Properties

Label 740.2.d.a.149.12
Level $740$
Weight $2$
Character 740.149
Analytic conductor $5.909$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [740,2,Mod(149,740)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(740, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("740.149"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 740 = 2^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 740.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.90892974957\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} + 26 x^{16} + 283 x^{14} + 1674 x^{12} + 5841 x^{10} + 12196 x^{8} + 14736 x^{6} + 9408 x^{4} + \cdots + 144 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 149.12
Root \(1.78123i\) of defining polynomial
Character \(\chi\) \(=\) 740.149
Dual form 740.2.d.a.149.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.06683i q^{3} +(1.49239 + 1.66516i) q^{5} -0.712098i q^{7} +1.86188 q^{9} +2.90228 q^{11} -6.88922i q^{13} +(-1.77644 + 1.59213i) q^{15} -0.433830i q^{17} +7.42477 q^{19} +0.759686 q^{21} +5.73141i q^{23} +(-0.545534 + 4.97015i) q^{25} +5.18679i q^{27} -10.5952 q^{29} +0.00620693 q^{31} +3.09624i q^{33} +(1.18576 - 1.06273i) q^{35} +1.00000i q^{37} +7.34962 q^{39} -3.79738 q^{41} -4.77044i q^{43} +(2.77865 + 3.10033i) q^{45} +3.37418i q^{47} +6.49292 q^{49} +0.462823 q^{51} +0.266177i q^{53} +(4.33134 + 4.83277i) q^{55} +7.92096i q^{57} +4.17923 q^{59} -6.75494 q^{61} -1.32584i q^{63} +(11.4717 - 10.2814i) q^{65} +11.4728i q^{67} -6.11443 q^{69} -12.9624 q^{71} -11.1454i q^{73} +(-5.30230 - 0.581991i) q^{75} -2.06671i q^{77} +4.76967 q^{79} +0.0522097 q^{81} +1.61080i q^{83} +(0.722398 - 0.647445i) q^{85} -11.3032i q^{87} -7.65696 q^{89} -4.90579 q^{91} +0.00662174i q^{93} +(11.0807 + 12.3635i) q^{95} -1.08422i q^{97} +5.40368 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 2 q^{5} - 18 q^{9} + 6 q^{15} + 4 q^{19} - 16 q^{21} - 2 q^{25} - 4 q^{29} + 8 q^{31} - 2 q^{35} + 8 q^{39} - 4 q^{41} + 8 q^{45} + 6 q^{49} - 40 q^{51} - 6 q^{55} + 8 q^{59} - 12 q^{65} + 28 q^{69}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/740\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(297\) \(371\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.06683i 0.615934i 0.951397 + 0.307967i \(0.0996486\pi\)
−0.951397 + 0.307967i \(0.900351\pi\)
\(4\) 0 0
\(5\) 1.49239 + 1.66516i 0.667418 + 0.744683i
\(6\) 0 0
\(7\) 0.712098i 0.269148i −0.990904 0.134574i \(-0.957033\pi\)
0.990904 0.134574i \(-0.0429665\pi\)
\(8\) 0 0
\(9\) 1.86188 0.620625
\(10\) 0 0
\(11\) 2.90228 0.875070 0.437535 0.899201i \(-0.355852\pi\)
0.437535 + 0.899201i \(0.355852\pi\)
\(12\) 0 0
\(13\) 6.88922i 1.91072i −0.295437 0.955362i \(-0.595465\pi\)
0.295437 0.955362i \(-0.404535\pi\)
\(14\) 0 0
\(15\) −1.77644 + 1.59213i −0.458676 + 0.411085i
\(16\) 0 0
\(17\) 0.433830i 0.105219i −0.998615 0.0526097i \(-0.983246\pi\)
0.998615 0.0526097i \(-0.0167539\pi\)
\(18\) 0 0
\(19\) 7.42477 1.70336 0.851680 0.524062i \(-0.175584\pi\)
0.851680 + 0.524062i \(0.175584\pi\)
\(20\) 0 0
\(21\) 0.759686 0.165777
\(22\) 0 0
\(23\) 5.73141i 1.19508i 0.801839 + 0.597540i \(0.203855\pi\)
−0.801839 + 0.597540i \(0.796145\pi\)
\(24\) 0 0
\(25\) −0.545534 + 4.97015i −0.109107 + 0.994030i
\(26\) 0 0
\(27\) 5.18679i 0.998198i
\(28\) 0 0
\(29\) −10.5952 −1.96747 −0.983736 0.179623i \(-0.942512\pi\)
−0.983736 + 0.179623i \(0.942512\pi\)
\(30\) 0 0
\(31\) 0.00620693 0.00111480 0.000557399 1.00000i \(-0.499823\pi\)
0.000557399 1.00000i \(0.499823\pi\)
\(32\) 0 0
\(33\) 3.09624i 0.538986i
\(34\) 0 0
\(35\) 1.18576 1.06273i 0.200430 0.179634i
\(36\) 0 0
\(37\) 1.00000i 0.164399i
\(38\) 0 0
\(39\) 7.34962 1.17688
\(40\) 0 0
\(41\) −3.79738 −0.593051 −0.296526 0.955025i \(-0.595828\pi\)
−0.296526 + 0.955025i \(0.595828\pi\)
\(42\) 0 0
\(43\) 4.77044i 0.727485i −0.931500 0.363742i \(-0.881499\pi\)
0.931500 0.363742i \(-0.118501\pi\)
\(44\) 0 0
\(45\) 2.77865 + 3.10033i 0.414216 + 0.462169i
\(46\) 0 0
\(47\) 3.37418i 0.492174i 0.969248 + 0.246087i \(0.0791449\pi\)
−0.969248 + 0.246087i \(0.920855\pi\)
\(48\) 0 0
\(49\) 6.49292 0.927560
\(50\) 0 0
\(51\) 0.462823 0.0648082
\(52\) 0 0
\(53\) 0.266177i 0.0365622i 0.999833 + 0.0182811i \(0.00581938\pi\)
−0.999833 + 0.0182811i \(0.994181\pi\)
\(54\) 0 0
\(55\) 4.33134 + 4.83277i 0.584038 + 0.651650i
\(56\) 0 0
\(57\) 7.92096i 1.04916i
\(58\) 0 0
\(59\) 4.17923 0.544090 0.272045 0.962285i \(-0.412300\pi\)
0.272045 + 0.962285i \(0.412300\pi\)
\(60\) 0 0
\(61\) −6.75494 −0.864882 −0.432441 0.901662i \(-0.642348\pi\)
−0.432441 + 0.901662i \(0.642348\pi\)
\(62\) 0 0
\(63\) 1.32584i 0.167040i
\(64\) 0 0
\(65\) 11.4717 10.2814i 1.42288 1.27525i
\(66\) 0 0
\(67\) 11.4728i 1.40162i 0.713347 + 0.700811i \(0.247179\pi\)
−0.713347 + 0.700811i \(0.752821\pi\)
\(68\) 0 0
\(69\) −6.11443 −0.736091
\(70\) 0 0
\(71\) −12.9624 −1.53836 −0.769178 0.639034i \(-0.779334\pi\)
−0.769178 + 0.639034i \(0.779334\pi\)
\(72\) 0 0
\(73\) 11.1454i 1.30447i −0.758019 0.652233i \(-0.773832\pi\)
0.758019 0.652233i \(-0.226168\pi\)
\(74\) 0 0
\(75\) −5.30230 0.581991i −0.612257 0.0672025i
\(76\) 0 0
\(77\) 2.06671i 0.235523i
\(78\) 0 0
\(79\) 4.76967 0.536629 0.268315 0.963331i \(-0.413533\pi\)
0.268315 + 0.963331i \(0.413533\pi\)
\(80\) 0 0
\(81\) 0.0522097 0.00580108
\(82\) 0 0
\(83\) 1.61080i 0.176808i 0.996085 + 0.0884042i \(0.0281767\pi\)
−0.996085 + 0.0884042i \(0.971823\pi\)
\(84\) 0 0
\(85\) 0.722398 0.647445i 0.0783551 0.0702253i
\(86\) 0 0
\(87\) 11.3032i 1.21183i
\(88\) 0 0
\(89\) −7.65696 −0.811636 −0.405818 0.913954i \(-0.633013\pi\)
−0.405818 + 0.913954i \(0.633013\pi\)
\(90\) 0 0
\(91\) −4.90579 −0.514267
\(92\) 0 0
\(93\) 0.00662174i 0.000686642i
\(94\) 0 0
\(95\) 11.0807 + 12.3635i 1.13685 + 1.26846i
\(96\) 0 0
\(97\) 1.08422i 0.110086i −0.998484 0.0550432i \(-0.982470\pi\)
0.998484 0.0550432i \(-0.0175296\pi\)
\(98\) 0 0
\(99\) 5.40368 0.543091
\(100\) 0 0
\(101\) 15.2062 1.51307 0.756536 0.653952i \(-0.226890\pi\)
0.756536 + 0.653952i \(0.226890\pi\)
\(102\) 0 0
\(103\) 8.78922i 0.866028i −0.901387 0.433014i \(-0.857450\pi\)
0.901387 0.433014i \(-0.142550\pi\)
\(104\) 0 0
\(105\) 1.13375 + 1.26500i 0.110643 + 0.123452i
\(106\) 0 0
\(107\) 11.0469i 1.06794i 0.845503 + 0.533971i \(0.179301\pi\)
−0.845503 + 0.533971i \(0.820699\pi\)
\(108\) 0 0
\(109\) −3.74658 −0.358858 −0.179429 0.983771i \(-0.557425\pi\)
−0.179429 + 0.983771i \(0.557425\pi\)
\(110\) 0 0
\(111\) −1.06683 −0.101259
\(112\) 0 0
\(113\) 9.22516i 0.867830i −0.900954 0.433915i \(-0.857132\pi\)
0.900954 0.433915i \(-0.142868\pi\)
\(114\) 0 0
\(115\) −9.54372 + 8.55350i −0.889957 + 0.797618i
\(116\) 0 0
\(117\) 12.8269i 1.18584i
\(118\) 0 0
\(119\) −0.308930 −0.0283195
\(120\) 0 0
\(121\) −2.57677 −0.234252
\(122\) 0 0
\(123\) 4.05115i 0.365280i
\(124\) 0 0
\(125\) −9.09026 + 6.50901i −0.813057 + 0.582183i
\(126\) 0 0
\(127\) 13.1782i 1.16938i −0.811257 0.584690i \(-0.801216\pi\)
0.811257 0.584690i \(-0.198784\pi\)
\(128\) 0 0
\(129\) 5.08924 0.448083
\(130\) 0 0
\(131\) 9.86252 0.861693 0.430846 0.902425i \(-0.358215\pi\)
0.430846 + 0.902425i \(0.358215\pi\)
\(132\) 0 0
\(133\) 5.28716i 0.458455i
\(134\) 0 0
\(135\) −8.63685 + 7.74072i −0.743342 + 0.666215i
\(136\) 0 0
\(137\) 17.5546i 1.49979i −0.661554 0.749897i \(-0.730103\pi\)
0.661554 0.749897i \(-0.269897\pi\)
\(138\) 0 0
\(139\) −20.5440 −1.74252 −0.871261 0.490820i \(-0.836697\pi\)
−0.871261 + 0.490820i \(0.836697\pi\)
\(140\) 0 0
\(141\) −3.59967 −0.303147
\(142\) 0 0
\(143\) 19.9944i 1.67202i
\(144\) 0 0
\(145\) −15.8121 17.6427i −1.31313 1.46514i
\(146\) 0 0
\(147\) 6.92683i 0.571315i
\(148\) 0 0
\(149\) 5.09279 0.417218 0.208609 0.977999i \(-0.433106\pi\)
0.208609 + 0.977999i \(0.433106\pi\)
\(150\) 0 0
\(151\) −4.79117 −0.389900 −0.194950 0.980813i \(-0.562454\pi\)
−0.194950 + 0.980813i \(0.562454\pi\)
\(152\) 0 0
\(153\) 0.807738i 0.0653018i
\(154\) 0 0
\(155\) 0.00926318 + 0.0103356i 0.000744036 + 0.000830172i
\(156\) 0 0
\(157\) 16.2565i 1.29741i 0.761040 + 0.648705i \(0.224689\pi\)
−0.761040 + 0.648705i \(0.775311\pi\)
\(158\) 0 0
\(159\) −0.283965 −0.0225199
\(160\) 0 0
\(161\) 4.08132 0.321653
\(162\) 0 0
\(163\) 16.5283i 1.29460i −0.762237 0.647298i \(-0.775899\pi\)
0.762237 0.647298i \(-0.224101\pi\)
\(164\) 0 0
\(165\) −5.15574 + 4.62080i −0.401374 + 0.359729i
\(166\) 0 0
\(167\) 12.1706i 0.941787i 0.882190 + 0.470894i \(0.156068\pi\)
−0.882190 + 0.470894i \(0.843932\pi\)
\(168\) 0 0
\(169\) −34.4613 −2.65087
\(170\) 0 0
\(171\) 13.8240 1.05715
\(172\) 0 0
\(173\) 2.52257i 0.191787i −0.995392 0.0958936i \(-0.969429\pi\)
0.995392 0.0958936i \(-0.0305709\pi\)
\(174\) 0 0
\(175\) 3.53923 + 0.388473i 0.267541 + 0.0293658i
\(176\) 0 0
\(177\) 4.45853i 0.335123i
\(178\) 0 0
\(179\) −23.0731 −1.72456 −0.862282 0.506428i \(-0.830966\pi\)
−0.862282 + 0.506428i \(0.830966\pi\)
\(180\) 0 0
\(181\) −6.88080 −0.511446 −0.255723 0.966750i \(-0.582314\pi\)
−0.255723 + 0.966750i \(0.582314\pi\)
\(182\) 0 0
\(183\) 7.20637i 0.532710i
\(184\) 0 0
\(185\) −1.66516 + 1.49239i −0.122425 + 0.109723i
\(186\) 0 0
\(187\) 1.25910i 0.0920743i
\(188\) 0 0
\(189\) 3.69350 0.268663
\(190\) 0 0
\(191\) −3.23320 −0.233946 −0.116973 0.993135i \(-0.537319\pi\)
−0.116973 + 0.993135i \(0.537319\pi\)
\(192\) 0 0
\(193\) 14.3709i 1.03444i −0.855853 0.517219i \(-0.826967\pi\)
0.855853 0.517219i \(-0.173033\pi\)
\(194\) 0 0
\(195\) 10.9685 + 12.2383i 0.785471 + 0.876403i
\(196\) 0 0
\(197\) 19.1861i 1.36696i 0.729971 + 0.683478i \(0.239533\pi\)
−0.729971 + 0.683478i \(0.760467\pi\)
\(198\) 0 0
\(199\) 21.5450 1.52728 0.763641 0.645641i \(-0.223410\pi\)
0.763641 + 0.645641i \(0.223410\pi\)
\(200\) 0 0
\(201\) −12.2395 −0.863307
\(202\) 0 0
\(203\) 7.54479i 0.529540i
\(204\) 0 0
\(205\) −5.66718 6.32325i −0.395813 0.441635i
\(206\) 0 0
\(207\) 10.6712i 0.741697i
\(208\) 0 0
\(209\) 21.5488 1.49056
\(210\) 0 0
\(211\) 12.6715 0.872344 0.436172 0.899863i \(-0.356334\pi\)
0.436172 + 0.899863i \(0.356334\pi\)
\(212\) 0 0
\(213\) 13.8287i 0.947526i
\(214\) 0 0
\(215\) 7.94355 7.11936i 0.541746 0.485536i
\(216\) 0 0
\(217\) 0.00441994i 0.000300045i
\(218\) 0 0
\(219\) 11.8902 0.803465
\(220\) 0 0
\(221\) −2.98875 −0.201045
\(222\) 0 0
\(223\) 17.8258i 1.19370i −0.802352 0.596852i \(-0.796418\pi\)
0.802352 0.596852i \(-0.203582\pi\)
\(224\) 0 0
\(225\) −1.01572 + 9.25380i −0.0677144 + 0.616920i
\(226\) 0 0
\(227\) 16.7949i 1.11472i −0.830272 0.557359i \(-0.811815\pi\)
0.830272 0.557359i \(-0.188185\pi\)
\(228\) 0 0
\(229\) −6.27187 −0.414457 −0.207228 0.978293i \(-0.566444\pi\)
−0.207228 + 0.978293i \(0.566444\pi\)
\(230\) 0 0
\(231\) 2.20482 0.145067
\(232\) 0 0
\(233\) 16.1095i 1.05537i −0.849441 0.527683i \(-0.823061\pi\)
0.849441 0.527683i \(-0.176939\pi\)
\(234\) 0 0
\(235\) −5.61855 + 5.03559i −0.366514 + 0.328486i
\(236\) 0 0
\(237\) 5.08842i 0.330528i
\(238\) 0 0
\(239\) −7.74007 −0.500663 −0.250332 0.968160i \(-0.580540\pi\)
−0.250332 + 0.968160i \(0.580540\pi\)
\(240\) 0 0
\(241\) −4.58711 −0.295482 −0.147741 0.989026i \(-0.547200\pi\)
−0.147741 + 0.989026i \(0.547200\pi\)
\(242\) 0 0
\(243\) 15.6161i 1.00177i
\(244\) 0 0
\(245\) 9.68998 + 10.8118i 0.619070 + 0.690738i
\(246\) 0 0
\(247\) 51.1509i 3.25465i
\(248\) 0 0
\(249\) −1.71845 −0.108902
\(250\) 0 0
\(251\) 15.8129 0.998103 0.499051 0.866572i \(-0.333682\pi\)
0.499051 + 0.866572i \(0.333682\pi\)
\(252\) 0 0
\(253\) 16.6341i 1.04578i
\(254\) 0 0
\(255\) 0.690713 + 0.770675i 0.0432541 + 0.0482616i
\(256\) 0 0
\(257\) 27.7461i 1.73075i 0.501122 + 0.865377i \(0.332921\pi\)
−0.501122 + 0.865377i \(0.667079\pi\)
\(258\) 0 0
\(259\) 0.712098 0.0442476
\(260\) 0 0
\(261\) −19.7269 −1.22106
\(262\) 0 0
\(263\) 16.8648i 1.03993i 0.854187 + 0.519965i \(0.174055\pi\)
−0.854187 + 0.519965i \(0.825945\pi\)
\(264\) 0 0
\(265\) −0.443227 + 0.397240i −0.0272272 + 0.0244023i
\(266\) 0 0
\(267\) 8.16867i 0.499914i
\(268\) 0 0
\(269\) −23.3683 −1.42479 −0.712396 0.701778i \(-0.752390\pi\)
−0.712396 + 0.701778i \(0.752390\pi\)
\(270\) 0 0
\(271\) −20.6086 −1.25188 −0.625941 0.779871i \(-0.715285\pi\)
−0.625941 + 0.779871i \(0.715285\pi\)
\(272\) 0 0
\(273\) 5.23364i 0.316755i
\(274\) 0 0
\(275\) −1.58329 + 14.4248i −0.0954761 + 0.869846i
\(276\) 0 0
\(277\) 8.14619i 0.489457i −0.969592 0.244729i \(-0.921301\pi\)
0.969592 0.244729i \(-0.0786988\pi\)
\(278\) 0 0
\(279\) 0.0115565 0.000691872
\(280\) 0 0
\(281\) 14.5230 0.866367 0.433183 0.901306i \(-0.357390\pi\)
0.433183 + 0.901306i \(0.357390\pi\)
\(282\) 0 0
\(283\) 31.8286i 1.89202i 0.324142 + 0.946008i \(0.394924\pi\)
−0.324142 + 0.946008i \(0.605076\pi\)
\(284\) 0 0
\(285\) −13.1897 + 11.8212i −0.781290 + 0.700226i
\(286\) 0 0
\(287\) 2.70410i 0.159618i
\(288\) 0 0
\(289\) 16.8118 0.988929
\(290\) 0 0
\(291\) 1.15668 0.0678059
\(292\) 0 0
\(293\) 30.8815i 1.80411i −0.431617 0.902057i \(-0.642057\pi\)
0.431617 0.902057i \(-0.357943\pi\)
\(294\) 0 0
\(295\) 6.23705 + 6.95910i 0.363135 + 0.405175i
\(296\) 0 0
\(297\) 15.0535i 0.873494i
\(298\) 0 0
\(299\) 39.4849 2.28347
\(300\) 0 0
\(301\) −3.39702 −0.195801
\(302\) 0 0
\(303\) 16.2224i 0.931953i
\(304\) 0 0
\(305\) −10.0810 11.2481i −0.577238 0.644063i
\(306\) 0 0
\(307\) 5.84499i 0.333591i 0.985991 + 0.166796i \(0.0533420\pi\)
−0.985991 + 0.166796i \(0.946658\pi\)
\(308\) 0 0
\(309\) 9.37660 0.533416
\(310\) 0 0
\(311\) −5.67788 −0.321963 −0.160981 0.986957i \(-0.551466\pi\)
−0.160981 + 0.986957i \(0.551466\pi\)
\(312\) 0 0
\(313\) 23.2016i 1.31143i 0.755007 + 0.655717i \(0.227633\pi\)
−0.755007 + 0.655717i \(0.772367\pi\)
\(314\) 0 0
\(315\) 2.20774 1.97867i 0.124392 0.111485i
\(316\) 0 0
\(317\) 10.6935i 0.600605i −0.953844 0.300303i \(-0.902912\pi\)
0.953844 0.300303i \(-0.0970877\pi\)
\(318\) 0 0
\(319\) −30.7501 −1.72168
\(320\) 0 0
\(321\) −11.7851 −0.657781
\(322\) 0 0
\(323\) 3.22109i 0.179226i
\(324\) 0 0
\(325\) 34.2404 + 3.75830i 1.89932 + 0.208473i
\(326\) 0 0
\(327\) 3.99696i 0.221033i
\(328\) 0 0
\(329\) 2.40274 0.132467
\(330\) 0 0
\(331\) 4.02026 0.220973 0.110487 0.993878i \(-0.464759\pi\)
0.110487 + 0.993878i \(0.464759\pi\)
\(332\) 0 0
\(333\) 1.86188i 0.102030i
\(334\) 0 0
\(335\) −19.1040 + 17.1219i −1.04377 + 0.935468i
\(336\) 0 0
\(337\) 8.37957i 0.456464i −0.973607 0.228232i \(-0.926705\pi\)
0.973607 0.228232i \(-0.0732945\pi\)
\(338\) 0 0
\(339\) 9.84167 0.534526
\(340\) 0 0
\(341\) 0.0180143 0.000975527
\(342\) 0 0
\(343\) 9.60827i 0.518798i
\(344\) 0 0
\(345\) −9.12512 10.1815i −0.491280 0.548155i
\(346\) 0 0
\(347\) 6.89482i 0.370134i −0.982726 0.185067i \(-0.940750\pi\)
0.982726 0.185067i \(-0.0592501\pi\)
\(348\) 0 0
\(349\) −0.448004 −0.0239811 −0.0119906 0.999928i \(-0.503817\pi\)
−0.0119906 + 0.999928i \(0.503817\pi\)
\(350\) 0 0
\(351\) 35.7329 1.90728
\(352\) 0 0
\(353\) 19.2281i 1.02341i −0.859162 0.511704i \(-0.829014\pi\)
0.859162 0.511704i \(-0.170986\pi\)
\(354\) 0 0
\(355\) −19.3450 21.5845i −1.02673 1.14559i
\(356\) 0 0
\(357\) 0.329575i 0.0174430i
\(358\) 0 0
\(359\) 22.3320 1.17864 0.589319 0.807900i \(-0.299396\pi\)
0.589319 + 0.807900i \(0.299396\pi\)
\(360\) 0 0
\(361\) 36.1272 1.90143
\(362\) 0 0
\(363\) 2.74897i 0.144284i
\(364\) 0 0
\(365\) 18.5588 16.6332i 0.971414 0.870624i
\(366\) 0 0
\(367\) 22.1230i 1.15481i 0.816458 + 0.577405i \(0.195935\pi\)
−0.816458 + 0.577405i \(0.804065\pi\)
\(368\) 0 0
\(369\) −7.07025 −0.368062
\(370\) 0 0
\(371\) 0.189544 0.00984062
\(372\) 0 0
\(373\) 15.1576i 0.784830i −0.919788 0.392415i \(-0.871640\pi\)
0.919788 0.392415i \(-0.128360\pi\)
\(374\) 0 0
\(375\) −6.94400 9.69775i −0.358587 0.500790i
\(376\) 0 0
\(377\) 72.9923i 3.75930i
\(378\) 0 0
\(379\) −27.2193 −1.39816 −0.699081 0.715043i \(-0.746407\pi\)
−0.699081 + 0.715043i \(0.746407\pi\)
\(380\) 0 0
\(381\) 14.0589 0.720261
\(382\) 0 0
\(383\) 8.95280i 0.457467i 0.973489 + 0.228733i \(0.0734584\pi\)
−0.973489 + 0.228733i \(0.926542\pi\)
\(384\) 0 0
\(385\) 3.44140 3.08434i 0.175390 0.157192i
\(386\) 0 0
\(387\) 8.88196i 0.451495i
\(388\) 0 0
\(389\) 4.53175 0.229769 0.114885 0.993379i \(-0.463350\pi\)
0.114885 + 0.993379i \(0.463350\pi\)
\(390\) 0 0
\(391\) 2.48646 0.125746
\(392\) 0 0
\(393\) 10.5216i 0.530746i
\(394\) 0 0
\(395\) 7.11821 + 7.94227i 0.358156 + 0.399619i
\(396\) 0 0
\(397\) 16.6964i 0.837967i 0.907994 + 0.418984i \(0.137614\pi\)
−0.907994 + 0.418984i \(0.862386\pi\)
\(398\) 0 0
\(399\) 5.64050 0.282378
\(400\) 0 0
\(401\) 22.0622 1.10174 0.550868 0.834592i \(-0.314297\pi\)
0.550868 + 0.834592i \(0.314297\pi\)
\(402\) 0 0
\(403\) 0.0427609i 0.00213007i
\(404\) 0 0
\(405\) 0.0779174 + 0.0869377i 0.00387175 + 0.00431997i
\(406\) 0 0
\(407\) 2.90228i 0.143861i
\(408\) 0 0
\(409\) −9.66990 −0.478146 −0.239073 0.971002i \(-0.576843\pi\)
−0.239073 + 0.971002i \(0.576843\pi\)
\(410\) 0 0
\(411\) 18.7278 0.923774
\(412\) 0 0
\(413\) 2.97602i 0.146440i
\(414\) 0 0
\(415\) −2.68225 + 2.40395i −0.131666 + 0.118005i
\(416\) 0 0
\(417\) 21.9170i 1.07328i
\(418\) 0 0
\(419\) 29.4554 1.43899 0.719494 0.694498i \(-0.244374\pi\)
0.719494 + 0.694498i \(0.244374\pi\)
\(420\) 0 0
\(421\) 19.6889 0.959578 0.479789 0.877384i \(-0.340713\pi\)
0.479789 + 0.877384i \(0.340713\pi\)
\(422\) 0 0
\(423\) 6.28230i 0.305456i
\(424\) 0 0
\(425\) 2.15620 + 0.236669i 0.104591 + 0.0114801i
\(426\) 0 0
\(427\) 4.81018i 0.232781i
\(428\) 0 0
\(429\) 21.3306 1.02985
\(430\) 0 0
\(431\) −6.22182 −0.299694 −0.149847 0.988709i \(-0.547878\pi\)
−0.149847 + 0.988709i \(0.547878\pi\)
\(432\) 0 0
\(433\) 25.2855i 1.21515i 0.794264 + 0.607573i \(0.207857\pi\)
−0.794264 + 0.607573i \(0.792143\pi\)
\(434\) 0 0
\(435\) 18.8217 16.8688i 0.902431 0.808799i
\(436\) 0 0
\(437\) 42.5544i 2.03565i
\(438\) 0 0
\(439\) −30.8836 −1.47399 −0.736996 0.675897i \(-0.763756\pi\)
−0.736996 + 0.675897i \(0.763756\pi\)
\(440\) 0 0
\(441\) 12.0890 0.575667
\(442\) 0 0
\(443\) 32.2620i 1.53281i 0.642355 + 0.766407i \(0.277958\pi\)
−0.642355 + 0.766407i \(0.722042\pi\)
\(444\) 0 0
\(445\) −11.4272 12.7501i −0.541701 0.604412i
\(446\) 0 0
\(447\) 5.43314i 0.256979i
\(448\) 0 0
\(449\) −10.5328 −0.497074 −0.248537 0.968622i \(-0.579950\pi\)
−0.248537 + 0.968622i \(0.579950\pi\)
\(450\) 0 0
\(451\) −11.0211 −0.518961
\(452\) 0 0
\(453\) 5.11136i 0.240153i
\(454\) 0 0
\(455\) −7.32137 8.16895i −0.343231 0.382966i
\(456\) 0 0
\(457\) 22.4029i 1.04796i −0.851730 0.523982i \(-0.824446\pi\)
0.851730 0.523982i \(-0.175554\pi\)
\(458\) 0 0
\(459\) 2.25019 0.105030
\(460\) 0 0
\(461\) −7.47407 −0.348102 −0.174051 0.984737i \(-0.555686\pi\)
−0.174051 + 0.984737i \(0.555686\pi\)
\(462\) 0 0
\(463\) 24.7307i 1.14933i −0.818387 0.574667i \(-0.805131\pi\)
0.818387 0.574667i \(-0.194869\pi\)
\(464\) 0 0
\(465\) −0.0110263 + 0.00988223i −0.000511331 + 0.000458277i
\(466\) 0 0
\(467\) 18.6718i 0.864028i −0.901867 0.432014i \(-0.857803\pi\)
0.901867 0.432014i \(-0.142197\pi\)
\(468\) 0 0
\(469\) 8.16974 0.377243
\(470\) 0 0
\(471\) −17.3429 −0.799119
\(472\) 0 0
\(473\) 13.8451i 0.636600i
\(474\) 0 0
\(475\) −4.05046 + 36.9022i −0.185848 + 1.69319i
\(476\) 0 0
\(477\) 0.495588i 0.0226914i
\(478\) 0 0
\(479\) −18.6251 −0.851002 −0.425501 0.904958i \(-0.639902\pi\)
−0.425501 + 0.904958i \(0.639902\pi\)
\(480\) 0 0
\(481\) 6.88922 0.314121
\(482\) 0 0
\(483\) 4.35407i 0.198117i
\(484\) 0 0
\(485\) 1.80541 1.61809i 0.0819795 0.0734736i
\(486\) 0 0
\(487\) 20.0450i 0.908328i −0.890918 0.454164i \(-0.849938\pi\)
0.890918 0.454164i \(-0.150062\pi\)
\(488\) 0 0
\(489\) 17.6329 0.797385
\(490\) 0 0
\(491\) 1.75002 0.0789771 0.0394885 0.999220i \(-0.487427\pi\)
0.0394885 + 0.999220i \(0.487427\pi\)
\(492\) 0 0
\(493\) 4.59650i 0.207016i
\(494\) 0 0
\(495\) 8.06441 + 8.99801i 0.362468 + 0.404431i
\(496\) 0 0
\(497\) 9.23051i 0.414045i
\(498\) 0 0
\(499\) 9.99742 0.447546 0.223773 0.974641i \(-0.428163\pi\)
0.223773 + 0.974641i \(0.428163\pi\)
\(500\) 0 0
\(501\) −12.9839 −0.580079
\(502\) 0 0
\(503\) 31.0214i 1.38318i −0.722292 0.691588i \(-0.756911\pi\)
0.722292 0.691588i \(-0.243089\pi\)
\(504\) 0 0
\(505\) 22.6936 + 25.3208i 1.00985 + 1.12676i
\(506\) 0 0
\(507\) 36.7643i 1.63276i
\(508\) 0 0
\(509\) 13.6334 0.604291 0.302145 0.953262i \(-0.402297\pi\)
0.302145 + 0.953262i \(0.402297\pi\)
\(510\) 0 0
\(511\) −7.93658 −0.351094
\(512\) 0 0
\(513\) 38.5107i 1.70029i
\(514\) 0 0
\(515\) 14.6355 13.1170i 0.644917 0.578003i
\(516\) 0 0
\(517\) 9.79280i 0.430687i
\(518\) 0 0
\(519\) 2.69115 0.118128
\(520\) 0 0
\(521\) 11.4516 0.501702 0.250851 0.968026i \(-0.419290\pi\)
0.250851 + 0.968026i \(0.419290\pi\)
\(522\) 0 0
\(523\) 7.38651i 0.322990i 0.986874 + 0.161495i \(0.0516315\pi\)
−0.986874 + 0.161495i \(0.948369\pi\)
\(524\) 0 0
\(525\) −0.414434 + 3.77576i −0.0180874 + 0.164787i
\(526\) 0 0
\(527\) 0.00269276i 0.000117298i
\(528\) 0 0
\(529\) −9.84901 −0.428218
\(530\) 0 0
\(531\) 7.78121 0.337676
\(532\) 0 0
\(533\) 26.1610i 1.13316i
\(534\) 0 0
\(535\) −18.3948 + 16.4863i −0.795278 + 0.712763i
\(536\) 0 0
\(537\) 24.6151i 1.06222i
\(538\) 0 0
\(539\) 18.8443 0.811680
\(540\) 0 0
\(541\) −20.0037 −0.860028 −0.430014 0.902822i \(-0.641491\pi\)
−0.430014 + 0.902822i \(0.641491\pi\)
\(542\) 0 0
\(543\) 7.34064i 0.315017i
\(544\) 0 0
\(545\) −5.59137 6.23867i −0.239508 0.267235i
\(546\) 0 0
\(547\) 6.90350i 0.295172i −0.989049 0.147586i \(-0.952850\pi\)
0.989049 0.147586i \(-0.0471503\pi\)
\(548\) 0 0
\(549\) −12.5769 −0.536767
\(550\) 0 0
\(551\) −78.6666 −3.35131
\(552\) 0 0
\(553\) 3.39647i 0.144433i
\(554\) 0 0
\(555\) −1.59213 1.77644i −0.0675820 0.0754058i
\(556\) 0 0
\(557\) 10.6028i 0.449256i −0.974445 0.224628i \(-0.927883\pi\)
0.974445 0.224628i \(-0.0721166\pi\)
\(558\) 0 0
\(559\) −32.8646 −1.39002
\(560\) 0 0
\(561\) 1.34324 0.0567117
\(562\) 0 0
\(563\) 35.8274i 1.50995i 0.655756 + 0.754973i \(0.272350\pi\)
−0.655756 + 0.754973i \(0.727650\pi\)
\(564\) 0 0
\(565\) 15.3614 13.7675i 0.646258 0.579205i
\(566\) 0 0
\(567\) 0.0371784i 0.00156135i
\(568\) 0 0
\(569\) −14.1461 −0.593034 −0.296517 0.955028i \(-0.595825\pi\)
−0.296517 + 0.955028i \(0.595825\pi\)
\(570\) 0 0
\(571\) −28.4581 −1.19094 −0.595468 0.803379i \(-0.703033\pi\)
−0.595468 + 0.803379i \(0.703033\pi\)
\(572\) 0 0
\(573\) 3.44927i 0.144095i
\(574\) 0 0
\(575\) −28.4859 3.12667i −1.18795 0.130391i
\(576\) 0 0
\(577\) 3.25563i 0.135534i 0.997701 + 0.0677669i \(0.0215874\pi\)
−0.997701 + 0.0677669i \(0.978413\pi\)
\(578\) 0 0
\(579\) 15.3313 0.637146
\(580\) 0 0
\(581\) 1.14705 0.0475876
\(582\) 0 0
\(583\) 0.772519i 0.0319945i
\(584\) 0 0
\(585\) 21.3588 19.1427i 0.883078 0.791454i
\(586\) 0 0
\(587\) 24.7049i 1.01968i 0.860269 + 0.509840i \(0.170295\pi\)
−0.860269 + 0.509840i \(0.829705\pi\)
\(588\) 0 0
\(589\) 0.0460851 0.00189890
\(590\) 0 0
\(591\) −20.4683 −0.841954
\(592\) 0 0
\(593\) 8.74194i 0.358989i −0.983759 0.179494i \(-0.942554\pi\)
0.983759 0.179494i \(-0.0574461\pi\)
\(594\) 0 0
\(595\) −0.461044 0.514418i −0.0189010 0.0210891i
\(596\) 0 0
\(597\) 22.9848i 0.940705i
\(598\) 0 0
\(599\) −11.3662 −0.464411 −0.232205 0.972667i \(-0.574594\pi\)
−0.232205 + 0.972667i \(0.574594\pi\)
\(600\) 0 0
\(601\) −38.8180 −1.58342 −0.791710 0.610897i \(-0.790809\pi\)
−0.791710 + 0.610897i \(0.790809\pi\)
\(602\) 0 0
\(603\) 21.3609i 0.869883i
\(604\) 0 0
\(605\) −3.84555 4.29074i −0.156344 0.174444i
\(606\) 0 0
\(607\) 14.6825i 0.595945i −0.954574 0.297972i \(-0.903690\pi\)
0.954574 0.297972i \(-0.0963103\pi\)
\(608\) 0 0
\(609\) −8.04900 −0.326162
\(610\) 0 0
\(611\) 23.2454 0.940409
\(612\) 0 0
\(613\) 21.7660i 0.879120i −0.898213 0.439560i \(-0.855134\pi\)
0.898213 0.439560i \(-0.144866\pi\)
\(614\) 0 0
\(615\) 6.74583 6.04591i 0.272018 0.243795i
\(616\) 0 0
\(617\) 24.6742i 0.993348i −0.867937 0.496674i \(-0.834555\pi\)
0.867937 0.496674i \(-0.165445\pi\)
\(618\) 0 0
\(619\) −6.02265 −0.242071 −0.121035 0.992648i \(-0.538621\pi\)
−0.121035 + 0.992648i \(0.538621\pi\)
\(620\) 0 0
\(621\) −29.7276 −1.19293
\(622\) 0 0
\(623\) 5.45250i 0.218450i
\(624\) 0 0
\(625\) −24.4048 5.42277i −0.976191 0.216911i
\(626\) 0 0
\(627\) 22.9888i 0.918086i
\(628\) 0 0
\(629\) 0.433830 0.0172979
\(630\) 0 0
\(631\) 8.11252 0.322954 0.161477 0.986876i \(-0.448374\pi\)
0.161477 + 0.986876i \(0.448374\pi\)
\(632\) 0 0
\(633\) 13.5184i 0.537306i
\(634\) 0 0
\(635\) 21.9439 19.6671i 0.870818 0.780465i
\(636\) 0 0
\(637\) 44.7311i 1.77231i
\(638\) 0 0
\(639\) −24.1344 −0.954743
\(640\) 0 0
\(641\) 13.8587 0.547384 0.273692 0.961817i \(-0.411755\pi\)
0.273692 + 0.961817i \(0.411755\pi\)
\(642\) 0 0
\(643\) 11.6697i 0.460207i 0.973166 + 0.230103i \(0.0739065\pi\)
−0.973166 + 0.230103i \(0.926094\pi\)
\(644\) 0 0
\(645\) 7.59514 + 8.47441i 0.299058 + 0.333680i
\(646\) 0 0
\(647\) 17.5481i 0.689889i −0.938623 0.344944i \(-0.887898\pi\)
0.938623 0.344944i \(-0.112102\pi\)
\(648\) 0 0
\(649\) 12.1293 0.476117
\(650\) 0 0
\(651\) 0.00471532 0.000184808
\(652\) 0 0
\(653\) 9.84974i 0.385450i 0.981253 + 0.192725i \(0.0617325\pi\)
−0.981253 + 0.192725i \(0.938267\pi\)
\(654\) 0 0
\(655\) 14.7187 + 16.4227i 0.575109 + 0.641688i
\(656\) 0 0
\(657\) 20.7513i 0.809584i
\(658\) 0 0
\(659\) −0.135284 −0.00526992 −0.00263496 0.999997i \(-0.500839\pi\)
−0.00263496 + 0.999997i \(0.500839\pi\)
\(660\) 0 0
\(661\) 8.33911 0.324354 0.162177 0.986762i \(-0.448148\pi\)
0.162177 + 0.986762i \(0.448148\pi\)
\(662\) 0 0
\(663\) 3.18849i 0.123831i
\(664\) 0 0
\(665\) 8.80399 7.89052i 0.341404 0.305981i
\(666\) 0 0
\(667\) 60.7251i 2.35129i
\(668\) 0 0
\(669\) 19.0171 0.735243
\(670\) 0 0
\(671\) −19.6047 −0.756832
\(672\) 0 0
\(673\) 0.594681i 0.0229233i 0.999934 + 0.0114616i \(0.00364843\pi\)
−0.999934 + 0.0114616i \(0.996352\pi\)
\(674\) 0 0
\(675\) −25.7791 2.82957i −0.992239 0.108910i
\(676\) 0 0
\(677\) 39.0573i 1.50109i 0.660817 + 0.750547i \(0.270210\pi\)
−0.660817 + 0.750547i \(0.729790\pi\)
\(678\) 0 0
\(679\) −0.772074 −0.0296295
\(680\) 0 0
\(681\) 17.9173 0.686593
\(682\) 0 0
\(683\) 7.10636i 0.271917i 0.990715 + 0.135959i \(0.0434115\pi\)
−0.990715 + 0.135959i \(0.956589\pi\)
\(684\) 0 0
\(685\) 29.2313 26.1984i 1.11687 1.00099i
\(686\) 0 0
\(687\) 6.69101i 0.255278i
\(688\) 0 0
\(689\) 1.83375 0.0698603
\(690\) 0 0
\(691\) −0.828863 −0.0315314 −0.0157657 0.999876i \(-0.505019\pi\)
−0.0157657 + 0.999876i \(0.505019\pi\)
\(692\) 0 0
\(693\) 3.84795i 0.146172i
\(694\) 0 0
\(695\) −30.6597 34.2092i −1.16299 1.29763i
\(696\) 0 0
\(697\) 1.64742i 0.0624004i
\(698\) 0 0
\(699\) 17.1860 0.650036
\(700\) 0 0
\(701\) −14.1819 −0.535641 −0.267821 0.963469i \(-0.586303\pi\)
−0.267821 + 0.963469i \(0.586303\pi\)
\(702\) 0 0
\(703\) 7.42477i 0.280031i
\(704\) 0 0
\(705\) −5.37212 5.99403i −0.202326 0.225748i
\(706\) 0 0
\(707\) 10.8283i 0.407240i
\(708\) 0 0
\(709\) 30.3888 1.14128 0.570638 0.821202i \(-0.306696\pi\)
0.570638 + 0.821202i \(0.306696\pi\)
\(710\) 0 0
\(711\) 8.88053 0.333046
\(712\) 0 0
\(713\) 0.0355745i 0.00133227i
\(714\) 0 0
\(715\) 33.2940 29.8395i 1.24512 1.11593i
\(716\) 0 0
\(717\) 8.25733i 0.308376i
\(718\) 0 0
\(719\) −18.0469 −0.673037 −0.336518 0.941677i \(-0.609249\pi\)
−0.336518 + 0.941677i \(0.609249\pi\)
\(720\) 0 0
\(721\) −6.25879 −0.233089
\(722\) 0 0
\(723\) 4.89366i 0.181997i
\(724\) 0 0
\(725\) 5.78001 52.6595i 0.214664 1.95573i
\(726\) 0 0
\(727\) 50.1159i 1.85870i −0.369205 0.929348i \(-0.620370\pi\)
0.369205 0.929348i \(-0.379630\pi\)
\(728\) 0 0
\(729\) −16.5030 −0.611224
\(730\) 0 0
\(731\) −2.06956 −0.0765454
\(732\) 0 0
\(733\) 17.9931i 0.664592i 0.943175 + 0.332296i \(0.107823\pi\)
−0.943175 + 0.332296i \(0.892177\pi\)
\(734\) 0 0
\(735\) −11.5343 + 10.3375i −0.425449 + 0.381306i
\(736\) 0 0
\(737\) 33.2972i 1.22652i
\(738\) 0 0
\(739\) −5.07934 −0.186847 −0.0934233 0.995626i \(-0.529781\pi\)
−0.0934233 + 0.995626i \(0.529781\pi\)
\(740\) 0 0
\(741\) 54.5692 2.00465
\(742\) 0 0
\(743\) 1.25458i 0.0460262i −0.999735 0.0230131i \(-0.992674\pi\)
0.999735 0.0230131i \(-0.00732595\pi\)
\(744\) 0 0
\(745\) 7.60044 + 8.48033i 0.278459 + 0.310695i
\(746\) 0 0
\(747\) 2.99911i 0.109732i
\(748\) 0 0
\(749\) 7.86645 0.287434
\(750\) 0 0
\(751\) 5.54949 0.202504 0.101252 0.994861i \(-0.467715\pi\)
0.101252 + 0.994861i \(0.467715\pi\)
\(752\) 0 0
\(753\) 16.8697i 0.614765i
\(754\) 0 0
\(755\) −7.15030 7.97808i −0.260226 0.290352i
\(756\) 0 0
\(757\) 10.3643i 0.376697i 0.982102 + 0.188349i \(0.0603135\pi\)
−0.982102 + 0.188349i \(0.939687\pi\)
\(758\) 0 0
\(759\) −17.7458 −0.644131
\(760\) 0 0
\(761\) −17.9530 −0.650794 −0.325397 0.945577i \(-0.605498\pi\)
−0.325397 + 0.945577i \(0.605498\pi\)
\(762\) 0 0
\(763\) 2.66793i 0.0965857i
\(764\) 0 0
\(765\) 1.34502 1.20546i 0.0486291 0.0435836i
\(766\) 0 0
\(767\) 28.7916i 1.03961i
\(768\) 0 0
\(769\) 53.6887 1.93606 0.968032 0.250826i \(-0.0807021\pi\)
0.968032 + 0.250826i \(0.0807021\pi\)
\(770\) 0 0
\(771\) −29.6003 −1.06603
\(772\) 0 0
\(773\) 49.5152i 1.78094i 0.455044 + 0.890469i \(0.349624\pi\)
−0.455044 + 0.890469i \(0.650376\pi\)
\(774\) 0 0
\(775\) −0.00338609 + 0.0308494i −0.000121632 + 0.00110814i
\(776\) 0 0
\(777\) 0.759686i 0.0272536i
\(778\) 0 0
\(779\) −28.1947 −1.01018
\(780\) 0 0
\(781\) −37.6206 −1.34617
\(782\) 0 0
\(783\) 54.9548i 1.96393i
\(784\) 0 0
\(785\) −27.0697 + 24.2611i −0.966159 + 0.865914i
\(786\) 0 0
\(787\) 39.3331i 1.40207i 0.713125 + 0.701036i \(0.247279\pi\)
−0.713125 + 0.701036i \(0.752721\pi\)
\(788\) 0 0
\(789\) −17.9919 −0.640529
\(790\) 0 0
\(791\) −6.56921 −0.233574
\(792\) 0 0
\(793\) 46.5363i 1.65255i
\(794\) 0 0
\(795\) −0.423787 0.472848i −0.0150302 0.0167702i
\(796\) 0 0
\(797\) 3.54138i 0.125442i 0.998031 + 0.0627211i \(0.0199779\pi\)
−0.998031 + 0.0627211i \(0.980022\pi\)
\(798\) 0 0
\(799\) 1.46382 0.0517862
\(800\) 0 0
\(801\) −14.2563 −0.503722
\(802\) 0 0
\(803\) 32.3470i 1.14150i
\(804\) 0 0
\(805\) 6.09093 + 6.79606i 0.214677 + 0.239530i
\(806\) 0 0
\(807\) 24.9300i 0.877577i
\(808\) 0 0
\(809\) −16.8600 −0.592765 −0.296382 0.955069i \(-0.595780\pi\)
−0.296382 + 0.955069i \(0.595780\pi\)
\(810\) 0 0
\(811\) −52.9317 −1.85868 −0.929342 0.369220i \(-0.879625\pi\)
−0.929342 + 0.369220i \(0.879625\pi\)
\(812\) 0 0
\(813\) 21.9858i 0.771076i
\(814\) 0 0
\(815\) 27.5223 24.6667i 0.964064 0.864036i
\(816\) 0 0
\(817\) 35.4194i 1.23917i
\(818\) 0 0
\(819\) −9.13398 −0.319167
\(820\) 0 0
\(821\) −5.39834 −0.188403 −0.0942017 0.995553i \(-0.530030\pi\)
−0.0942017 + 0.995553i \(0.530030\pi\)
\(822\) 0 0
\(823\) 31.4399i 1.09593i 0.836503 + 0.547963i \(0.184597\pi\)
−0.836503 + 0.547963i \(0.815403\pi\)
\(824\) 0 0
\(825\) −15.3888 1.68910i −0.535768 0.0588069i
\(826\) 0 0
\(827\) 7.70172i 0.267815i 0.990994 + 0.133908i \(0.0427525\pi\)
−0.990994 + 0.133908i \(0.957247\pi\)
\(828\) 0 0
\(829\) −0.202796 −0.00704338 −0.00352169 0.999994i \(-0.501121\pi\)
−0.00352169 + 0.999994i \(0.501121\pi\)
\(830\) 0 0
\(831\) 8.69059 0.301473
\(832\) 0 0
\(833\) 2.81682i 0.0975972i
\(834\) 0 0
\(835\) −20.2660 + 18.1633i −0.701333 + 0.628566i
\(836\) 0 0
\(837\) 0.0321941i 0.00111279i
\(838\) 0 0
\(839\) 7.29847 0.251971 0.125986 0.992032i \(-0.459791\pi\)
0.125986 + 0.992032i \(0.459791\pi\)
\(840\) 0 0
\(841\) 83.2573 2.87094
\(842\) 0 0
\(843\) 15.4935i 0.533625i
\(844\) 0 0
\(845\) −51.4298 57.3837i −1.76924 1.97406i
\(846\) 0 0
\(847\) 1.83491i 0.0630484i
\(848\) 0 0
\(849\) −33.9557 −1.16536
\(850\) 0 0
\(851\) −5.73141 −0.196470
\(852\) 0 0
\(853\) 43.4552i 1.48788i 0.668248 + 0.743938i \(0.267044\pi\)
−0.668248 + 0.743938i \(0.732956\pi\)
\(854\) 0 0
\(855\) 20.6308 + 23.0192i 0.705560 + 0.787241i
\(856\) 0 0
\(857\) 9.44057i 0.322484i −0.986915 0.161242i \(-0.948450\pi\)
0.986915 0.161242i \(-0.0515499\pi\)
\(858\) 0 0
\(859\) 26.6063 0.907797 0.453898 0.891054i \(-0.350033\pi\)
0.453898 + 0.891054i \(0.350033\pi\)
\(860\) 0 0
\(861\) −2.88482 −0.0983143
\(862\) 0 0
\(863\) 10.7086i 0.364526i −0.983250 0.182263i \(-0.941658\pi\)
0.983250 0.182263i \(-0.0583422\pi\)
\(864\) 0 0
\(865\) 4.20049 3.76466i 0.142821 0.128002i
\(866\) 0 0
\(867\) 17.9353i 0.609115i
\(868\) 0 0
\(869\) 13.8429 0.469588
\(870\) 0 0
\(871\) 79.0384 2.67812
\(872\) 0 0
\(873\) 2.01869i 0.0683224i
\(874\) 0 0
\(875\) 4.63505 + 6.47315i 0.156693 + 0.218832i
\(876\) 0 0
\(877\) 25.7701i 0.870195i 0.900383 + 0.435097i \(0.143286\pi\)
−0.900383 + 0.435097i \(0.856714\pi\)
\(878\) 0 0
\(879\) 32.9452 1.11122
\(880\) 0 0
\(881\) −31.3316 −1.05559 −0.527794 0.849372i \(-0.676981\pi\)
−0.527794 + 0.849372i \(0.676981\pi\)
\(882\) 0 0
\(883\) 41.0469i 1.38134i −0.723171 0.690669i \(-0.757316\pi\)
0.723171 0.690669i \(-0.242684\pi\)
\(884\) 0 0
\(885\) −7.42417 + 6.65387i −0.249561 + 0.223667i
\(886\) 0 0
\(887\) 0.130253i 0.00437345i −0.999998 0.00218673i \(-0.999304\pi\)
0.999998 0.00218673i \(-0.000696057\pi\)
\(888\) 0 0
\(889\) −9.38420 −0.314736
\(890\) 0 0
\(891\) 0.151527 0.00507635
\(892\) 0 0
\(893\) 25.0525i 0.838350i
\(894\) 0 0
\(895\) −34.4341 38.4205i −1.15101 1.28425i
\(896\) 0 0
\(897\) 42.1236i 1.40647i
\(898\) 0 0
\(899\) −0.0657634 −0.00219333
\(900\) 0 0
\(901\) 0.115476 0.00384705
\(902\) 0 0
\(903\) 3.62404i 0.120600i
\(904\) 0 0
\(905\) −10.2689 11.4577i −0.341348 0.380865i
\(906\) 0 0
\(907\) 29.8074i 0.989738i −0.868968 0.494869i \(-0.835216\pi\)
0.868968 0.494869i \(-0.164784\pi\)
\(908\) 0 0
\(909\) 28.3120 0.939051
\(910\) 0 0
\(911\) 30.0475 0.995517 0.497759 0.867316i \(-0.334157\pi\)
0.497759 + 0.867316i \(0.334157\pi\)
\(912\) 0 0
\(913\) 4.67500i 0.154720i
\(914\) 0 0
\(915\) 11.9998 10.7547i 0.396700 0.355540i
\(916\) 0 0
\(917\) 7.02308i 0.231923i
\(918\) 0 0
\(919\) 40.6134 1.33971 0.669857 0.742490i \(-0.266355\pi\)
0.669857 + 0.742490i \(0.266355\pi\)
\(920\) 0 0
\(921\) −6.23561 −0.205470
\(922\) 0 0
\(923\) 89.3009i 2.93938i
\(924\) 0 0
\(925\) −4.97015 0.545534i −0.163418 0.0179370i
\(926\) 0 0
\(927\) 16.3644i 0.537479i
\(928\) 0 0
\(929\) −51.8039 −1.69963 −0.849816 0.527079i \(-0.823287\pi\)
−0.849816 + 0.527079i \(0.823287\pi\)
\(930\) 0 0
\(931\) 48.2084 1.57997
\(932\) 0 0
\(933\) 6.05733i 0.198308i
\(934\) 0 0
\(935\) 2.09660 1.87907i 0.0685662 0.0614520i
\(936\) 0 0
\(937\) 33.2111i 1.08496i 0.840069 + 0.542480i \(0.182515\pi\)
−0.840069 + 0.542480i \(0.817485\pi\)
\(938\) 0 0
\(939\) −24.7522 −0.807756
\(940\) 0 0
\(941\) −17.5055 −0.570664 −0.285332 0.958429i \(-0.592104\pi\)
−0.285332 + 0.958429i \(0.592104\pi\)
\(942\) 0 0
\(943\) 21.7643i 0.708744i
\(944\) 0 0
\(945\) 5.51215 + 6.15028i 0.179310 + 0.200069i
\(946\) 0 0
\(947\) 1.04714i 0.0340275i −0.999855 0.0170138i \(-0.994584\pi\)
0.999855 0.0170138i \(-0.00541591\pi\)
\(948\) 0 0
\(949\) −76.7828 −2.49247
\(950\) 0 0
\(951\) 11.4081 0.369933
\(952\) 0 0
\(953\) 34.0009i 1.10140i −0.834705 0.550698i \(-0.814362\pi\)
0.834705 0.550698i \(-0.185638\pi\)
\(954\) 0 0
\(955\) −4.82520 5.38380i −0.156140 0.174216i
\(956\) 0 0
\(957\) 32.8051i 1.06044i
\(958\) 0 0
\(959\) −12.5006 −0.403666
\(960\) 0 0
\(961\) −31.0000 −0.999999
\(962\) 0 0
\(963\) 20.5679i 0.662791i
\(964\) 0 0
\(965\) 23.9298 21.4470i 0.770329 0.690402i
\(966\) 0 0
\(967\) 47.7649i 1.53602i 0.640440 + 0.768009i \(0.278752\pi\)
−0.640440 + 0.768009i \(0.721248\pi\)
\(968\) 0 0
\(969\) 3.43635 0.110392
\(970\) 0 0
\(971\) 28.5287 0.915530 0.457765 0.889073i \(-0.348650\pi\)
0.457765 + 0.889073i \(0.348650\pi\)
\(972\) 0 0
\(973\) 14.6294i 0.468996i
\(974\) 0 0
\(975\) −4.00946 + 36.5287i −0.128406 + 1.16985i
\(976\) 0 0
\(977\) 20.1807i 0.645638i 0.946461 + 0.322819i \(0.104631\pi\)
−0.946461 + 0.322819i \(0.895369\pi\)
\(978\) 0 0
\(979\) −22.2226 −0.710239
\(980\) 0 0
\(981\) −6.97567 −0.222716
\(982\) 0 0
\(983\) 37.2253i 1.18730i 0.804722 + 0.593652i \(0.202314\pi\)
−0.804722 + 0.593652i \(0.797686\pi\)
\(984\) 0 0
\(985\) −31.9480 + 28.6332i −1.01795 + 0.912330i
\(986\) 0 0
\(987\) 2.56332i 0.0815912i
\(988\) 0 0
\(989\) 27.3413 0.869403
\(990\) 0 0
\(991\) −14.4987 −0.460565 −0.230283 0.973124i \(-0.573965\pi\)
−0.230283 + 0.973124i \(0.573965\pi\)
\(992\) 0 0
\(993\) 4.28893i 0.136105i
\(994\) 0 0
\(995\) 32.1535 + 35.8759i 1.01934 + 1.13734i
\(996\) 0 0
\(997\) 17.0704i 0.540624i 0.962773 + 0.270312i \(0.0871269\pi\)
−0.962773 + 0.270312i \(0.912873\pi\)
\(998\) 0 0
\(999\) −5.18679 −0.164103
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 740.2.d.a.149.12 yes 18
3.2 odd 2 6660.2.f.c.5329.5 18
5.2 odd 4 3700.2.a.o.1.6 9
5.3 odd 4 3700.2.a.p.1.4 9
5.4 even 2 inner 740.2.d.a.149.7 18
15.14 odd 2 6660.2.f.c.5329.6 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
740.2.d.a.149.7 18 5.4 even 2 inner
740.2.d.a.149.12 yes 18 1.1 even 1 trivial
3700.2.a.o.1.6 9 5.2 odd 4
3700.2.a.p.1.4 9 5.3 odd 4
6660.2.f.c.5329.5 18 3.2 odd 2
6660.2.f.c.5329.6 18 15.14 odd 2