Properties

Label 740.2.ce.b.247.1
Level $740$
Weight $2$
Character 740.247
Analytic conductor $5.909$
Analytic rank $0$
Dimension $12$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [740,2,Mod(3,740)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(740, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([18, 27, 26])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("740.3"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 740 = 2^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 740.ce (of order \(36\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.90892974957\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\Q(\zeta_{36})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{6} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{36}]$

Embedding invariants

Embedding label 247.1
Root \(0.642788 + 0.766044i\) of defining polynomial
Character \(\chi\) \(=\) 740.247
Dual form 740.2.ce.b.3.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.123257 + 1.40883i) q^{2} +(-1.96962 - 0.347296i) q^{4} +(1.53737 + 1.62373i) q^{5} +(0.732051 - 2.73205i) q^{8} +(2.95442 - 0.520945i) q^{9} +(-2.47706 + 1.96575i) q^{10} +(4.43703 - 3.10684i) q^{13} +(3.75877 + 1.36808i) q^{16} +(1.28470 + 0.899557i) q^{17} +(0.369771 + 4.22650i) q^{18} +(-2.46410 - 3.73205i) q^{20} +(-0.273017 + 4.99254i) q^{25} +(3.83013 + 6.63397i) q^{26} +(-1.10137 - 1.90764i) q^{29} +(-2.39069 + 5.12685i) q^{32} +(-1.42567 + 1.69905i) q^{34} -6.00000 q^{36} +(-0.0570813 + 6.08249i) q^{37} +(5.56155 - 3.01150i) q^{40} +(0.711496 - 4.03509i) q^{41} +(5.38790 + 3.99631i) q^{45} +(4.49951 + 5.36231i) q^{49} +(-7.00000 - 1.00000i) q^{50} +(-9.81825 + 4.57832i) q^{52} +(-13.1942 + 6.15258i) q^{53} +(2.82329 - 1.31652i) q^{58} +(9.92806 + 1.75058i) q^{61} +(-6.92820 - 4.00000i) q^{64} +(11.8660 + 2.42820i) q^{65} +(-2.21795 - 2.21795i) q^{68} +(0.739541 - 8.45299i) q^{72} +(-7.02628 + 7.02628i) q^{73} +(-8.56218 - 0.830127i) q^{74} +(3.55721 + 8.20648i) q^{80} +(8.45723 - 3.07818i) q^{81} +(5.59707 + 1.49973i) q^{82} +(0.514414 + 3.46896i) q^{85} +(-13.9725 - 5.08558i) q^{89} +(-6.29423 + 7.09808i) q^{90} +(-0.976048 - 3.64266i) q^{97} +(-8.10919 + 5.67812i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{8} - 6 q^{17} + 12 q^{20} - 6 q^{26} - 30 q^{34} - 72 q^{36} + 24 q^{41} - 84 q^{50} - 18 q^{58} + 72 q^{61} + 132 q^{65} + 30 q^{73} - 30 q^{74} - 42 q^{85} - 60 q^{89} + 18 q^{90}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/740\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(297\) \(371\)
\(\chi(n)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.123257 + 1.40883i −0.0871557 + 0.996195i
\(3\) 0 0 0.996195 0.0871557i \(-0.0277778\pi\)
−0.996195 + 0.0871557i \(0.972222\pi\)
\(4\) −1.96962 0.347296i −0.984808 0.173648i
\(5\) 1.53737 + 1.62373i 0.687531 + 0.726155i
\(6\) 0 0
\(7\) 0 0 −0.906308 0.422618i \(-0.861111\pi\)
0.906308 + 0.422618i \(0.138889\pi\)
\(8\) 0.732051 2.73205i 0.258819 0.965926i
\(9\) 2.95442 0.520945i 0.984808 0.173648i
\(10\) −2.47706 + 1.96575i −0.783314 + 0.621626i
\(11\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(12\) 0 0
\(13\) 4.43703 3.10684i 1.23061 0.861684i 0.236670 0.971590i \(-0.423944\pi\)
0.993942 + 0.109907i \(0.0350552\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 3.75877 + 1.36808i 0.939693 + 0.342020i
\(17\) 1.28470 + 0.899557i 0.311586 + 0.218175i 0.718900 0.695113i \(-0.244646\pi\)
−0.407314 + 0.913288i \(0.633535\pi\)
\(18\) 0.369771 + 4.22650i 0.0871557 + 0.996195i
\(19\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(20\) −2.46410 3.73205i −0.550990 0.834512i
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(24\) 0 0
\(25\) −0.273017 + 4.99254i −0.0546034 + 0.998508i
\(26\) 3.83013 + 6.63397i 0.751150 + 1.30103i
\(27\) 0 0
\(28\) 0 0
\(29\) −1.10137 1.90764i −0.204520 0.354239i 0.745460 0.666551i \(-0.232230\pi\)
−0.949980 + 0.312312i \(0.898897\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) −2.39069 + 5.12685i −0.422618 + 0.906308i
\(33\) 0 0
\(34\) −1.42567 + 1.69905i −0.244501 + 0.291385i
\(35\) 0 0
\(36\) −6.00000 −1.00000
\(37\) −0.0570813 + 6.08249i −0.00938411 + 0.999956i
\(38\) 0 0
\(39\) 0 0
\(40\) 5.56155 3.01150i 0.879358 0.476161i
\(41\) 0.711496 4.03509i 0.111117 0.630175i −0.877483 0.479608i \(-0.840779\pi\)
0.988600 0.150567i \(-0.0481100\pi\)
\(42\) 0 0
\(43\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(44\) 0 0
\(45\) 5.38790 + 3.99631i 0.803181 + 0.595735i
\(46\) 0 0
\(47\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(48\) 0 0
\(49\) 4.49951 + 5.36231i 0.642788 + 0.766044i
\(50\) −7.00000 1.00000i −0.989949 0.141421i
\(51\) 0 0
\(52\) −9.81825 + 4.57832i −1.36155 + 0.634899i
\(53\) −13.1942 + 6.15258i −1.81237 + 0.845121i −0.899211 + 0.437514i \(0.855859\pi\)
−0.913157 + 0.407607i \(0.866363\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 2.82329 1.31652i 0.370716 0.172868i
\(59\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(60\) 0 0
\(61\) 9.92806 + 1.75058i 1.27116 + 0.224139i 0.768221 0.640184i \(-0.221142\pi\)
0.502936 + 0.864324i \(0.332253\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −6.92820 4.00000i −0.866025 0.500000i
\(65\) 11.8660 + 2.42820i 1.47180 + 0.301182i
\(66\) 0 0
\(67\) 0 0 −0.906308 0.422618i \(-0.861111\pi\)
0.906308 + 0.422618i \(0.138889\pi\)
\(68\) −2.21795 2.21795i −0.268966 0.268966i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(72\) 0.739541 8.45299i 0.0871557 0.996195i
\(73\) −7.02628 + 7.02628i −0.822364 + 0.822364i −0.986447 0.164083i \(-0.947534\pi\)
0.164083 + 0.986447i \(0.447534\pi\)
\(74\) −8.56218 0.830127i −0.995333 0.0965003i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(80\) 3.55721 + 8.20648i 0.397708 + 0.917512i
\(81\) 8.45723 3.07818i 0.939693 0.342020i
\(82\) 5.59707 + 1.49973i 0.618093 + 0.165618i
\(83\) 0 0 −0.819152 0.573576i \(-0.805556\pi\)
0.819152 + 0.573576i \(0.194444\pi\)
\(84\) 0 0
\(85\) 0.514414 + 3.46896i 0.0557960 + 0.376262i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −13.9725 5.08558i −1.48108 0.539071i −0.529999 0.847998i \(-0.677808\pi\)
−0.951086 + 0.308928i \(0.900030\pi\)
\(90\) −6.29423 + 7.09808i −0.663470 + 0.748203i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −0.976048 3.64266i −0.0991026 0.369856i 0.898507 0.438959i \(-0.144653\pi\)
−0.997610 + 0.0691034i \(0.977986\pi\)
\(98\) −8.10919 + 5.67812i −0.819152 + 0.573576i
\(99\) 0 0
\(100\) 2.27163 9.73857i 0.227163 0.973857i
\(101\) 10.0217 17.3581i 0.997199 1.72720i 0.433826 0.900997i \(-0.357163\pi\)
0.563373 0.826202i \(-0.309503\pi\)
\(102\) 0 0
\(103\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(104\) −5.23992 14.3966i −0.513817 1.41170i
\(105\) 0 0
\(106\) −7.04167 19.3468i −0.683947 1.87913i
\(107\) 0 0 0.819152 0.573576i \(-0.194444\pi\)
−0.819152 + 0.573576i \(0.805556\pi\)
\(108\) 0 0
\(109\) 15.9689 13.3995i 1.52955 1.28344i 0.727764 0.685828i \(-0.240560\pi\)
0.801784 0.597615i \(-0.203885\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −19.0057 1.66278i −1.78790 0.156421i −0.855491 0.517817i \(-0.826745\pi\)
−0.932413 + 0.361396i \(0.882300\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 1.50677 + 4.13981i 0.139900 + 0.384372i
\(117\) 11.4904 11.4904i 1.06229 1.06229i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −5.50000 + 9.52628i −0.500000 + 0.866025i
\(122\) −3.68998 + 13.7712i −0.334075 + 1.24679i
\(123\) 0 0
\(124\) 0 0
\(125\) −8.52628 + 7.23205i −0.762614 + 0.646854i
\(126\) 0 0
\(127\) 0 0 −0.422618 0.906308i \(-0.638889\pi\)
0.422618 + 0.906308i \(0.361111\pi\)
\(128\) 6.48928 9.26765i 0.573576 0.819152i
\(129\) 0 0
\(130\) −4.88350 + 16.4179i −0.428311 + 1.43995i
\(131\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 3.39810 2.85135i 0.291385 0.244501i
\(137\) 2.55894 9.55009i 0.218625 0.815920i −0.766234 0.642562i \(-0.777872\pi\)
0.984859 0.173358i \(-0.0554617\pi\)
\(138\) 0 0
\(139\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 11.8177 + 2.08378i 0.984808 + 0.173648i
\(145\) 1.40428 4.72107i 0.116619 0.392064i
\(146\) −9.03281 10.7649i −0.747561 0.890908i
\(147\) 0 0
\(148\) 2.22486 11.9604i 0.182882 0.983135i
\(149\) 2.13113i 0.174589i −0.996183 0.0872945i \(-0.972178\pi\)
0.996183 0.0872945i \(-0.0278221\pi\)
\(150\) 0 0
\(151\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(152\) 0 0
\(153\) 4.26417 + 1.98842i 0.344738 + 0.160754i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0.905156 1.29270i 0.0722393 0.103168i −0.781407 0.624022i \(-0.785497\pi\)
0.853646 + 0.520854i \(0.174386\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −12.0000 + 4.00000i −0.948683 + 0.316228i
\(161\) 0 0
\(162\) 3.29423 + 12.2942i 0.258819 + 0.965926i
\(163\) 0 0 −0.422618 0.906308i \(-0.638889\pi\)
0.422618 + 0.906308i \(0.361111\pi\)
\(164\) −2.80275 + 7.70048i −0.218858 + 0.601306i
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.996195 0.0871557i \(-0.0277778\pi\)
−0.996195 + 0.0871557i \(0.972222\pi\)
\(168\) 0 0
\(169\) 5.58852 15.3543i 0.429886 1.18110i
\(170\) −4.95059 + 0.297150i −0.379693 + 0.0227903i
\(171\) 0 0
\(172\) 0 0
\(173\) −2.28781 + 26.1498i −0.173939 + 1.98813i −0.0218819 + 0.999761i \(0.506966\pi\)
−0.152057 + 0.988372i \(0.548590\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 8.88694 19.0581i 0.666104 1.42847i
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) −9.22419 9.74240i −0.687531 0.726155i
\(181\) 4.62678 26.2398i 0.343906 1.95039i 0.0346764 0.999399i \(-0.488960\pi\)
0.309229 0.950988i \(-0.399929\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −9.96410 + 9.25833i −0.732575 + 0.680686i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 3.00996 11.2333i 0.216661 0.808591i −0.768914 0.639353i \(-0.779202\pi\)
0.985575 0.169239i \(-0.0541309\pi\)
\(194\) 5.25220 0.926105i 0.377086 0.0664904i
\(195\) 0 0
\(196\) −7.00000 12.1244i −0.500000 0.866025i
\(197\) 13.5940 + 1.18932i 0.968532 + 0.0847356i 0.560431 0.828201i \(-0.310635\pi\)
0.408101 + 0.912937i \(0.366191\pi\)
\(198\) 0 0
\(199\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(200\) 13.4400 + 4.40069i 0.950352 + 0.311176i
\(201\) 0 0
\(202\) 23.2195 + 16.2584i 1.63372 + 1.14394i
\(203\) 0 0
\(204\) 0 0
\(205\) 7.64574 5.04813i 0.534002 0.352577i
\(206\) 0 0
\(207\) 0 0
\(208\) 20.9282 5.60770i 1.45111 0.388824i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(212\) 28.1244 7.53590i 1.93159 0.517568i
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 16.9094 + 24.1491i 1.14525 + 1.63559i
\(219\) 0 0
\(220\) 0 0
\(221\) 8.49505 0.571439
\(222\) 0 0
\(223\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(224\) 0 0
\(225\) 1.79423 + 14.8923i 0.119615 + 0.992820i
\(226\) 4.68516 26.5709i 0.311652 1.76747i
\(227\) 0 0 0.422618 0.906308i \(-0.361111\pi\)
−0.422618 + 0.906308i \(0.638889\pi\)
\(228\) 0 0
\(229\) −9.86716 27.1098i −0.652040 1.79147i −0.610071 0.792347i \(-0.708859\pi\)
−0.0419691 0.999119i \(-0.513363\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −6.01802 + 1.61252i −0.395103 + 0.105867i
\(233\) 13.2072 + 3.53885i 0.865230 + 0.231838i 0.664024 0.747711i \(-0.268847\pi\)
0.201206 + 0.979549i \(0.435514\pi\)
\(234\) 14.7717 + 17.6043i 0.965659 + 1.15083i
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(240\) 0 0
\(241\) −14.0952 + 16.7980i −0.907950 + 1.08205i 0.0883481 + 0.996090i \(0.471841\pi\)
−0.996298 + 0.0859632i \(0.972603\pi\)
\(242\) −12.7430 8.92276i −0.819152 0.573576i
\(243\) 0 0
\(244\) −18.9465 6.89595i −1.21292 0.441468i
\(245\) −1.78957 + 15.5498i −0.114331 + 0.993443i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) −9.13782 12.9035i −0.577927 0.816089i
\(251\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 12.2567 + 10.2846i 0.766044 + 0.642788i
\(257\) −1.45691 + 16.6525i −0.0908794 + 1.03876i 0.804649 + 0.593751i \(0.202354\pi\)
−0.895528 + 0.445005i \(0.853202\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −22.5282 8.90365i −1.39714 0.552181i
\(261\) −4.24770 5.06221i −0.262926 0.313343i
\(262\) 0 0
\(263\) 0 0 −0.573576 0.819152i \(-0.694444\pi\)
0.573576 + 0.819152i \(0.305556\pi\)
\(264\) 0 0
\(265\) −30.2745 11.9652i −1.85975 0.735015i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −26.2583 15.1603i −1.60100 0.924337i −0.991288 0.131713i \(-0.957952\pi\)
−0.609711 0.792624i \(-0.708714\pi\)
\(270\) 0 0
\(271\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(272\) 3.59823 + 5.13880i 0.218175 + 0.311586i
\(273\) 0 0
\(274\) 13.1391 + 4.78223i 0.793760 + 0.288905i
\(275\) 0 0
\(276\) 0 0
\(277\) −29.3501 + 2.56780i −1.76348 + 0.154284i −0.922301 0.386473i \(-0.873693\pi\)
−0.841178 + 0.540758i \(0.818138\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −9.65511 + 26.5272i −0.575975 + 1.58248i 0.218926 + 0.975741i \(0.429745\pi\)
−0.794902 + 0.606738i \(0.792478\pi\)
\(282\) 0 0
\(283\) 0 0 0.819152 0.573576i \(-0.194444\pi\)
−0.819152 + 0.573576i \(0.805556\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −4.39230 + 16.3923i −0.258819 + 0.965926i
\(289\) −4.97309 13.6634i −0.292535 0.803732i
\(290\) 6.47811 + 2.56030i 0.380408 + 0.150346i
\(291\) 0 0
\(292\) 16.2793 11.3989i 0.952672 0.667068i
\(293\) −30.0308 + 2.62735i −1.75442 + 0.153492i −0.918514 0.395388i \(-0.870610\pi\)
−0.835902 + 0.548879i \(0.815055\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 16.5759 + 4.60864i 0.963455 + 0.267872i
\(297\) 0 0
\(298\) 3.00240 + 0.262676i 0.173925 + 0.0152164i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 12.4206 + 18.8118i 0.711199 + 1.07716i
\(306\) −3.32693 + 5.76241i −0.190188 + 0.329415i
\(307\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(312\) 0 0
\(313\) 13.6565 19.5035i 0.771909 1.10240i −0.220006 0.975499i \(-0.570608\pi\)
0.991915 0.126902i \(-0.0405034\pi\)
\(314\) 1.70963 + 1.43455i 0.0964798 + 0.0809562i
\(315\) 0 0
\(316\) 0 0
\(317\) −14.6540 31.4255i −0.823048 1.76503i −0.617822 0.786318i \(-0.711985\pi\)
−0.205227 0.978714i \(-0.565793\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −4.15625 17.3990i −0.232341 0.972634i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −17.7265 + 3.12567i −0.984808 + 0.173648i
\(325\) 14.2997 + 23.0003i 0.793202 + 1.27583i
\(326\) 0 0
\(327\) 0 0
\(328\) −10.5032 4.89773i −0.579944 0.270432i
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(332\) 0 0
\(333\) 3.00000 + 18.0000i 0.164399 + 0.986394i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −13.0151 + 9.11326i −0.708977 + 0.496431i −0.871576 0.490261i \(-0.836901\pi\)
0.162598 + 0.986692i \(0.448012\pi\)
\(338\) 20.9429 + 9.76582i 1.13914 + 0.531190i
\(339\) 0 0
\(340\) 0.191560 7.01117i 0.0103888 0.380234i
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −36.5587 6.44628i −1.96541 0.346554i
\(347\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(348\) 0 0
\(349\) 1.23016 3.37983i 0.0658489 0.180918i −0.902404 0.430891i \(-0.858199\pi\)
0.968253 + 0.249973i \(0.0804216\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −21.2386 + 30.3319i −1.13042 + 1.61440i −0.425797 + 0.904819i \(0.640006\pi\)
−0.704620 + 0.709585i \(0.748883\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 25.7543 + 14.8692i 1.36497 + 0.788069i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(360\) 14.8623 11.7945i 0.783314 0.621626i
\(361\) 3.29932 + 18.7113i 0.173648 + 0.984808i
\(362\) 36.3971 + 9.75258i 1.91299 + 0.512584i
\(363\) 0 0
\(364\) 0 0
\(365\) −22.2108 0.606844i −1.16256 0.0317637i
\(366\) 0 0
\(367\) 0 0 −0.0871557 0.996195i \(-0.527778\pi\)
0.0871557 + 0.996195i \(0.472222\pi\)
\(368\) 0 0
\(369\) 12.2920i 0.639897i
\(370\) −11.8153 15.1789i −0.614248 0.789113i
\(371\) 0 0
\(372\) 0 0
\(373\) −27.7964 + 2.43187i −1.43924 + 0.125917i −0.779890 0.625917i \(-0.784725\pi\)
−0.659352 + 0.751834i \(0.729169\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −10.8136 5.04245i −0.556927 0.259699i
\(378\) 0 0
\(379\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.819152 0.573576i \(-0.194444\pi\)
−0.819152 + 0.573576i \(0.805556\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 15.4549 + 5.62511i 0.786631 + 0.286310i
\(387\) 0 0
\(388\) 0.657356 + 7.51362i 0.0333722 + 0.381446i
\(389\) −5.00525 4.19990i −0.253776 0.212944i 0.507020 0.861934i \(-0.330747\pi\)
−0.760796 + 0.648991i \(0.775191\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 17.9440 8.36741i 0.906308 0.422618i
\(393\) 0 0
\(394\) −3.35111 + 19.0051i −0.168826 + 0.957462i
\(395\) 0 0
\(396\) 0 0
\(397\) 37.5757 10.0684i 1.88587 0.505318i 0.886805 0.462144i \(-0.152920\pi\)
0.999068 0.0431736i \(-0.0137468\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −7.85641 + 18.3923i −0.392820 + 0.919615i
\(401\) 18.2679i 0.912258i 0.889914 + 0.456129i \(0.150764\pi\)
−0.889914 + 0.456129i \(0.849236\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −25.7674 + 30.7083i −1.28197 + 1.52780i
\(405\) 18.0000 + 9.00000i 0.894427 + 0.447214i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −26.4274 + 22.1752i −1.30675 + 1.09649i −0.317814 + 0.948153i \(0.602949\pi\)
−0.988936 + 0.148340i \(0.952607\pi\)
\(410\) 6.16958 + 11.3938i 0.304694 + 0.562699i
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 5.32076 + 30.1755i 0.260872 + 1.47948i
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(420\) 0 0
\(421\) 16.1204 + 9.30711i 0.785659 + 0.453601i 0.838432 0.545006i \(-0.183473\pi\)
−0.0527728 + 0.998607i \(0.516806\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 7.15030 + 40.5513i 0.347249 + 1.96935i
\(425\) −4.84182 + 6.16833i −0.234863 + 0.299208i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(432\) 0 0
\(433\) 7.13082 + 1.91070i 0.342685 + 0.0918222i 0.426057 0.904696i \(-0.359902\pi\)
−0.0833719 + 0.996519i \(0.526569\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −36.1063 + 20.8460i −1.72918 + 0.998341i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(440\) 0 0
\(441\) 16.0869 + 13.4985i 0.766044 + 0.642788i
\(442\) −1.04707 + 11.9681i −0.0498042 + 0.569264i
\(443\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(444\) 0 0
\(445\) −13.2232 30.5060i −0.626842 1.44613i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 7.40068 2.69363i 0.349260 0.127120i −0.161432 0.986884i \(-0.551611\pi\)
0.510692 + 0.859764i \(0.329389\pi\)
\(450\) −21.2019 + 0.692188i −0.999467 + 0.0326301i
\(451\) 0 0
\(452\) 36.8564 + 9.87564i 1.73358 + 0.464511i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −19.8939 28.4115i −0.930598 1.32903i −0.944286 0.329125i \(-0.893246\pi\)
0.0136882 0.999906i \(-0.495643\pi\)
\(458\) 39.4093 10.5597i 1.84148 0.493422i
\(459\) 0 0
\(460\) 0 0
\(461\) 22.5609 3.97810i 1.05077 0.185279i 0.378511 0.925597i \(-0.376436\pi\)
0.672256 + 0.740318i \(0.265325\pi\)
\(462\) 0 0
\(463\) 0 0 −0.0871557 0.996195i \(-0.527778\pi\)
0.0871557 + 0.996195i \(0.472222\pi\)
\(464\) −1.53001 8.67714i −0.0710291 0.402826i
\(465\) 0 0
\(466\) −6.61352 + 18.1705i −0.306365 + 0.841732i
\(467\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(468\) −26.6222 + 18.6411i −1.23061 + 0.861684i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −35.7762 + 25.0508i −1.63808 + 1.14700i
\(478\) 0 0
\(479\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(480\) 0 0
\(481\) 18.6441 + 27.1656i 0.850097 + 1.23864i
\(482\) −21.9282 21.9282i −0.998802 0.998802i
\(483\) 0 0
\(484\) 14.1413 16.8530i 0.642788 0.766044i
\(485\) 4.41417 7.18494i 0.200437 0.326251i
\(486\) 0 0
\(487\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(488\) 12.0505 25.8424i 0.545502 1.16983i
\(489\) 0 0
\(490\) −21.6865 4.43782i −0.979698 0.200480i
\(491\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(492\) 0 0
\(493\) 0.301092 3.44149i 0.0135605 0.154997i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(500\) 19.3052 11.2832i 0.863353 0.504601i
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.422618 0.906308i \(-0.638889\pi\)
0.422618 + 0.906308i \(0.361111\pi\)
\(504\) 0 0
\(505\) 43.5920 10.4132i 1.93982 0.463381i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 26.8637 4.73679i 1.19071 0.209954i 0.457032 0.889450i \(-0.348913\pi\)
0.733679 + 0.679496i \(0.237801\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −16.0000 + 16.0000i −0.707107 + 0.707107i
\(513\) 0 0
\(514\) −23.2810 4.10508i −1.02688 0.181067i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 15.3205 30.6410i 0.671849 1.34370i
\(521\) −18.1101 15.1962i −0.793417 0.665756i 0.153172 0.988200i \(-0.451051\pi\)
−0.946589 + 0.322444i \(0.895496\pi\)
\(522\) 7.65536 5.36034i 0.335066 0.234616i
\(523\) 0 0 −0.906308 0.422618i \(-0.861111\pi\)
0.906308 + 0.422618i \(0.138889\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 19.9186 11.5000i 0.866025 0.500000i
\(530\) 20.5885 41.1769i 0.894305 1.78861i
\(531\) 0 0
\(532\) 0 0
\(533\) −9.37947 20.1143i −0.406270 0.871249i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 24.5948 35.1250i 1.06036 1.51435i
\(539\) 0 0
\(540\) 0 0
\(541\) −3.83563 2.21450i −0.164907 0.0952089i 0.415275 0.909696i \(-0.363685\pi\)
−0.580182 + 0.814487i \(0.697019\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −7.68322 + 4.43591i −0.329415 + 0.190188i
\(545\) 46.3074 + 5.32932i 1.98359 + 0.228283i
\(546\) 0 0
\(547\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(548\) −8.35684 + 17.9213i −0.356987 + 0.765560i
\(549\) 30.2436 1.29077
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 41.6659i 1.77022i
\(555\) 0 0
\(556\) 0 0
\(557\) 4.03296 46.0969i 0.170882 1.95319i −0.111198 0.993798i \(-0.535469\pi\)
0.282079 0.959391i \(-0.408976\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −36.1823 16.8721i −1.52626 0.711706i
\(563\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(564\) 0 0
\(565\) −26.5188 33.4165i −1.11565 1.40584i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −16.2755 + 28.1899i −0.682303 + 1.18178i 0.291973 + 0.956426i \(0.405688\pi\)
−0.974276 + 0.225357i \(0.927645\pi\)
\(570\) 0 0
\(571\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −22.5526 8.20848i −0.939693 0.342020i
\(577\) 13.0102 6.06676i 0.541622 0.252562i −0.132500 0.991183i \(-0.542300\pi\)
0.674121 + 0.738621i \(0.264523\pi\)
\(578\) 19.8625 5.32213i 0.826170 0.221372i
\(579\) 0 0
\(580\) −4.40550 + 8.81100i −0.182928 + 0.365857i
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 14.0526 + 24.3397i 0.581499 + 1.00719i
\(585\) 36.3222 + 0.992399i 1.50174 + 0.0410307i
\(586\) 42.6321i 1.76112i
\(587\) 0 0 0.422618 0.906308i \(-0.361111\pi\)
−0.422618 + 0.906308i \(0.638889\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −8.53590 + 22.7846i −0.350823 + 0.936442i
\(593\) −33.1338 + 33.1338i −1.36064 + 1.36064i −0.487540 + 0.873101i \(0.662106\pi\)
−0.873101 + 0.487540i \(0.837894\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −0.740134 + 4.19751i −0.0303171 + 0.171937i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(600\) 0 0
\(601\) 3.15748 + 17.9069i 0.128796 + 0.730440i 0.978980 + 0.203954i \(0.0653794\pi\)
−0.850184 + 0.526485i \(0.823510\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −23.9236 + 5.71484i −0.972634 + 0.232341i
\(606\) 0 0
\(607\) 0 0 0.906308 0.422618i \(-0.138889\pi\)
−0.906308 + 0.422618i \(0.861111\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −28.0336 + 15.1798i −1.13505 + 0.614612i
\(611\) 0 0
\(612\) −7.70821 5.39734i −0.311586 0.218175i
\(613\) 35.1886 16.4087i 1.42125 0.662741i 0.448330 0.893868i \(-0.352019\pi\)
0.972924 + 0.231127i \(0.0742412\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −20.9943 1.83676i −0.845199 0.0739453i −0.343675 0.939089i \(-0.611672\pi\)
−0.501524 + 0.865143i \(0.667227\pi\)
\(618\) 0 0
\(619\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −24.8509 2.72610i −0.994037 0.109044i
\(626\) 25.7938 + 21.6436i 1.03093 + 0.865052i
\(627\) 0 0
\(628\) −2.23176 + 2.23176i −0.0890569 + 0.0890569i
\(629\) −5.54489 + 7.76284i −0.221089 + 0.309525i
\(630\) 0 0
\(631\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 46.0795 16.7716i 1.83005 0.666084i
\(635\) 0 0
\(636\) 0 0
\(637\) 36.6244 + 9.81347i 1.45111 + 0.388824i
\(638\) 0 0
\(639\) 0 0
\(640\) 25.0246 3.71091i 0.989183 0.146686i
\(641\) 29.3148 24.5980i 1.15786 0.971564i 0.157991 0.987441i \(-0.449498\pi\)
0.999874 + 0.0158770i \(0.00505402\pi\)
\(642\) 0 0
\(643\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.996195 0.0871557i \(-0.0277778\pi\)
−0.996195 + 0.0871557i \(0.972222\pi\)
\(648\) −2.21862 25.3590i −0.0871557 0.996195i
\(649\) 0 0
\(650\) −34.1661 + 17.3109i −1.34010 + 0.678988i
\(651\) 0 0
\(652\) 0 0
\(653\) −23.6649 + 16.5703i −0.926078 + 0.648447i −0.936187 0.351502i \(-0.885671\pi\)
0.0101092 + 0.999949i \(0.496782\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 8.19468 14.1936i 0.319948 0.554167i
\(657\) −17.0983 + 24.4189i −0.667068 + 0.952672i
\(658\) 0 0
\(659\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(660\) 0 0
\(661\) −15.7383 43.2406i −0.612148 1.68186i −0.725426 0.688301i \(-0.758357\pi\)
0.113277 0.993563i \(-0.463865\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) −25.7287 + 2.00787i −0.996969 + 0.0778035i
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −4.76567 + 10.2200i −0.183703 + 0.393953i −0.976495 0.215540i \(-0.930849\pi\)
0.792792 + 0.609492i \(0.208627\pi\)
\(674\) −11.2349 19.4593i −0.432751 0.749546i
\(675\) 0 0
\(676\) −16.3397 + 28.3013i −0.628452 + 1.08851i
\(677\) 11.3215 42.2526i 0.435122 1.62390i −0.305652 0.952143i \(-0.598874\pi\)
0.740774 0.671754i \(-0.234459\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 9.85395 + 1.13405i 0.377882 + 0.0434888i
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 0.573576 0.819152i \(-0.305556\pi\)
−0.573576 + 0.819152i \(0.694444\pi\)
\(684\) 0 0
\(685\) 19.4408 10.5269i 0.742796 0.402214i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −39.4282 + 68.2917i −1.50209 + 2.60170i
\(690\) 0 0
\(691\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(692\) 13.5878 50.7105i 0.516532 1.92772i
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 4.54386 4.54386i 0.172111 0.172111i
\(698\) 4.60999 + 2.14967i 0.174491 + 0.0813664i
\(699\) 0 0
\(700\) 0 0
\(701\) −32.1608 38.3277i −1.21470 1.44762i −0.858195 0.513324i \(-0.828414\pi\)
−0.356502 0.934295i \(-0.616031\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) −40.1147 33.6603i −1.50974 1.26682i
\(707\) 0 0
\(708\) 0 0
\(709\) 30.0000 1.12667 0.563337 0.826227i \(-0.309517\pi\)
0.563337 + 0.826227i \(0.309517\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −24.1227 + 34.4507i −0.904035 + 1.29110i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(720\) 14.7846 + 22.3923i 0.550990 + 0.834512i
\(721\) 0 0
\(722\) −26.7678 + 2.34188i −0.996195 + 0.0871557i
\(723\) 0 0
\(724\) −18.2259 + 50.0754i −0.677362 + 1.86104i
\(725\) 9.82465 4.97784i 0.364878 0.184872i
\(726\) 0 0
\(727\) 0 0 −0.573576 0.819152i \(-0.694444\pi\)
0.573576 + 0.819152i \(0.305556\pi\)
\(728\) 0 0
\(729\) 23.3827 13.5000i 0.866025 0.500000i
\(730\) 3.59257 31.2164i 0.132967 1.15537i
\(731\) 0 0
\(732\) 0 0
\(733\) 7.53948 16.1685i 0.278477 0.597196i −0.716468 0.697620i \(-0.754242\pi\)
0.994945 + 0.100424i \(0.0320200\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 17.3174 + 1.51508i 0.637462 + 0.0557707i
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 22.8408 14.7749i 0.839646 0.543134i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.996195 0.0871557i \(-0.0277778\pi\)
−0.996195 + 0.0871557i \(0.972222\pi\)
\(744\) 0 0
\(745\) 3.46039 3.27632i 0.126779 0.120035i
\(746\) 39.4602i 1.44474i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 8.43681 14.6130i 0.307250 0.532173i
\(755\) 0 0
\(756\) 0 0
\(757\) 36.5102 + 25.5647i 1.32699 + 0.929165i 0.999875 0.0158209i \(-0.00503616\pi\)
0.327111 + 0.944986i \(0.393925\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 3.19325 + 1.16225i 0.115755 + 0.0421314i 0.399248 0.916843i \(-0.369271\pi\)
−0.283493 + 0.958974i \(0.591493\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 3.32693 + 9.98079i 0.120285 + 0.360856i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 25.0000 + 43.3013i 0.901523 + 1.56148i 0.825518 + 0.564376i \(0.190883\pi\)
0.0760054 + 0.997107i \(0.475783\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −9.82974 + 21.0800i −0.353780 + 0.758684i
\(773\) −30.4503 43.4876i −1.09522 1.56414i −0.791285 0.611448i \(-0.790588\pi\)
−0.303937 0.952692i \(-0.598301\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −10.6664 −0.382903
\(777\) 0 0
\(778\) 6.53389 6.53389i 0.234251 0.234251i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 9.57656 + 26.3114i 0.342020 + 0.939693i
\(785\) 3.49055 0.517615i 0.124583 0.0184745i
\(786\) 0 0
\(787\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(788\) −26.3619 7.06365i −0.939104 0.251632i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 49.4899 23.0775i 1.75744 0.819507i
\(794\) 9.55320 + 54.1789i 0.339030 + 1.92274i
\(795\) 0 0
\(796\) 0 0
\(797\) 42.8629 + 30.0129i 1.51828 + 1.06311i 0.974636 + 0.223796i \(0.0718450\pi\)
0.543645 + 0.839315i \(0.317044\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −24.9433 13.3353i −0.881879 0.471475i
\(801\) −43.9301 7.74605i −1.55219 0.273693i
\(802\) −25.7365 2.25165i −0.908786 0.0795085i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) −40.0869 40.0869i −1.41025 1.41025i
\(809\) 40.8742 14.8770i 1.43706 0.523047i 0.498114 0.867111i \(-0.334026\pi\)
0.938946 + 0.344064i \(0.111804\pi\)
\(810\) −14.8981 + 24.2497i −0.523466 + 0.852046i
\(811\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) −27.9838 39.9650i −0.978430 1.39734i
\(819\) 0 0
\(820\) −16.8124 + 7.28754i −0.587113 + 0.254492i
\(821\) −53.8456 + 19.5982i −1.87922 + 0.683981i −0.935128 + 0.354310i \(0.884716\pi\)
−0.944096 + 0.329671i \(0.893062\pi\)
\(822\) 0 0
\(823\) 0 0 −0.819152 0.573576i \(-0.805556\pi\)
0.819152 + 0.573576i \(0.194444\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 −0.573576 0.819152i \(-0.694444\pi\)
0.573576 + 0.819152i \(0.305556\pi\)
\(828\) 0 0
\(829\) 18.7939 + 6.84040i 0.652737 + 0.237577i 0.647098 0.762407i \(-0.275983\pi\)
0.00563977 + 0.999984i \(0.498205\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −43.1680 + 3.77671i −1.49658 + 0.130934i
\(833\) 0.956823 + 10.9365i 0.0331520 + 0.378929i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(840\) 0 0
\(841\) 12.0739 20.9127i 0.416343 0.721127i
\(842\) −15.0991 + 21.5637i −0.520349 + 0.743136i
\(843\) 0 0
\(844\) 0 0
\(845\) 33.5229 14.5310i 1.15322 0.499880i
\(846\) 0 0
\(847\) 0 0
\(848\) −58.0114 + 5.07534i −1.99212 + 0.174288i
\(849\) 0 0
\(850\) −8.09335 7.58160i −0.277600 0.260047i
\(851\) 0 0
\(852\) 0 0
\(853\) 51.8694 + 4.53798i 1.77597 + 0.155378i 0.927491 0.373845i \(-0.121961\pi\)
0.848483 + 0.529223i \(0.177516\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 9.20978 9.20978i 0.314600 0.314600i −0.532089 0.846689i \(-0.678593\pi\)
0.846689 + 0.532089i \(0.178593\pi\)
\(858\) 0 0
\(859\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 0.0871557 0.996195i \(-0.472222\pi\)
−0.0871557 + 0.996195i \(0.527778\pi\)
\(864\) 0 0
\(865\) −45.9775 + 36.4870i −1.56328 + 1.24059i
\(866\) −3.57077 + 9.81062i −0.121340 + 0.333378i
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −24.9181 53.4371i −0.843834 1.80961i
\(873\) −4.78128 10.2535i −0.161822 0.347028i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 10.5153 39.2435i 0.355076 1.32516i −0.525314 0.850909i \(-0.676052\pi\)
0.880389 0.474252i \(-0.157281\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −41.0492 + 14.9407i −1.38298 + 0.503365i −0.923081 0.384605i \(-0.874338\pi\)
−0.459902 + 0.887970i \(0.652115\pi\)
\(882\) −21.0000 + 21.0000i −0.707107 + 0.707107i
\(883\) 0 0 −0.906308 0.422618i \(-0.861111\pi\)
0.906308 + 0.422618i \(0.138889\pi\)
\(884\) −16.7320 2.95030i −0.562757 0.0992293i
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 44.6077 14.8692i 1.49526 0.498418i
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 2.88269 + 10.7583i 0.0961965 + 0.359010i
\(899\) 0 0
\(900\) 1.63810 29.9552i 0.0546034 0.998508i
\(901\) −22.4853 3.96476i −0.749093 0.132085i
\(902\) 0 0
\(903\) 0 0
\(904\) −18.4559 + 50.7072i −0.613835 + 1.68650i
\(905\) 49.7194 32.8274i 1.65273 1.09122i
\(906\) 0 0
\(907\) 0 0 0.996195 0.0871557i \(-0.0277778\pi\)
−0.996195 + 0.0871557i \(0.972222\pi\)
\(908\) 0 0
\(909\) 20.5658 56.5041i 0.682124 1.87412i
\(910\) 0 0
\(911\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 42.4790 24.5253i 1.40508 0.811224i
\(915\) 0 0
\(916\) 10.0194 + 56.8227i 0.331049 + 1.87747i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 2.82369 + 32.2749i 0.0929932 + 1.06292i
\(923\) 0 0
\(924\) 0 0
\(925\) −30.3515 1.94561i −0.997952 0.0639711i
\(926\) 0 0
\(927\) 0 0
\(928\) 12.4132 1.08602i 0.407484 0.0356502i
\(929\) 60.0236 + 10.5838i 1.96931 + 0.347242i 0.987713 + 0.156278i \(0.0499495\pi\)
0.981597 + 0.190965i \(0.0611616\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −24.7840 11.5570i −0.811827 0.378561i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) −22.9808 39.8038i −0.751150 1.30103i
\(937\) −58.4362 5.11251i −1.90903 0.167018i −0.929567 0.368652i \(-0.879819\pi\)
−0.979461 + 0.201634i \(0.935375\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 57.6432 + 20.9804i 1.87911 + 0.683941i 0.945373 + 0.325991i \(0.105698\pi\)
0.933740 + 0.357951i \(0.116524\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 0.906308 0.422618i \(-0.138889\pi\)
−0.906308 + 0.422618i \(0.861111\pi\)
\(948\) 0 0
\(949\) −9.34628 + 53.0054i −0.303393 + 1.72063i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −49.8218 34.8856i −1.61389 1.13005i −0.905604 0.424124i \(-0.860582\pi\)
−0.708281 0.705931i \(-0.750529\pi\)
\(954\) −30.8827 53.4904i −0.999864 1.73182i
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) −40.5697 + 22.9181i −1.30802 + 0.738908i
\(963\) 0 0
\(964\) 33.5960 28.1904i 1.08205 0.907950i
\(965\) 22.8673 12.3823i 0.736124 0.398601i
\(966\) 0 0
\(967\) 0 0 0.422618 0.906308i \(-0.361111\pi\)
−0.422618 + 0.906308i \(0.638889\pi\)
\(968\) 22.0000 + 22.0000i 0.707107 + 0.707107i
\(969\) 0 0
\(970\) 9.57830 + 7.10441i 0.307541 + 0.228109i
\(971\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 34.9223 + 20.1624i 1.11784 + 0.645383i
\(977\) −56.1530 + 26.1846i −1.79649 + 0.837718i −0.842004 + 0.539471i \(0.818624\pi\)
−0.954489 + 0.298248i \(0.903598\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 8.92516 30.0057i 0.285104 0.958497i
\(981\) 40.1986 47.9068i 1.28344 1.52955i
\(982\) 0 0
\(983\) 0 0 0.906308 0.422618i \(-0.138889\pi\)
−0.906308 + 0.422618i \(0.861111\pi\)
\(984\) 0 0
\(985\) 18.9678 + 23.9014i 0.604364 + 0.761563i
\(986\) 4.81137 + 0.848375i 0.153225 + 0.0270178i
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −4.56050 + 52.1268i −0.144433 + 1.65087i 0.485511 + 0.874231i \(0.338634\pi\)
−0.629943 + 0.776641i \(0.716922\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 740.2.ce.b.247.1 yes 12
4.3 odd 2 CM 740.2.ce.b.247.1 yes 12
5.3 odd 4 740.2.ce.a.543.1 yes 12
20.3 even 4 740.2.ce.a.543.1 yes 12
37.3 even 18 740.2.ce.a.447.1 12
148.3 odd 18 740.2.ce.a.447.1 12
185.3 odd 36 inner 740.2.ce.b.3.1 yes 12
740.3 even 36 inner 740.2.ce.b.3.1 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
740.2.ce.a.447.1 12 37.3 even 18
740.2.ce.a.447.1 12 148.3 odd 18
740.2.ce.a.543.1 yes 12 5.3 odd 4
740.2.ce.a.543.1 yes 12 20.3 even 4
740.2.ce.b.3.1 yes 12 185.3 odd 36 inner
740.2.ce.b.3.1 yes 12 740.3 even 36 inner
740.2.ce.b.247.1 yes 12 1.1 even 1 trivial
740.2.ce.b.247.1 yes 12 4.3 odd 2 CM