i 0.877591 + 0.479410i \(0.159149\pi\)
−0.0236139 + 0.999721i \(0.507517\pi\)
\(390\) 0 0
\(391\) 11.1214 19.2629i 0.562435 0.974165i
\(392\) 0 0
\(393\) −3.88549 −0.195997
\(394\) 0 0
\(395\) 5.55057 9.61387i 0.279279 0.483726i
\(396\) 0 0
\(397\) 10.4513 0.524537 0.262269 0.964995i \(-0.415529\pi\)
0.262269 + 0.964995i \(0.415529\pi\)
\(398\) 0 0
\(399\) −2.00472 −0.100361
\(400\) 0 0
\(401\) 11.6922 0.583881 0.291940 0.956436i \(-0.405699\pi\)
0.291940 + 0.956436i \(0.405699\pi\)
\(402\) 0 0
\(403\) 25.8813 + 44.8277i 1.28924 + 2.23303i
\(404\) 0 0
\(405\) 1.35278 2.34309i 0.0672204 0.116429i
\(406\) 0 0
\(407\) −1.88688 5.39004i −0.0935291 0.267174i
\(408\) 0 0
\(409\) 7.14418 12.3741i 0.353257 0.611859i −0.633561 0.773693i \(-0.718408\pi\)
0.986818 + 0.161834i \(0.0517409\pi\)
\(410\) 0 0
\(411\) 6.01973 + 10.4265i 0.296932 + 0.514300i
\(412\) 0 0
\(413\) −6.70764 −0.330061
\(414\) 0 0
\(415\) −1.02450 −0.0502905
\(416\) 0 0
\(417\) −4.63122 −0.226792
\(418\) 0 0
\(419\) 4.17503 7.23137i 0.203964 0.353276i −0.745838 0.666127i \(-0.767951\pi\)
0.949802 + 0.312851i \(0.101284\pi\)
\(420\) 0 0
\(421\) −9.35174 −0.455776 −0.227888 0.973687i \(-0.573182\pi\)
−0.227888 + 0.973687i \(0.573182\pi\)
\(422\) 0 0
\(423\) −5.64320 + 9.77431i −0.274382 + 0.475243i
\(424\) 0 0
\(425\) 1.89707 + 3.28581i 0.0920212 + 0.159385i
\(426\) 0 0
\(427\) 1.49118 2.58281i 0.0721635 0.124991i
\(428\) 0 0
\(429\) −3.87759 + 6.71618i −0.187212 + 0.324260i
\(430\) 0 0
\(431\) 2.56484 + 4.44244i 0.123544 + 0.213985i 0.921163 0.389177i \(-0.127241\pi\)
−0.797619 + 0.603162i \(0.793907\pi\)
\(432\) 0 0
\(433\) 12.2729 0.589799 0.294900 0.955528i \(-0.404714\pi\)
0.294900 + 0.955528i \(0.404714\pi\)
\(434\) 0 0
\(435\) 0.185489 0.321276i 0.00889350 0.0154040i
\(436\) 0 0
\(437\) −4.35898 7.54997i −0.208518 0.361164i
\(438\) 0 0
\(439\) 15.1994 + 26.3261i 0.725427 + 1.25648i 0.958798 + 0.284088i \(0.0916908\pi\)
−0.233372 + 0.972388i \(0.574976\pi\)
\(440\) 0 0
\(441\) −4.16078 7.20668i −0.198132 0.343175i
\(442\) 0 0
\(443\) 6.70258 0.318449 0.159225 0.987242i \(-0.449101\pi\)
0.159225 + 0.987242i \(0.449101\pi\)
\(444\) 0 0
\(445\) −11.7838 −0.558608
\(446\) 0 0
\(447\) −13.0060 22.5271i −0.615165 1.06550i
\(448\) 0 0
\(449\) −13.7437 23.8049i −0.648608 1.12342i −0.983456 0.181149i \(-0.942018\pi\)
0.334848 0.942272i \(-0.391315\pi\)
\(450\) 0 0
\(451\) 2.02999 + 3.51604i 0.0955883 + 0.165564i
\(452\) 0 0
\(453\) −1.57035 + 2.71993i −0.0737815 + 0.127793i
\(454\) 0 0
\(455\) 7.06167 0.331056
\(456\) 0 0
\(457\) 9.90098 + 17.1490i 0.463148 + 0.802196i 0.999116 0.0420424i \(-0.0133864\pi\)
−0.535968 + 0.844238i \(0.680053\pi\)
\(458\) 0 0
\(459\) 10.5369 18.2504i 0.491819 0.851856i
\(460\) 0 0
\(461\) 2.10565 3.64709i 0.0980697 0.169862i −0.812816 0.582521i \(-0.802067\pi\)
0.910886 + 0.412659i \(0.135400\pi\)
\(462\) 0 0
\(463\) 11.4214 + 19.7824i 0.530797 + 0.919368i 0.999354 + 0.0359346i \(0.0114408\pi\)
−0.468557 + 0.883433i \(0.655226\pi\)
\(464\) 0 0
\(465\) −4.94078 + 8.55767i −0.229123 + 0.396853i
\(466\) 0 0
\(467\) −2.24003 −0.103656 −0.0518282 0.998656i \(-0.516505\pi\)
−0.0518282 + 0.998656i \(0.516505\pi\)
\(468\) 0 0
\(469\) 7.92150 13.7204i 0.365781 0.633551i
\(470\) 0 0
\(471\) 4.15194 0.191311
\(472\) 0 0
\(473\) −8.51895 −0.391702
\(474\) 0 0
\(475\) 1.48709 0.0682323
\(476\) 0 0
\(477\) −0.937037 1.62300i −0.0429040 0.0743119i
\(478\) 0 0
\(479\) 8.93388 15.4739i 0.408200 0.707022i −0.586489 0.809958i \(-0.699490\pi\)
0.994688 + 0.102935i \(0.0328234\pi\)
\(480\) 0 0
\(481\) 26.0955 30.3319i 1.18985 1.38301i
\(482\) 0 0
\(483\) 3.95152 6.84424i 0.179801 0.311424i
\(484\) 0 0
\(485\) −4.32290 7.48749i −0.196293 0.339989i
\(486\) 0 0
\(487\) 9.30202 0.421515 0.210757 0.977538i \(-0.432407\pi\)
0.210757 + 0.977538i \(0.432407\pi\)
\(488\) 0 0
\(489\) −17.0948 −0.773056
\(490\) 0 0
\(491\) −15.2392 −0.687736 −0.343868 0.939018i \(-0.611737\pi\)
−0.343868 + 0.939018i \(0.611737\pi\)
\(492\) 0 0
\(493\) 0.560436 0.970703i 0.0252408 0.0437183i
\(494\) 0 0
\(495\) 1.33605 0.0600512
\(496\) 0 0
\(497\) −5.75878 + 9.97451i −0.258317 + 0.447418i
\(498\) 0 0
\(499\) 16.5979 + 28.7484i 0.743024 + 1.28695i 0.951112 + 0.308845i \(0.0999424\pi\)
−0.208089 + 0.978110i \(0.566724\pi\)
\(500\) 0 0
\(501\) −0.961183 + 1.66482i −0.0429425 + 0.0743785i
\(502\) 0 0
\(503\) 5.05641 8.75796i 0.225454 0.390498i −0.731001 0.682376i \(-0.760947\pi\)
0.956456 + 0.291878i \(0.0942800\pi\)
\(504\) 0 0
\(505\) 9.93777 + 17.2127i 0.442225 + 0.765956i
\(506\) 0 0
\(507\) −38.0119 −1.68817
\(508\) 0 0
\(509\) −10.3775 + 17.9744i −0.459977 + 0.796703i −0.998959 0.0456140i \(-0.985476\pi\)
0.538982 + 0.842317i \(0.318809\pi\)
\(510\) 0 0
\(511\) 3.17957 + 5.50717i 0.140656 + 0.243623i
\(512\) 0 0
\(513\) −4.12987 7.15314i −0.182338 0.315819i
\(514\) 0 0
\(515\) −4.07038 7.05011i −0.179362 0.310665i
\(516\) 0 0
\(517\) 7.44590 0.327470
\(518\) 0 0
\(519\) −31.7702 −1.39456
\(520\) 0 0
\(521\) 10.4358 + 18.0753i 0.457201 + 0.791895i 0.998812 0.0487341i \(-0.0155187\pi\)
−0.541611 + 0.840629i \(0.682185\pi\)
\(522\) 0 0
\(523\) 4.50153 + 7.79687i 0.196838 + 0.340933i 0.947501 0.319751i \(-0.103599\pi\)
−0.750664 + 0.660685i \(0.770266\pi\)
\(524\) 0 0
\(525\) 0.674042 + 1.16747i 0.0294176 + 0.0509528i
\(526\) 0 0
\(527\) −14.9281 + 25.8562i −0.650277 + 1.12631i
\(528\) 0 0
\(529\) 11.3681 0.494267
\(530\) 0 0
\(531\) −4.44588 7.70049i −0.192935 0.334173i
\(532\) 0 0
\(533\) −14.2231 + 24.6352i −0.616071 + 1.06707i
\(534\) 0 0
\(535\) 1.49420 2.58803i 0.0646000 0.111891i
\(536\) 0 0
\(537\) 9.26433 + 16.0463i 0.399785 + 0.692448i
\(538\) 0 0
\(539\) −2.74496 + 4.75441i −0.118234 + 0.204787i
\(540\) 0 0
\(541\) 18.2759 0.785743 0.392872 0.919593i \(-0.371482\pi\)
0.392872 + 0.919593i \(0.371482\pi\)
\(542\) 0 0
\(543\) −13.2637 + 22.9734i −0.569201 + 0.985885i
\(544\) 0 0
\(545\) −2.60574 −0.111618
\(546\) 0 0
\(547\) −35.1508 −1.50294 −0.751470 0.659767i \(-0.770655\pi\)
−0.751470 + 0.659767i \(0.770655\pi\)
\(548\) 0 0
\(549\) 3.95348 0.168730
\(550\) 0 0
\(551\) −0.219660 0.380461i −0.00935781 0.0162082i
\(552\) 0 0
\(553\) 5.95868 10.3207i 0.253389 0.438883i
\(554\) 0 0
\(555\) 7.50547 + 1.41905i 0.318590 + 0.0602355i
\(556\) 0 0
\(557\) 3.58771 6.21410i 0.152016 0.263300i −0.779952 0.625839i \(-0.784757\pi\)
0.931969 + 0.362539i \(0.118090\pi\)
\(558\) 0 0
\(559\) −29.8440 51.6914i −1.26227 2.18631i
\(560\) 0 0
\(561\) −4.47311 −0.188855
\(562\) 0 0
\(563\) 21.0982 0.889183 0.444591 0.895734i \(-0.353349\pi\)
0.444591 + 0.895734i \(0.353349\pi\)
\(564\) 0 0
\(565\) 14.2015 0.597462
\(566\) 0 0
\(567\) 1.45225 2.51537i 0.0609888 0.105636i
\(568\) 0 0
\(569\) 34.0899 1.42912 0.714562 0.699572i \(-0.246626\pi\)
0.714562 + 0.699572i \(0.246626\pi\)
\(570\) 0 0
\(571\) 3.01284 5.21839i 0.126083 0.218383i −0.796073 0.605201i \(-0.793093\pi\)
0.922156 + 0.386818i \(0.126426\pi\)
\(572\) 0 0
\(573\) −2.36605 4.09813i −0.0988433 0.171202i
\(574\) 0 0
\(575\) −2.93122 + 5.07702i −0.122240 + 0.211726i
\(576\) 0 0
\(577\) −5.14717 + 8.91516i −0.214279 + 0.371143i −0.953049 0.302815i \(-0.902074\pi\)
0.738770 + 0.673958i \(0.235407\pi\)
\(578\) 0 0
\(579\) 0.930670 + 1.61197i 0.0386773 + 0.0669911i
\(580\) 0 0
\(581\) −1.09982 −0.0456283
\(582\) 0 0
\(583\) −0.618186 + 1.07073i −0.0256026 + 0.0443451i
\(584\) 0 0
\(585\) 4.68054 + 8.10693i 0.193516 + 0.335180i
\(586\) 0 0
\(587\) 12.8641 + 22.2813i 0.530959 + 0.919648i 0.999347 + 0.0361251i \(0.0115015\pi\)
−0.468388 + 0.883523i \(0.655165\pi\)
\(588\) 0 0
\(589\) 5.85097 + 10.1342i 0.241085 + 0.417571i
\(590\) 0 0
\(591\) 13.9464 0.573678
\(592\) 0 0
\(593\) −7.06862 −0.290273 −0.145137 0.989412i \(-0.546362\pi\)
−0.145137 + 0.989412i \(0.546362\pi\)
\(594\) 0 0
\(595\) 2.03655 + 3.52741i 0.0834904 + 0.144610i
\(596\) 0 0
\(597\) −0.263146 0.455783i −0.0107699 0.0186539i
\(598\) 0 0
\(599\) −15.9277 27.5877i −0.650790 1.12720i −0.982932 0.183972i \(-0.941104\pi\)
0.332141 0.943230i \(-0.392229\pi\)
\(600\) 0 0
\(601\) −0.331591 + 0.574333i −0.0135259 + 0.0234275i −0.872709 0.488241i \(-0.837639\pi\)
0.859183 + 0.511668i \(0.170972\pi\)
\(602\) 0 0
\(603\) 21.0018 0.855258
\(604\) 0 0
\(605\) 5.05929 + 8.76294i 0.205689 + 0.356264i
\(606\) 0 0
\(607\) −22.7156 + 39.3446i −0.921998 + 1.59695i −0.125677 + 0.992071i \(0.540110\pi\)
−0.796320 + 0.604875i \(0.793223\pi\)
\(608\) 0 0
\(609\) 0.199127 0.344898i 0.00806903 0.0139760i
\(610\) 0 0
\(611\) 26.0849 + 45.1803i 1.05528 + 1.82780i
\(612\) 0 0
\(613\) 14.9001 25.8077i 0.601809 1.04236i −0.390738 0.920502i \(-0.627780\pi\)
0.992547 0.121862i \(-0.0388866\pi\)
\(614\) 0 0
\(615\) −5.43043 −0.218976
\(616\) 0 0
\(617\) −22.1736 + 38.4058i −0.892676 + 1.54616i −0.0560202 + 0.998430i \(0.517841\pi\)
−0.836655 + 0.547730i \(0.815492\pi\)
\(618\) 0 0
\(619\) −6.61625 −0.265930 −0.132965 0.991121i \(-0.542450\pi\)
−0.132965 + 0.991121i \(0.542450\pi\)
\(620\) 0 0
\(621\) 32.5617 1.30666
\(622\) 0 0
\(623\) −12.6503 −0.506822
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) −0.876605 + 1.51832i −0.0350082 + 0.0606360i
\(628\) 0 0
\(629\) 22.6770 + 4.28753i 0.904193 + 0.170955i
\(630\) 0 0
\(631\) −2.80142 + 4.85220i −0.111523 + 0.193163i −0.916384 0.400299i \(-0.868906\pi\)
0.804862 + 0.593462i \(0.202239\pi\)
\(632\) 0 0
\(633\) −0.598022 1.03580i −0.0237692 0.0411695i
\(634\) 0 0
\(635\) −18.1300 −0.719466
\(636\) 0 0
\(637\) −38.4652 −1.52405
\(638\) 0 0
\(639\) −15.2679 −0.603988
\(640\) 0 0
\(641\) 11.0443 19.1294i 0.436225 0.755564i −0.561169 0.827701i \(-0.689648\pi\)
0.997395 + 0.0721365i \(0.0229817\pi\)
\(642\) 0 0
\(643\) −20.3875 −0.804005 −0.402002 0.915639i \(-0.631686\pi\)
−0.402002 + 0.915639i \(0.631686\pi\)
\(644\) 0 0
\(645\) 5.69727 9.86796i 0.224330 0.388551i
\(646\) 0 0
\(647\) −9.63209 16.6833i −0.378677 0.655887i 0.612193 0.790708i \(-0.290287\pi\)
−0.990870 + 0.134821i \(0.956954\pi\)
\(648\) 0 0
\(649\) −2.93305 + 5.08020i −0.115132 + 0.199415i
\(650\) 0 0
\(651\) −5.30405 + 9.18689i −0.207882 + 0.360063i
\(652\) 0 0
\(653\) −8.92031 15.4504i −0.349079 0.604622i 0.637007 0.770858i \(-0.280172\pi\)
−0.986086 + 0.166236i \(0.946839\pi\)
\(654\) 0 0
\(655\) 3.09416 0.120899
\(656\) 0 0
\(657\) −4.21489 + 7.30040i −0.164438 + 0.284816i
\(658\) 0 0
\(659\) −19.9204 34.5032i −0.775989 1.34405i −0.934237 0.356653i \(-0.883918\pi\)
0.158248 0.987399i \(-0.449415\pi\)
\(660\) 0 0
\(661\) 12.8727 + 22.2962i 0.500692 + 0.867223i 1.00000 0.000798872i \(0.000254289\pi\)
−0.499308 + 0.866425i \(0.666412\pi\)
\(662\) 0 0
\(663\) −15.6704 27.1420i −0.608589 1.05411i
\(664\) 0 0
\(665\) 1.59643 0.0619068
\(666\) 0 0
\(667\) 1.73189 0.0670592
\(668\) 0 0
\(669\) 10.2595 + 17.7699i 0.396654 + 0.687024i
\(670\) 0 0
\(671\) −1.30410 2.25877i −0.0503443 0.0871989i
\(672\) 0 0
\(673\) −0.830725 1.43886i −0.0320221 0.0554639i 0.849570 0.527476i \(-0.176861\pi\)
−0.881592 + 0.472012i \(0.843528\pi\)
\(674\) 0 0
\(675\) −2.77715 + 4.81017i −0.106893 + 0.185143i
\(676\) 0 0
\(677\) −19.8980 −0.764744 −0.382372 0.924008i \(-0.624893\pi\)
−0.382372 + 0.924008i \(0.624893\pi\)
\(678\) 0 0
\(679\) −4.64075 8.03802i −0.178096 0.308471i
\(680\) 0 0
\(681\) −1.57875 + 2.73448i −0.0604980 + 0.104786i
\(682\) 0 0
\(683\) −20.0401 + 34.7104i −0.766812 + 1.32816i 0.172472 + 0.985014i \(0.444825\pi\)
−0.939283 + 0.343142i \(0.888509\pi\)
\(684\) 0 0
\(685\) −4.79373 8.30298i −0.183159 0.317240i
\(686\) 0 0
\(687\) −16.2598 + 28.1628i −0.620350 + 1.07448i
\(688\) 0 0
\(689\) −8.66264 −0.330020
\(690\) 0 0
\(691\) −20.6168 + 35.7094i −0.784301 + 1.35845i 0.145115 + 0.989415i \(0.453645\pi\)
−0.929416 + 0.369034i \(0.879688\pi\)
\(692\) 0 0
\(693\) 1.43429 0.0544842
\(694\) 0 0
\(695\) 3.68800 0.139894
\(696\) 0 0
\(697\) −16.4075 −0.621478
\(698\) 0 0
\(699\) 4.32813 + 7.49654i 0.163705 + 0.283545i
\(700\) 0 0
\(701\) 21.3746 37.0219i 0.807309 1.39830i −0.107413 0.994214i \(-0.534257\pi\)
0.914721 0.404085i \(-0.132410\pi\)
\(702\) 0 0
\(703\) 5.89940 6.85711i 0.222500 0.258621i
\(704\) 0 0
\(705\) −4.97964 + 8.62500i −0.187544 + 0.324836i
\(706\) 0 0
\(707\) 10.6685 + 18.4783i 0.401229 + 0.694948i
\(708\) 0 0
\(709\) −36.3462 −1.36501 −0.682505 0.730881i \(-0.739110\pi\)
−0.682505 + 0.730881i \(0.739110\pi\)
\(710\) 0 0
\(711\) 15.7979 0.592466
\(712\) 0 0
\(713\) −46.1317 −1.72764
\(714\) 0 0
\(715\) 3.08786 5.34833i 0.115479 0.200016i
\(716\) 0 0
\(717\) 29.2030 1.09061
\(718\) 0 0
\(719\) 2.41550 4.18377i 0.0900829 0.156028i −0.817463 0.575981i \(-0.804620\pi\)
0.907546 + 0.419953i \(0.137953\pi\)
\(720\) 0 0
\(721\) −4.36966 7.56847i −0.162735 0.281865i
\(722\) 0 0
\(723\) 9.67968 16.7657i 0.359991 0.623523i
\(724\) 0 0
\(725\) −0.147711 + 0.255843i −0.00548586 + 0.00950178i
\(726\) 0 0
\(727\) 7.56411 + 13.1014i 0.280537 + 0.485905i 0.971517 0.236969i \(-0.0761540\pi\)
−0.690980 + 0.722874i \(0.742821\pi\)
\(728\) 0 0
\(729\) 24.7747 0.917583
\(730\) 0 0
\(731\) 17.2137 29.8151i 0.636673 1.10275i
\(732\) 0 0
\(733\) 11.3727 + 19.6981i 0.420060 + 0.727565i 0.995945 0.0899657i \(-0.0286757\pi\)
−0.575885 + 0.817531i \(0.695342\pi\)
\(734\) 0 0
\(735\) −3.67153 6.35928i −0.135427 0.234566i
\(736\) 0 0
\(737\) −6.92768 11.9991i −0.255184 0.441992i
\(738\) 0 0
\(739\) −39.9181 −1.46841 −0.734205 0.678928i \(-0.762445\pi\)
−0.734205 + 0.678928i \(0.762445\pi\)
\(740\) 0 0
\(741\) −12.2839 −0.451259
\(742\) 0 0
\(743\) 11.3262 + 19.6176i 0.415518 + 0.719698i 0.995483 0.0949433i \(-0.0302670\pi\)
−0.579965 + 0.814642i \(0.696934\pi\)
\(744\) 0 0
\(745\) 10.3572 + 17.9391i 0.379457 + 0.657240i
\(746\) 0 0
\(747\) −0.728973 1.26262i −0.0266717 0.0461968i
\(748\) 0 0
\(749\) 1.60407 2.77832i 0.0586113 0.101518i
\(750\) 0 0
\(751\) 4.18617 0.152755 0.0763777 0.997079i \(-0.475665\pi\)
0.0763777 + 0.997079i \(0.475665\pi\)
\(752\) 0 0
\(753\) 1.23462 + 2.13842i 0.0449920 + 0.0779284i
\(754\) 0 0
\(755\) 1.25053 2.16597i 0.0455113 0.0788278i
\(756\) 0 0
\(757\) 16.5754 28.7095i 0.602445 1.04346i −0.390005 0.920813i \(-0.627527\pi\)
0.992450 0.122652i \(-0.0391399\pi\)
\(758\) 0 0
\(759\) −3.45577 5.98557i −0.125437 0.217263i
\(760\) 0 0
\(761\) −20.5025 + 35.5113i −0.743214 + 1.28728i 0.207811 + 0.978169i \(0.433366\pi\)
−0.951025 + 0.309115i \(0.899967\pi\)
\(762\) 0 0
\(763\) −2.79733 −0.101270
\(764\) 0 0
\(765\) −2.69969 + 4.67600i −0.0976074 + 0.169061i
\(766\) 0 0
\(767\) −41.1009 −1.48407
\(768\) 0 0
\(769\) 32.8356 1.18408 0.592041 0.805908i \(-0.298322\pi\)
0.592041 + 0.805908i \(0.298322\pi\)
\(770\) 0 0
\(771\) −4.38925 −0.158075
\(772\) 0 0
\(773\) 24.0216 + 41.6067i 0.863998 + 1.49649i 0.868039 + 0.496496i \(0.165380\pi\)
−0.00404113 + 0.999992i \(0.501286\pi\)
\(774\) 0 0
\(775\) 3.93451 6.81478i 0.141332 0.244794i
\(776\) 0 0
\(777\) 8.05732 + 1.52339i 0.289055 + 0.0546514i
\(778\) 0 0
\(779\) −3.21541 + 5.56926i −0.115204 + 0.199539i
\(780\) 0 0
\(781\) 5.03629 + 8.72312i 0.180213 + 0.312138i
\(782\) 0 0
\(783\) 1.64086 0.0586397
\(784\) 0 0
\(785\) −3.30634 −0.118008
\(786\) 0 0
\(787\) −23.5707 −0.840204 −0.420102 0.907477i \(-0.638006\pi\)
−0.420102 + 0.907477i \(0.638006\pi\)
\(788\) 0 0
\(789\) −14.6912 + 25.4460i −0.523022 + 0.905900i
\(790\) 0 0
\(791\) 15.2457 0.542074
\(792\) 0 0
\(793\) 9.13720 15.8261i 0.324471 0.562001i
\(794\) 0 0
\(795\) −0.826856 1.43216i −0.0293256 0.0507934i
\(796\) 0 0
\(797\) 4.19633 7.26825i 0.148642 0.257455i −0.782084 0.623173i \(-0.785843\pi\)
0.930726 + 0.365718i \(0.119177\pi\)
\(798\) 0 0
\(799\) −15.0455 + 26.0596i −0.532272 + 0.921921i
\(800\) 0 0
\(801\) −8.38471 14.5227i −0.296259 0.513136i
\(802\) 0 0
\(803\) 5.56132 0.196255
\(804\) 0 0
\(805\) −3.14674 + 5.45031i −0.110908 + 0.192098i
\(806\) 0 0
\(807\) 12.4159 + 21.5051i 0.437062 + 0.757014i
\(808\) 0 0
\(809\) 17.3871 + 30.1154i 0.611298 + 1.05880i 0.991022 + 0.133700i \(0.0426858\pi\)
−0.379723 + 0.925100i \(0.623981\pi\)
\(810\) 0 0
\(811\) 6.80389 + 11.7847i 0.238917 + 0.413816i 0.960404 0.278612i \(-0.0898743\pi\)
−0.721487 + 0.692428i \(0.756541\pi\)
\(812\) 0 0
\(813\) 3.23675 0.113518
\(814\) 0 0
\(815\) 13.6132 0.476851
\(816\) 0 0
\(817\) −6.74683 11.6858i −0.236042 0.408836i
\(818\) 0 0
\(819\) 5.02468 + 8.70300i 0.175577 + 0.304107i
\(820\) 0 0
\(821\) 11.4772 + 19.8790i 0.400555 + 0.693782i 0.993793 0.111245i \(-0.0354839\pi\)
−0.593238 + 0.805027i \(0.702151\pi\)
\(822\) 0 0
\(823\) −13.1438 + 22.7658i −0.458165 + 0.793566i −0.998864 0.0476507i \(-0.984827\pi\)
0.540699 + 0.841216i \(0.318160\pi\)
\(824\) 0 0
\(825\) 1.17895 0.0410459
\(826\) 0 0
\(827\) −24.0775 41.7035i −0.837258 1.45017i −0.892179 0.451683i \(-0.850824\pi\)
0.0549206 0.998491i \(-0.482509\pi\)
\(828\) 0 0
\(829\) −8.74108 + 15.1400i −0.303590 + 0.525834i −0.976946 0.213485i \(-0.931519\pi\)
0.673356 + 0.739318i \(0.264852\pi\)
\(830\) 0 0
\(831\) 2.69570 4.66909i 0.0935129 0.161969i
\(832\) 0 0
\(833\) −11.0932 19.2139i −0.384356 0.665723i
\(834\) 0 0
\(835\) 0.765424 1.32575i 0.0264886 0.0458796i
\(836\) 0 0
\(837\) −43.7069 −1.51073
\(838\) 0 0
\(839\) 10.0365 17.3838i 0.346500 0.600155i −0.639125 0.769103i \(-0.720704\pi\)
0.985625 + 0.168948i \(0.0540368\pi\)
\(840\) 0 0
\(841\) −28.9127 −0.996991
\(842\) 0 0
\(843\) 7.46482 0.257102
\(844\) 0 0
\(845\) 30.2702 1.04133
\(846\) 0 0
\(847\) 5.43128 + 9.40725i 0.186621 + 0.323237i
\(848\) 0 0
\(849\) −13.6845 + 23.7022i −0.469650 + 0.813457i
\(850\) 0 0
\(851\) 11.7823 + 33.6571i 0.403891 + 1.15375i
\(852\) 0 0
\(853\) 17.0823 29.5873i 0.584885 1.01305i −0.410004 0.912084i \(-0.634473\pi\)
0.994890 0.100968i \(-0.0321938\pi\)
\(854\) 0 0
\(855\) 1.05813 + 1.83273i 0.0361872 + 0.0626780i
\(856\) 0 0
\(857\) −5.41674 −0.185032 −0.0925162 0.995711i \(-0.529491\pi\)
−0.0925162 + 0.995711i \(0.529491\pi\)
\(858\) 0 0
\(859\) 16.8997 0.576610 0.288305 0.957539i \(-0.406908\pi\)
0.288305 + 0.957539i \(0.406908\pi\)
\(860\) 0 0
\(861\) −5.82971 −0.198676
\(862\) 0 0
\(863\) 7.69366 13.3258i 0.261895 0.453616i −0.704850 0.709356i \(-0.748986\pi\)
0.966746 + 0.255740i \(0.0823192\pi\)
\(864\) 0 0
\(865\) 25.2997 0.860216
\(866\) 0 0
\(867\) −1.63534 + 2.83250i −0.0555392 + 0.0961967i
\(868\) 0 0
\(869\) −5.21111 9.02592i −0.176775 0.306183i
\(870\) 0 0
\(871\) 48.5388 84.0717i 1.64468 2.84866i
\(872\) 0 0
\(873\) 6.15186 10.6553i 0.208209 0.360629i
\(874\) 0 0
\(875\) −0.536763 0.929701i −0.0181459 0.0314296i
\(876\) 0 0
\(877\) −16.1624 −0.545767 −0.272883 0.962047i \(-0.587977\pi\)
−0.272883 + 0.962047i \(0.587977\pi\)
\(878\) 0 0
\(879\) 8.69057 15.0525i 0.293126 0.507709i
\(880\) 0 0
\(881\) 0.222005 + 0.384523i 0.00747952 + 0.0129549i 0.869741 0.493509i \(-0.164286\pi\)
−0.862261 + 0.506463i \(0.830953\pi\)
\(882\) 0 0
\(883\) −7.78735 13.4881i −0.262065 0.453910i 0.704725 0.709480i \(-0.251070\pi\)
−0.966791 + 0.255570i \(0.917737\pi\)
\(884\) 0 0
\(885\) −3.92311 6.79503i −0.131874 0.228413i
\(886\) 0 0
\(887\) −14.7660 −0.495793 −0.247896 0.968787i \(-0.579739\pi\)
−0.247896 + 0.968787i \(0.579739\pi\)
\(888\) 0 0
\(889\) −19.4630 −0.652768
\(890\) 0 0
\(891\) −1.27005 2.19980i −0.0425484 0.0736960i
\(892\) 0 0
\(893\) 5.89700 + 10.2139i 0.197335 + 0.341795i
\(894\) 0 0
\(895\) −7.37751 12.7782i −0.246603 0.427129i
\(896\) 0 0
\(897\) 24.2129 41.9380i 0.808445 1.40027i
\(898\) 0 0
\(899\) −2.32469 −0.0775326
\(900\) 0 0
\(901\) −2.49826 4.32712i −0.0832292 0.144157i
\(902\) 0 0
\(903\) 6.11617 10.5935i 0.203533 0.352530i
\(904\) 0 0
\(905\) 10.5624 18.2946i 0.351105 0.608132i
\(906\) 0 0
\(907\) −6.42096 11.1214i −0.213204 0.369281i 0.739511 0.673144i \(-0.235057\pi\)
−0.952716 + 0.303863i \(0.901723\pi\)
\(908\) 0 0
\(909\) −14.1423 + 24.4952i −0.469070 + 0.812454i
\(910\) 0 0
\(911\) 11.8751 0.393440 0.196720 0.980460i \(-0.436971\pi\)
0.196720 + 0.980460i \(0.436971\pi\)
\(912\) 0 0
\(913\) −0.480920 + 0.832979i −0.0159161 + 0.0275676i
\(914\) 0 0
\(915\) 3.48861 0.115330
\(916\) 0 0
\(917\) 3.32166 0.109691
\(918\) 0 0
\(919\) −46.6548 −1.53900 −0.769500 0.638647i \(-0.779495\pi\)
−0.769500 + 0.638647i \(0.779495\pi\)
\(920\) 0 0
\(921\) 13.0708 + 22.6393i 0.430698 + 0.745991i
\(922\) 0 0
\(923\) −35.2868 + 61.1186i −1.16148 + 2.01174i
\(924\) 0 0
\(925\) −5.97687 1.13004i −0.196518 0.0371556i
\(926\) 0 0
\(927\) 5.79250 10.0329i 0.190251 0.329524i
\(928\) 0 0
\(929\) −23.2125 40.2052i −0.761576 1.31909i −0.942038 0.335506i \(-0.891093\pi\)
0.180462 0.983582i \(-0.442241\pi\)
\(930\) 0 0
\(931\) −8.69581 −0.284994
\(932\) 0 0
\(933\) −12.4104 −0.406300
\(934\) 0 0
\(935\) 3.56210 0.116493
\(936\) 0 0
\(937\) −5.78786 + 10.0249i −0.189081 + 0.327498i −0.944944 0.327232i \(-0.893884\pi\)
0.755863 + 0.654730i \(0.227218\pi\)
\(938\) 0 0
\(939\) 15.6740 0.511501
\(940\) 0 0
\(941\) −6.51131 + 11.2779i −0.212263 + 0.367650i −0.952422 0.304781i \(-0.901417\pi\)
0.740160 + 0.672431i \(0.234750\pi\)
\(942\) 0 0
\(943\) −12.6759 21.9553i −0.412783 0.714962i
\(944\) 0 0
\(945\) −2.98134 + 5.16384i −0.0969831 + 0.167980i
\(946\) 0 0
\(947\) −6.25087 + 10.8268i −0.203126 + 0.351824i −0.949534 0.313664i \(-0.898443\pi\)
0.746408 + 0.665489i \(0.231777\pi\)
\(948\) 0 0
\(949\) 19.4827 + 33.7451i 0.632436 + 1.09541i
\(950\) 0 0
\(951\) 34.2075 1.10926
\(952\) 0 0
\(953\) 9.52838 16.5036i 0.308655 0.534605i −0.669414 0.742890i \(-0.733455\pi\)
0.978068 + 0.208284i \(0.0667880\pi\)
\(954\) 0 0
\(955\) 1.88417 + 3.26348i 0.0609704 + 0.105604i
\(956\) 0 0
\(957\) −0.174145 0.301628i −0.00562930 0.00975024i
\(958\) 0 0
\(959\) −5.14619 8.91346i −0.166179 0.287831i
\(960\) 0 0
\(961\) 30.9216 0.997471
\(962\) 0 0
\(963\) 4.25276 0.137043
\(964\) 0 0
\(965\) −0.741125 1.28367i −0.0238577 0.0413227i
\(966\) 0 0
\(967\) 10.8089 + 18.7216i 0.347592 + 0.602047i 0.985821 0.167799i \(-0.0536661\pi\)
−0.638229 + 0.769846i \(0.720333\pi\)
\(968\) 0 0
\(969\) −3.54261 6.13598i −0.113805 0.197116i
\(970\) 0 0
\(971\) 9.63053 16.6806i 0.309058 0.535305i −0.669098 0.743174i \(-0.733319\pi\)
0.978157 + 0.207869i \(0.0666528\pi\)
\(972\) 0 0
\(973\) 3.95917 0.126925
\(974\) 0 0
\(975\) 4.13018 + 7.15368i 0.132272 + 0.229101i
\(976\) 0 0
\(977\) 8.56958 14.8430i 0.274165 0.474868i −0.695759 0.718275i \(-0.744932\pi\)
0.969924 + 0.243407i \(0.0782652\pi\)
\(978\) 0 0
\(979\) −5.53159 + 9.58100i −0.176790 + 0.306210i
\(980\) 0 0
\(981\) −1.85410 3.21139i −0.0591968 0.102532i
\(982\) 0 0
\(983\) −22.1911 + 38.4361i −0.707786 + 1.22592i 0.257890 + 0.966174i \(0.416973\pi\)
−0.965677 + 0.259748i \(0.916361\pi\)
\(984\) 0 0
\(985\) −11.1060 −0.353867
\(986\) 0 0
\(987\) −5.34578 + 9.25916i −0.170158 + 0.294722i
\(988\) 0 0
\(989\) 53.1950 1.69150
\(990\) 0 0
\(991\) 37.3377 1.18607 0.593036 0.805176i \(-0.297929\pi\)
0.593036 + 0.805176i \(0.297929\pi\)
\(992\) 0 0
\(993\) −31.0287 −0.984665
\(994\) 0 0
\(995\) 0.209553 + 0.362956i 0.00664326 + 0.0115065i
\(996\) 0 0
\(997\) −7.44038 + 12.8871i −0.235639 + 0.408139i −0.959458 0.281851i \(-0.909052\pi\)
0.723819 + 0.689990i \(0.242385\pi\)
\(998\) 0 0
\(999\) 11.1630 + 31.8880i 0.353181 + 1.00889i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 740.2.i.a.121.5 14
37.26 even 3 inner 740.2.i.a.581.5 yes 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
740.2.i.a.121.5 14 1.1 even 1 trivial
740.2.i.a.581.5 yes 14 37.26 even 3 inner