Properties

Label 740.2.i.a.121.4
Level $740$
Weight $2$
Character 740.121
Analytic conductor $5.909$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [740,2,Mod(121,740)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(740, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("740.121"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 740 = 2^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 740.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,0,0,-7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.90892974957\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 24x^{12} + 204x^{10} + 727x^{8} + 1008x^{6} + 426x^{4} + 64x^{2} + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 121.4
Root \(0.300390i\) of defining polynomial
Character \(\chi\) \(=\) 740.121
Dual form 740.2.i.a.581.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.117270 - 0.203117i) q^{3} +(-0.500000 - 0.866025i) q^{5} +(1.58956 + 2.75319i) q^{7} +(1.47250 - 2.55044i) q^{9} -0.358097 q^{11} +(1.27583 + 2.20981i) q^{13} +(-0.117270 + 0.203117i) q^{15} +(1.54539 - 2.67670i) q^{17} +(1.01569 + 1.75923i) q^{19} +(0.372813 - 0.645732i) q^{21} -3.34172 q^{23} +(-0.500000 + 0.866025i) q^{25} -1.39433 q^{27} +7.38568 q^{29} +9.08508 q^{31} +(0.0419939 + 0.0727356i) q^{33} +(1.58956 - 2.75319i) q^{35} +(5.87847 + 1.56320i) q^{37} +(0.299233 - 0.518287i) q^{39} +(-2.89049 - 5.00648i) q^{41} -2.22829 q^{43} -2.94499 q^{45} +9.00068 q^{47} +(-1.55338 + 2.69054i) q^{49} -0.724910 q^{51} +(0.203682 - 0.352787i) q^{53} +(0.179048 + 0.310121i) q^{55} +(0.238219 - 0.412607i) q^{57} +(-0.0726432 + 0.125822i) q^{59} +(-4.28240 - 7.41733i) q^{61} +9.36246 q^{63} +(1.27583 - 2.20981i) q^{65} +(7.24066 + 12.5412i) q^{67} +(0.391883 + 0.678761i) q^{69} +(-4.28335 - 7.41898i) q^{71} +2.69982 q^{73} +0.234539 q^{75} +(-0.569216 - 0.985910i) q^{77} +(-2.64213 - 4.57631i) q^{79} +(-4.25397 - 7.36810i) q^{81} +(-2.53863 + 4.39704i) q^{83} -3.09078 q^{85} +(-0.866116 - 1.50016i) q^{87} +(-7.56983 + 13.1113i) q^{89} +(-4.05602 + 7.02524i) q^{91} +(-1.06540 - 1.84533i) q^{93} +(1.01569 - 1.75923i) q^{95} -11.9914 q^{97} +(-0.527296 + 0.913304i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 7 q^{5} + 4 q^{7} - 13 q^{9} + 14 q^{11} + 4 q^{13} + q^{17} + 4 q^{19} - 3 q^{21} + 12 q^{23} - 7 q^{25} - 6 q^{27} - 4 q^{29} - 24 q^{31} + 13 q^{33} + 4 q^{35} + 10 q^{37} + 21 q^{39} + 5 q^{41}+ \cdots - 58 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/740\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(297\) \(371\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.117270 0.203117i −0.0677056 0.117270i 0.830185 0.557487i \(-0.188235\pi\)
−0.897891 + 0.440218i \(0.854901\pi\)
\(4\) 0 0
\(5\) −0.500000 0.866025i −0.223607 0.387298i
\(6\) 0 0
\(7\) 1.58956 + 2.75319i 0.600796 + 1.04061i 0.992701 + 0.120604i \(0.0384830\pi\)
−0.391905 + 0.920006i \(0.628184\pi\)
\(8\) 0 0
\(9\) 1.47250 2.55044i 0.490832 0.850146i
\(10\) 0 0
\(11\) −0.358097 −0.107970 −0.0539852 0.998542i \(-0.517192\pi\)
−0.0539852 + 0.998542i \(0.517192\pi\)
\(12\) 0 0
\(13\) 1.27583 + 2.20981i 0.353853 + 0.612891i 0.986921 0.161205i \(-0.0515380\pi\)
−0.633068 + 0.774096i \(0.718205\pi\)
\(14\) 0 0
\(15\) −0.117270 + 0.203117i −0.0302789 + 0.0524446i
\(16\) 0 0
\(17\) 1.54539 2.67670i 0.374812 0.649194i −0.615487 0.788147i \(-0.711040\pi\)
0.990299 + 0.138953i \(0.0443738\pi\)
\(18\) 0 0
\(19\) 1.01569 + 1.75923i 0.233015 + 0.403594i 0.958694 0.284440i \(-0.0918075\pi\)
−0.725679 + 0.688034i \(0.758474\pi\)
\(20\) 0 0
\(21\) 0.372813 0.645732i 0.0813546 0.140910i
\(22\) 0 0
\(23\) −3.34172 −0.696798 −0.348399 0.937346i \(-0.613275\pi\)
−0.348399 + 0.937346i \(0.613275\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 0 0
\(27\) −1.39433 −0.268340
\(28\) 0 0
\(29\) 7.38568 1.37149 0.685743 0.727844i \(-0.259477\pi\)
0.685743 + 0.727844i \(0.259477\pi\)
\(30\) 0 0
\(31\) 9.08508 1.63173 0.815865 0.578243i \(-0.196261\pi\)
0.815865 + 0.578243i \(0.196261\pi\)
\(32\) 0 0
\(33\) 0.0419939 + 0.0727356i 0.00731020 + 0.0126616i
\(34\) 0 0
\(35\) 1.58956 2.75319i 0.268684 0.465375i
\(36\) 0 0
\(37\) 5.87847 + 1.56320i 0.966414 + 0.256989i
\(38\) 0 0
\(39\) 0.299233 0.518287i 0.0479157 0.0829924i
\(40\) 0 0
\(41\) −2.89049 5.00648i −0.451419 0.781881i 0.547055 0.837096i \(-0.315749\pi\)
−0.998474 + 0.0552157i \(0.982415\pi\)
\(42\) 0 0
\(43\) −2.22829 −0.339811 −0.169906 0.985460i \(-0.554346\pi\)
−0.169906 + 0.985460i \(0.554346\pi\)
\(44\) 0 0
\(45\) −2.94499 −0.439013
\(46\) 0 0
\(47\) 9.00068 1.31288 0.656442 0.754376i \(-0.272061\pi\)
0.656442 + 0.754376i \(0.272061\pi\)
\(48\) 0 0
\(49\) −1.55338 + 2.69054i −0.221912 + 0.384363i
\(50\) 0 0
\(51\) −0.724910 −0.101508
\(52\) 0 0
\(53\) 0.203682 0.352787i 0.0279779 0.0484591i −0.851697 0.524034i \(-0.824427\pi\)
0.879675 + 0.475575i \(0.157760\pi\)
\(54\) 0 0
\(55\) 0.179048 + 0.310121i 0.0241429 + 0.0418167i
\(56\) 0 0
\(57\) 0.238219 0.412607i 0.0315529 0.0546512i
\(58\) 0 0
\(59\) −0.0726432 + 0.125822i −0.00945733 + 0.0163806i −0.870715 0.491787i \(-0.836344\pi\)
0.861258 + 0.508168i \(0.169677\pi\)
\(60\) 0 0
\(61\) −4.28240 7.41733i −0.548305 0.949692i −0.998391 0.0567065i \(-0.981940\pi\)
0.450086 0.892985i \(-0.351393\pi\)
\(62\) 0 0
\(63\) 9.36246 1.17956
\(64\) 0 0
\(65\) 1.27583 2.20981i 0.158248 0.274093i
\(66\) 0 0
\(67\) 7.24066 + 12.5412i 0.884588 + 1.53215i 0.846186 + 0.532888i \(0.178893\pi\)
0.0384021 + 0.999262i \(0.487773\pi\)
\(68\) 0 0
\(69\) 0.391883 + 0.678761i 0.0471771 + 0.0817132i
\(70\) 0 0
\(71\) −4.28335 7.41898i −0.508340 0.880470i −0.999953 0.00965693i \(-0.996926\pi\)
0.491614 0.870813i \(-0.336407\pi\)
\(72\) 0 0
\(73\) 2.69982 0.315990 0.157995 0.987440i \(-0.449497\pi\)
0.157995 + 0.987440i \(0.449497\pi\)
\(74\) 0 0
\(75\) 0.234539 0.0270823
\(76\) 0 0
\(77\) −0.569216 0.985910i −0.0648681 0.112355i
\(78\) 0 0
\(79\) −2.64213 4.57631i −0.297263 0.514875i 0.678246 0.734835i \(-0.262741\pi\)
−0.975509 + 0.219960i \(0.929407\pi\)
\(80\) 0 0
\(81\) −4.25397 7.36810i −0.472664 0.818678i
\(82\) 0 0
\(83\) −2.53863 + 4.39704i −0.278651 + 0.482638i −0.971050 0.238877i \(-0.923221\pi\)
0.692399 + 0.721515i \(0.256554\pi\)
\(84\) 0 0
\(85\) −3.09078 −0.335242
\(86\) 0 0
\(87\) −0.866116 1.50016i −0.0928573 0.160834i
\(88\) 0 0
\(89\) −7.56983 + 13.1113i −0.802400 + 1.38980i 0.115632 + 0.993292i \(0.463111\pi\)
−0.918032 + 0.396506i \(0.870223\pi\)
\(90\) 0 0
\(91\) −4.05602 + 7.02524i −0.425187 + 0.736445i
\(92\) 0 0
\(93\) −1.06540 1.84533i −0.110477 0.191352i
\(94\) 0 0
\(95\) 1.01569 1.75923i 0.104208 0.180493i
\(96\) 0 0
\(97\) −11.9914 −1.21755 −0.608773 0.793344i \(-0.708338\pi\)
−0.608773 + 0.793344i \(0.708338\pi\)
\(98\) 0 0
\(99\) −0.527296 + 0.913304i −0.0529953 + 0.0917905i
\(100\) 0 0
\(101\) −10.2361 −1.01853 −0.509265 0.860609i \(-0.670083\pi\)
−0.509265 + 0.860609i \(0.670083\pi\)
\(102\) 0 0
\(103\) 4.67427 0.460570 0.230285 0.973123i \(-0.426034\pi\)
0.230285 + 0.973123i \(0.426034\pi\)
\(104\) 0 0
\(105\) −0.745627 −0.0727657
\(106\) 0 0
\(107\) 5.20934 + 9.02284i 0.503606 + 0.872271i 0.999991 + 0.00416847i \(0.00132687\pi\)
−0.496386 + 0.868102i \(0.665340\pi\)
\(108\) 0 0
\(109\) −7.61208 + 13.1845i −0.729105 + 1.26285i 0.228156 + 0.973624i \(0.426730\pi\)
−0.957262 + 0.289223i \(0.906603\pi\)
\(110\) 0 0
\(111\) −0.371853 1.37733i −0.0352947 0.130731i
\(112\) 0 0
\(113\) 10.5831 18.3305i 0.995574 1.72438i 0.416395 0.909184i \(-0.363293\pi\)
0.579179 0.815201i \(-0.303373\pi\)
\(114\) 0 0
\(115\) 1.67086 + 2.89402i 0.155809 + 0.269869i
\(116\) 0 0
\(117\) 7.51464 0.694729
\(118\) 0 0
\(119\) 9.82595 0.900743
\(120\) 0 0
\(121\) −10.8718 −0.988342
\(122\) 0 0
\(123\) −0.677934 + 1.17422i −0.0611272 + 0.105875i
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −7.28172 + 12.6123i −0.646148 + 1.11916i 0.337887 + 0.941187i \(0.390288\pi\)
−0.984035 + 0.177975i \(0.943045\pi\)
\(128\) 0 0
\(129\) 0.261311 + 0.452604i 0.0230072 + 0.0398496i
\(130\) 0 0
\(131\) −1.65473 + 2.86608i −0.144575 + 0.250411i −0.929214 0.369542i \(-0.879515\pi\)
0.784639 + 0.619952i \(0.212848\pi\)
\(132\) 0 0
\(133\) −3.22899 + 5.59278i −0.279989 + 0.484955i
\(134\) 0 0
\(135\) 0.697167 + 1.20753i 0.0600026 + 0.103927i
\(136\) 0 0
\(137\) −12.9133 −1.10326 −0.551629 0.834090i \(-0.685994\pi\)
−0.551629 + 0.834090i \(0.685994\pi\)
\(138\) 0 0
\(139\) 1.89258 3.27805i 0.160527 0.278041i −0.774531 0.632536i \(-0.782014\pi\)
0.935058 + 0.354495i \(0.115347\pi\)
\(140\) 0 0
\(141\) −1.05551 1.82819i −0.0888897 0.153961i
\(142\) 0 0
\(143\) −0.456872 0.791326i −0.0382056 0.0661740i
\(144\) 0 0
\(145\) −3.69284 6.39619i −0.306674 0.531174i
\(146\) 0 0
\(147\) 0.728659 0.0600988
\(148\) 0 0
\(149\) 1.02661 0.0841030 0.0420515 0.999115i \(-0.486611\pi\)
0.0420515 + 0.999115i \(0.486611\pi\)
\(150\) 0 0
\(151\) −6.96022 12.0555i −0.566415 0.981059i −0.996917 0.0784693i \(-0.974997\pi\)
0.430502 0.902590i \(-0.358337\pi\)
\(152\) 0 0
\(153\) −4.55116 7.88285i −0.367940 0.637290i
\(154\) 0 0
\(155\) −4.54254 7.86791i −0.364866 0.631966i
\(156\) 0 0
\(157\) 1.70126 2.94667i 0.135776 0.235170i −0.790118 0.612955i \(-0.789981\pi\)
0.925893 + 0.377785i \(0.123314\pi\)
\(158\) 0 0
\(159\) −0.0955428 −0.00757704
\(160\) 0 0
\(161\) −5.31186 9.20041i −0.418633 0.725094i
\(162\) 0 0
\(163\) −5.70641 + 9.88379i −0.446960 + 0.774158i −0.998186 0.0601979i \(-0.980827\pi\)
0.551226 + 0.834356i \(0.314160\pi\)
\(164\) 0 0
\(165\) 0.0419939 0.0727356i 0.00326922 0.00566246i
\(166\) 0 0
\(167\) −0.0241496 0.0418284i −0.00186875 0.00323678i 0.865090 0.501618i \(-0.167262\pi\)
−0.866958 + 0.498381i \(0.833928\pi\)
\(168\) 0 0
\(169\) 3.24449 5.61963i 0.249576 0.432279i
\(170\) 0 0
\(171\) 5.98239 0.457485
\(172\) 0 0
\(173\) −6.05578 + 10.4889i −0.460412 + 0.797457i −0.998981 0.0451241i \(-0.985632\pi\)
0.538569 + 0.842581i \(0.318965\pi\)
\(174\) 0 0
\(175\) −3.17911 −0.240318
\(176\) 0 0
\(177\) 0.0340753 0.00256126
\(178\) 0 0
\(179\) 1.60239 0.119768 0.0598841 0.998205i \(-0.480927\pi\)
0.0598841 + 0.998205i \(0.480927\pi\)
\(180\) 0 0
\(181\) −7.90842 13.6978i −0.587828 1.01815i −0.994516 0.104581i \(-0.966650\pi\)
0.406688 0.913567i \(-0.366683\pi\)
\(182\) 0 0
\(183\) −1.00439 + 1.73965i −0.0742466 + 0.128599i
\(184\) 0 0
\(185\) −1.58546 5.87250i −0.116565 0.431755i
\(186\) 0 0
\(187\) −0.553400 + 0.958517i −0.0404686 + 0.0700937i
\(188\) 0 0
\(189\) −2.21637 3.83887i −0.161217 0.279237i
\(190\) 0 0
\(191\) −14.5252 −1.05101 −0.525505 0.850791i \(-0.676123\pi\)
−0.525505 + 0.850791i \(0.676123\pi\)
\(192\) 0 0
\(193\) 5.16326 0.371660 0.185830 0.982582i \(-0.440503\pi\)
0.185830 + 0.982582i \(0.440503\pi\)
\(194\) 0 0
\(195\) −0.598466 −0.0428571
\(196\) 0 0
\(197\) 3.00915 5.21200i 0.214393 0.371340i −0.738691 0.674044i \(-0.764556\pi\)
0.953085 + 0.302704i \(0.0978893\pi\)
\(198\) 0 0
\(199\) 3.32727 0.235864 0.117932 0.993022i \(-0.462374\pi\)
0.117932 + 0.993022i \(0.462374\pi\)
\(200\) 0 0
\(201\) 1.69822 2.94140i 0.119783 0.207470i
\(202\) 0 0
\(203\) 11.7400 + 20.3342i 0.823984 + 1.42718i
\(204\) 0 0
\(205\) −2.89049 + 5.00648i −0.201881 + 0.349668i
\(206\) 0 0
\(207\) −4.92067 + 8.52286i −0.342011 + 0.592380i
\(208\) 0 0
\(209\) −0.363715 0.629973i −0.0251587 0.0435762i
\(210\) 0 0
\(211\) −26.2788 −1.80911 −0.904553 0.426361i \(-0.859795\pi\)
−0.904553 + 0.426361i \(0.859795\pi\)
\(212\) 0 0
\(213\) −1.00461 + 1.74004i −0.0688349 + 0.119226i
\(214\) 0 0
\(215\) 1.11415 + 1.92976i 0.0759842 + 0.131608i
\(216\) 0 0
\(217\) 14.4413 + 25.0130i 0.980337 + 1.69799i
\(218\) 0 0
\(219\) −0.316607 0.548379i −0.0213943 0.0370560i
\(220\) 0 0
\(221\) 7.88665 0.530514
\(222\) 0 0
\(223\) −21.3598 −1.43036 −0.715181 0.698940i \(-0.753656\pi\)
−0.715181 + 0.698940i \(0.753656\pi\)
\(224\) 0 0
\(225\) 1.47250 + 2.55044i 0.0981664 + 0.170029i
\(226\) 0 0
\(227\) 4.03577 + 6.99016i 0.267863 + 0.463953i 0.968310 0.249752i \(-0.0803491\pi\)
−0.700446 + 0.713705i \(0.747016\pi\)
\(228\) 0 0
\(229\) −4.88902 8.46804i −0.323076 0.559584i 0.658045 0.752978i \(-0.271384\pi\)
−0.981121 + 0.193395i \(0.938050\pi\)
\(230\) 0 0
\(231\) −0.133503 + 0.231235i −0.00878388 + 0.0152141i
\(232\) 0 0
\(233\) −17.0421 −1.11647 −0.558233 0.829684i \(-0.688520\pi\)
−0.558233 + 0.829684i \(0.688520\pi\)
\(234\) 0 0
\(235\) −4.50034 7.79482i −0.293570 0.508478i
\(236\) 0 0
\(237\) −0.619684 + 1.07332i −0.0402528 + 0.0697199i
\(238\) 0 0
\(239\) −5.95003 + 10.3058i −0.384876 + 0.666624i −0.991752 0.128172i \(-0.959089\pi\)
0.606876 + 0.794796i \(0.292422\pi\)
\(240\) 0 0
\(241\) 13.3763 + 23.1684i 0.861643 + 1.49241i 0.870342 + 0.492447i \(0.163897\pi\)
−0.00869951 + 0.999962i \(0.502769\pi\)
\(242\) 0 0
\(243\) −3.08922 + 5.35069i −0.198174 + 0.343247i
\(244\) 0 0
\(245\) 3.10677 0.198484
\(246\) 0 0
\(247\) −2.59170 + 4.48896i −0.164906 + 0.285626i
\(248\) 0 0
\(249\) 1.19082 0.0754650
\(250\) 0 0
\(251\) 15.5729 0.982952 0.491476 0.870891i \(-0.336458\pi\)
0.491476 + 0.870891i \(0.336458\pi\)
\(252\) 0 0
\(253\) 1.19666 0.0752335
\(254\) 0 0
\(255\) 0.362455 + 0.627790i 0.0226978 + 0.0393137i
\(256\) 0 0
\(257\) 8.82199 15.2801i 0.550301 0.953148i −0.447952 0.894058i \(-0.647846\pi\)
0.998253 0.0590909i \(-0.0188202\pi\)
\(258\) 0 0
\(259\) 5.04036 + 18.6694i 0.313193 + 1.16006i
\(260\) 0 0
\(261\) 10.8754 18.8367i 0.673169 1.16596i
\(262\) 0 0
\(263\) −6.21900 10.7716i −0.383480 0.664206i 0.608077 0.793878i \(-0.291941\pi\)
−0.991557 + 0.129671i \(0.958608\pi\)
\(264\) 0 0
\(265\) −0.407364 −0.0250242
\(266\) 0 0
\(267\) 3.55084 0.217308
\(268\) 0 0
\(269\) 0.200438 0.0122209 0.00611047 0.999981i \(-0.498055\pi\)
0.00611047 + 0.999981i \(0.498055\pi\)
\(270\) 0 0
\(271\) 5.73770 9.93798i 0.348540 0.603690i −0.637450 0.770492i \(-0.720011\pi\)
0.985990 + 0.166802i \(0.0533441\pi\)
\(272\) 0 0
\(273\) 1.90259 0.115150
\(274\) 0 0
\(275\) 0.179048 0.310121i 0.0107970 0.0187010i
\(276\) 0 0
\(277\) 4.34516 + 7.52604i 0.261075 + 0.452196i 0.966528 0.256561i \(-0.0825896\pi\)
−0.705453 + 0.708757i \(0.749256\pi\)
\(278\) 0 0
\(279\) 13.3777 23.1709i 0.800905 1.38721i
\(280\) 0 0
\(281\) −1.78860 + 3.09795i −0.106699 + 0.184808i −0.914431 0.404742i \(-0.867361\pi\)
0.807732 + 0.589550i \(0.200695\pi\)
\(282\) 0 0
\(283\) −0.250526 0.433924i −0.0148922 0.0257941i 0.858483 0.512842i \(-0.171407\pi\)
−0.873375 + 0.487048i \(0.838074\pi\)
\(284\) 0 0
\(285\) −0.476438 −0.0282217
\(286\) 0 0
\(287\) 9.18921 15.9162i 0.542422 0.939502i
\(288\) 0 0
\(289\) 3.72353 + 6.44935i 0.219031 + 0.379373i
\(290\) 0 0
\(291\) 1.40623 + 2.43567i 0.0824348 + 0.142781i
\(292\) 0 0
\(293\) −6.11349 10.5889i −0.357154 0.618609i 0.630330 0.776327i \(-0.282919\pi\)
−0.987484 + 0.157719i \(0.949586\pi\)
\(294\) 0 0
\(295\) 0.145286 0.00845890
\(296\) 0 0
\(297\) 0.499307 0.0289727
\(298\) 0 0
\(299\) −4.26349 7.38458i −0.246564 0.427061i
\(300\) 0 0
\(301\) −3.54200 6.13492i −0.204157 0.353611i
\(302\) 0 0
\(303\) 1.20038 + 2.07913i 0.0689603 + 0.119443i
\(304\) 0 0
\(305\) −4.28240 + 7.41733i −0.245209 + 0.424715i
\(306\) 0 0
\(307\) −0.390030 −0.0222602 −0.0111301 0.999938i \(-0.503543\pi\)
−0.0111301 + 0.999938i \(0.503543\pi\)
\(308\) 0 0
\(309\) −0.548150 0.949424i −0.0311832 0.0540108i
\(310\) 0 0
\(311\) 12.9130 22.3660i 0.732230 1.26826i −0.223698 0.974658i \(-0.571813\pi\)
0.955928 0.293601i \(-0.0948536\pi\)
\(312\) 0 0
\(313\) 6.57799 11.3934i 0.371810 0.643994i −0.618034 0.786151i \(-0.712071\pi\)
0.989844 + 0.142157i \(0.0454039\pi\)
\(314\) 0 0
\(315\) −4.68123 8.10813i −0.263758 0.456841i
\(316\) 0 0
\(317\) −1.27662 + 2.21117i −0.0717022 + 0.124192i −0.899647 0.436617i \(-0.856176\pi\)
0.827945 + 0.560809i \(0.189510\pi\)
\(318\) 0 0
\(319\) −2.64479 −0.148080
\(320\) 0 0
\(321\) 1.22179 2.11621i 0.0681939 0.118115i
\(322\) 0 0
\(323\) 6.27855 0.349348
\(324\) 0 0
\(325\) −2.55167 −0.141541
\(326\) 0 0
\(327\) 3.57066 0.197458
\(328\) 0 0
\(329\) 14.3071 + 24.7806i 0.788776 + 1.36620i
\(330\) 0 0
\(331\) −11.0258 + 19.0972i −0.606032 + 1.04968i 0.385855 + 0.922559i \(0.373906\pi\)
−0.991887 + 0.127119i \(0.959427\pi\)
\(332\) 0 0
\(333\) 12.6429 12.6909i 0.692825 0.695455i
\(334\) 0 0
\(335\) 7.24066 12.5412i 0.395600 0.685199i
\(336\) 0 0
\(337\) 1.51760 + 2.62856i 0.0826691 + 0.143187i 0.904396 0.426695i \(-0.140322\pi\)
−0.821727 + 0.569882i \(0.806989\pi\)
\(338\) 0 0
\(339\) −4.96430 −0.269624
\(340\) 0 0
\(341\) −3.25334 −0.176178
\(342\) 0 0
\(343\) 12.3770 0.668297
\(344\) 0 0
\(345\) 0.391883 0.678761i 0.0210983 0.0365432i
\(346\) 0 0
\(347\) 23.8075 1.27805 0.639027 0.769184i \(-0.279337\pi\)
0.639027 + 0.769184i \(0.279337\pi\)
\(348\) 0 0
\(349\) −2.07920 + 3.60127i −0.111297 + 0.192772i −0.916293 0.400508i \(-0.868834\pi\)
0.804997 + 0.593279i \(0.202167\pi\)
\(350\) 0 0
\(351\) −1.77894 3.08121i −0.0949527 0.164463i
\(352\) 0 0
\(353\) 2.55747 4.42966i 0.136120 0.235767i −0.789905 0.613230i \(-0.789870\pi\)
0.926025 + 0.377463i \(0.123203\pi\)
\(354\) 0 0
\(355\) −4.28335 + 7.41898i −0.227336 + 0.393758i
\(356\) 0 0
\(357\) −1.15229 1.99582i −0.0609854 0.105630i
\(358\) 0 0
\(359\) 27.3507 1.44352 0.721758 0.692145i \(-0.243334\pi\)
0.721758 + 0.692145i \(0.243334\pi\)
\(360\) 0 0
\(361\) 7.43675 12.8808i 0.391408 0.677938i
\(362\) 0 0
\(363\) 1.27493 + 2.20824i 0.0669164 + 0.115903i
\(364\) 0 0
\(365\) −1.34991 2.33811i −0.0706575 0.122382i
\(366\) 0 0
\(367\) −3.32960 5.76704i −0.173804 0.301037i 0.765943 0.642909i \(-0.222272\pi\)
−0.939747 + 0.341872i \(0.888939\pi\)
\(368\) 0 0
\(369\) −17.0249 −0.886283
\(370\) 0 0
\(371\) 1.29506 0.0672360
\(372\) 0 0
\(373\) 3.95814 + 6.85571i 0.204945 + 0.354975i 0.950115 0.311899i \(-0.100965\pi\)
−0.745170 + 0.666874i \(0.767632\pi\)
\(374\) 0 0
\(375\) −0.117270 0.203117i −0.00605578 0.0104889i
\(376\) 0 0
\(377\) 9.42290 + 16.3209i 0.485304 + 0.840572i
\(378\) 0 0
\(379\) 5.63238 9.75556i 0.289316 0.501110i −0.684331 0.729172i \(-0.739906\pi\)
0.973647 + 0.228062i \(0.0732389\pi\)
\(380\) 0 0
\(381\) 3.41570 0.174991
\(382\) 0 0
\(383\) 4.23049 + 7.32742i 0.216168 + 0.374413i 0.953633 0.300971i \(-0.0973109\pi\)
−0.737465 + 0.675385i \(0.763978\pi\)
\(384\) 0 0
\(385\) −0.569216 + 0.985910i −0.0290099 + 0.0502466i
\(386\) 0 0
\(387\) −3.28115 + 5.68312i −0.166790 + 0.288889i
\(388\) 0 0
\(389\) 5.56052 + 9.63110i 0.281929 + 0.488316i 0.971860 0.235560i \(-0.0756923\pi\)
−0.689931 + 0.723876i \(0.742359\pi\)
\(390\) 0 0
\(391\) −5.16427 + 8.94478i −0.261168 + 0.452357i
\(392\) 0 0
\(393\) 0.776200 0.0391541
\(394\) 0 0
\(395\) −2.64213 + 4.57631i −0.132940 + 0.230259i
\(396\) 0 0
\(397\) −22.5615 −1.13233 −0.566165 0.824292i \(-0.691574\pi\)
−0.566165 + 0.824292i \(0.691574\pi\)
\(398\) 0 0
\(399\) 1.51465 0.0758274
\(400\) 0 0
\(401\) −6.88260 −0.343701 −0.171850 0.985123i \(-0.554975\pi\)
−0.171850 + 0.985123i \(0.554975\pi\)
\(402\) 0 0
\(403\) 11.5911 + 20.0763i 0.577392 + 1.00007i
\(404\) 0 0
\(405\) −4.25397 + 7.36810i −0.211382 + 0.366124i
\(406\) 0 0
\(407\) −2.10506 0.559778i −0.104344 0.0277472i
\(408\) 0 0
\(409\) −6.56614 + 11.3729i −0.324675 + 0.562353i −0.981446 0.191736i \(-0.938588\pi\)
0.656772 + 0.754089i \(0.271921\pi\)
\(410\) 0 0
\(411\) 1.51434 + 2.62291i 0.0746968 + 0.129379i
\(412\) 0 0
\(413\) −0.461882 −0.0227277
\(414\) 0 0
\(415\) 5.07726 0.249233
\(416\) 0 0
\(417\) −0.887770 −0.0434743
\(418\) 0 0
\(419\) 8.03510 13.9172i 0.392540 0.679899i −0.600244 0.799817i \(-0.704930\pi\)
0.992784 + 0.119918i \(0.0382631\pi\)
\(420\) 0 0
\(421\) 19.4118 0.946071 0.473036 0.881043i \(-0.343158\pi\)
0.473036 + 0.881043i \(0.343158\pi\)
\(422\) 0 0
\(423\) 13.2535 22.9557i 0.644405 1.11614i
\(424\) 0 0
\(425\) 1.54539 + 2.67670i 0.0749625 + 0.129839i
\(426\) 0 0
\(427\) 13.6142 23.5805i 0.658839 1.14114i
\(428\) 0 0
\(429\) −0.107155 + 0.185597i −0.00517347 + 0.00896071i
\(430\) 0 0
\(431\) 13.1905 + 22.8467i 0.635366 + 1.10049i 0.986437 + 0.164138i \(0.0524841\pi\)
−0.351071 + 0.936349i \(0.614183\pi\)
\(432\) 0 0
\(433\) 25.7940 1.23958 0.619790 0.784768i \(-0.287218\pi\)
0.619790 + 0.784768i \(0.287218\pi\)
\(434\) 0 0
\(435\) −0.866116 + 1.50016i −0.0415271 + 0.0719270i
\(436\) 0 0
\(437\) −3.39415 5.87885i −0.162364 0.281223i
\(438\) 0 0
\(439\) 4.21259 + 7.29642i 0.201056 + 0.348239i 0.948869 0.315670i \(-0.102229\pi\)
−0.747813 + 0.663910i \(0.768896\pi\)
\(440\) 0 0
\(441\) 4.57470 + 7.92362i 0.217843 + 0.377315i
\(442\) 0 0
\(443\) −24.0523 −1.14276 −0.571379 0.820686i \(-0.693592\pi\)
−0.571379 + 0.820686i \(0.693592\pi\)
\(444\) 0 0
\(445\) 15.1397 0.717689
\(446\) 0 0
\(447\) −0.120390 0.208521i −0.00569424 0.00986272i
\(448\) 0 0
\(449\) −2.29380 3.97297i −0.108251 0.187496i 0.806811 0.590810i \(-0.201192\pi\)
−0.915062 + 0.403314i \(0.867858\pi\)
\(450\) 0 0
\(451\) 1.03508 + 1.79281i 0.0487399 + 0.0844199i
\(452\) 0 0
\(453\) −1.63244 + 2.82748i −0.0766989 + 0.132846i
\(454\) 0 0
\(455\) 8.11205 0.380299
\(456\) 0 0
\(457\) 9.00292 + 15.5935i 0.421139 + 0.729434i 0.996051 0.0887812i \(-0.0282972\pi\)
−0.574912 + 0.818215i \(0.694964\pi\)
\(458\) 0 0
\(459\) −2.15479 + 3.73221i −0.100577 + 0.174204i
\(460\) 0 0
\(461\) 11.6529 20.1834i 0.542728 0.940032i −0.456018 0.889970i \(-0.650725\pi\)
0.998746 0.0500619i \(-0.0159419\pi\)
\(462\) 0 0
\(463\) 1.74309 + 3.01913i 0.0810085 + 0.140311i 0.903683 0.428201i \(-0.140853\pi\)
−0.822675 + 0.568512i \(0.807519\pi\)
\(464\) 0 0
\(465\) −1.06540 + 1.84533i −0.0494069 + 0.0855753i
\(466\) 0 0
\(467\) −34.5016 −1.59655 −0.798273 0.602296i \(-0.794253\pi\)
−0.798273 + 0.602296i \(0.794253\pi\)
\(468\) 0 0
\(469\) −23.0189 + 39.8699i −1.06291 + 1.84102i
\(470\) 0 0
\(471\) −0.798026 −0.0367711
\(472\) 0 0
\(473\) 0.797945 0.0366895
\(474\) 0 0
\(475\) −2.03138 −0.0932060
\(476\) 0 0
\(477\) −0.599841 1.03896i −0.0274649 0.0475705i
\(478\) 0 0
\(479\) 19.3254 33.4725i 0.882998 1.52940i 0.0350064 0.999387i \(-0.488855\pi\)
0.847991 0.530010i \(-0.177812\pi\)
\(480\) 0 0
\(481\) 4.04557 + 14.9847i 0.184462 + 0.683243i
\(482\) 0 0
\(483\) −1.24584 + 2.15786i −0.0566877 + 0.0981859i
\(484\) 0 0
\(485\) 5.99572 + 10.3849i 0.272252 + 0.471554i
\(486\) 0 0
\(487\) −34.9917 −1.58562 −0.792812 0.609467i \(-0.791384\pi\)
−0.792812 + 0.609467i \(0.791384\pi\)
\(488\) 0 0
\(489\) 2.67675 0.121047
\(490\) 0 0
\(491\) −42.8253 −1.93268 −0.966339 0.257271i \(-0.917177\pi\)
−0.966339 + 0.257271i \(0.917177\pi\)
\(492\) 0 0
\(493\) 11.4138 19.7692i 0.514050 0.890361i
\(494\) 0 0
\(495\) 1.05459 0.0474004
\(496\) 0 0
\(497\) 13.6173 23.5858i 0.610817 1.05797i
\(498\) 0 0
\(499\) −8.71019 15.0865i −0.389922 0.675364i 0.602517 0.798106i \(-0.294165\pi\)
−0.992439 + 0.122742i \(0.960831\pi\)
\(500\) 0 0
\(501\) −0.00566403 + 0.00981040i −0.000253050 + 0.000438296i
\(502\) 0 0
\(503\) −4.59691 + 7.96208i −0.204966 + 0.355012i −0.950122 0.311879i \(-0.899042\pi\)
0.745156 + 0.666890i \(0.232375\pi\)
\(504\) 0 0
\(505\) 5.11805 + 8.86473i 0.227750 + 0.394475i
\(506\) 0 0
\(507\) −1.52192 −0.0675909
\(508\) 0 0
\(509\) 19.5611 33.8808i 0.867030 1.50174i 0.00201193 0.999998i \(-0.499360\pi\)
0.865018 0.501741i \(-0.167307\pi\)
\(510\) 0 0
\(511\) 4.29152 + 7.43313i 0.189846 + 0.328822i
\(512\) 0 0
\(513\) −1.41621 2.45295i −0.0625272 0.108300i
\(514\) 0 0
\(515\) −2.33714 4.04804i −0.102987 0.178378i
\(516\) 0 0
\(517\) −3.22312 −0.141752
\(518\) 0 0
\(519\) 2.84063 0.124690
\(520\) 0 0
\(521\) −10.0744 17.4494i −0.441368 0.764471i 0.556424 0.830899i \(-0.312173\pi\)
−0.997791 + 0.0664275i \(0.978840\pi\)
\(522\) 0 0
\(523\) 0.809076 + 1.40136i 0.0353784 + 0.0612772i 0.883172 0.469048i \(-0.155403\pi\)
−0.847794 + 0.530326i \(0.822070\pi\)
\(524\) 0 0
\(525\) 0.372813 + 0.645732i 0.0162709 + 0.0281821i
\(526\) 0 0
\(527\) 14.0400 24.3180i 0.611592 1.05931i
\(528\) 0 0
\(529\) −11.8329 −0.514473
\(530\) 0 0
\(531\) 0.213933 + 0.370544i 0.00928392 + 0.0160802i
\(532\) 0 0
\(533\) 7.37558 12.7749i 0.319472 0.553341i
\(534\) 0 0
\(535\) 5.20934 9.02284i 0.225219 0.390091i
\(536\) 0 0
\(537\) −0.187911 0.325472i −0.00810898 0.0140452i
\(538\) 0 0
\(539\) 0.556262 0.963475i 0.0239599 0.0414998i
\(540\) 0 0
\(541\) 22.3334 0.960190 0.480095 0.877217i \(-0.340602\pi\)
0.480095 + 0.877217i \(0.340602\pi\)
\(542\) 0 0
\(543\) −1.85483 + 3.21267i −0.0795985 + 0.137869i
\(544\) 0 0
\(545\) 15.2242 0.652132
\(546\) 0 0
\(547\) 15.1368 0.647204 0.323602 0.946193i \(-0.395106\pi\)
0.323602 + 0.946193i \(0.395106\pi\)
\(548\) 0 0
\(549\) −25.2232 −1.07650
\(550\) 0 0
\(551\) 7.50155 + 12.9931i 0.319577 + 0.553524i
\(552\) 0 0
\(553\) 8.39964 14.5486i 0.357189 0.618670i
\(554\) 0 0
\(555\) −1.00688 + 1.01070i −0.0427396 + 0.0429018i
\(556\) 0 0
\(557\) −14.4817 + 25.0831i −0.613610 + 1.06280i 0.377016 + 0.926207i \(0.376950\pi\)
−0.990627 + 0.136598i \(0.956383\pi\)
\(558\) 0 0
\(559\) −2.84293 4.92410i −0.120243 0.208267i
\(560\) 0 0
\(561\) 0.259588 0.0109598
\(562\) 0 0
\(563\) −29.8156 −1.25658 −0.628288 0.777981i \(-0.716244\pi\)
−0.628288 + 0.777981i \(0.716244\pi\)
\(564\) 0 0
\(565\) −21.1662 −0.890468
\(566\) 0 0
\(567\) 13.5239 23.4240i 0.567949 0.983717i
\(568\) 0 0
\(569\) −14.6512 −0.614211 −0.307106 0.951675i \(-0.599361\pi\)
−0.307106 + 0.951675i \(0.599361\pi\)
\(570\) 0 0
\(571\) −11.3742 + 19.7008i −0.475997 + 0.824452i −0.999622 0.0274974i \(-0.991246\pi\)
0.523624 + 0.851949i \(0.324580\pi\)
\(572\) 0 0
\(573\) 1.70337 + 2.95032i 0.0711592 + 0.123251i
\(574\) 0 0
\(575\) 1.67086 2.89402i 0.0696798 0.120689i
\(576\) 0 0
\(577\) 14.2713 24.7186i 0.594121 1.02905i −0.399549 0.916712i \(-0.630833\pi\)
0.993670 0.112336i \(-0.0358333\pi\)
\(578\) 0 0
\(579\) −0.605493 1.04875i −0.0251634 0.0435844i
\(580\) 0 0
\(581\) −16.1412 −0.669650
\(582\) 0 0
\(583\) −0.0729379 + 0.126332i −0.00302078 + 0.00523214i
\(584\) 0 0
\(585\) −3.75732 6.50787i −0.155346 0.269067i
\(586\) 0 0
\(587\) −3.86625 6.69655i −0.159577 0.276396i 0.775139 0.631791i \(-0.217680\pi\)
−0.934716 + 0.355395i \(0.884346\pi\)
\(588\) 0 0
\(589\) 9.22762 + 15.9827i 0.380218 + 0.658556i
\(590\) 0 0
\(591\) −1.41153 −0.0580625
\(592\) 0 0
\(593\) 10.1609 0.417258 0.208629 0.977995i \(-0.433100\pi\)
0.208629 + 0.977995i \(0.433100\pi\)
\(594\) 0 0
\(595\) −4.91298 8.50952i −0.201412 0.348856i
\(596\) 0 0
\(597\) −0.390187 0.675824i −0.0159693 0.0276596i
\(598\) 0 0
\(599\) 4.10424 + 7.10875i 0.167695 + 0.290455i 0.937609 0.347692i \(-0.113034\pi\)
−0.769914 + 0.638147i \(0.779701\pi\)
\(600\) 0 0
\(601\) −6.97048 + 12.0732i −0.284332 + 0.492477i −0.972447 0.233124i \(-0.925105\pi\)
0.688115 + 0.725602i \(0.258438\pi\)
\(602\) 0 0
\(603\) 42.6474 1.73674
\(604\) 0 0
\(605\) 5.43588 + 9.41523i 0.221000 + 0.382783i
\(606\) 0 0
\(607\) −17.1624 + 29.7261i −0.696599 + 1.20654i 0.273040 + 0.962003i \(0.411971\pi\)
−0.969639 + 0.244542i \(0.921362\pi\)
\(608\) 0 0
\(609\) 2.75348 4.76917i 0.111577 0.193256i
\(610\) 0 0
\(611\) 11.4834 + 19.8898i 0.464568 + 0.804655i
\(612\) 0 0
\(613\) −20.6918 + 35.8392i −0.835734 + 1.44753i 0.0576980 + 0.998334i \(0.481624\pi\)
−0.893432 + 0.449199i \(0.851709\pi\)
\(614\) 0 0
\(615\) 1.35587 0.0546739
\(616\) 0 0
\(617\) −16.8511 + 29.1870i −0.678401 + 1.17502i 0.297062 + 0.954858i \(0.403993\pi\)
−0.975462 + 0.220166i \(0.929340\pi\)
\(618\) 0 0
\(619\) −27.3600 −1.09969 −0.549845 0.835267i \(-0.685313\pi\)
−0.549845 + 0.835267i \(0.685313\pi\)
\(620\) 0 0
\(621\) 4.65948 0.186978
\(622\) 0 0
\(623\) −48.1307 −1.92832
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) −0.0853055 + 0.147753i −0.00340677 + 0.00590070i
\(628\) 0 0
\(629\) 13.2688 13.3191i 0.529060 0.531068i
\(630\) 0 0
\(631\) 14.6597 25.3914i 0.583594 1.01081i −0.411455 0.911430i \(-0.634979\pi\)
0.995049 0.0993848i \(-0.0316875\pi\)
\(632\) 0 0
\(633\) 3.08170 + 5.33766i 0.122487 + 0.212153i
\(634\) 0 0
\(635\) 14.5634 0.577932
\(636\) 0 0
\(637\) −7.92745 −0.314097
\(638\) 0 0
\(639\) −25.2288 −0.998038
\(640\) 0 0
\(641\) −23.5463 + 40.7833i −0.930021 + 1.61084i −0.146742 + 0.989175i \(0.546879\pi\)
−0.783280 + 0.621670i \(0.786455\pi\)
\(642\) 0 0
\(643\) 1.20532 0.0475331 0.0237666 0.999718i \(-0.492434\pi\)
0.0237666 + 0.999718i \(0.492434\pi\)
\(644\) 0 0
\(645\) 0.261311 0.452604i 0.0102891 0.0178213i
\(646\) 0 0
\(647\) −21.0217 36.4107i −0.826450 1.43145i −0.900806 0.434221i \(-0.857024\pi\)
0.0743563 0.997232i \(-0.476310\pi\)
\(648\) 0 0
\(649\) 0.0260133 0.0450563i 0.00102111 0.00176862i
\(650\) 0 0
\(651\) 3.38704 5.86653i 0.132749 0.229927i
\(652\) 0 0
\(653\) 11.3994 + 19.7444i 0.446093 + 0.772656i 0.998128 0.0611650i \(-0.0194816\pi\)
−0.552034 + 0.833821i \(0.686148\pi\)
\(654\) 0 0
\(655\) 3.30947 0.129312
\(656\) 0 0
\(657\) 3.97547 6.88572i 0.155098 0.268638i
\(658\) 0 0
\(659\) −14.7558 25.5578i −0.574805 0.995592i −0.996063 0.0886510i \(-0.971744\pi\)
0.421257 0.906941i \(-0.361589\pi\)
\(660\) 0 0
\(661\) 22.3134 + 38.6480i 0.867892 + 1.50323i 0.864146 + 0.503241i \(0.167859\pi\)
0.00374606 + 0.999993i \(0.498808\pi\)
\(662\) 0 0
\(663\) −0.924865 1.60191i −0.0359188 0.0622131i
\(664\) 0 0
\(665\) 6.45798 0.250430
\(666\) 0 0
\(667\) −24.6809 −0.955648
\(668\) 0 0
\(669\) 2.50486 + 4.33855i 0.0968435 + 0.167738i
\(670\) 0 0
\(671\) 1.53351 + 2.65612i 0.0592006 + 0.102538i
\(672\) 0 0
\(673\) −8.41622 14.5773i −0.324422 0.561915i 0.656974 0.753914i \(-0.271836\pi\)
−0.981395 + 0.191999i \(0.938503\pi\)
\(674\) 0 0
\(675\) 0.697167 1.20753i 0.0268340 0.0464778i
\(676\) 0 0
\(677\) 2.68978 0.103377 0.0516883 0.998663i \(-0.483540\pi\)
0.0516883 + 0.998663i \(0.483540\pi\)
\(678\) 0 0
\(679\) −19.0611 33.0148i −0.731498 1.26699i
\(680\) 0 0
\(681\) 0.946546 1.63947i 0.0362717 0.0628245i
\(682\) 0 0
\(683\) −19.7109 + 34.1403i −0.754216 + 1.30634i 0.191547 + 0.981484i \(0.438650\pi\)
−0.945763 + 0.324858i \(0.894684\pi\)
\(684\) 0 0
\(685\) 6.45665 + 11.1832i 0.246696 + 0.427290i
\(686\) 0 0
\(687\) −1.14667 + 1.98609i −0.0437481 + 0.0757739i
\(688\) 0 0
\(689\) 1.03946 0.0396002
\(690\) 0 0
\(691\) −4.24105 + 7.34571i −0.161337 + 0.279444i −0.935348 0.353728i \(-0.884914\pi\)
0.774011 + 0.633172i \(0.218247\pi\)
\(692\) 0 0
\(693\) −3.35267 −0.127357
\(694\) 0 0
\(695\) −3.78517 −0.143580
\(696\) 0 0
\(697\) −17.8678 −0.676790
\(698\) 0 0
\(699\) 1.99852 + 3.46154i 0.0755910 + 0.130927i
\(700\) 0 0
\(701\) −11.4372 + 19.8098i −0.431977 + 0.748206i −0.997044 0.0768391i \(-0.975517\pi\)
0.565066 + 0.825045i \(0.308851\pi\)
\(702\) 0 0
\(703\) 3.22067 + 11.9293i 0.121470 + 0.449921i
\(704\) 0 0
\(705\) −1.05551 + 1.82819i −0.0397527 + 0.0688536i
\(706\) 0 0
\(707\) −16.2709 28.1820i −0.611930 1.05989i
\(708\) 0 0
\(709\) −10.0262 −0.376541 −0.188270 0.982117i \(-0.560288\pi\)
−0.188270 + 0.982117i \(0.560288\pi\)
\(710\) 0 0
\(711\) −15.5621 −0.583625
\(712\) 0 0
\(713\) −30.3598 −1.13699
\(714\) 0 0
\(715\) −0.456872 + 0.791326i −0.0170861 + 0.0295939i
\(716\) 0 0
\(717\) 2.79103 0.104233
\(718\) 0 0
\(719\) −3.40375 + 5.89547i −0.126938 + 0.219864i −0.922489 0.386023i \(-0.873848\pi\)
0.795551 + 0.605887i \(0.207182\pi\)
\(720\) 0 0
\(721\) 7.43002 + 12.8692i 0.276709 + 0.479273i
\(722\) 0 0
\(723\) 3.13727 5.43390i 0.116676 0.202089i
\(724\) 0 0
\(725\) −3.69284 + 6.39619i −0.137149 + 0.237548i
\(726\) 0 0
\(727\) −2.10490 3.64579i −0.0780663 0.135215i 0.824349 0.566081i \(-0.191541\pi\)
−0.902416 + 0.430867i \(0.858208\pi\)
\(728\) 0 0
\(729\) −24.0748 −0.891658
\(730\) 0 0
\(731\) −3.44358 + 5.96446i −0.127366 + 0.220604i
\(732\) 0 0
\(733\) −16.1380 27.9518i −0.596070 1.03242i −0.993395 0.114745i \(-0.963395\pi\)
0.397325 0.917678i \(-0.369938\pi\)
\(734\) 0 0
\(735\) −0.364330 0.631037i −0.0134385 0.0232762i
\(736\) 0 0
\(737\) −2.59286 4.49096i −0.0955092 0.165427i
\(738\) 0 0
\(739\) 12.4330 0.457355 0.228678 0.973502i \(-0.426560\pi\)
0.228678 + 0.973502i \(0.426560\pi\)
\(740\) 0 0
\(741\) 1.21571 0.0446603
\(742\) 0 0
\(743\) −22.6942 39.3074i −0.832568 1.44205i −0.895995 0.444064i \(-0.853536\pi\)
0.0634271 0.997986i \(-0.479797\pi\)
\(744\) 0 0
\(745\) −0.513304 0.889068i −0.0188060 0.0325729i
\(746\) 0 0
\(747\) 7.47625 + 12.9492i 0.273542 + 0.473788i
\(748\) 0 0
\(749\) −16.5611 + 28.6846i −0.605129 + 1.04811i
\(750\) 0 0
\(751\) 37.3536 1.36305 0.681526 0.731794i \(-0.261317\pi\)
0.681526 + 0.731794i \(0.261317\pi\)
\(752\) 0 0
\(753\) −1.82623 3.16312i −0.0665514 0.115270i
\(754\) 0 0
\(755\) −6.96022 + 12.0555i −0.253308 + 0.438743i
\(756\) 0 0
\(757\) 23.8188 41.2554i 0.865711 1.49945i −0.000629280 1.00000i \(-0.500200\pi\)
0.866340 0.499455i \(-0.166466\pi\)
\(758\) 0 0
\(759\) −0.140332 0.243062i −0.00509373 0.00882260i
\(760\) 0 0
\(761\) 8.04302 13.9309i 0.291559 0.504995i −0.682619 0.730774i \(-0.739159\pi\)
0.974179 + 0.225779i \(0.0724926\pi\)
\(762\) 0 0
\(763\) −48.3994 −1.75217
\(764\) 0 0
\(765\) −4.55116 + 7.88285i −0.164548 + 0.285005i
\(766\) 0 0
\(767\) −0.370723 −0.0133860
\(768\) 0 0
\(769\) 17.0986 0.616590 0.308295 0.951291i \(-0.400242\pi\)
0.308295 + 0.951291i \(0.400242\pi\)
\(770\) 0 0
\(771\) −4.13820 −0.149034
\(772\) 0 0
\(773\) −2.44379 4.23277i −0.0878971 0.152242i 0.818725 0.574186i \(-0.194681\pi\)
−0.906622 + 0.421944i \(0.861348\pi\)
\(774\) 0 0
\(775\) −4.54254 + 7.86791i −0.163173 + 0.282624i
\(776\) 0 0
\(777\) 3.20098 3.21313i 0.114835 0.115270i
\(778\) 0 0
\(779\) 5.87168 10.1701i 0.210375 0.364380i
\(780\) 0 0
\(781\) 1.53385 + 2.65671i 0.0548856 + 0.0950647i
\(782\) 0 0
\(783\) −10.2981 −0.368024
\(784\) 0 0
\(785\) −3.40253 −0.121441
\(786\) 0 0
\(787\) −42.0717 −1.49969 −0.749847 0.661611i \(-0.769873\pi\)
−0.749847 + 0.661611i \(0.769873\pi\)
\(788\) 0 0
\(789\) −1.45860 + 2.52637i −0.0519275 + 0.0899410i
\(790\) 0 0
\(791\) 67.2897 2.39255
\(792\) 0 0
\(793\) 10.9273 18.9266i 0.388038 0.672102i
\(794\) 0 0
\(795\) 0.0477714 + 0.0827425i 0.00169428 + 0.00293457i
\(796\) 0 0
\(797\) 9.47508 16.4113i 0.335625 0.581319i −0.647980 0.761657i \(-0.724386\pi\)
0.983605 + 0.180339i \(0.0577193\pi\)
\(798\) 0 0
\(799\) 13.9096 24.0921i 0.492085 0.852317i
\(800\) 0 0
\(801\) 22.2931 + 38.6128i 0.787687 + 1.36431i
\(802\) 0 0
\(803\) −0.966798 −0.0341176
\(804\) 0 0
\(805\) −5.31186 + 9.20041i −0.187219 + 0.324272i
\(806\) 0 0
\(807\) −0.0235053 0.0407124i −0.000827427 0.00143315i
\(808\) 0 0
\(809\) 13.7920 + 23.8885i 0.484902 + 0.839874i 0.999850 0.0173473i \(-0.00552208\pi\)
−0.514948 + 0.857221i \(0.672189\pi\)
\(810\) 0 0
\(811\) −11.7441 20.3414i −0.412391 0.714283i 0.582759 0.812645i \(-0.301973\pi\)
−0.995151 + 0.0983622i \(0.968640\pi\)
\(812\) 0 0
\(813\) −2.69143 −0.0943926
\(814\) 0 0
\(815\) 11.4128 0.399773
\(816\) 0 0
\(817\) −2.26325 3.92007i −0.0791812 0.137146i
\(818\) 0 0
\(819\) 11.9450 + 20.6893i 0.417391 + 0.722942i
\(820\) 0 0
\(821\) −4.76257 8.24901i −0.166215 0.287893i 0.770871 0.636991i \(-0.219821\pi\)
−0.937086 + 0.349098i \(0.886488\pi\)
\(822\) 0 0
\(823\) −14.2633 + 24.7048i −0.497189 + 0.861156i −0.999995 0.00324298i \(-0.998968\pi\)
0.502806 + 0.864399i \(0.332301\pi\)
\(824\) 0 0
\(825\) −0.0839878 −0.00292408
\(826\) 0 0
\(827\) 23.4629 + 40.6389i 0.815883 + 1.41315i 0.908692 + 0.417468i \(0.137082\pi\)
−0.0928084 + 0.995684i \(0.529584\pi\)
\(828\) 0 0
\(829\) 13.7057 23.7389i 0.476017 0.824486i −0.523606 0.851961i \(-0.675413\pi\)
0.999622 + 0.0274753i \(0.00874676\pi\)
\(830\) 0 0
\(831\) 1.01911 1.76515i 0.0353526 0.0612324i
\(832\) 0 0
\(833\) 4.80117 + 8.31588i 0.166351 + 0.288128i
\(834\) 0 0
\(835\) −0.0241496 + 0.0418284i −0.000835732 + 0.00144753i
\(836\) 0 0
\(837\) −12.6676 −0.437858
\(838\) 0 0
\(839\) 7.91955 13.7171i 0.273413 0.473565i −0.696320 0.717731i \(-0.745181\pi\)
0.969734 + 0.244166i \(0.0785140\pi\)
\(840\) 0 0
\(841\) 25.5483 0.880974
\(842\) 0 0
\(843\) 0.838995 0.0288965
\(844\) 0 0
\(845\) −6.48899 −0.223228
\(846\) 0 0
\(847\) −17.2813 29.9321i −0.593792 1.02848i
\(848\) 0 0
\(849\) −0.0587581 + 0.101772i −0.00201657 + 0.00349281i
\(850\) 0 0
\(851\) −19.6442 5.22379i −0.673395 0.179069i
\(852\) 0 0
\(853\) 13.2989 23.0344i 0.455346 0.788683i −0.543362 0.839499i \(-0.682849\pi\)
0.998708 + 0.0508157i \(0.0161821\pi\)
\(854\) 0 0
\(855\) −2.99120 5.18090i −0.102297 0.177183i
\(856\) 0 0
\(857\) −39.6514 −1.35447 −0.677233 0.735769i \(-0.736821\pi\)
−0.677233 + 0.735769i \(0.736821\pi\)
\(858\) 0 0
\(859\) −48.2955 −1.64782 −0.823910 0.566720i \(-0.808212\pi\)
−0.823910 + 0.566720i \(0.808212\pi\)
\(860\) 0 0
\(861\) −4.31046 −0.146900
\(862\) 0 0
\(863\) 23.2704 40.3055i 0.792133 1.37201i −0.132511 0.991182i \(-0.542304\pi\)
0.924644 0.380833i \(-0.124363\pi\)
\(864\) 0 0
\(865\) 12.1116 0.411805
\(866\) 0 0
\(867\) 0.873314 1.51263i 0.0296593 0.0513714i
\(868\) 0 0
\(869\) 0.946140 + 1.63876i 0.0320956 + 0.0555912i
\(870\) 0 0
\(871\) −18.4758 + 32.0010i −0.626028 + 1.08431i
\(872\) 0 0
\(873\) −17.6574 + 30.5834i −0.597611 + 1.03509i
\(874\) 0 0
\(875\) 1.58956 + 2.75319i 0.0537368 + 0.0930749i
\(876\) 0 0
\(877\) 54.8189 1.85110 0.925551 0.378623i \(-0.123602\pi\)
0.925551 + 0.378623i \(0.123602\pi\)
\(878\) 0 0
\(879\) −1.43385 + 2.48351i −0.0483627 + 0.0837666i
\(880\) 0 0
\(881\) −15.8771 27.4999i −0.534912 0.926495i −0.999168 0.0407937i \(-0.987011\pi\)
0.464255 0.885701i \(-0.346322\pi\)
\(882\) 0 0
\(883\) 16.1977 + 28.0552i 0.545096 + 0.944133i 0.998601 + 0.0528798i \(0.0168400\pi\)
−0.453505 + 0.891254i \(0.649827\pi\)
\(884\) 0 0
\(885\) −0.0170377 0.0295101i −0.000572715 0.000991971i
\(886\) 0 0
\(887\) −23.0174 −0.772848 −0.386424 0.922321i \(-0.626290\pi\)
−0.386424 + 0.922321i \(0.626290\pi\)
\(888\) 0 0
\(889\) −46.2988 −1.55281
\(890\) 0 0
\(891\) 1.52334 + 2.63849i 0.0510337 + 0.0883929i
\(892\) 0 0
\(893\) 9.14189 + 15.8342i 0.305922 + 0.529872i
\(894\) 0 0
\(895\) −0.801194 1.38771i −0.0267810 0.0463860i
\(896\) 0 0
\(897\) −0.999955 + 1.73197i −0.0333875 + 0.0578289i
\(898\) 0 0
\(899\) 67.0995 2.23789
\(900\) 0 0
\(901\) −0.629536 1.09039i −0.0209729 0.0363261i
\(902\) 0 0
\(903\) −0.830738 + 1.43888i −0.0276452 + 0.0478829i
\(904\) 0 0
\(905\) −7.90842 + 13.6978i −0.262885 + 0.455330i
\(906\) 0 0
\(907\) −0.786574 1.36239i −0.0261178 0.0452373i 0.852671 0.522448i \(-0.174981\pi\)
−0.878789 + 0.477211i \(0.841648\pi\)
\(908\) 0 0
\(909\) −15.0726 + 26.1066i −0.499927 + 0.865900i
\(910\) 0 0
\(911\) 49.5928 1.64308 0.821542 0.570148i \(-0.193114\pi\)
0.821542 + 0.570148i \(0.193114\pi\)
\(912\) 0 0
\(913\) 0.909077 1.57457i 0.0300860 0.0521106i
\(914\) 0 0
\(915\) 2.00878 0.0664082
\(916\) 0 0
\(917\) −10.5212 −0.347440
\(918\) 0 0
\(919\) −38.7411 −1.27795 −0.638976 0.769227i \(-0.720642\pi\)
−0.638976 + 0.769227i \(0.720642\pi\)
\(920\) 0 0
\(921\) 0.0457387 + 0.0792217i 0.00150714 + 0.00261044i
\(922\) 0 0
\(923\) 10.9297 18.9308i 0.359755 0.623114i
\(924\) 0 0
\(925\) −4.29301 + 4.30930i −0.141153 + 0.141689i
\(926\) 0 0
\(927\) 6.88285 11.9214i 0.226062 0.391551i
\(928\) 0 0
\(929\) 13.5542 + 23.4766i 0.444699 + 0.770241i 0.998031 0.0627198i \(-0.0199774\pi\)
−0.553333 + 0.832960i \(0.686644\pi\)
\(930\) 0 0
\(931\) −6.31102 −0.206835
\(932\) 0 0
\(933\) −6.05722 −0.198304
\(934\) 0 0
\(935\) 1.10680 0.0361962
\(936\) 0 0
\(937\) 23.1438 40.0862i 0.756074 1.30956i −0.188765 0.982022i \(-0.560448\pi\)
0.944839 0.327536i \(-0.106218\pi\)
\(938\) 0 0
\(939\) −3.08560 −0.100695
\(940\) 0 0
\(941\) 13.2485 22.9471i 0.431889 0.748053i −0.565147 0.824990i \(-0.691181\pi\)
0.997036 + 0.0769371i \(0.0245141\pi\)
\(942\) 0 0
\(943\) 9.65923 + 16.7303i 0.314548 + 0.544813i
\(944\) 0 0
\(945\) −2.21637 + 3.83887i −0.0720986 + 0.124878i
\(946\) 0 0
\(947\) −16.3802 + 28.3714i −0.532286 + 0.921946i 0.467004 + 0.884255i \(0.345333\pi\)
−0.999289 + 0.0376903i \(0.988000\pi\)
\(948\) 0 0
\(949\) 3.44452 + 5.96609i 0.111814 + 0.193668i
\(950\) 0 0
\(951\) 0.598835 0.0194186
\(952\) 0 0
\(953\) 14.4949 25.1060i 0.469537 0.813263i −0.529856 0.848088i \(-0.677754\pi\)
0.999393 + 0.0348249i \(0.0110873\pi\)
\(954\) 0 0
\(955\) 7.26262 + 12.5792i 0.235013 + 0.407054i
\(956\) 0 0
\(957\) 0.310153 + 0.537201i 0.0100258 + 0.0173653i
\(958\) 0 0
\(959\) −20.5264 35.5528i −0.662833 1.14806i
\(960\) 0 0
\(961\) 51.5387 1.66254
\(962\) 0 0
\(963\) 30.6829 0.988743
\(964\) 0 0
\(965\) −2.58163 4.47151i −0.0831056 0.143943i
\(966\) 0 0
\(967\) 0.771849 + 1.33688i 0.0248210 + 0.0429912i 0.878169 0.478350i \(-0.158765\pi\)
−0.853348 + 0.521342i \(0.825432\pi\)
\(968\) 0 0
\(969\) −0.736283 1.27528i −0.0236528 0.0409679i
\(970\) 0 0
\(971\) −17.0876 + 29.5966i −0.548367 + 0.949799i 0.450020 + 0.893018i \(0.351417\pi\)
−0.998387 + 0.0567804i \(0.981917\pi\)
\(972\) 0 0
\(973\) 12.0335 0.385776
\(974\) 0 0
\(975\) 0.299233 + 0.518287i 0.00958313 + 0.0165985i
\(976\) 0 0
\(977\) −20.8391 + 36.0944i −0.666703 + 1.15476i 0.312118 + 0.950043i \(0.398962\pi\)
−0.978821 + 0.204719i \(0.934372\pi\)
\(978\) 0 0
\(979\) 2.71073 4.69513i 0.0866354 0.150057i
\(980\) 0 0
\(981\) 22.4175 + 38.8283i 0.715736 + 1.23969i
\(982\) 0 0
\(983\) −13.4185 + 23.2416i −0.427985 + 0.741292i −0.996694 0.0812468i \(-0.974110\pi\)
0.568709 + 0.822539i \(0.307443\pi\)
\(984\) 0 0
\(985\) −6.01830 −0.191759
\(986\) 0 0
\(987\) 3.35558 5.81203i 0.106809 0.184999i
\(988\) 0 0
\(989\) 7.44634 0.236780
\(990\) 0 0
\(991\) −18.0542 −0.573512 −0.286756 0.958004i \(-0.592577\pi\)
−0.286756 + 0.958004i \(0.592577\pi\)
\(992\) 0 0
\(993\) 5.17196 0.164127
\(994\) 0 0
\(995\) −1.66363 2.88150i −0.0527407 0.0913496i
\(996\) 0 0
\(997\) 15.8037 27.3728i 0.500507 0.866904i −0.499492 0.866318i \(-0.666480\pi\)
1.00000 0.000586063i \(-0.000186550\pi\)
\(998\) 0 0
\(999\) −8.19655 2.17963i −0.259327 0.0689603i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 740.2.i.a.121.4 14
37.26 even 3 inner 740.2.i.a.581.4 yes 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
740.2.i.a.121.4 14 1.1 even 1 trivial
740.2.i.a.581.4 yes 14 37.26 even 3 inner