Properties

Label 740.2.ce.b.363.1
Level $740$
Weight $2$
Character 740.363
Analytic conductor $5.909$
Analytic rank $0$
Dimension $12$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [740,2,Mod(3,740)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(740, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([18, 27, 26])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("740.3"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 740 = 2^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 740.ce (of order \(36\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.90892974957\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\Q(\zeta_{36})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{6} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{36}]$

Embedding invariants

Embedding label 363.1
Root \(0.342020 + 0.939693i\) of defining polynomial
Character \(\chi\) \(=\) 740.363
Dual form 740.2.ce.b.687.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.28171 + 0.597672i) q^{2} +(1.28558 + 1.53209i) q^{4} +(0.637511 + 2.14326i) q^{5} +(0.732051 + 2.73205i) q^{8} +(-1.92836 + 2.29813i) q^{9} +(-0.463863 + 3.12807i) q^{10} +(0.472089 - 5.39601i) q^{13} +(-0.694593 + 3.93923i) q^{16} +(0.542711 + 6.20322i) q^{17} +(-3.84514 + 1.79302i) q^{18} +(-2.46410 + 3.73205i) q^{20} +(-4.18716 + 2.73271i) q^{25} +(3.83013 - 6.63397i) q^{26} +(5.11580 - 8.86082i) q^{29} +(-3.24464 + 4.63382i) q^{32} +(-3.01189 + 8.27511i) q^{34} -6.00000 q^{36} +(-5.23905 + 3.09068i) q^{37} +(-5.38881 + 3.31069i) q^{40} +(6.47989 - 5.43727i) q^{41} +(-6.15486 - 2.66790i) q^{45} +(2.39414 + 6.57785i) q^{49} +(-7.00000 + 1.00000i) q^{50} +(8.87407 - 6.21369i) q^{52} +(11.9254 - 8.35026i) q^{53} +(11.8529 - 8.29946i) q^{58} +(9.88215 + 11.7771i) q^{61} +(-6.92820 + 4.00000i) q^{64} +(11.8660 - 2.42820i) q^{65} +(-8.80619 + 8.80619i) q^{68} +(-7.69028 - 3.58603i) q^{72} +(-7.02628 - 7.02628i) q^{73} +(-8.56218 + 0.830127i) q^{74} +(-8.88562 + 1.02261i) q^{80} +(-1.56283 - 8.86327i) q^{81} +(11.5551 - 3.09617i) q^{82} +(-12.9492 + 5.11780i) q^{85} +(-3.03770 + 17.2276i) q^{89} +(-6.29423 - 7.09808i) q^{90} +(4.82148 - 17.9940i) q^{97} +(-0.862798 + 9.86182i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{8} - 6 q^{17} + 12 q^{20} - 6 q^{26} - 30 q^{34} - 72 q^{36} + 24 q^{41} - 84 q^{50} - 18 q^{58} + 72 q^{61} + 132 q^{65} + 30 q^{73} - 30 q^{74} - 42 q^{85} - 60 q^{89} + 18 q^{90}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/740\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(297\) \(371\)
\(\chi(n)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.28171 + 0.597672i 0.906308 + 0.422618i
\(3\) 0 0 −0.422618 0.906308i \(-0.638889\pi\)
0.422618 + 0.906308i \(0.361111\pi\)
\(4\) 1.28558 + 1.53209i 0.642788 + 0.766044i
\(5\) 0.637511 + 2.14326i 0.285104 + 0.958497i
\(6\) 0 0
\(7\) 0 0 −0.819152 0.573576i \(-0.805556\pi\)
0.819152 + 0.573576i \(0.194444\pi\)
\(8\) 0.732051 + 2.73205i 0.258819 + 0.965926i
\(9\) −1.92836 + 2.29813i −0.642788 + 0.766044i
\(10\) −0.463863 + 3.12807i −0.146686 + 0.989183i
\(11\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(12\) 0 0
\(13\) 0.472089 5.39601i 0.130934 1.49658i −0.592153 0.805826i \(-0.701722\pi\)
0.723087 0.690757i \(-0.242723\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.694593 + 3.93923i −0.173648 + 0.984808i
\(17\) 0.542711 + 6.20322i 0.131627 + 1.50450i 0.718900 + 0.695113i \(0.244646\pi\)
−0.587273 + 0.809389i \(0.699799\pi\)
\(18\) −3.84514 + 1.79302i −0.906308 + 0.422618i
\(19\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(20\) −2.46410 + 3.73205i −0.550990 + 0.834512i
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(24\) 0 0
\(25\) −4.18716 + 2.73271i −0.837432 + 0.546542i
\(26\) 3.83013 6.63397i 0.751150 1.30103i
\(27\) 0 0
\(28\) 0 0
\(29\) 5.11580 8.86082i 0.949980 1.64541i 0.204520 0.978862i \(-0.434437\pi\)
0.745460 0.666551i \(-0.232230\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) −3.24464 + 4.63382i −0.573576 + 0.819152i
\(33\) 0 0
\(34\) −3.01189 + 8.27511i −0.516536 + 1.41917i
\(35\) 0 0
\(36\) −6.00000 −1.00000
\(37\) −5.23905 + 3.09068i −0.861295 + 0.508105i
\(38\) 0 0
\(39\) 0 0
\(40\) −5.38881 + 3.31069i −0.852046 + 0.523466i
\(41\) 6.47989 5.43727i 1.01199 0.849159i 0.0233886 0.999726i \(-0.492554\pi\)
0.988600 + 0.150567i \(0.0481100\pi\)
\(42\) 0 0
\(43\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(44\) 0 0
\(45\) −6.15486 2.66790i −0.917512 0.397708i
\(46\) 0 0
\(47\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(48\) 0 0
\(49\) 2.39414 + 6.57785i 0.342020 + 0.939693i
\(50\) −7.00000 + 1.00000i −0.989949 + 0.141421i
\(51\) 0 0
\(52\) 8.87407 6.21369i 1.23061 0.861684i
\(53\) 11.9254 8.35026i 1.63808 1.14700i 0.809577 0.587014i \(-0.199697\pi\)
0.828504 0.559983i \(-0.189192\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 11.8529 8.29946i 1.55636 1.08977i
\(59\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(60\) 0 0
\(61\) 9.88215 + 11.7771i 1.26528 + 1.50790i 0.768221 + 0.640184i \(0.221142\pi\)
0.497058 + 0.867717i \(0.334413\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −6.92820 + 4.00000i −0.866025 + 0.500000i
\(65\) 11.8660 2.42820i 1.47180 0.301182i
\(66\) 0 0
\(67\) 0 0 −0.819152 0.573576i \(-0.805556\pi\)
0.819152 + 0.573576i \(0.194444\pi\)
\(68\) −8.80619 + 8.80619i −1.06791 + 1.06791i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(72\) −7.69028 3.58603i −0.906308 0.422618i
\(73\) −7.02628 7.02628i −0.822364 0.822364i 0.164083 0.986447i \(-0.447534\pi\)
−0.986447 + 0.164083i \(0.947534\pi\)
\(74\) −8.56218 + 0.830127i −0.995333 + 0.0965003i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(80\) −8.88562 + 1.02261i −0.993443 + 0.114331i
\(81\) −1.56283 8.86327i −0.173648 0.984808i
\(82\) 11.5551 3.09617i 1.27604 0.341915i
\(83\) 0 0 −0.0871557 0.996195i \(-0.527778\pi\)
0.0871557 + 0.996195i \(0.472222\pi\)
\(84\) 0 0
\(85\) −12.9492 + 5.11780i −1.40453 + 0.555103i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −3.03770 + 17.2276i −0.321995 + 1.82613i 0.208004 + 0.978128i \(0.433303\pi\)
−0.529999 + 0.847998i \(0.677808\pi\)
\(90\) −6.29423 7.09808i −0.663470 0.748203i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 4.82148 17.9940i 0.489547 1.82701i −0.0691034 0.997610i \(-0.522014\pi\)
0.558650 0.829403i \(-0.311320\pi\)
\(98\) −0.862798 + 9.86182i −0.0871557 + 0.996195i
\(99\) 0 0
\(100\) −9.56966 2.90199i −0.956966 0.290199i
\(101\) −5.66183 9.80658i −0.563373 0.975791i −0.997199 0.0747944i \(-0.976170\pi\)
0.433826 0.900997i \(-0.357163\pi\)
\(102\) 0 0
\(103\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(104\) 15.0878 2.66038i 1.47948 0.260872i
\(105\) 0 0
\(106\) 20.2757 3.57515i 1.96935 0.347249i
\(107\) 0 0 0.0871557 0.996195i \(-0.472222\pi\)
−0.0871557 + 0.996195i \(0.527778\pi\)
\(108\) 0 0
\(109\) 8.81602 3.20877i 0.844421 0.307344i 0.116658 0.993172i \(-0.462782\pi\)
0.727764 + 0.685828i \(0.240560\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 8.06283 17.2908i 0.758487 1.62658i −0.0206968 0.999786i \(-0.506588\pi\)
0.779184 0.626795i \(-0.215634\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 20.1523 3.55340i 1.87109 0.329924i
\(117\) 11.4904 + 11.4904i 1.06229 + 1.06229i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −5.50000 9.52628i −0.500000 0.866025i
\(122\) 5.62724 + 21.0011i 0.509466 + 1.90135i
\(123\) 0 0
\(124\) 0 0
\(125\) −8.52628 7.23205i −0.762614 0.646854i
\(126\) 0 0
\(127\) 0 0 −0.573576 0.819152i \(-0.694444\pi\)
0.573576 + 0.819152i \(0.305556\pi\)
\(128\) −11.2707 + 0.986055i −0.996195 + 0.0871557i
\(129\) 0 0
\(130\) 16.6601 + 3.97974i 1.46119 + 0.349046i
\(131\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) −16.5502 + 6.02379i −1.41917 + 0.516536i
\(137\) −6.03559 22.5251i −0.515655 1.92445i −0.342297 0.939592i \(-0.611205\pi\)
−0.173358 0.984859i \(-0.555462\pi\)
\(138\) 0 0
\(139\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −7.71345 9.19253i −0.642788 0.766044i
\(145\) 22.2525 + 5.31563i 1.84797 + 0.441439i
\(146\) −4.80626 13.2051i −0.397769 1.09286i
\(147\) 0 0
\(148\) −11.4704 4.05339i −0.942861 0.333187i
\(149\) 19.9961i 1.63814i 0.573691 + 0.819072i \(0.305511\pi\)
−0.573691 + 0.819072i \(0.694489\pi\)
\(150\) 0 0
\(151\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(152\) 0 0
\(153\) −15.3024 10.7148i −1.23712 0.866243i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 22.3631 1.95652i 1.78477 0.156147i 0.853646 0.520854i \(-0.174386\pi\)
0.931122 + 0.364707i \(0.118831\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −12.0000 4.00000i −0.948683 0.316228i
\(161\) 0 0
\(162\) 3.29423 12.2942i 0.258819 0.965926i
\(163\) 0 0 −0.573576 0.819152i \(-0.694444\pi\)
0.573576 + 0.819152i \(0.305556\pi\)
\(164\) 16.6608 + 2.93774i 1.30099 + 0.229399i
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.422618 0.906308i \(-0.638889\pi\)
0.422618 + 0.906308i \(0.361111\pi\)
\(168\) 0 0
\(169\) −16.0915 2.83737i −1.23781 0.218259i
\(170\) −19.6559 1.17981i −1.50754 0.0904870i
\(171\) 0 0
\(172\) 0 0
\(173\) −13.2442 6.17585i −1.00693 0.469541i −0.152057 0.988372i \(-0.548590\pi\)
−0.854877 + 0.518831i \(0.826368\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) −14.1899 + 20.2653i −1.06358 + 1.51895i
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) −3.82507 12.8596i −0.285104 0.958497i
\(181\) −7.71718 + 6.47548i −0.573614 + 0.481319i −0.882843 0.469669i \(-0.844373\pi\)
0.309229 + 0.950988i \(0.399929\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −9.96410 9.25833i −0.732575 0.680686i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 4.15106 + 15.4920i 0.298800 + 1.11514i 0.938152 + 0.346222i \(0.112536\pi\)
−0.639353 + 0.768914i \(0.720798\pi\)
\(194\) 16.9343 20.1815i 1.21581 1.44894i
\(195\) 0 0
\(196\) −7.00000 + 12.1244i −0.500000 + 0.866025i
\(197\) −6.09493 + 13.0706i −0.434246 + 0.931243i 0.560431 + 0.828201i \(0.310635\pi\)
−0.994677 + 0.103042i \(0.967142\pi\)
\(198\) 0 0
\(199\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(200\) −10.5311 9.43905i −0.744662 0.667441i
\(201\) 0 0
\(202\) −1.39572 15.9531i −0.0982024 1.12246i
\(203\) 0 0
\(204\) 0 0
\(205\) 15.7845 + 10.4218i 1.10244 + 0.727889i
\(206\) 0 0
\(207\) 0 0
\(208\) 20.9282 + 5.60770i 1.45111 + 0.388824i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(212\) 28.1244 + 7.53590i 1.93159 + 0.517568i
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 13.2174 + 1.15637i 0.895195 + 0.0783194i
\(219\) 0 0
\(220\) 0 0
\(221\) 33.7288 2.26885
\(222\) 0 0
\(223\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(224\) 0 0
\(225\) 1.79423 14.8923i 0.119615 0.992820i
\(226\) 20.6685 17.3429i 1.37485 1.15363i
\(227\) 0 0 0.573576 0.819152i \(-0.305556\pi\)
−0.573576 + 0.819152i \(0.694444\pi\)
\(228\) 0 0
\(229\) −22.0083 + 3.88066i −1.45435 + 0.256441i −0.844278 0.535906i \(-0.819970\pi\)
−0.610071 + 0.792347i \(0.708859\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 27.9532 + 7.49005i 1.83522 + 0.491746i
\(233\) 16.2296 4.34871i 1.06324 0.284893i 0.315525 0.948917i \(-0.397819\pi\)
0.747711 + 0.664024i \(0.231153\pi\)
\(234\) 7.85988 + 21.5949i 0.513817 + 1.41170i
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(240\) 0 0
\(241\) −7.49989 + 20.6058i −0.483110 + 1.32733i 0.423703 + 0.905801i \(0.360730\pi\)
−0.906813 + 0.421533i \(0.861492\pi\)
\(242\) −1.35583 15.4972i −0.0871557 0.996195i
\(243\) 0 0
\(244\) −5.33930 + 30.2807i −0.341814 + 1.93852i
\(245\) −12.5718 + 9.32473i −0.803181 + 0.595735i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) −6.60584 14.3653i −0.417790 0.908544i
\(251\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −15.0351 5.47232i −0.939693 0.342020i
\(257\) −29.0495 13.5460i −1.81206 0.844976i −0.916528 0.399971i \(-0.869020\pi\)
−0.895528 0.445005i \(-0.853202\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 18.9749 + 15.0582i 1.17677 + 0.933868i
\(261\) 10.4982 + 28.8437i 0.649824 + 1.78538i
\(262\) 0 0
\(263\) 0 0 −0.996195 0.0871557i \(-0.972222\pi\)
0.996195 + 0.0871557i \(0.0277778\pi\)
\(264\) 0 0
\(265\) 25.4994 + 20.2359i 1.56642 + 1.24308i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −26.2583 + 15.1603i −1.60100 + 0.924337i −0.609711 + 0.792624i \(0.708714\pi\)
−0.991288 + 0.131713i \(0.957952\pi\)
\(270\) 0 0
\(271\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(272\) −24.8129 2.17085i −1.50450 0.131627i
\(273\) 0 0
\(274\) 5.72675 32.4780i 0.345966 1.96207i
\(275\) 0 0
\(276\) 0 0
\(277\) −11.8954 25.5097i −0.714724 1.53273i −0.841178 0.540758i \(-0.818138\pi\)
0.126455 0.991972i \(-0.459640\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1.52421 + 0.268758i 0.0909265 + 0.0160328i 0.218926 0.975741i \(-0.429745\pi\)
−0.128000 + 0.991774i \(0.540856\pi\)
\(282\) 0 0
\(283\) 0 0 0.0871557 0.996195i \(-0.472222\pi\)
−0.0871557 + 0.996195i \(0.527778\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −4.39230 16.3923i −0.258819 0.965926i
\(289\) −21.4437 + 3.78110i −1.26139 + 0.222418i
\(290\) 25.3443 + 20.1128i 1.48827 + 1.18106i
\(291\) 0 0
\(292\) 1.73207 19.7977i 0.101362 1.15857i
\(293\) −0.431698 0.925778i −0.0252200 0.0540846i 0.893294 0.449472i \(-0.148388\pi\)
−0.918514 + 0.395388i \(0.870610\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −12.2792 12.0508i −0.713711 0.700440i
\(297\) 0 0
\(298\) −11.9511 + 25.6293i −0.692310 + 1.48466i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −18.9414 + 28.6881i −1.08458 + 1.64267i
\(306\) −13.2093 22.8791i −0.755124 1.30791i
\(307\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(312\) 0 0
\(313\) −10.7224 + 0.938084i −0.606063 + 0.0530237i −0.386057 0.922475i \(-0.626163\pi\)
−0.220006 + 0.975499i \(0.570608\pi\)
\(314\) 29.8324 + 10.8581i 1.68354 + 0.612758i
\(315\) 0 0
\(316\) 0 0
\(317\) 5.91792 + 8.45166i 0.332383 + 0.474693i 0.950205 0.311626i \(-0.100873\pi\)
−0.617822 + 0.786318i \(0.711985\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −12.9899 12.2989i −0.726155 0.687531i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 11.5702 13.7888i 0.642788 0.766044i
\(325\) 12.7690 + 23.8840i 0.708297 + 1.32485i
\(326\) 0 0
\(327\) 0 0
\(328\) 19.5985 + 13.7230i 1.08215 + 0.757727i
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(332\) 0 0
\(333\) 3.00000 18.0000i 0.164399 0.986394i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −1.80591 + 20.6416i −0.0983742 + 1.12442i 0.773201 + 0.634161i \(0.218654\pi\)
−0.871576 + 0.490261i \(0.836901\pi\)
\(338\) −18.9289 13.2541i −1.02960 0.720930i
\(339\) 0 0
\(340\) −24.4880 13.2599i −1.32805 0.719121i
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −13.2841 15.8313i −0.714156 0.851098i
\(347\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(348\) 0 0
\(349\) 33.4889 + 5.90499i 1.79262 + 0.316087i 0.968253 0.249973i \(-0.0804216\pi\)
0.824364 + 0.566059i \(0.191533\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −12.9264 + 1.13092i −0.688005 + 0.0601927i −0.425797 0.904819i \(-0.640006\pi\)
−0.262208 + 0.965011i \(0.584451\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −30.2995 + 17.4934i −1.60587 + 0.927149i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(360\) 2.78318 18.7684i 0.146686 0.989183i
\(361\) 14.5548 + 12.2130i 0.766044 + 0.642788i
\(362\) −13.7614 + 3.68736i −0.723285 + 0.193804i
\(363\) 0 0
\(364\) 0 0
\(365\) 10.5798 19.5385i 0.553774 1.02269i
\(366\) 0 0
\(367\) 0 0 0.906308 0.422618i \(-0.138889\pi\)
−0.906308 + 0.422618i \(0.861111\pi\)
\(368\) 0 0
\(369\) 25.3767i 1.32106i
\(370\) −7.23767 17.8218i −0.376268 0.926511i
\(371\) 0 0
\(372\) 0 0
\(373\) 3.87990 + 8.32047i 0.200894 + 0.430818i 0.980784 0.195099i \(-0.0625028\pi\)
−0.779890 + 0.625917i \(0.784725\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −45.3979 31.7880i −2.33811 1.63716i
\(378\) 0 0
\(379\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.0871557 0.996195i \(-0.472222\pi\)
−0.0871557 + 0.996195i \(0.527778\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −3.93866 + 22.3372i −0.200472 + 1.13693i
\(387\) 0 0
\(388\) 33.7668 15.7457i 1.71425 0.799367i
\(389\) 28.5878 + 10.4051i 1.44946 + 0.527561i 0.942441 0.334374i \(-0.108525\pi\)
0.507020 + 0.861934i \(0.330747\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −16.2184 + 11.3562i −0.819152 + 0.573576i
\(393\) 0 0
\(394\) −15.6239 + 13.1100i −0.787121 + 0.660473i
\(395\) 0 0
\(396\) 0 0
\(397\) −26.0174 6.97134i −1.30578 0.349881i −0.462144 0.886805i \(-0.652920\pi\)
−0.843631 + 0.536923i \(0.819586\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −7.85641 18.3923i −0.392820 0.919615i
\(401\) 18.2679i 0.912258i −0.889914 0.456129i \(-0.849236\pi\)
0.889914 0.456129i \(-0.150764\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 7.74584 21.2815i 0.385370 1.05880i
\(405\) 18.0000 9.00000i 0.894427 0.447214i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −33.3925 + 12.1539i −1.65115 + 0.600971i −0.988936 0.148340i \(-0.952607\pi\)
−0.662218 + 0.749311i \(0.730385\pi\)
\(410\) 14.0024 + 22.7917i 0.691529 + 1.12560i
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 23.4724 + 19.6957i 1.15083 + 0.965659i
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(420\) 0 0
\(421\) 19.3688 11.1826i 0.943978 0.545006i 0.0527728 0.998607i \(-0.483194\pi\)
0.891205 + 0.453601i \(0.149861\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 31.5433 + 26.4680i 1.53188 + 1.28540i
\(425\) −19.2240 24.4908i −0.932502 1.18798i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(432\) 0 0
\(433\) −37.8269 + 10.1357i −1.81784 + 0.487090i −0.996519 0.0833719i \(-0.973431\pi\)
−0.821324 + 0.570461i \(0.806764\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 16.2498 + 9.38181i 0.778223 + 0.449307i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(440\) 0 0
\(441\) −19.7335 7.18242i −0.939693 0.342020i
\(442\) 43.2307 + 20.1588i 2.05627 + 0.958856i
\(443\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(444\) 0 0
\(445\) −38.8599 + 4.47223i −1.84214 + 0.212004i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −1.36759 7.75600i −0.0645406 0.366028i −0.999923 0.0123907i \(-0.996056\pi\)
0.935383 0.353637i \(-0.115055\pi\)
\(450\) 11.2004 18.0153i 0.527992 0.849249i
\(451\) 0 0
\(452\) 36.8564 9.87564i 1.73358 0.464511i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −38.8446 3.39846i −1.81707 0.158973i −0.872788 0.488099i \(-0.837691\pi\)
−0.944286 + 0.329125i \(0.893246\pi\)
\(458\) −30.5277 8.17986i −1.42646 0.382220i
\(459\) 0 0
\(460\) 0 0
\(461\) −14.7256 + 17.5493i −0.685840 + 0.817352i −0.990846 0.134999i \(-0.956897\pi\)
0.305006 + 0.952350i \(0.401341\pi\)
\(462\) 0 0
\(463\) 0 0 0.906308 0.422618i \(-0.138889\pi\)
−0.906308 + 0.422618i \(0.861111\pi\)
\(464\) 31.3514 + 26.3070i 1.45545 + 1.22127i
\(465\) 0 0
\(466\) 23.4008 + 4.12619i 1.08402 + 0.191142i
\(467\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(468\) −2.83254 + 32.3760i −0.130934 + 1.49658i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −3.80650 + 43.5085i −0.174288 + 1.99212i
\(478\) 0 0
\(479\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(480\) 0 0
\(481\) 14.2040 + 29.7290i 0.647648 + 1.35553i
\(482\) −21.9282 + 21.9282i −0.998802 + 0.998802i
\(483\) 0 0
\(484\) 7.52444 20.6732i 0.342020 0.939693i
\(485\) 41.6396 1.13768i 1.89076 0.0516594i
\(486\) 0 0
\(487\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(488\) −24.9414 + 35.6200i −1.12904 + 1.61244i
\(489\) 0 0
\(490\) −21.6865 + 4.43782i −0.979698 + 0.200480i
\(491\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(492\) 0 0
\(493\) 57.7420 + 26.9255i 2.60057 + 1.21267i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(500\) 0.118971 22.3604i 0.00532055 0.999986i
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.573576 0.819152i \(-0.694444\pi\)
0.573576 + 0.819152i \(0.305556\pi\)
\(504\) 0 0
\(505\) 17.4086 18.3866i 0.774673 0.818193i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 28.7755 34.2933i 1.27545 1.52002i 0.541771 0.840526i \(-0.317754\pi\)
0.733679 0.679496i \(-0.237801\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −16.0000 16.0000i −0.707107 0.707107i
\(513\) 0 0
\(514\) −29.1370 34.7241i −1.28518 1.53162i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 15.3205 + 30.6410i 0.671849 + 1.34370i
\(521\) 22.2153 + 8.08570i 0.973269 + 0.354241i 0.779220 0.626751i \(-0.215616\pi\)
0.194050 + 0.980992i \(0.437838\pi\)
\(522\) −3.78334 + 43.2438i −0.165592 + 1.89273i
\(523\) 0 0 −0.819152 0.573576i \(-0.805556\pi\)
0.819152 + 0.573576i \(0.194444\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 19.9186 + 11.5000i 0.866025 + 0.500000i
\(530\) 20.5885 + 41.1769i 0.894305 + 1.78861i
\(531\) 0 0
\(532\) 0 0
\(533\) −26.2805 37.5324i −1.13833 1.62571i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) −42.7165 + 3.73721i −1.84164 + 0.161123i
\(539\) 0 0
\(540\) 0 0
\(541\) −32.8128 + 18.9445i −1.41073 + 0.814487i −0.995457 0.0952089i \(-0.969648\pi\)
−0.415275 + 0.909696i \(0.636315\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −30.5055 17.6124i −1.30791 0.755124i
\(545\) 12.4975 + 16.8494i 0.535336 + 0.721750i
\(546\) 0 0
\(547\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(548\) 26.7513 38.2048i 1.14276 1.63203i
\(549\) −46.1217 −1.96843
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 39.8057i 1.69118i
\(555\) 0 0
\(556\) 0 0
\(557\) 13.6559 + 6.36786i 0.578620 + 0.269815i 0.689817 0.723983i \(-0.257691\pi\)
−0.111198 + 0.993798i \(0.535469\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 1.79296 + 1.25545i 0.0756316 + 0.0529578i
\(563\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(564\) 0 0
\(565\) 42.1989 + 6.25769i 1.77532 + 0.263263i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −6.96465 12.0631i −0.291973 0.505713i 0.682303 0.731070i \(-0.260979\pi\)
−0.974276 + 0.225357i \(0.927645\pi\)
\(570\) 0 0
\(571\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 4.16756 23.6354i 0.173648 0.984808i
\(577\) −11.7591 + 8.23378i −0.489536 + 0.342777i −0.792140 0.610340i \(-0.791033\pi\)
0.302604 + 0.953116i \(0.402144\pi\)
\(578\) −29.7445 7.97001i −1.23721 0.331509i
\(579\) 0 0
\(580\) 20.4632 + 40.9264i 0.849688 + 1.69938i
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 14.0526 24.3397i 0.581499 1.00719i
\(585\) −17.3017 + 31.9522i −0.715336 + 1.32106i
\(586\) 1.44460i 0.0596757i
\(587\) 0 0 0.573576 0.819152i \(-0.305556\pi\)
−0.573576 + 0.819152i \(0.694444\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −8.53590 22.7846i −0.350823 0.936442i
\(593\) 8.43575 + 8.43575i 0.346415 + 0.346415i 0.858772 0.512358i \(-0.171228\pi\)
−0.512358 + 0.858772i \(0.671228\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −30.6358 + 25.7065i −1.25489 + 1.05298i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(600\) 0 0
\(601\) 23.2435 + 19.5036i 0.948123 + 0.795570i 0.978980 0.203954i \(-0.0653794\pi\)
−0.0308576 + 0.999524i \(0.509824\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 16.9110 17.8611i 0.687531 0.726155i
\(606\) 0 0
\(607\) 0 0 0.819152 0.573576i \(-0.194444\pi\)
−0.819152 + 0.573576i \(0.805556\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −41.4235 + 25.4491i −1.67719 + 1.03040i
\(611\) 0 0
\(612\) −3.25627 37.2193i −0.131627 1.50450i
\(613\) 37.7045 26.4010i 1.52287 1.06633i 0.549948 0.835199i \(-0.314648\pi\)
0.972924 0.231127i \(-0.0742412\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 8.90647 19.1000i 0.358561 0.768936i −0.641437 0.767175i \(-0.721662\pi\)
0.999998 0.00176117i \(-0.000560597\pi\)
\(618\) 0 0
\(619\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 10.0646 22.8846i 0.402584 0.915383i
\(626\) −14.3036 5.20610i −0.571689 0.208078i
\(627\) 0 0
\(628\) 31.7470 + 31.7470i 1.26684 + 1.26684i
\(629\) −22.0155 30.8217i −0.877814 1.22894i
\(630\) 0 0
\(631\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 2.53374 + 14.3696i 0.100628 + 0.570689i
\(635\) 0 0
\(636\) 0 0
\(637\) 36.6244 9.81347i 1.45111 0.388824i
\(638\) 0 0
\(639\) 0 0
\(640\) −9.29855 23.5274i −0.367557 0.930001i
\(641\) −9.00551 + 3.27774i −0.355696 + 0.129463i −0.513687 0.857978i \(-0.671721\pi\)
0.157991 + 0.987441i \(0.449498\pi\)
\(642\) 0 0
\(643\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.422618 0.906308i \(-0.638889\pi\)
0.422618 + 0.906308i \(0.361111\pi\)
\(648\) 23.0708 10.7581i 0.906308 0.422618i
\(649\) 0 0
\(650\) 2.09138 + 38.2441i 0.0820307 + 1.50006i
\(651\) 0 0
\(652\) 0 0
\(653\) 4.44108 50.7618i 0.173793 1.98646i 0.0101092 0.999949i \(-0.496782\pi\)
0.163684 0.986513i \(-0.447662\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 16.9178 + 29.3025i 0.660529 + 1.14407i
\(657\) 29.6965 2.59811i 1.15857 0.101362i
\(658\) 0 0
\(659\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(660\) 0 0
\(661\) −42.2289 + 7.44610i −1.64252 + 0.289620i −0.917090 0.398681i \(-0.869468\pi\)
−0.725426 + 0.688301i \(0.758357\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 14.6032 21.2778i 0.565864 0.824498i
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −6.46796 + 9.23720i −0.249322 + 0.356068i −0.924232 0.381832i \(-0.875293\pi\)
0.674910 + 0.737900i \(0.264182\pi\)
\(674\) −14.6516 + 25.3773i −0.564358 + 0.977498i
\(675\) 0 0
\(676\) −16.3397 28.3013i −0.628452 1.08851i
\(677\) 0.657325 + 2.45317i 0.0252631 + 0.0942830i 0.977406 0.211369i \(-0.0677922\pi\)
−0.952143 + 0.305652i \(0.901126\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −23.4615 31.6313i −0.899708 1.21300i
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 0.996195 0.0871557i \(-0.0277778\pi\)
−0.996195 + 0.0871557i \(0.972222\pi\)
\(684\) 0 0
\(685\) 44.4295 27.2959i 1.69756 1.04292i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −39.4282 68.2917i −1.50209 2.60170i
\(690\) 0 0
\(691\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(692\) −7.56440 28.2307i −0.287555 1.07317i
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 37.2453 + 37.2453i 1.41077 + 1.41077i
\(698\) 39.3938 + 27.5839i 1.49108 + 1.04406i
\(699\) 0 0
\(700\) 0 0
\(701\) −17.1124 47.0159i −0.646327 1.77577i −0.630872 0.775887i \(-0.717303\pi\)
−0.0154547 0.999881i \(-0.504920\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) −17.2439 6.27627i −0.648983 0.236210i
\(707\) 0 0
\(708\) 0 0
\(709\) 30.0000 1.12667 0.563337 0.826227i \(-0.309517\pi\)
0.563337 + 0.826227i \(0.309517\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −49.2905 + 4.31236i −1.84724 + 0.161613i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(720\) 14.7846 22.3923i 0.550990 0.834512i
\(721\) 0 0
\(722\) 11.3558 + 24.3525i 0.422618 + 0.906308i
\(723\) 0 0
\(724\) −19.8420 3.49869i −0.737423 0.130028i
\(725\) 2.79340 + 51.0817i 0.103744 + 1.89712i
\(726\) 0 0
\(727\) 0 0 −0.996195 0.0871557i \(-0.972222\pi\)
0.996195 + 0.0871557i \(0.0277778\pi\)
\(728\) 0 0
\(729\) 23.3827 + 13.5000i 0.866025 + 0.500000i
\(730\) 25.2379 18.7195i 0.934098 0.692839i
\(731\) 0 0
\(732\) 0 0
\(733\) 10.2326 14.6136i 0.377948 0.539766i −0.584442 0.811435i \(-0.698687\pi\)
0.962391 + 0.271669i \(0.0875756\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) −15.1669 + 32.5256i −0.558303 + 1.19728i
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 1.37498 27.1682i 0.0505454 0.998722i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.422618 0.906308i \(-0.638889\pi\)
0.422618 + 0.906308i \(0.361111\pi\)
\(744\) 0 0
\(745\) −42.8569 + 12.7477i −1.57016 + 0.467041i
\(746\) 12.9834i 0.475355i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) −39.1883 67.8761i −1.42715 2.47190i
\(755\) 0 0
\(756\) 0 0
\(757\) −4.37812 50.0422i −0.159126 1.81881i −0.486236 0.873827i \(-0.661631\pi\)
0.327111 0.944986i \(-0.393925\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 8.57633 48.6388i 0.310892 1.76315i −0.283493 0.958974i \(-0.591493\pi\)
0.594385 0.804181i \(-0.297396\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 13.2093 39.6278i 0.477583 1.43275i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 25.0000 43.3013i 0.901523 1.56148i 0.0760054 0.997107i \(-0.475783\pi\)
0.825518 0.564376i \(-0.190883\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −18.3986 + 26.2759i −0.662179 + 0.945690i
\(773\) −40.7138 3.56199i −1.46437 0.128116i −0.673087 0.739563i \(-0.735032\pi\)
−0.791285 + 0.611448i \(0.790588\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 52.6901 1.89146
\(777\) 0 0
\(778\) 30.4225 + 30.4225i 1.09070 + 1.09070i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −27.5746 + 4.86215i −0.984808 + 0.173648i
\(785\) 18.4501 + 46.6827i 0.658511 + 1.66618i
\(786\) 0 0
\(787\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(788\) −27.8608 + 7.46529i −0.992502 + 0.265940i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 68.2145 47.7643i 2.42237 1.69616i
\(794\) −29.1802 24.4851i −1.03557 0.868945i
\(795\) 0 0
\(796\) 0 0
\(797\) 4.56050 + 52.1268i 0.161541 + 1.84643i 0.455046 + 0.890468i \(0.349623\pi\)
−0.293505 + 0.955958i \(0.594822\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0.922918 28.2692i 0.0326301 0.999467i
\(801\) −33.7336 40.2022i −1.19192 1.42047i
\(802\) 10.9183 23.4143i 0.385537 0.826786i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 22.6473 22.6473i 0.796730 0.796730i
\(809\) −7.55325 42.8366i −0.265558 1.50605i −0.767441 0.641119i \(-0.778470\pi\)
0.501883 0.864935i \(-0.332641\pi\)
\(810\) 28.4499 0.777310i 0.999627 0.0273119i
\(811\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) −50.0637 4.38000i −1.75044 0.153143i
\(819\) 0 0
\(820\) 4.32507 + 37.5813i 0.151038 + 1.31239i
\(821\) 9.95026 + 56.4307i 0.347267 + 1.96945i 0.186544 + 0.982447i \(0.440271\pi\)
0.160722 + 0.987000i \(0.448618\pi\)
\(822\) 0 0
\(823\) 0 0 −0.0871557 0.996195i \(-0.527778\pi\)
0.0871557 + 0.996195i \(0.472222\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 −0.996195 0.0871557i \(-0.972222\pi\)
0.996195 + 0.0871557i \(0.0277778\pi\)
\(828\) 0 0
\(829\) −3.47296 + 19.6962i −0.120621 + 0.684076i 0.863192 + 0.504876i \(0.168462\pi\)
−0.983813 + 0.179200i \(0.942649\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 18.3133 + 39.2730i 0.634899 + 1.36155i
\(833\) −39.5045 + 18.4213i −1.36875 + 0.638259i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(840\) 0 0
\(841\) −37.8428 65.5456i −1.30492 2.26019i
\(842\) 31.5088 2.75666i 1.08586 0.0950008i
\(843\) 0 0
\(844\) 0 0
\(845\) −4.17729 36.2972i −0.143703 1.24866i
\(846\) 0 0
\(847\) 0 0
\(848\) 24.6103 + 52.7770i 0.845121 + 1.81237i
\(849\) 0 0
\(850\) −10.0022 42.8798i −0.343073 1.47077i
\(851\) 0 0
\(852\) 0 0
\(853\) 1.31221 2.81405i 0.0449293 0.0963511i −0.882562 0.470196i \(-0.844183\pi\)
0.927491 + 0.373845i \(0.121961\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −39.5604 39.5604i −1.35136 1.35136i −0.884147 0.467210i \(-0.845259\pi\)
−0.467210 0.884147i \(-0.654741\pi\)
\(858\) 0 0
\(859\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 −0.906308 0.422618i \(-0.861111\pi\)
0.906308 + 0.422618i \(0.138889\pi\)
\(864\) 0 0
\(865\) 4.79318 32.3229i 0.162973 1.09901i
\(866\) −54.5410 9.61705i −1.85338 0.326801i
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 15.2203 + 21.7368i 0.515424 + 0.736102i
\(873\) 32.0550 + 45.7793i 1.08490 + 1.54940i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 4.40235 + 16.4298i 0.148657 + 0.554795i 0.999565 + 0.0294808i \(0.00938538\pi\)
−0.850909 + 0.525314i \(0.823948\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −9.83766 55.7921i −0.331439 1.87968i −0.459902 0.887970i \(-0.652115\pi\)
0.128463 0.991714i \(-0.458996\pi\)
\(882\) −21.0000 21.0000i −0.707107 0.707107i
\(883\) 0 0 −0.819152 0.573576i \(-0.805556\pi\)
0.819152 + 0.573576i \(0.194444\pi\)
\(884\) 43.3609 + 51.6756i 1.45839 + 1.73804i
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −52.4802 17.4934i −1.75914 0.586380i
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 2.88269 10.7583i 0.0961965 0.359010i
\(899\) 0 0
\(900\) 25.1230 16.3963i 0.837432 0.546542i
\(901\) 58.2706 + 69.4442i 1.94127 + 2.31352i
\(902\) 0 0
\(903\) 0 0
\(904\) 53.1417 + 9.37032i 1.76747 + 0.311652i
\(905\) −18.7985 12.4118i −0.624882 0.412581i
\(906\) 0 0
\(907\) 0 0 −0.422618 0.906308i \(-0.638889\pi\)
0.422618 + 0.906308i \(0.361111\pi\)
\(908\) 0 0
\(909\) 33.4549 + 5.89900i 1.10963 + 0.195657i
\(910\) 0 0
\(911\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −47.7565 27.5722i −1.57964 0.912008i
\(915\) 0 0
\(916\) −34.2388 28.7298i −1.13128 0.949259i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −29.3627 + 13.6921i −0.967009 + 0.450924i
\(923\) 0 0
\(924\) 0 0
\(925\) 13.4908 27.2580i 0.443575 0.896237i
\(926\) 0 0
\(927\) 0 0
\(928\) 24.4606 + 52.4559i 0.802958 + 1.72195i
\(929\) 18.9912 + 22.6328i 0.623081 + 0.742559i 0.981597 0.190965i \(-0.0611616\pi\)
−0.358516 + 0.933524i \(0.616717\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 27.5270 + 19.2746i 0.901676 + 0.631360i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) −22.9808 + 39.8038i −0.751150 + 1.30103i
\(937\) −18.8088 + 40.3356i −0.614457 + 1.31771i 0.315111 + 0.949055i \(0.397958\pi\)
−0.929567 + 0.368652i \(0.879819\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 5.16912 29.3155i 0.168508 0.955658i −0.776865 0.629668i \(-0.783191\pi\)
0.945373 0.325991i \(-0.105698\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 0.819152 0.573576i \(-0.194444\pi\)
−0.819152 + 0.573576i \(0.805556\pi\)
\(948\) 0 0
\(949\) −41.2309 + 34.5968i −1.33841 + 1.12306i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −5.30091 60.5897i −0.171713 1.96269i −0.257213 0.966355i \(-0.582804\pi\)
0.0854999 0.996338i \(-0.472751\pi\)
\(954\) −30.8827 + 53.4904i −0.999864 + 1.73182i
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0.437257 + 46.5935i 0.0140977 + 1.50223i
\(963\) 0 0
\(964\) −41.2115 + 14.9998i −1.32733 + 0.483110i
\(965\) −30.5570 + 18.7731i −0.983665 + 0.604328i
\(966\) 0 0
\(967\) 0 0 0.573576 0.819152i \(-0.305556\pi\)
−0.573576 + 0.819152i \(0.694444\pi\)
\(968\) 22.0000 22.0000i 0.707107 0.707107i
\(969\) 0 0
\(970\) 54.0500 + 23.4287i 1.73544 + 0.752249i
\(971\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) −53.2567 + 30.7478i −1.70471 + 0.984213i
\(977\) 50.7530 35.5376i 1.62373 1.13695i 0.735534 0.677488i \(-0.236931\pi\)
0.888198 0.459462i \(-0.151958\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −30.4483 7.27343i −0.972634 0.232341i
\(981\) −9.62630 + 26.4481i −0.307344 + 0.844421i
\(982\) 0 0
\(983\) 0 0 0.819152 0.573576i \(-0.194444\pi\)
−0.819152 + 0.573576i \(0.805556\pi\)
\(984\) 0 0
\(985\) −31.8994 4.73037i −1.01640 0.150722i
\(986\) 57.9160 + 69.0216i 1.84442 + 2.19810i
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 47.4234 + 22.1139i 1.50191 + 0.700354i 0.987563 0.157226i \(-0.0502552\pi\)
0.514351 + 0.857580i \(0.328033\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 740.2.ce.b.363.1 yes 12
4.3 odd 2 CM 740.2.ce.b.363.1 yes 12
5.2 odd 4 740.2.ce.a.67.1 12
20.7 even 4 740.2.ce.a.67.1 12
37.21 even 18 740.2.ce.a.243.1 yes 12
148.95 odd 18 740.2.ce.a.243.1 yes 12
185.132 odd 36 inner 740.2.ce.b.687.1 yes 12
740.687 even 36 inner 740.2.ce.b.687.1 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
740.2.ce.a.67.1 12 5.2 odd 4
740.2.ce.a.67.1 12 20.7 even 4
740.2.ce.a.243.1 yes 12 37.21 even 18
740.2.ce.a.243.1 yes 12 148.95 odd 18
740.2.ce.b.363.1 yes 12 1.1 even 1 trivial
740.2.ce.b.363.1 yes 12 4.3 odd 2 CM
740.2.ce.b.687.1 yes 12 185.132 odd 36 inner
740.2.ce.b.687.1 yes 12 740.687 even 36 inner